diff --git a/.github/workflows/CI.yml b/.github/workflows/CI.yml index cf1105bad..4955b36c8 100644 --- a/.github/workflows/CI.yml +++ b/.github/workflows/CI.yml @@ -17,7 +17,7 @@ jobs: - '1' - '1.6' steps: - - uses: actions/checkout@v3 + - uses: actions/checkout@v4 - uses: julia-actions/setup-julia@v1 with: version: ${{ matrix.version }} diff --git a/.github/workflows/Documentation.yml b/.github/workflows/Documentation.yml index d2b8c0fab..adc1628ef 100644 --- a/.github/workflows/Documentation.yml +++ b/.github/workflows/Documentation.yml @@ -11,7 +11,7 @@ jobs: build: runs-on: ubuntu-latest steps: - - uses: actions/checkout@v3 + - uses: actions/checkout@v4 - uses: julia-actions/setup-julia@latest with: version: '1' diff --git a/.github/workflows/FormatCheck.yml b/.github/workflows/FormatCheck.yml index f80d0b18b..dd551501c 100644 --- a/.github/workflows/FormatCheck.yml +++ b/.github/workflows/FormatCheck.yml @@ -21,7 +21,7 @@ jobs: with: version: ${{ matrix.julia-version }} - - uses: actions/checkout@v3 + - uses: actions/checkout@v4 - name: Install JuliaFormatter and format # This will use the latest version by default but you can set the version like so: # diff --git a/.github/workflows/Invalidations.yml b/.github/workflows/Invalidations.yml index 4d0004e83..28b9ce2fa 100644 --- a/.github/workflows/Invalidations.yml +++ b/.github/workflows/Invalidations.yml @@ -19,12 +19,12 @@ jobs: - uses: julia-actions/setup-julia@v1 with: version: '1' - - uses: actions/checkout@v3 + - uses: actions/checkout@v4 - uses: julia-actions/julia-buildpkg@v1 - uses: julia-actions/julia-invalidations@v1 id: invs_pr - - uses: actions/checkout@v3 + - uses: actions/checkout@v4 with: ref: ${{ github.event.repository.default_branch }} - uses: julia-actions/julia-buildpkg@v1 diff --git a/Project.toml b/Project.toml index 2bc3c4501..892cbd4d2 100644 --- a/Project.toml +++ b/Project.toml @@ -25,14 +25,14 @@ SymbolicUtils = "d1185830-fcd6-423d-90d6-eec64667417b" Symbolics = "0c5d862f-8b57-4792-8d23-62f2024744c7" [compat] -AbstractAlgebra = "0.13, 0.18, 0.19, 0.20, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.30" +AbstractAlgebra = "0.13, 0.18, 0.19, 0.20, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.30, 0.31, 0.32" BenchmarkTools = "1" DataStructures = "0.18" Groebner = "0.4" IterTools = "1" MacroTools = "0.5" ModelingToolkit = "7, 8" -Nemo = "0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.30, 0.31, 0.32, 0.33, 0.34" +Nemo = "0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.30, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36" PrecompileTools = "1" Primes = "0.5" SpecialFunctions = "1, 2" diff --git a/README.md b/README.md index 4821cceef..5ad8729c6 100644 --- a/README.md +++ b/README.md @@ -12,6 +12,8 @@ ## About `StructuralIdentifiability.jl` is a Julia package for assessing structural parameter identifiability of parametric ODE models, both local and global. +This includes computation of identifiable functions of states and parameters. The package also offers functionality to assess local identifiability +in discrete-time models. For an introduction to structural identifiability, we refer to [[2]](#review). ## How to install @@ -73,30 +75,34 @@ The returned value is a dictionary from the parameter of the model to one of the For example, for the `ode` defined above, it will be ``` -Dict{Nemo.fmpq_mpoly, Symbol} with 4 entries: +Dict{Any, Symbol} with 7 entries: a12 => :locally a21 => :globally a01 => :locally b => :nonidentifiable + x2 => :globally + x1 => :locally + x3 => :nonidentifiable ``` If one is interested in the identifiability of particular functions of the parameter, one can pass a list of them as a second argument: ```julia -assess_identifiability(ode, [a01 + a12, a01 * a12]) +assess_identifiability(ode, funcs_to_check = [a01 + a12, a01 * a12]) ``` -This will return a list of the results (i.e., `:globally`, `:locally`, or `:nonidentifiable`). In this example: +This will return: ``` -2-element Vector{Symbol}: - :globally - :globally +Dict{Any, Symbol} with 2 entries: + a12 + a01 => :globally + a12*a01 => :globally ``` ### Assessing local identifiability -Local identifiability can be assessed efficiently even for the models for which global identifiability analysis is out of reach. Moreover, the package can also assess local observability of the state variables. This can be done using the `assess_local_identifiability` function, for example: +Local identifiability can be assessed efficiently even for the models for which global identifiability analysis is out of reach. +This can be done using the `assess_local_identifiability` function, for example: ```julia assess_local_identifiability(ode) @@ -124,12 +130,6 @@ As for `assess_identifiability`, one can assess local identifiability of arbitra assess_identifiability(ode; p = 0.999) ``` -## Algorithms - -The algorithm used for assessing global identifiability is described in [[1]](#global). -Local identifiability is assessed using the algorithm by Sedoglavic [[4]](#local). -We also use some of the algorithms described in [[3]](#allident). - ## Contacts Maintained by Gleb Pogudin ([gleb.pogudin@polytechnique.edu](mailto:gleb.pogudin@polytechnique.edu)) @@ -155,21 +155,3 @@ preprint, 2020. Alexandre Sedoglavic, [*A probabilistic algorithm to test local algebraic observability in polynomial time*](https://doi.org/10.1006/jsco.2002.0532), Journal of Symbolic Computation, 2002. - -## Other identifiability software - -The following software can be used to assess both local and global identifiability - - - [SIAN](https://github.com/pogudingleb/SIAN) is written in Maple, there is a [Julia version](https://github.com/alexeyovchinnikov/SIAN-Julia). There is also a [webapp](https://maple.cloud/app/6509768948056064) with extended functionality. - - [DAISY](https://daisy.dei.unipd.it/) a package for the Reduce computer algebra system - - [COMBOS](http://biocyb1.cs.ucla.edu/combos/), a webapp. - -Some benchmarking results for them can be found in [this paper](https://doi.org/10.1093/bioinformatics/bty1069). - -The following software can be used to assess local identifiability - - - [STRIKE-GOLDD](https://sites.google.com/site/strikegolddtoolbox/) in Matlab - - [ObservabilityTest](https://github.com/sedoglavic/ObservabilityTest/) in Maple - - [IdentifiabilityAnalysis](http://www.fcc.chalmers.se/software/other-software/identifiabilityanalysis/) in Mathematica - -If your software is not listed here, sorry, we either forgot or did not know about it, feel free to contact Gleb Pogudin. diff --git a/benchmarking/IdentifiableFunctions/benchmark_result.md b/benchmarking/IdentifiableFunctions/benchmark_result.md index 19c46361f..9e46740c0 100644 --- a/benchmarking/IdentifiableFunctions/benchmark_result.md +++ b/benchmarking/IdentifiableFunctions/benchmark_result.md @@ -1,88 +1,84 @@ ## Benchmark results -Timestamp: 2023-09-01T17:08:41.913 -Timeout: 600 s +2023-09-15T02:10:37.348 -**Timings in seconds.** + - Benchmarked function: `find_identifiable_functions` + - Workers: 7 + - Timeout: 600 s -|Model|(:gb,)|(:gb,)_with_states|(:normalforms, 2)|(:normalforms, 2)_with_states|(:normalforms, 3)|(:normalforms, 3)_with_states|(:hybrid,)|(:hybrid,)_with_states| -|-----|---|---|---|---|---|---|---|---| -|Akt pathway|10.68|12.61|12.14|12.49|11.63|14.49|12.69|16.00| -|Bilirubin2_io|1.19|8.50|1.51|8.46|1.46|9.21|440.79|20.83| -|Biohydrogenation_io|9.22|5.05|10.49|4.85|10.12|5.22|10.62|5.87| -|Bruno2016|9.33|3.42|10.41|3.73|10.19|3.90|10.72|4.91| -|CD8 T cell differentiation|3.62|11.10|4.02|10.84|3.79|11.58|5.03|11.64| -|CGV1990|3.34|4.54|3.76|4.53|3.63|4.78|5.50|6.16| -|Chemical reaction network|9.54|3.57|10.60|3.64|10.71|3.79|10.50|4.57| -|Crauste_SI|3.80|10.71|3.86|11.50|3.81|11.71|4.56|12.26| -|Fujita|11.32|12.09|11.66|12.31|11.88|15.19|13.82|15.68| -|Goodwin oscillator|0.64|0.85|0.80|0.95|0.91|1.06|1.33|1.91| -|HIV|3.94|10.94|3.85|11.18|3.95|11.52|4.84|11.51| -|HIV2_io|3.87|6.62|3.77|6.57|4.03|7.25|6.00|12.76| -|HighDimNonLin|37.40|38.28|36.85|37.16|38.13|37.92|39.03|43.05| -|JAK-STAT 1|25.31|27.39|28.45|30.11|26.45|29.63|30.03|30.76| -|KD1999|3.56|11.61|4.08|11.07|4.04|11.55|4.86|13.86| -|LLW1987_io|7.46|1.13|7.84|1.29|7.89|1.46|10.13|1.98| -|LeukaemiaLeon2021| - | - | - | - | - | - | - | - | -|MAPK model (5 outputs bis)| - | - | - | - | - | - | - | - | -|MAPK model (5 outputs)|60.91|68.05|62.55|67.94|62.40|74.71|66.85|65.38| -|MAPK model (6 outputs)|18.41|20.96|18.53|19.37|18.42|19.53|19.40|19.71| -|Modified LV for testing|7.61|8.10|7.92|7.59|8.12|7.88|8.31|7.86| -|PK1|3.41|3.70|3.63|3.83|3.68|4.26|4.81|5.70| -|PK2|115.38|121.76|114.40|120.00|138.01|127.50|120.15|118.88| -|Pharm|116.74|124.79|114.19|119.01|114.31|126.41|122.37|122.09| -|Phosphorylation|9.88|3.59|10.41|3.80|10.38|3.84|12.61|4.34| -|Pivastatin|9.42|9.30|9.38|9.38|9.19|9.74|9.76|11.11| -|QWWC| - | - | - | - | - | - | - | - | -|QY|9.68|88.38|9.68|84.48|9.48|89.48|13.71| - | -|Ruminal lipolysis|9.52|3.49|9.76|3.58|10.67|3.81|10.74|4.00| -|SEAIJRC Covid model|84.44|94.64|83.53|129.05|121.65|92.44|90.06|91.11| -|SEIR 34|10.34|4.10|9.98|4.00|10.38|4.24|11.34|5.31| -|SEIR 36 ref|4.26|11.55|4.35|11.68|4.38|12.46|5.09|12.15| -|SEIR2T|9.80|3.42|9.95|3.57|10.67|3.70|10.85|4.33| -|SEIRT|9.57|3.65|9.99|3.70|10.06|3.82|10.60|4.86| -|SEIR_1_io|7.45|1.41|7.76|1.61|7.92|1.84|8.53|2.74| -|SEUIR|8.26|2.11|8.60|2.17|8.63|2.33|9.93|2.89| -|SIR 19|9.96|3.18|10.70|3.14|9.98|3.26|10.76|3.60| -|SIR 21|9.87|3.06|10.03|3.24|10.74|3.27|11.36|3.91| -|SIR 24|7.75|1.49|8.18|1.59|8.21|1.66|8.78|2.10| -|SIR 6|9.58|3.54|9.80|3.59|10.72|3.95|10.34|4.15| -|SIRS forced|18.61|11.95|18.21|12.31| - |12.23|20.12|13.21| -|SIWR original|13.80|15.12|13.82|15.03|13.72|14.92|14.61|15.51| -|SIWR with extra output|3.81|3.90|4.14|3.96|4.14|4.36|4.57|4.33| -|SLIQR|8.15|2.77|8.49|2.76|8.70|3.11|9.35|5.76| -|St|34.66|62.67|36.03|64.06|36.40|66.67| - | - | -|Transfection_4State|7.42|1.10|7.49|1.27|7.86|1.46|8.58|2.01| -|Treatment_io|9.71|4.07|10.19|4.17|10.70|4.26|10.98|5.69| -|TumorHu2019| - | - | - | - | - | - | - | - | -|TumorPillis2007| - | - | - | - | - | - | - | - | -|cLV1 (1o)| - | - | - | - | - | - | - | - | -|cLV1 (2o)|10.46|10.87|10.58|11.18|11.41|11.03|12.22|12.11| -|cholera|3.94|4.07|3.91|4.22|3.96|4.17|4.30|4.38| -|generalizedLoktaVolterra (1o)|7.47|1.13|7.90|1.20|8.08|1.38|8.22|1.70| -|generalizedLoktaVolterra (2o)|9.70|3.20|9.39|3.50|9.76|3.67|10.96|3.66| -|p53|11.43|11.35|10.97|11.59|11.69|12.35|12.02|12.81| +**All timings in seconds.** + +| Model | (:normalforms, 2)_with_states / Runtime | (:normalforms, 2)_with_states / beautifulization | +|:----------------------------- |:--------------------------------------- |:------------------------------------------------ | +| Akt pathway | 2.44 | 0.28 | +| Bilirubin2_io | 4.08 | 0.76 | +| Biohydrogenation_io | 0.44 | 0.11 | +| Bruno2016 | 0.19 | 0.07 | +| CD8 T cell differentiation | 0.72 | 0.27 | +| CGV1990 | 2.25 | 0.31 | +| Chemical reaction network | 0.36 | 0.13 | +| Crauste_SI | 0.47 | 0.18 | +| Fujita | 2.50 | 0.30 | +| Goodwin oscillator | 0.29 | 0.09 | +| HIV | 0.78 | 0.19 | +| HIV2_io | 2.00 | 0.27 | +| HighDimNonLin | 20.55 | 0.68 | +| KD1999 | 0.97 | 0.14 | +| LLW1987_io | 0.25 | 0.08 | +| MAPK model (5 outputs) | 48.45 | 0.37 | +| MAPK model (6 outputs) | 7.99 | 0.42 | +| Modified LV for testing | 0.07 | 0.01 | +| PK1 | 0.74 | 0.18 | +| PK2 | 130.96 | 0.07 | +| Pharm | 152.26 | 0.09 | +| Phosphorylation | 0.45 | 0.11 | +| Pivastatin | 8.44 | 0.04 | +| QY | 49.21 | 0.23 | +| Ruminal lipolysis | 0.21 | 0.07 | +| SEAIJRC Covid model | 85.13 | 0.11 | +| SEIR 34 | 0.39 | 0.09 | +| SEIR 36 ref | 0.78 | 0.14 | +| SEIR2T | 0.23 | 0.09 | +| SEIRT | 0.36 | 0.08 | +| SEIR_1_io | 0.56 | 0.10 | +| SEUIR | - | - | +| SIR 19 | - | - | +| SIR 21 | 0.30 | 0.19 | +| SIR 24 | 0.36 | 0.07 | +| SIR 6 | 0.20 | 0.08 | +| SIRS forced | 10.62 | 0.40 | +| SIWR original | 13.72 | 0.07 | +| SIWR with extra output | 0.67 | 0.10 | +| SLIQR | 1.42 | 0.15 | +| St | 37.54 | 1.38 | +| Transfection_4State | 0.23 | 0.07 | +| Treatment_io | 0.44 | 0.14 | +| cLV1 (2o) | 0.80 | 0.20 | +| cholera | 0.66 | 0.09 | +| generalizedLoktaVolterra (1o) | 0.18 | 0.05 | +| generalizedLoktaVolterra (2o) | 0.09 | 0.07 | +| p53 | 1.21 | 0.34 | *Benchmarking environment:* -* Total RAM (GiB): 188 -* Processor: Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz -* Julia version: 1.9.2 + - Total RAM (GiB): 15 + - Processor: Intel Xeon Processor (Icelake) + - Julia version: 1.9.3 Versions of the dependencies: -* Primes : 0.5.4 -* BenchmarkTools : 1.3.2 -* IterTools : 1.8.0 -* PrecompileTools : 1.1.2 -* Symbolics : 5.5.1 -* Combinatorics : 1.0.2 -* SymbolicUtils : 1.2.0 -* DataStructures : 0.18.15 -* Groebner : 0.4.3 -* ParamPunPam : 0.0.3 -* ModelingToolkit : 8.64.0 -* AbstractAlgebra : 0.27.10 -* MacroTools : 0.5.10 -* Nemo : 0.32.7 -* SpecialFunctions : 2.3.0 + - Primes : 0.5.4 + - BenchmarkTools : 1.3.2 + - IterTools : 1.8.0 + - PrecompileTools : 1.2.0 + - Symbolics : 5.5.3 + - Combinatorics : 1.0.2 + - SymbolicUtils : 1.3.0 + - DataStructures : 0.18.15 + - Groebner : 0.4.3 + - ParamPunPam : 0.0.3 + - ModelingToolkit : 8.68.0 + - AbstractAlgebra : 0.31.1 + - MacroTools : 0.5.11 + - Nemo : 0.35.3 + - SpecialFunctions : 2.3.1 diff --git a/benchmarking/IdentifiableFunctions/benchmark_result_01-09-23.md b/benchmarking/IdentifiableFunctions/benchmark_result_01-09-23.md index 19c46361f..653ffd549 100644 --- a/benchmarking/IdentifiableFunctions/benchmark_result_01-09-23.md +++ b/benchmarking/IdentifiableFunctions/benchmark_result_01-09-23.md @@ -5,84 +5,84 @@ Timeout: 600 s **Timings in seconds.** -|Model|(:gb,)|(:gb,)_with_states|(:normalforms, 2)|(:normalforms, 2)_with_states|(:normalforms, 3)|(:normalforms, 3)_with_states|(:hybrid,)|(:hybrid,)_with_states| -|-----|---|---|---|---|---|---|---|---| -|Akt pathway|10.68|12.61|12.14|12.49|11.63|14.49|12.69|16.00| -|Bilirubin2_io|1.19|8.50|1.51|8.46|1.46|9.21|440.79|20.83| -|Biohydrogenation_io|9.22|5.05|10.49|4.85|10.12|5.22|10.62|5.87| -|Bruno2016|9.33|3.42|10.41|3.73|10.19|3.90|10.72|4.91| -|CD8 T cell differentiation|3.62|11.10|4.02|10.84|3.79|11.58|5.03|11.64| -|CGV1990|3.34|4.54|3.76|4.53|3.63|4.78|5.50|6.16| -|Chemical reaction network|9.54|3.57|10.60|3.64|10.71|3.79|10.50|4.57| -|Crauste_SI|3.80|10.71|3.86|11.50|3.81|11.71|4.56|12.26| -|Fujita|11.32|12.09|11.66|12.31|11.88|15.19|13.82|15.68| -|Goodwin oscillator|0.64|0.85|0.80|0.95|0.91|1.06|1.33|1.91| -|HIV|3.94|10.94|3.85|11.18|3.95|11.52|4.84|11.51| -|HIV2_io|3.87|6.62|3.77|6.57|4.03|7.25|6.00|12.76| -|HighDimNonLin|37.40|38.28|36.85|37.16|38.13|37.92|39.03|43.05| -|JAK-STAT 1|25.31|27.39|28.45|30.11|26.45|29.63|30.03|30.76| -|KD1999|3.56|11.61|4.08|11.07|4.04|11.55|4.86|13.86| -|LLW1987_io|7.46|1.13|7.84|1.29|7.89|1.46|10.13|1.98| -|LeukaemiaLeon2021| - | - | - | - | - | - | - | - | -|MAPK model (5 outputs bis)| - | - | - | - | - | - | - | - | -|MAPK model (5 outputs)|60.91|68.05|62.55|67.94|62.40|74.71|66.85|65.38| -|MAPK model (6 outputs)|18.41|20.96|18.53|19.37|18.42|19.53|19.40|19.71| -|Modified LV for testing|7.61|8.10|7.92|7.59|8.12|7.88|8.31|7.86| -|PK1|3.41|3.70|3.63|3.83|3.68|4.26|4.81|5.70| -|PK2|115.38|121.76|114.40|120.00|138.01|127.50|120.15|118.88| -|Pharm|116.74|124.79|114.19|119.01|114.31|126.41|122.37|122.09| -|Phosphorylation|9.88|3.59|10.41|3.80|10.38|3.84|12.61|4.34| -|Pivastatin|9.42|9.30|9.38|9.38|9.19|9.74|9.76|11.11| -|QWWC| - | - | - | - | - | - | - | - | -|QY|9.68|88.38|9.68|84.48|9.48|89.48|13.71| - | -|Ruminal lipolysis|9.52|3.49|9.76|3.58|10.67|3.81|10.74|4.00| -|SEAIJRC Covid model|84.44|94.64|83.53|129.05|121.65|92.44|90.06|91.11| -|SEIR 34|10.34|4.10|9.98|4.00|10.38|4.24|11.34|5.31| -|SEIR 36 ref|4.26|11.55|4.35|11.68|4.38|12.46|5.09|12.15| -|SEIR2T|9.80|3.42|9.95|3.57|10.67|3.70|10.85|4.33| -|SEIRT|9.57|3.65|9.99|3.70|10.06|3.82|10.60|4.86| -|SEIR_1_io|7.45|1.41|7.76|1.61|7.92|1.84|8.53|2.74| -|SEUIR|8.26|2.11|8.60|2.17|8.63|2.33|9.93|2.89| -|SIR 19|9.96|3.18|10.70|3.14|9.98|3.26|10.76|3.60| -|SIR 21|9.87|3.06|10.03|3.24|10.74|3.27|11.36|3.91| -|SIR 24|7.75|1.49|8.18|1.59|8.21|1.66|8.78|2.10| -|SIR 6|9.58|3.54|9.80|3.59|10.72|3.95|10.34|4.15| -|SIRS forced|18.61|11.95|18.21|12.31| - |12.23|20.12|13.21| -|SIWR original|13.80|15.12|13.82|15.03|13.72|14.92|14.61|15.51| -|SIWR with extra output|3.81|3.90|4.14|3.96|4.14|4.36|4.57|4.33| -|SLIQR|8.15|2.77|8.49|2.76|8.70|3.11|9.35|5.76| -|St|34.66|62.67|36.03|64.06|36.40|66.67| - | - | -|Transfection_4State|7.42|1.10|7.49|1.27|7.86|1.46|8.58|2.01| -|Treatment_io|9.71|4.07|10.19|4.17|10.70|4.26|10.98|5.69| -|TumorHu2019| - | - | - | - | - | - | - | - | -|TumorPillis2007| - | - | - | - | - | - | - | - | -|cLV1 (1o)| - | - | - | - | - | - | - | - | -|cLV1 (2o)|10.46|10.87|10.58|11.18|11.41|11.03|12.22|12.11| -|cholera|3.94|4.07|3.91|4.22|3.96|4.17|4.30|4.38| -|generalizedLoktaVolterra (1o)|7.47|1.13|7.90|1.20|8.08|1.38|8.22|1.70| -|generalizedLoktaVolterra (2o)|9.70|3.20|9.39|3.50|9.76|3.67|10.96|3.66| -|p53|11.43|11.35|10.97|11.59|11.69|12.35|12.02|12.81| +| Model | (:gb,) | (:gb,)_with_states | (:normalforms, 2) | (:normalforms, 2)_with_states | (:normalforms, 3) | (:normalforms, 3)_with_states | (:hybrid,) | (:hybrid,)_with_states | +|:----------------------------- |:------ |:------------------ |:----------------- |:----------------------------- |:----------------- |:----------------------------- |:---------- |:---------------------- | +| Akt pathway | 10.68 | 12.61 | 12.14 | 12.49 | 11.63 | 14.49 | 12.69 | 16.00 | +| Bilirubin2_io | 1.19 | 8.50 | 1.51 | 8.46 | 1.46 | 9.21 | 440.79 | 20.83 | +| Biohydrogenation_io | 9.22 | 5.05 | 10.49 | 4.85 | 10.12 | 5.22 | 10.62 | 5.87 | +| Bruno2016 | 9.33 | 3.42 | 10.41 | 3.73 | 10.19 | 3.90 | 10.72 | 4.91 | +| CD8 T cell differentiation | 3.62 | 11.10 | 4.02 | 10.84 | 3.79 | 11.58 | 5.03 | 11.64 | +| CGV1990 | 3.34 | 4.54 | 3.76 | 4.53 | 3.63 | 4.78 | 5.50 | 6.16 | +| Chemical reaction network | 9.54 | 3.57 | 10.60 | 3.64 | 10.71 | 3.79 | 10.50 | 4.57 | +| Crauste_SI | 3.80 | 10.71 | 3.86 | 11.50 | 3.81 | 11.71 | 4.56 | 12.26 | +| Fujita | 11.32 | 12.09 | 11.66 | 12.31 | 11.88 | 15.19 | 13.82 | 15.68 | +| Goodwin oscillator | 0.64 | 0.85 | 0.80 | 0.95 | 0.91 | 1.06 | 1.33 | 1.91 | +| HIV | 3.94 | 10.94 | 3.85 | 11.18 | 3.95 | 11.52 | 4.84 | 11.51 | +| HIV2_io | 3.87 | 6.62 | 3.77 | 6.57 | 4.03 | 7.25 | 6.00 | 12.76 | +| HighDimNonLin | 37.40 | 38.28 | 36.85 | 37.16 | 38.13 | 37.92 | 39.03 | 43.05 | +| JAK-STAT 1 | 25.31 | 27.39 | 28.45 | 30.11 | 26.45 | 29.63 | 30.03 | 30.76 | +| KD1999 | 3.56 | 11.61 | 4.08 | 11.07 | 4.04 | 11.55 | 4.86 | 13.86 | +| LLW1987_io | 7.46 | 1.13 | 7.84 | 1.29 | 7.89 | 1.46 | 10.13 | 1.98 | +| LeukaemiaLeon2021 | - | - | - | - | - | - | - | - | +| MAPK model (5 outputs bis) | - | - | - | - | - | - | - | - | +| MAPK model (5 outputs) | 60.91 | 68.05 | 62.55 | 67.94 | 62.40 | 74.71 | 66.85 | 65.38 | +| MAPK model (6 outputs) | 18.41 | 20.96 | 18.53 | 19.37 | 18.42 | 19.53 | 19.40 | 19.71 | +| Modified LV for testing | 7.61 | 8.10 | 7.92 | 7.59 | 8.12 | 7.88 | 8.31 | 7.86 | +| PK1 | 3.41 | 3.70 | 3.63 | 3.83 | 3.68 | 4.26 | 4.81 | 5.70 | +| PK2 | 115.38 | 121.76 | 114.40 | 120.00 | 138.01 | 127.50 | 120.15 | 118.88 | +| Pharm | 116.74 | 124.79 | 114.19 | 119.01 | 114.31 | 126.41 | 122.37 | 122.09 | +| Phosphorylation | 9.88 | 3.59 | 10.41 | 3.80 | 10.38 | 3.84 | 12.61 | 4.34 | +| Pivastatin | 9.42 | 9.30 | 9.38 | 9.38 | 9.19 | 9.74 | 9.76 | 11.11 | +| QWWC | - | - | - | - | - | - | - | - | +| QY | 9.68 | 88.38 | 9.68 | 84.48 | 9.48 | 89.48 | 13.71 | - | +| Ruminal lipolysis | 9.52 | 3.49 | 9.76 | 3.58 | 10.67 | 3.81 | 10.74 | 4.00 | +| SEAIJRC Covid model | 84.44 | 94.64 | 83.53 | 129.05 | 121.65 | 92.44 | 90.06 | 91.11 | +| SEIR 34 | 10.34 | 4.10 | 9.98 | 4.00 | 10.38 | 4.24 | 11.34 | 5.31 | +| SEIR 36 ref | 4.26 | 11.55 | 4.35 | 11.68 | 4.38 | 12.46 | 5.09 | 12.15 | +| SEIR2T | 9.80 | 3.42 | 9.95 | 3.57 | 10.67 | 3.70 | 10.85 | 4.33 | +| SEIRT | 9.57 | 3.65 | 9.99 | 3.70 | 10.06 | 3.82 | 10.60 | 4.86 | +| SEIR_1_io | 7.45 | 1.41 | 7.76 | 1.61 | 7.92 | 1.84 | 8.53 | 2.74 | +| SEUIR | 8.26 | 2.11 | 8.60 | 2.17 | 8.63 | 2.33 | 9.93 | 2.89 | +| SIR 19 | 9.96 | 3.18 | 10.70 | 3.14 | 9.98 | 3.26 | 10.76 | 3.60 | +| SIR 21 | 9.87 | 3.06 | 10.03 | 3.24 | 10.74 | 3.27 | 11.36 | 3.91 | +| SIR 24 | 7.75 | 1.49 | 8.18 | 1.59 | 8.21 | 1.66 | 8.78 | 2.10 | +| SIR 6 | 9.58 | 3.54 | 9.80 | 3.59 | 10.72 | 3.95 | 10.34 | 4.15 | +| SIRS forced | 18.61 | 11.95 | 18.21 | 12.31 | - | 12.23 | 20.12 | 13.21 | +| SIWR original | 13.80 | 15.12 | 13.82 | 15.03 | 13.72 | 14.92 | 14.61 | 15.51 | +| SIWR with extra output | 3.81 | 3.90 | 4.14 | 3.96 | 4.14 | 4.36 | 4.57 | 4.33 | +| SLIQR | 8.15 | 2.77 | 8.49 | 2.76 | 8.70 | 3.11 | 9.35 | 5.76 | +| St | 34.66 | 62.67 | 36.03 | 64.06 | 36.40 | 66.67 | - | - | +| Transfection_4State | 7.42 | 1.10 | 7.49 | 1.27 | 7.86 | 1.46 | 8.58 | 2.01 | +| Treatment_io | 9.71 | 4.07 | 10.19 | 4.17 | 10.70 | 4.26 | 10.98 | 5.69 | +| TumorHu2019 | - | - | - | - | - | - | - | - | +| TumorPillis2007 | - | - | - | - | - | - | - | - | +| cLV1 (1o) | - | - | - | - | - | - | - | - | +| cLV1 (2o) | 10.46 | 10.87 | 10.58 | 11.18 | 11.41 | 11.03 | 12.22 | 12.11 | +| cholera | 3.94 | 4.07 | 3.91 | 4.22 | 3.96 | 4.17 | 4.30 | 4.38 | +| generalizedLoktaVolterra (1o) | 7.47 | 1.13 | 7.90 | 1.20 | 8.08 | 1.38 | 8.22 | 1.70 | +| generalizedLoktaVolterra (2o) | 9.70 | 3.20 | 9.39 | 3.50 | 9.76 | 3.67 | 10.96 | 3.66 | +| p53 | 11.43 | 11.35 | 10.97 | 11.59 | 11.69 | 12.35 | 12.02 | 12.81 | *Benchmarking environment:* -* Total RAM (GiB): 188 -* Processor: Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz -* Julia version: 1.9.2 + - Total RAM (GiB): 188 + - Processor: Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz + - Julia version: 1.9.2 Versions of the dependencies: -* Primes : 0.5.4 -* BenchmarkTools : 1.3.2 -* IterTools : 1.8.0 -* PrecompileTools : 1.1.2 -* Symbolics : 5.5.1 -* Combinatorics : 1.0.2 -* SymbolicUtils : 1.2.0 -* DataStructures : 0.18.15 -* Groebner : 0.4.3 -* ParamPunPam : 0.0.3 -* ModelingToolkit : 8.64.0 -* AbstractAlgebra : 0.27.10 -* MacroTools : 0.5.10 -* Nemo : 0.32.7 -* SpecialFunctions : 2.3.0 + - Primes : 0.5.4 + - BenchmarkTools : 1.3.2 + - IterTools : 1.8.0 + - PrecompileTools : 1.1.2 + - Symbolics : 5.5.1 + - Combinatorics : 1.0.2 + - SymbolicUtils : 1.2.0 + - DataStructures : 0.18.15 + - Groebner : 0.4.3 + - ParamPunPam : 0.0.3 + - ModelingToolkit : 8.64.0 + - AbstractAlgebra : 0.27.10 + - MacroTools : 0.5.10 + - Nemo : 0.32.7 + - SpecialFunctions : 2.3.0 diff --git a/benchmarking/IdentifiableFunctions/benchmark_result_04-07-23.md b/benchmarking/IdentifiableFunctions/benchmark_result_04-07-23.md index e038bc9db..0ff168258 100644 --- a/benchmarking/IdentifiableFunctions/benchmark_result_04-07-23.md +++ b/benchmarking/IdentifiableFunctions/benchmark_result_04-07-23.md @@ -10,10 +10,11 @@ All timings are in seconds. For each model we report the runtime breakdown within StructuralIdentifiability.jl and the internal runtimes for Groebner bases in ParamPunPam.jl. -### StructuralIdentifiability.jl +### StructuralIdentifiability.jl + +| Model | IO | global id. | extract funcs. | gen. ideal | inclusion | **ParamPunPam.jl** | total | +|:----- |:-- |:---------- |:-------------- |:---------- |:--------- |:------------------ |:----- | -|Model|IO|global id.|extract funcs.|gen. ideal|inclusion|**ParamPunPam.jl**|total| -|-----|---|---|---|---|---|---|---| SIWR with extra output|3.67|0.16|0.06|1.67|0.63|**372.89**|382.65| |SIRS forced|4.36|0.85|0.16|4.21|1.92|**93.77**|107.31| |Goodwin oscillator|0.02|0.11|0.0|0.78|0.06|**1.76**|2.77| @@ -40,12 +41,13 @@ SIWR with extra output|3.67|0.16|0.06|1.67|0.63|**372.89**|382.65| |HIV| 3.25 | 0.08 | - | 0.75 | - | - | - | |CD8 T cell diff| 3.17 | 2.83 | - | 0.79 | - | - | - | -**- potentially an unlucky collision of evaluation points* +**- potentially an unlucky collision of evaluation points* + +### Inside of ParamPunPam.jl -### Inside of ParamPunPam.jl +| Model | # points | discover shape | discover degrees | main loop | recover rationals | +|:----- |:-------- |:-------------- |:---------------- |:--------- |:----------------- | -|Model|# points|discover shape|discover degrees|main loop|recover rationals| -|-----|---|---|---|---|---| SIWR with extra output|3906|2.07|6.27|364.09|0.0| |SIRS forced|290|3.16|10.4|78.36|0.0| |Goodwin oscillator|194|1.05|0.14|0.56|0.0| @@ -93,7 +95,16 @@ SIWR with extra output|3906|2.07|6.27|364.09|0.0| Interpolated functions: ```julia -AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[a, xi, k, bw, mu, gam, bi, 4*bi^3*mu^3*k^3*xi^3 - bi^2*gam*mu^4*k^3*xi^2 - 6*bi^2*gam*mu^3*k^3*xi^3 + 2*bi^2*gam*mu^3*k^3*xi^2*a - bi^2*gam*mu^2*k^3*xi^4 - 6*bi^2*gam*mu^2*k^3*xi^3*a + 4*bi^2*gam*mu^2*k^3*xi^2*a^2 - bi^2*mu^5*k^3*xi^2 - 6*bi^2*mu^4*k^3*xi^3 + 2*bi^2*mu^4*k^3*xi^2*a + 12*bi^2*mu^3*bw*k^3*xi^3 - bi^2*mu^3*k^3*xi^4 - 6*bi^2*mu^3*k^3*xi^3*a + 4*bi^2*mu^3*k^3*xi^2*a^2 + bi*gam^2*mu^4*k^3*xi^2 - bi*gam^2*mu^4*k^3*xi*a + 2*bi*gam^2*mu^3*k^3*xi^3 + bi*gam^2*mu^3*k^3*xi^2*a - 3*bi*gam^2*mu^3*k^3*xi*a^2 + bi*gam^2*mu^2*k^3*xi^4 + 3*bi*gam^2*mu^2*k^3*xi^3*a - bi*gam^2*mu^2*k^3*xi^2*a^2 - 3*bi*gam^2*mu^2*k^3*xi*a^3 + bi*gam^2*mu*k^3*xi^4*a + bi*gam^2*mu*k^3*xi^3*a^2 - bi*gam^2*mu*k^3*xi^2*a^3 - bi*gam^2*mu*k^3*xi*a^4 + 2*bi*gam*mu^5*k^3*xi^2 - 2*bi*gam*mu^5*k^3*xi*a - 2*bi*gam*mu^4*bw*k^3*xi^2 + 4*bi*gam*mu^4*k^3*xi^3 + 2*bi*gam*mu^4*k^3*xi^2*a - 6*bi*gam*mu^4*k^3*xi*a^2 - 12*bi*gam*mu^3*bw*k^3*xi^3 + 4*bi*gam*mu^3*bw*k^3*xi^2*a + 2*bi*gam*mu^3*k^3*xi^4 + 6*bi*gam*mu^3*k^3*xi^3*a - 2*bi*gam*mu^3*k^3*xi^2*a^2 - 6*bi*gam*mu^3*k^3*xi*a^3 - 2*bi*gam*mu^2*bw*k^3*xi^4 - 12*bi*gam*mu^2*bw*k^3*xi^3*a + 8*bi*gam*mu^2*bw*k^3*xi^2*a^2 + 2*bi*gam*mu^2*k^3*xi^4*a + 2*bi*gam*mu^2*k^3*xi^3*a^2 - 2*bi*gam*mu^2*k^3*xi^2*a^3 - 2*bi*gam*mu^2*k^3*xi*a^4 + bi*mu^6*k^3*xi^2 - bi*mu^6*k^3*xi*a - 2*bi*mu^5*bw*k^3*xi^2 + 2*bi*mu^5*k^3*xi^3 + bi*mu^5*k^3*xi^2*a - 3*bi*mu^5*k^3*xi*a^2 - 12*bi*mu^4*bw*k^3*xi^3 + 4*bi*mu^4*bw*k^3*xi^2*a + bi*mu^4*k^3*xi^4 + 3*bi*mu^4*k^3*xi^3*a - bi*mu^4*k^3*xi^2*a^2 - 3*bi*mu^4*k^3*xi*a^3 + 12*bi*mu^3*bw^2*k^3*xi^3 - 2*bi*mu^3*bw*k^3*xi^4 - 12*bi*mu^3*bw*k^3*xi^3*a + 8*bi*mu^3*bw*k^3*xi^2*a^2 + bi*mu^3*k^3*xi^4*a + bi*mu^3*k^3*xi^3*a^2 - bi*mu^3*k^3*xi^2*a^3 - bi*mu^3*k^3*xi*a^4 + gam^2*mu^4*bw*k^3*xi^2 - gam^2*mu^4*bw*k^3*xi*a + 2*gam^2*mu^3*bw*k^3*xi^3 + gam^2*mu^3*bw*k^3*xi^2*a - 3*gam^2*mu^3*bw*k^3*xi*a^2 + gam^2*mu^2*bw*k^3*xi^4 + 3*gam^2*mu^2*bw*k^3*xi^3*a - gam^2*mu^2*bw*k^3*xi^2*a^2 - 3*gam^2*mu^2*bw*k^3*xi*a^3 + gam^2*mu*bw*k^3*xi^4*a + gam^2*mu*bw*k^3*xi^3*a^2 - gam^2*mu*bw*k^3*xi^2*a^3 - gam^2*mu*bw*k^3*xi*a^4 + 2*gam*mu^5*bw*k^3*xi^2 - 2*gam*mu^5*bw*k^3*xi*a - gam*mu^4*bw^2*k^3*xi^2 + 4*gam*mu^4*bw*k^3*xi^3 + 2*gam*mu^4*bw*k^3*xi^2*a - 6*gam*mu^4*bw*k^3*xi*a^2 - 6*gam*mu^3*bw^2*k^3*xi^3 + 2*gam*mu^3*bw^2*k^3*xi^2*a + 2*gam*mu^3*bw*k^3*xi^4 + 6*gam*mu^3*bw*k^3*xi^3*a - 2*gam*mu^3*bw*k^3*xi^2*a^2 - 6*gam*mu^3*bw*k^3*xi*a^3 - gam*mu^2*bw^2*k^3*xi^4 - 6*gam*mu^2*bw^2*k^3*xi^3*a + 4*gam*mu^2*bw^2*k^3*xi^2*a^2 + 2*gam*mu^2*bw*k^3*xi^4*a + 2*gam*mu^2*bw*k^3*xi^3*a^2 - 2*gam*mu^2*bw*k^3*xi^2*a^3 - 2*gam*mu^2*bw*k^3*xi*a^4 + mu^6*bw*k^3*xi^2 - mu^6*bw*k^3*xi*a - mu^5*bw^2*k^3*xi^2 + 2*mu^5*bw*k^3*xi^3 + mu^5*bw*k^3*xi^2*a - 3*mu^5*bw*k^3*xi*a^2 - 6*mu^4*bw^2*k^3*xi^3 + 2*mu^4*bw^2*k^3*xi^2*a + mu^4*bw*k^3*xi^4 + 3*mu^4*bw*k^3*xi^3*a - mu^4*bw*k^3*xi^2*a^2 - 3*mu^4*bw*k^3*xi*a^3 + 4*mu^3*bw^3*k^3*xi^3 - mu^3*bw^2*k^3*xi^4 - 6*mu^3*bw^2*k^3*xi^3*a + 4*mu^3*bw^2*k^3*xi^2*a^2 + mu^3*bw*k^3*xi^4*a + mu^3*bw*k^3*xi^3*a^2 - mu^3*bw*k^3*xi^2*a^3 - mu^3*bw*k^3*xi*a^4] +AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[ + a, + xi, + k, + bw, + mu, + gam, + bi, + 4 * bi^3 * mu^3 * k^3 * xi^3 - bi^2 * gam * mu^4 * k^3 * xi^2 - 6 * bi^2 * gam * mu^3 * k^3 * xi^3 + 2 * bi^2 * gam * mu^3 * k^3 * xi^2 * a - bi^2 * gam * mu^2 * k^3 * xi^4 - 6 * bi^2 * gam * mu^2 * k^3 * xi^3 * a + 4 * bi^2 * gam * mu^2 * k^3 * xi^2 * a^2 - bi^2 * mu^5 * k^3 * xi^2 - 6 * bi^2 * mu^4 * k^3 * xi^3 + 2 * bi^2 * mu^4 * k^3 * xi^2 * a + 12 * bi^2 * mu^3 * bw * k^3 * xi^3 - bi^2 * mu^3 * k^3 * xi^4 - 6 * bi^2 * mu^3 * k^3 * xi^3 * a + 4 * bi^2 * mu^3 * k^3 * xi^2 * a^2 + bi * gam^2 * mu^4 * k^3 * xi^2 - bi * gam^2 * mu^4 * k^3 * xi * a + 2 * bi * gam^2 * mu^3 * k^3 * xi^3 + bi * gam^2 * mu^3 * k^3 * xi^2 * a - 3 * bi * gam^2 * mu^3 * k^3 * xi * a^2 + bi * gam^2 * mu^2 * k^3 * xi^4 + 3 * bi * gam^2 * mu^2 * k^3 * xi^3 * a - bi * gam^2 * mu^2 * k^3 * xi^2 * a^2 - 3 * bi * gam^2 * mu^2 * k^3 * xi * a^3 + bi * gam^2 * mu * k^3 * xi^4 * a + bi * gam^2 * mu * k^3 * xi^3 * a^2 - bi * gam^2 * mu * k^3 * xi^2 * a^3 - bi * gam^2 * mu * k^3 * xi * a^4 + 2 * bi * gam * mu^5 * k^3 * xi^2 - 2 * bi * gam * mu^5 * k^3 * xi * a - 2 * bi * gam * mu^4 * bw * k^3 * xi^2 + 4 * bi * gam * mu^4 * k^3 * xi^3 + 2 * bi * gam * mu^4 * k^3 * xi^2 * a - 6 * bi * gam * mu^4 * k^3 * xi * a^2 - 12 * bi * gam * mu^3 * bw * k^3 * xi^3 + 4 * bi * gam * mu^3 * bw * k^3 * xi^2 * a + 2 * bi * gam * mu^3 * k^3 * xi^4 + 6 * bi * gam * mu^3 * k^3 * xi^3 * a - 2 * bi * gam * mu^3 * k^3 * xi^2 * a^2 - 6 * bi * gam * mu^3 * k^3 * xi * a^3 - 2 * bi * gam * mu^2 * bw * k^3 * xi^4 - 12 * bi * gam * mu^2 * bw * k^3 * xi^3 * a + 8 * bi * gam * mu^2 * bw * k^3 * xi^2 * a^2 + 2 * bi * gam * mu^2 * k^3 * xi^4 * a + 2 * bi * gam * mu^2 * k^3 * xi^3 * a^2 - 2 * bi * gam * mu^2 * k^3 * xi^2 * a^3 - 2 * bi * gam * mu^2 * k^3 * xi * a^4 + bi * mu^6 * k^3 * xi^2 - bi * mu^6 * k^3 * xi * a - 2 * bi * mu^5 * bw * k^3 * xi^2 + 2 * bi * mu^5 * k^3 * xi^3 + bi * mu^5 * k^3 * xi^2 * a - 3 * bi * mu^5 * k^3 * xi * a^2 - 12 * bi * mu^4 * bw * k^3 * xi^3 + 4 * bi * mu^4 * bw * k^3 * xi^2 * a + bi * mu^4 * k^3 * xi^4 + 3 * bi * mu^4 * k^3 * xi^3 * a - bi * mu^4 * k^3 * xi^2 * a^2 - 3 * bi * mu^4 * k^3 * xi * a^3 + 12 * bi * mu^3 * bw^2 * k^3 * xi^3 - 2 * bi * mu^3 * bw * k^3 * xi^4 - 12 * bi * mu^3 * bw * k^3 * xi^3 * a + 8 * bi * mu^3 * bw * k^3 * xi^2 * a^2 + bi * mu^3 * k^3 * xi^4 * a + bi * mu^3 * k^3 * xi^3 * a^2 - bi * mu^3 * k^3 * xi^2 * a^3 - bi * mu^3 * k^3 * xi * a^4 + gam^2 * mu^4 * bw * k^3 * xi^2 - gam^2 * mu^4 * bw * k^3 * xi * a + 2 * gam^2 * mu^3 * bw * k^3 * xi^3 + gam^2 * mu^3 * bw * k^3 * xi^2 * a - 3 * gam^2 * mu^3 * bw * k^3 * xi * a^2 + gam^2 * mu^2 * bw * k^3 * xi^4 + 3 * gam^2 * mu^2 * bw * k^3 * xi^3 * a - gam^2 * mu^2 * bw * k^3 * xi^2 * a^2 - 3 * gam^2 * mu^2 * bw * k^3 * xi * a^3 + gam^2 * mu * bw * k^3 * xi^4 * a + gam^2 * mu * bw * k^3 * xi^3 * a^2 - gam^2 * mu * bw * k^3 * xi^2 * a^3 - gam^2 * mu * bw * k^3 * xi * a^4 + 2 * gam * mu^5 * bw * k^3 * xi^2 - 2 * gam * mu^5 * bw * k^3 * xi * a - gam * mu^4 * bw^2 * k^3 * xi^2 + 4 * gam * mu^4 * bw * k^3 * xi^3 + 2 * gam * mu^4 * bw * k^3 * xi^2 * a - 6 * gam * mu^4 * bw * k^3 * xi * a^2 - 6 * gam * mu^3 * bw^2 * k^3 * xi^3 + 2 * gam * mu^3 * bw^2 * k^3 * xi^2 * a + 2 * gam * mu^3 * bw * k^3 * xi^4 + 6 * gam * mu^3 * bw * k^3 * xi^3 * a - 2 * gam * mu^3 * bw * k^3 * xi^2 * a^2 - 6 * gam * mu^3 * bw * k^3 * xi * a^3 - gam * mu^2 * bw^2 * k^3 * xi^4 - 6 * gam * mu^2 * bw^2 * k^3 * xi^3 * a + 4 * gam * mu^2 * bw^2 * k^3 * xi^2 * a^2 + 2 * gam * mu^2 * bw * k^3 * xi^4 * a + 2 * gam * mu^2 * bw * k^3 * xi^3 * a^2 - 2 * gam * mu^2 * bw * k^3 * xi^2 * a^3 - 2 * gam * mu^2 * bw * k^3 * xi * a^4 + mu^6 * bw * k^3 * xi^2 - mu^6 * bw * k^3 * xi * a - mu^5 * bw^2 * k^3 * xi^2 + 2 * mu^5 * bw * k^3 * xi^3 + mu^5 * bw * k^3 * xi^2 * a - 3 * mu^5 * bw * k^3 * xi * a^2 - 6 * mu^4 * bw^2 * k^3 * xi^3 + 2 * mu^4 * bw^2 * k^3 * xi^2 * a + mu^4 * bw * k^3 * xi^4 + 3 * mu^4 * bw * k^3 * xi^3 * a - mu^4 * bw * k^3 * xi^2 * a^2 - 3 * mu^4 * bw * k^3 * xi * a^3 + 4 * mu^3 * bw^3 * k^3 * xi^3 - mu^3 * bw^2 * k^3 * xi^4 - 6 * mu^3 * bw^2 * k^3 * xi^3 * a + 4 * mu^3 * bw^2 * k^3 * xi^2 * a^2 + mu^3 * bw * k^3 * xi^4 * a + mu^3 * bw * k^3 * xi^3 * a^2 - mu^3 * bw * k^3 * xi^2 * a^3 - mu^3 * bw * k^3 * xi * a^4, +] ``` ## SIRS forced @@ -115,7 +126,14 @@ AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[a, xi, k, bw, mu, gam, bi, 4*bi^3* Interpolated functions: ```julia -AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[g, mu, b0, nu, M^2, nu^3*mu + nu^3*g + 2651//741*nu^2*mu^2 + 3242//741*nu^2*mu*g + 197//247*nu^2*g^2 + 46//247*nu*M^2*mu + 46//247*nu*M^2*g + 1161//247*nu*mu^3 + 1421//247*nu*mu^2*g + 257//247*nu*mu*g^2 - 3//247*nu*g^3 + 46//247*M^2*mu^2 + 46//247*M^2*mu*g + 525//247*mu^4 + 525//247*mu^3*g] +AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[ + g, + mu, + b0, + nu, + M^2, + nu^3 * mu + nu^3 * g + 2651 // 741 * nu^2 * mu^2 + 3242 // 741 * nu^2 * mu * g + 197 // 247 * nu^2 * g^2 + 46 // 247 * nu * M^2 * mu + 46 // 247 * nu * M^2 * g + 1161 // 247 * nu * mu^3 + 1421 // 247 * nu * mu^2 * g + 257 // 247 * nu * mu * g^2 - 3 // 247 * nu * g^3 + 46 // 247 * M^2 * mu^2 + 46 // 247 * M^2 * mu * g + 525 // 247 * mu^4 + 525 // 247 * mu^3 * g, +] ``` ## Goodwin oscillator @@ -125,7 +143,7 @@ AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[g, mu, b0, nu, M^2, nu^3*mu + nu^3 ┌ Info: The shape of the basis is: 6 polynomials with monomials │ state.shape = Vector{Nemo.gfp_mpoly}[[y6, 1], [y5, y7, 1], [y3, 1], [y1, 1], [t, 1], [y7^2, y7, 1]] - Info: The total degrees in the coefficients +Info: The total degrees in the coefficients │ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 6)], [(0, 0), (1, 0), (2, 0)]] ┌ Info: Output summary: @@ -135,7 +153,14 @@ AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[g, mu, b0, nu, M^2, nu^3*mu + nu^3 Interpolated functions: ```julia -AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[sigma, delta + beta, c, b, delta*beta, b^2*c*sigma^2 + 1//3*b^2*c*sigma - 2//3*b*c*delta*sigma^2 - 2//3*b*c*sigma^2*beta + c*delta*sigma^3*beta] +AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[ + sigma, + delta + beta, + c, + b, + delta * beta, + b^2 * c * sigma^2 + 1 // 3 * b^2 * c * sigma - 2 // 3 * b * c * delta * sigma^2 - 2 // 3 * b * c * sigma^2 * beta + c * delta * sigma^3 * beta, +] ``` ## Chemical reaction network @@ -157,7 +182,15 @@ AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[sigma, delta + beta, c, b, delta*b Interpolated functions: ```julia -AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k1, k6, k2, k4, k3, k5, 2*k5^2*k3^2*k4*k6*k1 + 2*k5^2*k3*k4*k2*k6*k1 + 3*k5*k3^2*k4^2*k6*k1 + 3*k5*k3*k4^2*k2*k6*k1 + k3^2*k4^3*k6*k1 + k3*k4^3*k2*k6*k1] +AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[ + k1, + k6, + k2, + k4, + k3, + k5, + 2 * k5^2 * k3^2 * k4 * k6 * k1 + 2 * k5^2 * k3 * k4 * k2 * k6 * k1 + 3 * k5 * k3^2 * k4^2 * k6 * k1 + 3 * k5 * k3 * k4^2 * k2 * k6 * k1 + k3^2 * k4^3 * k6 * k1 + k3 * k4^3 * k2 * k6 * k1, +] ``` ## Akt pathway @@ -168,7 +201,7 @@ AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k1, k6, k2, k4, k3, k5, 2*k5^2*k3^ ┌ Info: Given 225 functions in K(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_2_k2, reaction_5_k2, reaction_8_k1)[t, y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16] - Info: The shape of the basis is: 13 polynomials with monomials +Info: The shape of the basis is: 13 polynomials with monomials │ state.shape = Vector{Nemo.gfp_mpoly}[[y16, 1], [y15, 1], [y14, 1], [y11, y12], [y10, 1], [y9, y12], [y8, 1], [y7, 1], [y4, 1], [y3, y5, y6, 1], [y2, y12], [y1, y12], [t*y12^8, 1]] ┌ Info: The total degrees in the coefficients @@ -182,7 +215,21 @@ Warning: In Prime number approach the field order might be too small Interpolated functions: ```julia -AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[reaction_8_k1, reaction_5_k2, reaction_2_k2, reaction_5_k1//reaction_2_k1, reaction_3_k1, a1//reaction_2_k1, reaction_6_k1, reaction_7_k1, reaction_4_k1, reaction_1_k1 - reaction_9_k1 - reaction_1_k2, a3//reaction_2_k1, a2//reaction_2_k1, (1//16*reaction_2_k1^7)//(a2^2*a3^3*reaction_1_k1*reaction_7_k1*reaction_6_k1^4*a1*reaction_3_k1*reaction_5_k1*reaction_8_k1 + a2^2*a3^3*reaction_1_k1*reaction_7_k1*reaction_6_k1^3*a1*reaction_3_k1*reaction_5_k1*reaction_8_k1^2 + a2^2*a3^3*reaction_1_k1*reaction_6_k1^4*a1*reaction_3_k1^2*reaction_5_k1*reaction_8_k1 + a2^2*a3^3*reaction_1_k1*reaction_6_k1^3*a1*reaction_3_k1^2*reaction_5_k1*reaction_8_k1^2 - a2^2*a3^3*reaction_4_k1*reaction_7_k1*reaction_6_k1^4*a1*reaction_3_k1*reaction_5_k1*reaction_8_k1 - a2^2*a3^3*reaction_4_k1*reaction_7_k1*reaction_6_k1^3*a1*reaction_3_k1*reaction_5_k1*reaction_8_k1^2 - a2^2*a3^3*reaction_4_k1*reaction_6_k1^4*a1*reaction_3_k1^2*reaction_5_k1*reaction_8_k1 - a2^2*a3^3*reaction_4_k1*reaction_6_k1^3*a1*reaction_3_k1^2*reaction_5_k1*reaction_8_k1^2 - a2^2*a3^3*reaction_9_k1*reaction_7_k1*reaction_6_k1^4*a1*reaction_3_k1*reaction_5_k1*reaction_8_k1 - a2^2*a3^3*reaction_9_k1*reaction_7_k1*reaction_6_k1^3*a1*reaction_3_k1*reaction_5_k1*reaction_8_k1^2 - a2^2*a3^3*reaction_9_k1*reaction_6_k1^4*a1*reaction_3_k1^2*reaction_5_k1*reaction_8_k1 - a2^2*a3^3*reaction_9_k1*reaction_6_k1^3*a1*reaction_3_k1^2*reaction_5_k1*reaction_8_k1^2 - a2^2*a3^3*reaction_1_k2*reaction_7_k1*reaction_6_k1^4*a1*reaction_3_k1*reaction_5_k1*reaction_8_k1 - a2^2*a3^3*reaction_1_k2*reaction_7_k1*reaction_6_k1^3*a1*reaction_3_k1*reaction_5_k1*reaction_8_k1^2 - a2^2*a3^3*reaction_1_k2*reaction_6_k1^4*a1*reaction_3_k1^2*reaction_5_k1*reaction_8_k1 - a2^2*a3^3*reaction_1_k2*reaction_6_k1^3*a1*reaction_3_k1^2*reaction_5_k1*reaction_8_k1^2)] +AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[ + reaction_8_k1, + reaction_5_k2, + reaction_2_k2, + reaction_5_k1 // reaction_2_k1, + reaction_3_k1, + a1 // reaction_2_k1, + reaction_6_k1, + reaction_7_k1, + reaction_4_k1, + reaction_1_k1 - reaction_9_k1 - reaction_1_k2, + a3 // reaction_2_k1, + a2 // reaction_2_k1, + (1 // 16 * reaction_2_k1^7) // (a2^2 * a3^3 * reaction_1_k1 * reaction_7_k1 * reaction_6_k1^4 * a1 * reaction_3_k1 * reaction_5_k1 * reaction_8_k1 + a2^2 * a3^3 * reaction_1_k1 * reaction_7_k1 * reaction_6_k1^3 * a1 * reaction_3_k1 * reaction_5_k1 * reaction_8_k1^2 + a2^2 * a3^3 * reaction_1_k1 * reaction_6_k1^4 * a1 * reaction_3_k1^2 * reaction_5_k1 * reaction_8_k1 + a2^2 * a3^3 * reaction_1_k1 * reaction_6_k1^3 * a1 * reaction_3_k1^2 * reaction_5_k1 * reaction_8_k1^2 - a2^2 * a3^3 * reaction_4_k1 * reaction_7_k1 * reaction_6_k1^4 * a1 * reaction_3_k1 * reaction_5_k1 * reaction_8_k1 - a2^2 * a3^3 * reaction_4_k1 * reaction_7_k1 * reaction_6_k1^3 * a1 * reaction_3_k1 * reaction_5_k1 * reaction_8_k1^2 - a2^2 * a3^3 * reaction_4_k1 * reaction_6_k1^4 * a1 * reaction_3_k1^2 * reaction_5_k1 * reaction_8_k1 - a2^2 * a3^3 * reaction_4_k1 * reaction_6_k1^3 * a1 * reaction_3_k1^2 * reaction_5_k1 * reaction_8_k1^2 - a2^2 * a3^3 * reaction_9_k1 * reaction_7_k1 * reaction_6_k1^4 * a1 * reaction_3_k1 * reaction_5_k1 * reaction_8_k1 - a2^2 * a3^3 * reaction_9_k1 * reaction_7_k1 * reaction_6_k1^3 * a1 * reaction_3_k1 * reaction_5_k1 * reaction_8_k1^2 - a2^2 * a3^3 * reaction_9_k1 * reaction_6_k1^4 * a1 * reaction_3_k1^2 * reaction_5_k1 * reaction_8_k1 - a2^2 * a3^3 * reaction_9_k1 * reaction_6_k1^3 * a1 * reaction_3_k1^2 * reaction_5_k1 * reaction_8_k1^2 - a2^2 * a3^3 * reaction_1_k2 * reaction_7_k1 * reaction_6_k1^4 * a1 * reaction_3_k1 * reaction_5_k1 * reaction_8_k1 - a2^2 * a3^3 * reaction_1_k2 * reaction_7_k1 * reaction_6_k1^3 * a1 * reaction_3_k1 * reaction_5_k1 * reaction_8_k1^2 - a2^2 * a3^3 * reaction_1_k2 * reaction_6_k1^4 * a1 * reaction_3_k1^2 * reaction_5_k1 * reaction_8_k1 - a2^2 * a3^3 * reaction_1_k2 * reaction_6_k1^3 * a1 * reaction_3_k1^2 * reaction_5_k1 * reaction_8_k1^2), +] ``` ## LLW1987_io @@ -202,7 +249,12 @@ AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[reaction_8_k1, reaction_5_k2, reac Interpolated functions: ```julia -AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[p3 + p1, p3*p1, p2*p4, p3^2*p1 + p3*p1^2] +AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[ + p3 + p1, + p3 * p1, + p2 * p4, + p3^2 * p1 + p3 * p1^2, +] ``` ## HIV2_io @@ -222,7 +274,17 @@ AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[p3 + p1, p3*p1, p2*p4, p3^2*p1 + p Interpolated functions: ```julia -AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[s, d, c + w1 + k1 + w2, b, k2*q2, (q1*k1 + w1*q2 + k1*q2)//q2, c*w1 + c*k1 + c*w2 + w1*w2 + k1*w2, c*w1*w2 + c*k1*w2, b*k2*d*s*q2 - c*w1*d*w2 - c*d*k1*w2] +AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[ + s, + d, + c + w1 + k1 + w2, + b, + k2 * q2, + (q1 * k1 + w1 * q2 + k1 * q2) // q2, + c * w1 + c * k1 + c * w2 + w1 * w2 + k1 * w2, + c * w1 * w2 + c * k1 * w2, + b * k2 * d * s * q2 - c * w1 * d * w2 - c * d * k1 * w2, +] ``` ## Biohydrogenation_io @@ -238,12 +300,20 @@ AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[s, d, c + w1 + k1 + w2, b, k2*q2, ┌ Info: Output summary: │ Maximal interpolated degrees are: 2 for num. and 5 for den. │ Maximal number of interpolated terms are: 2 for num. and 4 for den. -│ +│ Interpolated functions: ```julia -AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k7, k6, k9//k10, k8 + 1//2*k10, k5, k10^2, k5*k6*k10^2 + 3//2*k8^2*k9*k6*k10 + 3//2*k8*k9*k6*k10^2 + 3//2*k6*k10^2*k7] +AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[ + k7, + k6, + k9 // k10, + k8 + 1 // 2 * k10, + k5, + k10^2, + k5 * k6 * k10^2 + 3 // 2 * k8^2 * k9 * k6 * k10 + 3 // 2 * k8 * k9 * k6 * k10^2 + 3 // 2 * k6 * k10^2 * k7, +] ``` ## Treatment_io @@ -259,12 +329,24 @@ AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k7, k6, k9//k10, k8 + 1//2*k10, k5 ┌ Info: Output summary: │ Maximal interpolated degrees are: 6 for num. and 9 for den. │ Maximal number of interpolated terms are: 7 for num. and 10 for den. -│ +│ Interpolated functions: ```julia -AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[(1//4*g)//(b*nu + b*d*g), (1//2*g)//(b*nu + b*d*g), (1//4*g)//(b^2*nu^3*d + 3*b^2*nu^2*d^2*g - b^2*nu^2*d*g - b^2*nu^2*d*a + 3*b^2*nu*d^3*g^2 - 2*b^2*nu*d^2*g^2 - 2*b^2*nu*d^2*g*a + b^2*d^4*g^3 - b^2*d^3*g^3 - b^2*d^3*g^2*a), nu + g + a, b//g, d*g - g - a, d*g - g - a, nu + d*g, (1//2*nu + d*g - 1//2*g - 1//2*a)//(b*nu^2*d + 2*b*nu*d^2*g - b*nu*d*g - b*nu*d*a + b*d^3*g^2 - b*d^2*g^2 - b*d^2*g*a), nu*g + nu*a, 4*b*nu^2*d + 8*b*nu*d^2*g - 4*b*nu*d*g - 4*b*nu*d*a + 4*b*d^3*g^2 - 4*b*d^2*g^2 - 4*b*d^2*g*a] +AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[ + (1 // 4 * g) // (b * nu + b * d * g), + (1 // 2 * g) // (b * nu + b * d * g), + (1 // 4 * g) // (b^2 * nu^3 * d + 3 * b^2 * nu^2 * d^2 * g - b^2 * nu^2 * d * g - b^2 * nu^2 * d * a + 3 * b^2 * nu * d^3 * g^2 - 2 * b^2 * nu * d^2 * g^2 - 2 * b^2 * nu * d^2 * g * a + b^2 * d^4 * g^3 - b^2 * d^3 * g^3 - b^2 * d^3 * g^2 * a), + nu + g + a, + b // g, + d * g - g - a, + d * g - g - a, + nu + d * g, + (1 // 2 * nu + d * g - 1 // 2 * g - 1 // 2 * a) // (b * nu^2 * d + 2 * b * nu * d^2 * g - b * nu * d * g - b * nu * d * a + b * d^3 * g^2 - b * d^2 * g^2 - b * d^2 * g * a), + nu * g + nu * a, + 4 * b * nu^2 * d + 8 * b * nu * d^2 * g - 4 * b * nu * d * g - 4 * b * nu * d * a + 4 * b * d^3 * g^2 - 4 * b * d^2 * g^2 - 4 * b * d^2 * g * a, +] ``` ## SLIQR @@ -286,7 +368,22 @@ AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[(1//4*g)//(b*nu + b*d*g), (1//2*g) Interpolated functions: ```julia -AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[g + a, s, Ninv, b, (e*a)//(e*s - s + a), (e*s*a)//(e*s - s + a), (e*s*a)//(e*s - s + a), (e*s^2 + e*s*g - s^2 - s*g + g*a + a^2)//(e*s - s + a), (e*s^2*g - s^2*g - s^2*a + s*g*a + s*a^2)//(e*s - s + a), 2*e*Ninv*s*g + 2*Ninv*s*a + 2*Ninv*g*a, (e^2*s*a - e^2*a^2 - e*s*a + e*a^2)//(e^2*s^2*g - 2*e*s^2*g - e*s^2*a + 2*e*s*g*a + e*s*a^2 + s^2*g + s^2*a - 2*s*g*a - 2*s*a^2 + g*a^2 + a^3), (e^2*s^2*g - e*s^2*g + 2*e*s*g*a - s^2*a - s*g*a + s*a^2 + g*a^2)//(e*s - s + a), (e^3*s^2*g*a - e^2*s^3*a - 2*e^2*s^2*g*a + e^2*s^2*a^2 + 2*e^2*s*g*a^2 + e*s^3*a + e*s^2*g*a - e*s^2*a^2 - 2*e*s*g*a^2 + e*g*a^3)//(e^2*s^3*g - 2*e*s^3*g - e*s^3*a + 2*e*s^2*g*a + e*s^2*a^2 + s^3*g + s^3*a - 2*s^2*g*a - 2*s^2*a^2 + s*g*a^2 + s*a^3), (e^3*s^3*g - 2*e^2*s^3*g - e^2*s^3*a + 3*e^2*s^2*g*a + e^2*s^2*a^2 + e*s^3*g - 4*e*s^2*g*a + 3*e*s*g*a^2 + s^3*a + s^2*g*a - 2*s^2*a^2 - 2*s*g*a^2 + s*a^3 + g*a^3)//(e^2*s^3*g - 2*e*s^3*g - e*s^3*a + 2*e*s^2*g*a + e*s^2*a^2 + s^3*g + s^3*a - 2*s^2*g*a - 2*s^2*a^2 + s*g*a^2 + s*a^3)] +AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[ + g + a, + s, + Ninv, + b, + (e * a) // (e * s - s + a), + (e * s * a) // (e * s - s + a), + (e * s * a) // (e * s - s + a), + (e * s^2 + e * s * g - s^2 - s * g + g * a + a^2) // (e * s - s + a), + (e * s^2 * g - s^2 * g - s^2 * a + s * g * a + s * a^2) // (e * s - s + a), + 2 * e * Ninv * s * g + 2 * Ninv * s * a + 2 * Ninv * g * a, + (e^2 * s * a - e^2 * a^2 - e * s * a + e * a^2) // (e^2 * s^2 * g - 2 * e * s^2 * g - e * s^2 * a + 2 * e * s * g * a + e * s * a^2 + s^2 * g + s^2 * a - 2 * s * g * a - 2 * s * a^2 + g * a^2 + a^3), + (e^2 * s^2 * g - e * s^2 * g + 2 * e * s * g * a - s^2 * a - s * g * a + s * a^2 + g * a^2) // (e * s - s + a), + (e^3 * s^2 * g * a - e^2 * s^3 * a - 2 * e^2 * s^2 * g * a + e^2 * s^2 * a^2 + 2 * e^2 * s * g * a^2 + e * s^3 * a + e * s^2 * g * a - e * s^2 * a^2 - 2 * e * s * g * a^2 + e * g * a^3) // (e^2 * s^3 * g - 2 * e * s^3 * g - e * s^3 * a + 2 * e * s^2 * g * a + e * s^2 * a^2 + s^3 * g + s^3 * a - 2 * s^2 * g * a - 2 * s^2 * a^2 + s * g * a^2 + s * a^3), + (e^3 * s^3 * g - 2 * e^2 * s^3 * g - e^2 * s^3 * a + 3 * e^2 * s^2 * g * a + e^2 * s^2 * a^2 + e * s^3 * g - 4 * e * s^2 * g * a + 3 * e * s * g * a^2 + s^3 * a + s^2 * g * a - 2 * s^2 * a^2 - 2 * s * g * a^2 + s * a^3 + g * a^3) // (e^2 * s^3 * g - 2 * e * s^3 * g - e * s^3 * a + 2 * e * s^2 * g * a + e * s^2 * a^2 + s^3 * g + s^3 * a - 2 * s^2 * g * a - 2 * s^2 * a^2 + s * g * a^2 + s * a^3), +] ``` ## Fujita @@ -315,7 +412,21 @@ AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[g + a, s, Ninv, b, (e*a)//(e*s - s Interpolated functions: ```julia -AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[reaction_8_k1, reaction_5_k2, reaction_2_k2, reaction_5_k1//reaction_2_k1, reaction_3_k1, a1//reaction_2_k1, reaction_6_k1, reaction_7_k1, reaction_4_k1, reaction_1_k1 - reaction_9_k1 - reaction_1_k2, a3//reaction_2_k1, a2//reaction_2_k1, (1//16*reaction_2_k1^7)//(a2^2*a3^3*reaction_1_k1*reaction_7_k1*reaction_6_k1^4*a1*reaction_3_k1*reaction_5_k1*reaction_8_k1 + a2^2*a3^3*reaction_1_k1*reaction_7_k1*reaction_6_k1^3*a1*reaction_3_k1*reaction_5_k1*reaction_8_k1^2 + a2^2*a3^3*reaction_1_k1*reaction_6_k1^4*a1*reaction_3_k1^2*reaction_5_k1*reaction_8_k1 + a2^2*a3^3*reaction_1_k1*reaction_6_k1^3*a1*reaction_3_k1^2*reaction_5_k1*reaction_8_k1^2 - a2^2*a3^3*reaction_4_k1*reaction_7_k1*reaction_6_k1^4*a1*reaction_3_k1*reaction_5_k1*reaction_8_k1 - a2^2*a3^3*reaction_4_k1*reaction_7_k1*reaction_6_k1^3*a1*reaction_3_k1*reaction_5_k1*reaction_8_k1^2 - a2^2*a3^3*reaction_4_k1*reaction_6_k1^4*a1*reaction_3_k1^2*reaction_5_k1*reaction_8_k1 - a2^2*a3^3*reaction_4_k1*reaction_6_k1^3*a1*reaction_3_k1^2*reaction_5_k1*reaction_8_k1^2 - a2^2*a3^3*reaction_9_k1*reaction_7_k1*reaction_6_k1^4*a1*reaction_3_k1*reaction_5_k1*reaction_8_k1 - a2^2*a3^3*reaction_9_k1*reaction_7_k1*reaction_6_k1^3*a1*reaction_3_k1*reaction_5_k1*reaction_8_k1^2 - a2^2*a3^3*reaction_9_k1*reaction_6_k1^4*a1*reaction_3_k1^2*reaction_5_k1*reaction_8_k1 - a2^2*a3^3*reaction_9_k1*reaction_6_k1^3*a1*reaction_3_k1^2*reaction_5_k1*reaction_8_k1^2 - a2^2*a3^3*reaction_1_k2*reaction_7_k1*reaction_6_k1^4*a1*reaction_3_k1*reaction_5_k1*reaction_8_k1 - a2^2*a3^3*reaction_1_k2*reaction_7_k1*reaction_6_k1^3*a1*reaction_3_k1*reaction_5_k1*reaction_8_k1^2 - a2^2*a3^3*reaction_1_k2*reaction_6_k1^4*a1*reaction_3_k1^2*reaction_5_k1*reaction_8_k1 - a2^2*a3^3*reaction_1_k2*reaction_6_k1^3*a1*reaction_3_k1^2*reaction_5_k1*reaction_8_k1^2)] +AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[ + reaction_8_k1, + reaction_5_k2, + reaction_2_k2, + reaction_5_k1 // reaction_2_k1, + reaction_3_k1, + a1 // reaction_2_k1, + reaction_6_k1, + reaction_7_k1, + reaction_4_k1, + reaction_1_k1 - reaction_9_k1 - reaction_1_k2, + a3 // reaction_2_k1, + a2 // reaction_2_k1, + (1 // 16 * reaction_2_k1^7) // (a2^2 * a3^3 * reaction_1_k1 * reaction_7_k1 * reaction_6_k1^4 * a1 * reaction_3_k1 * reaction_5_k1 * reaction_8_k1 + a2^2 * a3^3 * reaction_1_k1 * reaction_7_k1 * reaction_6_k1^3 * a1 * reaction_3_k1 * reaction_5_k1 * reaction_8_k1^2 + a2^2 * a3^3 * reaction_1_k1 * reaction_6_k1^4 * a1 * reaction_3_k1^2 * reaction_5_k1 * reaction_8_k1 + a2^2 * a3^3 * reaction_1_k1 * reaction_6_k1^3 * a1 * reaction_3_k1^2 * reaction_5_k1 * reaction_8_k1^2 - a2^2 * a3^3 * reaction_4_k1 * reaction_7_k1 * reaction_6_k1^4 * a1 * reaction_3_k1 * reaction_5_k1 * reaction_8_k1 - a2^2 * a3^3 * reaction_4_k1 * reaction_7_k1 * reaction_6_k1^3 * a1 * reaction_3_k1 * reaction_5_k1 * reaction_8_k1^2 - a2^2 * a3^3 * reaction_4_k1 * reaction_6_k1^4 * a1 * reaction_3_k1^2 * reaction_5_k1 * reaction_8_k1 - a2^2 * a3^3 * reaction_4_k1 * reaction_6_k1^3 * a1 * reaction_3_k1^2 * reaction_5_k1 * reaction_8_k1^2 - a2^2 * a3^3 * reaction_9_k1 * reaction_7_k1 * reaction_6_k1^4 * a1 * reaction_3_k1 * reaction_5_k1 * reaction_8_k1 - a2^2 * a3^3 * reaction_9_k1 * reaction_7_k1 * reaction_6_k1^3 * a1 * reaction_3_k1 * reaction_5_k1 * reaction_8_k1^2 - a2^2 * a3^3 * reaction_9_k1 * reaction_6_k1^4 * a1 * reaction_3_k1^2 * reaction_5_k1 * reaction_8_k1 - a2^2 * a3^3 * reaction_9_k1 * reaction_6_k1^3 * a1 * reaction_3_k1^2 * reaction_5_k1 * reaction_8_k1^2 - a2^2 * a3^3 * reaction_1_k2 * reaction_7_k1 * reaction_6_k1^4 * a1 * reaction_3_k1 * reaction_5_k1 * reaction_8_k1 - a2^2 * a3^3 * reaction_1_k2 * reaction_7_k1 * reaction_6_k1^3 * a1 * reaction_3_k1 * reaction_5_k1 * reaction_8_k1^2 - a2^2 * a3^3 * reaction_1_k2 * reaction_6_k1^4 * a1 * reaction_3_k1^2 * reaction_5_k1 * reaction_8_k1 - a2^2 * a3^3 * reaction_1_k2 * reaction_6_k1^3 * a1 * reaction_3_k1^2 * reaction_5_k1 * reaction_8_k1^2), +] ``` ## NFkB @@ -412,7 +523,7 @@ Used 2560 interpolation points. ┌ Info: The shape of the basis is: 8 polynomials with monomials │ state.shape = Vector{Nemo.gfp_mpoly}[[y7, 1], [y6, 1], [y5, 1], [y4, 1], [y3, 1], [y2, 1], [y1, 1], [t, 1]] - Info: The total degrees in the coefficients +Info: The total degrees in the coefficients │ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 17)]] ## MAPK model (6 outputs) @@ -461,7 +572,7 @@ Process killed before the parameter degrees are discovered. ┌ Info: Given 1068 functions in K(c0001, a10, gamma1000, alpha10, b00, beta11, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100)[t, y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22] ┌ Info: The shape of the basis is: 23 polynomials with monomials -│ state.shape = Vector{Nemo.gfp_mpoly}[[y22, 1], [y21, 1], [y20, 1], [y19, 1], [y18, 1], [y17, 1], [y16, 1], [y15, 1], [y14, 1], [y13, 1], [y12, 1], [y11, 1], [y10, 1], [y9, 1], [y8, 1], [y7, 1], [y6, 1], [y5, 1], [y4, 1], [y3, 1], [y2, 1], [y1, 1], [t, 1]] +│ state.shape = Vector{Nemo.gfp_mpoly}[[y22, 1], [y21, 1], [y20, 1], [y19, 1], [y18, 1], [y17, 1], [y16, 1], [y15, 1], [y14, 1], [y13, 1], [y12, 1], [y11, 1], [y10, 1], [y9, 1], [y8, 1], [y7, 1], [y6, 1], [y5, 1], [y4, 1], [y3, 1], [y2, 1], [y1, 1], [t, 1]] ## SEAIJRC Covid model @@ -623,27 +734,27 @@ Used 1310720 interpolation points. ┌ Info: The total degrees in the coefficients │ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 7)]] ---- +* * * *Benchmarking environment:* -* Total RAM (GiB): 2015 -* Processor: AMD EPYC 7702 64-Core Processor -* Julia version: 1.9.1 + - Total RAM (GiB): 2015 + - Processor: AMD EPYC 7702 64-Core Processor + - Julia version: 1.9.1 Versions of the dependencies: -* Primes : 0.5.3 -* BenchmarkTools : 1.3.2 -* IterTools : 1.8.0 -* PrecompileTools : 1.1.2 -* Symbolics : 5.5.0 -* SymbolicUtils : 1.0.5 -* DataStructures : 0.18.14 -* Groebner : 0.3.6 -* ParamPunPam : 0.0.1 -* ModelingToolkit : 8.60.0 -* AbstractAlgebra : 0.27.10 -* MacroTools : 0.5.10 -* Nemo : 0.32.7 -* SpecialFunctions : 2.3.0 + - Primes : 0.5.3 + - BenchmarkTools : 1.3.2 + - IterTools : 1.8.0 + - PrecompileTools : 1.1.2 + - Symbolics : 5.5.0 + - SymbolicUtils : 1.0.5 + - DataStructures : 0.18.14 + - Groebner : 0.3.6 + - ParamPunPam : 0.0.1 + - ModelingToolkit : 8.60.0 + - AbstractAlgebra : 0.27.10 + - MacroTools : 0.5.10 + - Nemo : 0.32.7 + - SpecialFunctions : 2.3.0 diff --git a/benchmarking/IdentifiableFunctions/benchmark_result_06-08-23.md b/benchmarking/IdentifiableFunctions/benchmark_result_06-08-23.md index a66fe60ae..0206b311e 100644 --- a/benchmarking/IdentifiableFunctions/benchmark_result_06-08-23.md +++ b/benchmarking/IdentifiableFunctions/benchmark_result_06-08-23.md @@ -2,66 +2,65 @@ 2023-08-06T06:03:27.527 - -|Model|(:gb,)|(:normalforms, 3)|(:normalforms, 2)|(:hybrid,)| -|-----|---|---|---|---| -|Akt pathway|14.36|11.89|11.62|12.85| -|Bilirubin2_io|1.67|2.46|2.57|13.02| -|Biohydrogenation_io|10.91|8.76|10.36|9.76| -|CD8 T cell differentiation|4.36|7.23|4.42|5.61| -|Chemical reaction network|11.34|8.92|10.98|9.48| -|Fujita|10.77|13.85|9.25|12.79| -|Goodwin oscillator|1.20|1.50|1.45|1.62| -|HIV|4.53|5.90|6.19|3.94| -|HIV2_io|4.29|4.73|4.53|7.41| -|JAK-STAT 1|23.80|27.03|20.56|24.45| -|LLW1987_io|8.66|8.41|8.70|6.24| -|MAPK model (5 outputs bis)| - | - | - | - | -|MAPK model (5 outputs)|43.64|49.23|44.36|46.11| -|MAPK model (6 outputs)|17.21|18.10|17.44|19.49| -|Modified LV for testing|7.95|8.22|8.64|8.30| -|PK1|4.19|3.55|4.29|4.86| -|PK2|49.98|46.94|51.42|45.81| -|Pharm|49.68|47.79|47.40|49.05| -|QWWC|313.22|310.76|312.59|314.66| -|QY|9.75| - | - | - | -|SEAIJRC Covid model|52.32|52.25|52.35|49.02| -|SEIR 34|10.79|8.70|10.78|10.59| -|SEIR 36 ref|4.44|5.09|4.78|4.45| -|SEIR_1_io|7.01|8.87|10.91|8.21| -|SIR 19|12.83|9.57|10.53|8.80| -|SIR 21|10.46|9.23|11.07|9.70| -|SIR 24|7.66|8.95|6.71|7.09| -|SIR 6|11.49|10.32|11.09|9.13| -|SIRS forced|11.45|13.40|14.64|12.13| -|SIWR original|11.30|11.20|8.63|10.19| -|SIWR with extra output|4.45|4.34|3.65|4.60| -|SLIQR|9.81|9.29|9.90|9.48| -|St|29.29|27.43|23.87| - | -|Treatment_io|10.72|10.97|11.16|10.64| -|TumorHu2019| - | - | - | - | -|TumorPillis2007| - | - | - | - | +| Model | (:gb,) | (:normalforms, 3) | (:normalforms, 2) | (:hybrid,) | +|:-------------------------- |:------ |:----------------- |:----------------- |:---------- | +| Akt pathway | 14.36 | 11.89 | 11.62 | 12.85 | +| Bilirubin2_io | 1.67 | 2.46 | 2.57 | 13.02 | +| Biohydrogenation_io | 10.91 | 8.76 | 10.36 | 9.76 | +| CD8 T cell differentiation | 4.36 | 7.23 | 4.42 | 5.61 | +| Chemical reaction network | 11.34 | 8.92 | 10.98 | 9.48 | +| Fujita | 10.77 | 13.85 | 9.25 | 12.79 | +| Goodwin oscillator | 1.20 | 1.50 | 1.45 | 1.62 | +| HIV | 4.53 | 5.90 | 6.19 | 3.94 | +| HIV2_io | 4.29 | 4.73 | 4.53 | 7.41 | +| JAK-STAT 1 | 23.80 | 27.03 | 20.56 | 24.45 | +| LLW1987_io | 8.66 | 8.41 | 8.70 | 6.24 | +| MAPK model (5 outputs bis) | - | - | - | - | +| MAPK model (5 outputs) | 43.64 | 49.23 | 44.36 | 46.11 | +| MAPK model (6 outputs) | 17.21 | 18.10 | 17.44 | 19.49 | +| Modified LV for testing | 7.95 | 8.22 | 8.64 | 8.30 | +| PK1 | 4.19 | 3.55 | 4.29 | 4.86 | +| PK2 | 49.98 | 46.94 | 51.42 | 45.81 | +| Pharm | 49.68 | 47.79 | 47.40 | 49.05 | +| QWWC | 313.22 | 310.76 | 312.59 | 314.66 | +| QY | 9.75 | - | - | - | +| SEAIJRC Covid model | 52.32 | 52.25 | 52.35 | 49.02 | +| SEIR 34 | 10.79 | 8.70 | 10.78 | 10.59 | +| SEIR 36 ref | 4.44 | 5.09 | 4.78 | 4.45 | +| SEIR_1_io | 7.01 | 8.87 | 10.91 | 8.21 | +| SIR 19 | 12.83 | 9.57 | 10.53 | 8.80 | +| SIR 21 | 10.46 | 9.23 | 11.07 | 9.70 | +| SIR 24 | 7.66 | 8.95 | 6.71 | 7.09 | +| SIR 6 | 11.49 | 10.32 | 11.09 | 9.13 | +| SIRS forced | 11.45 | 13.40 | 14.64 | 12.13 | +| SIWR original | 11.30 | 11.20 | 8.63 | 10.19 | +| SIWR with extra output | 4.45 | 4.34 | 3.65 | 4.60 | +| SLIQR | 9.81 | 9.29 | 9.90 | 9.48 | +| St | 29.29 | 27.43 | 23.87 | - | +| Treatment_io | 10.72 | 10.97 | 11.16 | 10.64 | +| TumorHu2019 | - | - | - | - | +| TumorPillis2007 | - | - | - | - | *Benchmarking environment:* -* Total RAM (GiB): 2015 -* Processor: AMD EPYC 7702 64-Core Processor -* Julia version: 1.9.1 + - Total RAM (GiB): 2015 + - Processor: AMD EPYC 7702 64-Core Processor + - Julia version: 1.9.1 Versions of the dependencies: -* Primes : 0.5.4 -* BenchmarkTools : 1.3.2 -* IterTools : 1.8.0 -* PrecompileTools : 1.1.2 -* Symbolics : 5.5.0 -* Combinatorics : 1.0.2 -* SymbolicUtils : 1.1.0 -* DataStructures : 0.18.14 -* Groebner : 0.4.3 -* ParamPunPam : 0.0.3 -* ModelingToolkit : 8.63.0 -* AbstractAlgebra : 0.27.10 -* MacroTools : 0.5.10 -* Nemo : 0.32.7 -* SpecialFunctions : 2.3.0 + - Primes : 0.5.4 + - BenchmarkTools : 1.3.2 + - IterTools : 1.8.0 + - PrecompileTools : 1.1.2 + - Symbolics : 5.5.0 + - Combinatorics : 1.0.2 + - SymbolicUtils : 1.1.0 + - DataStructures : 0.18.14 + - Groebner : 0.4.3 + - ParamPunPam : 0.0.3 + - ModelingToolkit : 8.63.0 + - AbstractAlgebra : 0.27.10 + - MacroTools : 0.5.10 + - Nemo : 0.32.7 + - SpecialFunctions : 2.3.0 diff --git a/benchmarking/IdentifiableFunctions/benchmark_result_07-09-23.md b/benchmarking/IdentifiableFunctions/benchmark_result_07-09-23.md new file mode 100644 index 000000000..39f7f0b43 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/benchmark_result_07-09-23.md @@ -0,0 +1,89 @@ +## Benchmark results + +Timestamp: 2023-09-07T10:22:29.441 + +Timeout: 600 s + +**Timings in seconds.** + +| Model | Total time | Algebraic relations | Dim. before | Dim. after | +|:----------------------------- |:---------- |:------------------- |:----------- |:---------- | +| Akt pathway | 92.44 | no | 25 | 20 | +| Bilirubin2_io | - | - | - | - | +| Biohydrogenation_io | 90.87 | no | 10 | 9 | +| Bruno2016 | 90.93 | no | 13 | 6 | +| CD8 T cell differentiation | 90.68 | no | 18 | 17 | +| CGV1990 | - | - | - | - | +| Chemical reaction network | 92.15 | no | 12 | 12 | +| Crauste_SI | 92.68 | no | 18 | 17 | +| Fujita | 99.71 | no | 25 | 20 | +| Goodwin oscillator | 94.11 | no | 11 | 9 | +| HIV | 96.67 | no | 15 | 13 | +| HIV2_io | - | - | - | - | +| HighDimNonLin | 119.25 | no | 42 | 42 | +| JAK-STAT 1 | - | - | - | - | +| KD1999 | 97.16 | no | 19 | 14 | +| LLW1987_io | 110.63 | yes | 7 | 7 | +| LeukaemiaLeon2021 | - | - | - | - | +| MAPK model (5 outputs bis) | - | - | - | - | +| MAPK model (5 outputs) | 194.02 | no | 34 | 34 | +| MAPK model (6 outputs) | 135.00 | no | 34 | 34 | +| Modified LV for testing | 121.90 | no | 6 | 5 | +| PK1 | - | - | - | - | +| PK2 | 252.67 | no | 11 | 11 | +| Pharm | 259.99 | no | 11 | 11 | +| Phosphorylation | 125.16 | no | 12 | 12 | +| Pivastatin | 133.78 | no | 11 | 10 | +| QWWC | - | - | - | - | +| QY | - | - | - | - | +| Ruminal lipolysis | 90.83 | no | 8 | 8 | +| SEAIJRC Covid model | 192.52 | no | 14 | 13 | +| SEIR 34 | 93.99 | no | 12 | 10 | +| SEIR 36 ref | 96.31 | no | 21 | 20 | +| SEIR2T | 90.70 | no | 8 | 8 | +| SEIRT | 95.07 | no | 8 | 7 | +| SEIR_1_io | 91.16 | no | 9 | 8 | +| SEUIR | 90.40 | no | 10 | 7 | +| SIR 19 | 92.89 | no | 11 | 10 | +| SIR 21 | 92.01 | no | 11 | 10 | +| SIR 24 | 90.36 | no | 9 | 6 | +| SIR 6 | 90.56 | no | 7 | 5 | +| SIRS forced | 101.59 | no | 11 | 10 | +| SIWR original | 103.76 | no | 11 | 11 | +| SIWR with extra output | 91.83 | no | 11 | 11 | +| SLIQR | - | - | - | - | +| St | - | - | - | - | +| Transfection_4State | 91.17 | no | 9 | 8 | +| Treatment_io | 92.82 | no | 9 | 8 | +| TumorHu2019 | - | - | - | - | +| TumorPillis2007 | - | - | - | - | +| cLV1 (1o) | - | - | - | - | +| cLV1 (2o) | 96.89 | no | 18 | 17 | +| cholera | 91.38 | no | 11 | 11 | +| generalizedLoktaVolterra (1o) | 93.30 | no | 8 | 7 | +| generalizedLoktaVolterra (2o) | 88.99 | no | 8 | 8 | +| p53 | 91.15 | no | 27 | 27 | + +*Benchmarking environment:* + + - Total RAM (GiB): 188 + - Processor: Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz + - Julia version: 1.9.2 + +Versions of the dependencies: + + - Primes : 0.5.4 + - BenchmarkTools : 1.3.2 + - IterTools : 1.8.0 + - PrecompileTools : 1.1.2 + - Symbolics : 5.5.3 + - Combinatorics : 1.0.2 + - SymbolicUtils : 1.2.0 + - DataStructures : 0.18.15 + - Groebner : 0.4.3 + - ParamPunPam : 0.0.3 + - ModelingToolkit : 8.64.0 + - AbstractAlgebra : 0.27.10 + - MacroTools : 0.5.10 + - Nemo : 0.32.7 + - SpecialFunctions : 2.3.0 diff --git a/benchmarking/IdentifiableFunctions/benchmark_result_08-08-23-x2.md b/benchmarking/IdentifiableFunctions/benchmark_result_08-08-23-x2.md index 4fe551398..e2185d628 100644 --- a/benchmarking/IdentifiableFunctions/benchmark_result_08-08-23-x2.md +++ b/benchmarking/IdentifiableFunctions/benchmark_result_08-08-23-x2.md @@ -2,66 +2,66 @@ 2023-08-08T17:53:05.631 -Timeout: 6000 s -|Model|(:gb,)|(:gb,)_with_states|(:normalforms, 3)|(:normalforms, 3)_with_states|(:hybrid,)|(:hybrid,)_with_states| -|-----|---|---|---|---|---|---| -|Akt pathway|11.31|11.89|13.42|58.36|14.54|64.56| -|Bilirubin2_io|1.53|4.49|2.17|66.33|6.58|140.03| -|Biohydrogenation_io|3.84|3.51|3.86|4.16|4.54|4.85| -|CD8 T cell differentiation|3.79|10.23|5.26|16.65|5.50|18.95| -|Chemical reaction network|3.71|3.92|3.64|5.36|4.36|6.69| -|Fujita|11.19|11.77|13.10|55.50|14.11|61.30| -|Goodwin oscillator|1.05|1.21|1.24|1.81|1.65|3.07| -|HIV|4.07|10.32|4.18|13.16|5.04|14.43| -|HIV2_io|3.98|12.59|4.36|14.70|6.01|22.18| -|JAK-STAT 1|24.21|27.25|28.86|294.78|30.32|299.23| -|LLW1987_io|0.95|1.52|1.14|1.75|1.45|2.55| -|MAPK model (5 outputs bis)| - | - | - | - | - | - | -|MAPK model (5 outputs)|65.54| - |76.97| - |71.03| - | -|MAPK model (6 outputs)|16.29|20.15|28.44|199.34|33.35|241.64| -|Modified LV for testing|0.88|1.32|1.06|1.61|1.31|2.25| -|PK1|3.73|10.43|4.05|14.89|8.14|21.62| -|PK2|72.49| - |78.18| - |102.62| - | -|Pharm|122.89| - |120.41| - |102.65| - | -|QWWC|764.57|1323.03|764.56|1268.76|763.13|902.24| -|QY|12.19| - |16.88| - |18.82| - | -|SEAIJRC Covid model|80.31|141.94|117.69|118.38|94.20|115.98| -|SEIR 34|5.36|32.87|20.60|60.35|32.12|63.33| -|SEIR 36 ref|4.21|13.04|5.57|51.85|5.60|118.83| -|SEIR_1_io|1.14|1.95|1.30|2.91|1.96|4.17| -|SIR 19|4.09|4.35|4.65|5.99|5.09|7.08| -|SIR 21|3.97|4.25|4.83|6.13|5.04|6.46| -|SIR 24|1.69|1.95|1.87|2.56|2.50|3.28| -|SIR 6|3.81|4.16|3.83|4.58|4.55|5.08| -|SIRS forced|6.98|6.75|7.43|10.11|8.68|9.38| -|SIWR original|13.77|12.56|11.78|13.51|12.28|14.76| -|SIWR with extra output|3.70|4.27|4.54|5.86|4.68|6.81| -|SLIQR|1.77|5.11|2.90|12.68|3.17|16.30| -|St|32.39|326.97|33.89|332.53| - | - | -|Treatment_io|3.26|3.77|3.50|4.98|4.50|6.08| -|TumorHu2019| - | - | - | - | - | - | -|TumorPillis2007| - | - | - | - | - | - | +| Timeout: 6000 s +Model | (:gb,) | (:gb,)_with_states | (:normalforms, 3) | (:normalforms, 3)_with_states | (:hybrid,) | (:hybrid,)_with_states | +|:-------------------------- |:------ |:------------------ |:----------------- |:----------------------------- |:---------- |:---------------------- | +| Akt pathway | 11.31 | 11.89 | 13.42 | 58.36 | 14.54 | 64.56 | +| Bilirubin2_io | 1.53 | 4.49 | 2.17 | 66.33 | 6.58 | 140.03 | +| Biohydrogenation_io | 3.84 | 3.51 | 3.86 | 4.16 | 4.54 | 4.85 | +| CD8 T cell differentiation | 3.79 | 10.23 | 5.26 | 16.65 | 5.50 | 18.95 | +| Chemical reaction network | 3.71 | 3.92 | 3.64 | 5.36 | 4.36 | 6.69 | +| Fujita | 11.19 | 11.77 | 13.10 | 55.50 | 14.11 | 61.30 | +| Goodwin oscillator | 1.05 | 1.21 | 1.24 | 1.81 | 1.65 | 3.07 | +| HIV | 4.07 | 10.32 | 4.18 | 13.16 | 5.04 | 14.43 | +| HIV2_io | 3.98 | 12.59 | 4.36 | 14.70 | 6.01 | 22.18 | +| JAK-STAT 1 | 24.21 | 27.25 | 28.86 | 294.78 | 30.32 | 299.23 | +| LLW1987_io | 0.95 | 1.52 | 1.14 | 1.75 | 1.45 | 2.55 | +| MAPK model (5 outputs bis) | - | - | - | - | - | - | +| MAPK model (5 outputs) | 65.54 | - | 76.97 | - | 71.03 | - | +| MAPK model (6 outputs) | 16.29 | 20.15 | 28.44 | 199.34 | 33.35 | 241.64 | +| Modified LV for testing | 0.88 | 1.32 | 1.06 | 1.61 | 1.31 | 2.25 | +| PK1 | 3.73 | 10.43 | 4.05 | 14.89 | 8.14 | 21.62 | +| PK2 | 72.49 | - | 78.18 | - | 102.62 | - | +| Pharm | 122.89 | - | 120.41 | - | 102.65 | - | +| QWWC | 764.57 | 1323.03 | 764.56 | 1268.76 | 763.13 | 902.24 | +| QY | 12.19 | - | 16.88 | - | 18.82 | - | +| SEAIJRC Covid model | 80.31 | 141.94 | 117.69 | 118.38 | 94.20 | 115.98 | +| SEIR 34 | 5.36 | 32.87 | 20.60 | 60.35 | 32.12 | 63.33 | +| SEIR 36 ref | 4.21 | 13.04 | 5.57 | 51.85 | 5.60 | 118.83 | +| SEIR_1_io | 1.14 | 1.95 | 1.30 | 2.91 | 1.96 | 4.17 | +| SIR 19 | 4.09 | 4.35 | 4.65 | 5.99 | 5.09 | 7.08 | +| SIR 21 | 3.97 | 4.25 | 4.83 | 6.13 | 5.04 | 6.46 | +| SIR 24 | 1.69 | 1.95 | 1.87 | 2.56 | 2.50 | 3.28 | +| SIR 6 | 3.81 | 4.16 | 3.83 | 4.58 | 4.55 | 5.08 | +| SIRS forced | 6.98 | 6.75 | 7.43 | 10.11 | 8.68 | 9.38 | +| SIWR original | 13.77 | 12.56 | 11.78 | 13.51 | 12.28 | 14.76 | +| SIWR with extra output | 3.70 | 4.27 | 4.54 | 5.86 | 4.68 | 6.81 | +| SLIQR | 1.77 | 5.11 | 2.90 | 12.68 | 3.17 | 16.30 | +| St | 32.39 | 326.97 | 33.89 | 332.53 | - | - | +| Treatment_io | 3.26 | 3.77 | 3.50 | 4.98 | 4.50 | 6.08 | +| TumorHu2019 | - | - | - | - | - | - | +| TumorPillis2007 | - | - | - | - | - | - | *Benchmarking environment:* -* Total RAM (GiB): 188 -* Processor: Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz -* Julia version: 1.9.2 + - Total RAM (GiB): 188 + - Processor: Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz + - Julia version: 1.9.2 Versions of the dependencies: -* Primes : 0.5.4 -* BenchmarkTools : 1.3.2 -* IterTools : 1.8.0 -* PrecompileTools : 1.1.2 -* Symbolics : 5.5.1 -* Combinatorics : 1.0.2 -* SymbolicUtils : 1.2.0 -* DataStructures : 0.18.15 -* Groebner : 0.4.3 -* ParamPunPam : 0.0.3 -* ModelingToolkit : 8.64.0 -* AbstractAlgebra : 0.27.10 -* MacroTools : 0.5.10 -* Nemo : 0.32.7 -* SpecialFunctions : 2.3.0 + - Primes : 0.5.4 + - BenchmarkTools : 1.3.2 + - IterTools : 1.8.0 + - PrecompileTools : 1.1.2 + - Symbolics : 5.5.1 + - Combinatorics : 1.0.2 + - SymbolicUtils : 1.2.0 + - DataStructures : 0.18.15 + - Groebner : 0.4.3 + - ParamPunPam : 0.0.3 + - ModelingToolkit : 8.64.0 + - AbstractAlgebra : 0.27.10 + - MacroTools : 0.5.10 + - Nemo : 0.32.7 + - SpecialFunctions : 2.3.0 diff --git a/benchmarking/IdentifiableFunctions/benchmark_result_08-08-23.md b/benchmarking/IdentifiableFunctions/benchmark_result_08-08-23.md index 6e22d07fc..662f7ab45 100644 --- a/benchmarking/IdentifiableFunctions/benchmark_result_08-08-23.md +++ b/benchmarking/IdentifiableFunctions/benchmark_result_08-08-23.md @@ -2,66 +2,66 @@ 2023-08-08T15:08:30.629 -Timeout: 6000 s -|Model|(:gb,)|(:gb,)_with_states|(:normalforms, 3)|(:normalforms, 3)_with_states|(:hybrid,)|(:hybrid,)_with_states| -|-----|---|---|---|---|---|---| -|Akt pathway|11.12|11.64|13.04|58.90|14.51|66.82| -|Bilirubin2_io|1.49|4.11|2.13|70.19|7.34| - | -|Biohydrogenation_io|3.82|3.36|3.89|4.17|4.78|5.15| -|CD8 T cell differentiation|3.73|10.37|4.88|17.74|5.63|19.56| -|Chemical reaction network|3.71|3.94|3.83|5.13|4.17|6.22| -|Fujita|10.58|11.69|13.15|55.88|13.64|62.97| -|Goodwin oscillator|1.09|1.26|1.29|1.92|1.84|2.94| -|HIV|4.09|10.61|4.42|12.74|4.87|14.62| -|HIV2_io|3.87|12.90|4.41|14.79|6.34|19.20| -|JAK-STAT 1|25.04|25.55|32.58|297.07|34.08|299.32| -|LLW1987_io|0.91|1.50|1.04|1.81|1.37|2.98| -|MAPK model (5 outputs bis)| - | - | - | - | - | - | -|MAPK model (5 outputs)|74.36| - |84.71| - |81.73| - | -|MAPK model (6 outputs)|24.06|35.51|43.11|183.27|37.57|178.21| -|Modified LV for testing|0.92|1.37|1.03|1.62|1.37|4.40| -|PK1|4.06|15.77|8.56|33.21|11.23|40.74| -|PK2|134.20| - |132.29| - |132.27| - | -|Pharm|124.90| - |121.70| - |115.34| - | -|QWWC|790.42|1361.00|824.03|1340.29|809.50|894.43| -|QY|26.65| - |31.69| - |1697.95| - | -|SEAIJRC Covid model|175.64| - |152.87| - |173.16| - | -|SEIR 34|4.97| - |6.63| - |17.38| - | -|SEIR 36 ref|4.72| - |7.61| - |10.42| - | -|SEIR_1_io|1.08|1.83|1.46|3.44|2.50|4.85| -|SIR 19|3.69| - |4.51| - |5.55| - | -|SIR 21|3.90| - |4.26| - |4.99| - | -|SIR 24|1.56|1.72|1.81|2.69|2.19|2.96| -|SIR 6|3.40| - |4.22| - |4.25| - | -|SIRS forced|6.03|6.83|7.05|8.90|7.39|9.45| -|SIWR original|11.18|12.74|11.33|13.38|12.53|14.13| -|SIWR with extra output|3.80|4.41|4.45|5.97|4.73|6.50| -|SLIQR|1.78|5.43|2.49|12.64|3.18|15.25| -|St|33.11|334.99|34.35|332.95| - | - | -|Treatment_io|3.26| - |3.50| - |4.51| - | -|TumorHu2019| - | - | - | - | - | - | -|TumorPillis2007| - | - | - | - | - | - | +| Timeout: 6000 s +Model | (:gb,) | (:gb,)_with_states | (:normalforms, 3) | (:normalforms, 3)_with_states | (:hybrid,) | (:hybrid,)_with_states | +|:-------------------------- |:------ |:------------------ |:----------------- |:----------------------------- |:---------- |:---------------------- | +| Akt pathway | 11.12 | 11.64 | 13.04 | 58.90 | 14.51 | 66.82 | +| Bilirubin2_io | 1.49 | 4.11 | 2.13 | 70.19 | 7.34 | - | +| Biohydrogenation_io | 3.82 | 3.36 | 3.89 | 4.17 | 4.78 | 5.15 | +| CD8 T cell differentiation | 3.73 | 10.37 | 4.88 | 17.74 | 5.63 | 19.56 | +| Chemical reaction network | 3.71 | 3.94 | 3.83 | 5.13 | 4.17 | 6.22 | +| Fujita | 10.58 | 11.69 | 13.15 | 55.88 | 13.64 | 62.97 | +| Goodwin oscillator | 1.09 | 1.26 | 1.29 | 1.92 | 1.84 | 2.94 | +| HIV | 4.09 | 10.61 | 4.42 | 12.74 | 4.87 | 14.62 | +| HIV2_io | 3.87 | 12.90 | 4.41 | 14.79 | 6.34 | 19.20 | +| JAK-STAT 1 | 25.04 | 25.55 | 32.58 | 297.07 | 34.08 | 299.32 | +| LLW1987_io | 0.91 | 1.50 | 1.04 | 1.81 | 1.37 | 2.98 | +| MAPK model (5 outputs bis) | - | - | - | - | - | - | +| MAPK model (5 outputs) | 74.36 | - | 84.71 | - | 81.73 | - | +| MAPK model (6 outputs) | 24.06 | 35.51 | 43.11 | 183.27 | 37.57 | 178.21 | +| Modified LV for testing | 0.92 | 1.37 | 1.03 | 1.62 | 1.37 | 4.40 | +| PK1 | 4.06 | 15.77 | 8.56 | 33.21 | 11.23 | 40.74 | +| PK2 | 134.20 | - | 132.29 | - | 132.27 | - | +| Pharm | 124.90 | - | 121.70 | - | 115.34 | - | +| QWWC | 790.42 | 1361.00 | 824.03 | 1340.29 | 809.50 | 894.43 | +| QY | 26.65 | - | 31.69 | - | 1697.95 | - | +| SEAIJRC Covid model | 175.64 | - | 152.87 | - | 173.16 | - | +| SEIR 34 | 4.97 | - | 6.63 | - | 17.38 | - | +| SEIR 36 ref | 4.72 | - | 7.61 | - | 10.42 | - | +| SEIR_1_io | 1.08 | 1.83 | 1.46 | 3.44 | 2.50 | 4.85 | +| SIR 19 | 3.69 | - | 4.51 | - | 5.55 | - | +| SIR 21 | 3.90 | - | 4.26 | - | 4.99 | - | +| SIR 24 | 1.56 | 1.72 | 1.81 | 2.69 | 2.19 | 2.96 | +| SIR 6 | 3.40 | - | 4.22 | - | 4.25 | - | +| SIRS forced | 6.03 | 6.83 | 7.05 | 8.90 | 7.39 | 9.45 | +| SIWR original | 11.18 | 12.74 | 11.33 | 13.38 | 12.53 | 14.13 | +| SIWR with extra output | 3.80 | 4.41 | 4.45 | 5.97 | 4.73 | 6.50 | +| SLIQR | 1.78 | 5.43 | 2.49 | 12.64 | 3.18 | 15.25 | +| St | 33.11 | 334.99 | 34.35 | 332.95 | - | - | +| Treatment_io | 3.26 | - | 3.50 | - | 4.51 | - | +| TumorHu2019 | - | - | - | - | - | - | +| TumorPillis2007 | - | - | - | - | - | - | *Benchmarking environment:* -* Total RAM (GiB): 188 -* Processor: Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz -* Julia version: 1.9.2 + - Total RAM (GiB): 188 + - Processor: Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz + - Julia version: 1.9.2 Versions of the dependencies: -* Primes : 0.5.4 -* BenchmarkTools : 1.3.2 -* IterTools : 1.8.0 -* PrecompileTools : 1.1.2 -* Symbolics : 5.5.1 -* Combinatorics : 1.0.2 -* SymbolicUtils : 1.2.0 -* DataStructures : 0.18.15 -* Groebner : 0.4.3 -* ParamPunPam : 0.0.3 -* ModelingToolkit : 8.64.0 -* AbstractAlgebra : 0.27.10 -* MacroTools : 0.5.10 -* Nemo : 0.32.7 -* SpecialFunctions : 2.3.0 + - Primes : 0.5.4 + - BenchmarkTools : 1.3.2 + - IterTools : 1.8.0 + - PrecompileTools : 1.1.2 + - Symbolics : 5.5.1 + - Combinatorics : 1.0.2 + - SymbolicUtils : 1.2.0 + - DataStructures : 0.18.15 + - Groebner : 0.4.3 + - ParamPunPam : 0.0.3 + - ModelingToolkit : 8.64.0 + - AbstractAlgebra : 0.27.10 + - MacroTools : 0.5.10 + - Nemo : 0.32.7 + - SpecialFunctions : 2.3.0 diff --git a/benchmarking/IdentifiableFunctions/benchmark_result_13-09-23-I.md b/benchmarking/IdentifiableFunctions/benchmark_result_13-09-23-I.md new file mode 100644 index 000000000..c0d64fa51 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/benchmark_result_13-09-23-I.md @@ -0,0 +1,91 @@ +## Benchmark results + +2023-09-12T21:39:54.563 + + - Benchmarked function: `find_identifiable_functions` + - Workers: 8 + - Timeout: 600 s + +**All timings in seconds.** + +| Model | vdH-L / Runtime | vdH-L / # Points, degree | vdH-L / # Points, interpolation | C-L / Runtime | C-L / # Points, degree | C-L / # Points, interpolation | +|:----------------------------- |:--------------- |:------------------------ |:------------------------------- |:------------- |:---------------------- |:----------------------------- | +| Akt pathway | 1.03 | 32 | 120 | 2.10 | 32 | 120 | +| Bilirubin2_io | 3.93 | 56 | 1656 | 8.12 | 56 | 1656 | +| Biohydrogenation_io | 0.64 | 72 | 624 | 0.97 | 72 | 624 | +| Bruno2016 | 0.25 | 18 | 28 | 0.26 | 18 | 28 | +| CD8 T cell differentiation | 0.37 | 20 | 20 | 0.40 | 20 | 20 | +| CGV1990 | 2.32 | 56 | 148 | 2.44 | 56 | 148 | +| Chemical reaction network | 0.38 | 18 | 26 | 0.37 | 18 | 26 | +| Crauste_SI | 0.38 | 20 | 20 | 0.40 | 20 | 20 | +| Fujita | 0.99 | 32 | 120 | 1.84 | 32 | 120 | +| Goodwin oscillator | 0.24 | 20 | 44 | 0.37 | 20 | 44 | +| HIV | 0.46 | 38 | 40 | 0.52 | 38 | 40 | +| HIV2_io | 1.97 | 50 | 592 | 2.22 | 50 | 592 | +| HighDimNonLin | 16.88 | 16 | 22 | 21.07 | 16 | 22 | +| JAK-STAT 1 | - | - | - | - | - | - | +| KD1999 | 0.55 | 20 | 22 | 0.65 | 20 | 22 | +| LLW1987_io | 0.20 | 20 | 40 | 0.19 | 20 | 40 | +| LeukaemiaLeon2021 | - | - | - | - | - | - | +| MAPK model (5 outputs bis) | - | - | - | - | - | - | +| MAPK model (5 outputs) | 30.88 | 18 | 12 | 30.89 | 18 | 12 | +| MAPK model (6 outputs) | 5.53 | 18 | 12 | 5.52 | 18 | 12 | +| Modified LV for testing | 0.07 | 20 | 32 | 0.09 | 20 | 32 | +| PK1 | 0.28 | 20 | 96 | 0.40 | 20 | 96 | +| PK2 | 201.37 | 20 | 12 | 204.41 | 20 | 12 | +| Pharm | 188.66 | 20 | 12 | 201.56 | 20 | 12 | +| Phosphorylation | 0.44 | 18 | 26 | 0.48 | 18 | 26 | +| Pivastatin | 8.17 | 20 | 20 | 8.56 | 20 | 20 | +| QWWC | - | - | - | - | - | - | +| **QY** | 30.66 | 156 | 7672 | 23.47 | 156 | **3836** | +| Ruminal lipolysis | 0.13 | 18 | 12 | 0.20 | 18 | 12 | +| **SEAIJRC Covid model** | 51.42 | 20 | 44 | 87.08 | 20 | **22** | +| SEIR 34 | 0.26 | 56 | 120 | 0.47 | 56 | 120 | +| SEIR 36 ref | 0.70 | 20 | 16 | 1.05 | 20 | 16 | +| SEIR2T | 0.14 | 18 | 12 | 0.21 | 18 | 12 | +| SEIRT | 0.29 | 32 | 120 | 0.30 | 32 | 120 | +| SEIR_1_io | 0.40 | 38 | 168 | 0.42 | 38 | 168 | +| SEUIR | 0.32 | 20 | 34 | 0.35 | 20 | 34 | +| SIR 19 | 0.26 | 18 | 18 | 0.27 | 18 | 18 | +| SIR 21 | 0.24 | 18 | 18 | 0.26 | 18 | 18 | +| SIR 24 | 0.29 | 20 | 40 | 0.33 | 20 | 40 | +| SIR 6 | 0.14 | 36 | 34 | 0.14 | 36 | 34 | +| SIRS forced | 10.88 | 20 | 20 | 10.59 | 20 | 20 | +| SIWR original | 14.05 | 18 | 12 | 14.82 | 18 | 12 | +| SIWR with extra output | 0.65 | 18 | 12 | 0.63 | 18 | 12 | +| **SLIQR** | 1.39 | 76 | 1072 | 1.10 | 76 | **536** | +| St | 27.77 | 56 | 1472 | 28.98 | 56 | 1472 | +| Transfection_4State | 0.12 | 18 | 18 | 0.20 | 18 | 18 | +| Treatment_io | 0.48 | 72 | 264 | 0.55 | 72 | 264 | +| TumorHu2019 | - | - | - | - | - | - | +| TumorPillis2007 | - | - | - | - | - | - | +| cLV1 (1o) | - | - | - | - | - | - | +| cLV1 (2o) | 0.35 | 18 | 20 | 0.46 | 18 | 20 | +| cholera | 0.64 | 18 | 12 | 0.62 | 18 | 12 | +| generalizedLoktaVolterra (1o) | 0.14 | 18 | 26 | 0.15 | 18 | 26 | +| generalizedLoktaVolterra (2o) | 0.16 | 16 | 12 | 0.16 | 16 | 12 | +| p53 | 0.96 | 56 | 64 | 1.01 | 56 | 44 | + +*Benchmarking environment:* + + - Total RAM (GiB): 15 + - Processor: Intel Xeon Processor (Icelake) + - Julia version: 1.9.3 + +Versions of the dependencies: + + - Primes : 0.5.4 + - BenchmarkTools : 1.3.2 + - IterTools : 1.8.0 + - PrecompileTools : 1.2.0 + - Symbolics : 5.5.3 + - Combinatorics : 1.0.2 + - SymbolicUtils : 1.3.0 + - DataStructures : 0.18.15 + - Groebner : 0.4.3 + - ParamPunPam : 0.0.3 + - ModelingToolkit : 8.68.0 + - AbstractAlgebra : 0.31.1 + - MacroTools : 0.5.11 + - Nemo : 0.35.3 + - SpecialFunctions : 2.3.1 diff --git a/benchmarking/IdentifiableFunctions/benchmark_result_13-09-23-II.md b/benchmarking/IdentifiableFunctions/benchmark_result_13-09-23-II.md new file mode 100644 index 000000000..320cb5a8f --- /dev/null +++ b/benchmarking/IdentifiableFunctions/benchmark_result_13-09-23-II.md @@ -0,0 +1,88 @@ +## Benchmark results + +2023-09-13T19:02:49.963 + + - Benchmarked function: `find_identifiable_functions` + - Workers: 8 + - Timeout: 600 s + +**All timings in seconds.** + +For all models, `with_states = true`. + +| Model | (:hybrid, 1) / Runtime | (:hybrid, 1) / Polynomial? | (:hybrid, 3) / Runtime | (:hybrid, 3) / Polynomial? | +|:----------------------------- |:---------------------- |:-------------------------- |:---------------------- |:-------------------------- | +| Akt pathway | 5.58 | yes | 20.68 | yes | +| Bilirubin2_io | 9.00 | yes | 34.90 | yes | +| Biohydrogenation_io | 0.99 | yes | 3.29 | yes | +| Bruno2016 | 0.61 | yes | 2.02 | yes | +| CD8 T cell differentiation | 1.18 | yes | 4.63 | yes | +| CGV1990 | 5.05 | no | 10.20 | no | +| Chemical reaction network | 0.90 | yes | 1.82 | yes | +| Crauste_SI | 1.92 | yes | 4.55 | yes | +| Fujita | 9.32 | yes | 21.76 | yes | +| Goodwin oscillator | 1.67 | no | 3.83 | no | +| HIV | 1.78 | yes | 4.13 | yes | +| HIV2_io | 14.63 | no | 42.44 | no | +| HighDimNonLin | 28.85 | yes | 46.58 | yes | +| KD1999 | 2.21 | no | 4.74 | no | +| LLW1987_io | 0.88 | no | 2.29 | no | +| MAPK model (5 outputs) | 58.75 | yes | 66.04 | yes | +| MAPK model (6 outputs) | 13.01 | yes | 21.02 | yes | +| Modified LV for testing | 0.33 | yes | 0.66 | yes | +| PK1 | 2.62 | yes | 7.38 | yes | +| PK2 | 168.70 | yes | 168.62 | yes | +| Pharm | 163.55 | yes | 165.66 | yes | +| Phosphorylation | 0.98 | yes | 1.97 | yes | +| Pivastatin | 8.36 | yes | 9.70 | yes | +| QY | 73.06 | no | 131.69 | no | +| Ruminal lipolysis | 0.47 | yes | 1.18 | yes | +| SEAIJRC Covid model | 90.46 | no | 95.61 | no | +| SEIR 34 | 1.57 | yes | 4.15 | yes | +| SEIR 36 ref | 2.69 | yes | 4.83 | yes | +| SEIR2T | 0.48 | yes | 1.01 | yes | +| SEIRT | 1.03 | yes | 1.61 | yes | +| SEIR_1_io | 1.41 | no | 2.98 | no | +| SEUIR | 1.13 | no | 2.50 | no | +| SIR 19 | 0.70 | yes | 1.73 | yes | +| SIR 21 | 0.69 | yes | 2.02 | yes | +| SIR 24 | 0.73 | yes | 1.60 | yes | +| SIR 6 | 0.49 | yes | 1.29 | yes | +| SIRS forced | 10.98 | yes | 12.80 | yes | +| SIWR original | 14.71 | yes | 18.55 | yes | +| SIWR with extra output | 1.15 | yes | 2.26 | yes | +| SLIQR | 2.89 | no | 8.08 | no | +| St | 128.09 | no | 600.0* | no | +| Transfection_4State | 0.66 | yes | 1.46 | yes | +| Treatment_io | 2.17 | yes | 4.76 | yes | +| cLV1 (2o) | 2.09 | yes | 4.11 | yes | +| cholera | 1.14 | yes | 1.91 | yes | +| generalizedLoktaVolterra (1o) | 0.48 | yes | 0.94 | yes | +| generalizedLoktaVolterra (2o) | 0.44 | yes | 0.93 | yes | +| p53 | 3.88 | yes | 9.25 | yes | + +\* approx. + +*Benchmarking environment:* + + - Total RAM (GiB): 15 + - Processor: Intel Xeon Processor (Icelake) + - Julia version: 1.9.3 + +Versions of the dependencies: + + - Primes : 0.5.4 + - BenchmarkTools : 1.3.2 + - IterTools : 1.8.0 + - PrecompileTools : 1.2.0 + - Symbolics : 5.5.3 + - Combinatorics : 1.0.2 + - SymbolicUtils : 1.3.0 + - DataStructures : 0.18.15 + - Groebner : 0.4.3 + - ParamPunPam : 0.0.3 + - ModelingToolkit : 8.68.0 + - AbstractAlgebra : 0.31.1 + - MacroTools : 0.5.11 + - Nemo : 0.35.3 + - SpecialFunctions : 2.3.1 diff --git a/benchmarking/IdentifiableFunctions/benchmark_result_20-07-23.md b/benchmarking/IdentifiableFunctions/benchmark_result_20-07-23.md index 5fdf85138..d60e50c13 100644 --- a/benchmarking/IdentifiableFunctions/benchmark_result_20-07-23.md +++ b/benchmarking/IdentifiableFunctions/benchmark_result_20-07-23.md @@ -2,66 +2,65 @@ 2023-07-20T10:11:20.649 - -|Model|io|io/primality-evaluate|io/uncertain-factor|global id.|inclusion|inclusion Zp|ParamPunPam.jl|total| -|-----|---|---|---|---|---|---|---|---| -|Akt pathway|2.72|0.01|0.02|0.00|1.40|0.01|2.57|9.48| -|Bilirubin2_io|0.01|0.00|0.00|0.00|0.02|0.01|0.61|1.41| -|Biohydrogenation_io|2.70|0.00|0.01|0.00|1.38|0.03|2.34|8.72| -|CD8 T cell differentiation|2.55|0.00|0.00|0.00|0.00|0.00|0.69|3.83| -|Chemical reaction network|2.46|0.00|0.01|0.00|1.38|0.00|2.28|8.37| -|Fujita|2.60|0.01|0.02|0.00|1.41|0.01|2.60|9.38| -|Goodwin oscillator|0.01|0.00|0.01|0.00|0.01|0.04|0.37|1.03| -|HIV|2.80|0.00|0.01|0.00|0.04|0.01|0.85|4.41| -|HIV2_io|2.43|0.00|0.00|0.00|0.04|0.00|0.78|3.87| -|JAK-STAT 1|10.04|0.30|2.16|0.00|1.58|0.25|3.09|18.52| -|LLW1987_io|0.00|0.00|0.00|0.00|1.36|0.00|2.39|6.06| -|MAPK model (5 outputs bis)| - | - | - | - | - | - | - | - | -|MAPK model (5 outputs)|31.01|2.45|21.17|0.00|2.82|3.10|3.87|45.08| -|MAPK model (6 outputs)|6.01|0.94|1.78|0.00|1.88|0.90|3.00|15.37| -|Modified LV for testing|0.00|0.00|0.00|0.00|1.38|0.00|2.32|6.06| -|NFkB| - | - | - | - | - | - | - | - | -|PK1|2.39|0.00|0.00|0.00|0.01|0.00|0.66|3.68| -|PK2|13.94|0.00|8.62|0.00|16.48|14.71|7.84|62.02| -|Pharm|15.57|0.00|8.40|0.00|16.34|14.80|7.82|63.40| -|QWWC|158.52|0.00|81.88|0.00|125.07|19.87|34.13|391.55| -|QY|0.10|0.00|0.04|0.00|0.23|0.10|1.67|2.96| -|SEAIJRC Covid model|24.28|8.13|9.67|0.00|15.47|2.93|11.11|60.87| -|SEIR 34|2.43|0.00|0.00|0.00|1.33|0.00|2.30|8.33| -|SEIR 36 ref|2.69|0.02|0.02|0.00|0.01|0.01|0.69|4.05| -|SEIR_1_io|0.01|0.00|0.00|0.00|1.40|0.00|2.34|6.22| -|SIR 19|2.44|0.00|0.00|0.00|1.36|0.00|2.29|8.25| -|SIR 21|2.58|0.00|0.00|0.00|1.38|0.00|2.39|8.63| -|SIR 24|0.14|0.00|0.01|0.00|1.37|0.00|2.26|6.09| -|SIR 6|2.40|0.00|0.00|0.00|1.37|0.00|2.21|8.21| -|SIRS forced|3.86|0.28|0.31|0.00|1.91|0.37|2.95|12.07| -|SIWR original|2.59|0.00|1.55|0.00|3.28|3.16|1.94|12.93| -|SIWR with extra output|3.01|0.02|0.07|0.00|0.04|0.06|0.38|4.08| -|SLIQR|0.01|0.00|0.00|0.00|1.36|0.01|2.69|6.46| -|St|4.36|0.24|0.71|0.00|3.29|0.63|15.07|25.87| -|Treatment_io|2.53|0.00|0.00|0.00|1.38|0.00|2.36|8.60| -|TumorHu2019| - | - | - | - | - | - | - | - | -|TumorPillis2007| - | - | - | - | - | - | - | - | +| Model | io | io/primality-evaluate | io/uncertain-factor | global id. | inclusion | inclusion Zp | ParamPunPam.jl | total | +|:-------------------------- |:------ |:--------------------- |:------------------- |:---------- |:--------- |:------------ |:-------------- |:------ | +| Akt pathway | 2.72 | 0.01 | 0.02 | 0.00 | 1.40 | 0.01 | 2.57 | 9.48 | +| Bilirubin2_io | 0.01 | 0.00 | 0.00 | 0.00 | 0.02 | 0.01 | 0.61 | 1.41 | +| Biohydrogenation_io | 2.70 | 0.00 | 0.01 | 0.00 | 1.38 | 0.03 | 2.34 | 8.72 | +| CD8 T cell differentiation | 2.55 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.69 | 3.83 | +| Chemical reaction network | 2.46 | 0.00 | 0.01 | 0.00 | 1.38 | 0.00 | 2.28 | 8.37 | +| Fujita | 2.60 | 0.01 | 0.02 | 0.00 | 1.41 | 0.01 | 2.60 | 9.38 | +| Goodwin oscillator | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 | 0.04 | 0.37 | 1.03 | +| HIV | 2.80 | 0.00 | 0.01 | 0.00 | 0.04 | 0.01 | 0.85 | 4.41 | +| HIV2_io | 2.43 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.78 | 3.87 | +| JAK-STAT 1 | 10.04 | 0.30 | 2.16 | 0.00 | 1.58 | 0.25 | 3.09 | 18.52 | +| LLW1987_io | 0.00 | 0.00 | 0.00 | 0.00 | 1.36 | 0.00 | 2.39 | 6.06 | +| MAPK model (5 outputs bis) | - | - | - | - | - | - | - | - | +| MAPK model (5 outputs) | 31.01 | 2.45 | 21.17 | 0.00 | 2.82 | 3.10 | 3.87 | 45.08 | +| MAPK model (6 outputs) | 6.01 | 0.94 | 1.78 | 0.00 | 1.88 | 0.90 | 3.00 | 15.37 | +| Modified LV for testing | 0.00 | 0.00 | 0.00 | 0.00 | 1.38 | 0.00 | 2.32 | 6.06 | +| NFkB | - | - | - | - | - | - | - | - | +| PK1 | 2.39 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.66 | 3.68 | +| PK2 | 13.94 | 0.00 | 8.62 | 0.00 | 16.48 | 14.71 | 7.84 | 62.02 | +| Pharm | 15.57 | 0.00 | 8.40 | 0.00 | 16.34 | 14.80 | 7.82 | 63.40 | +| QWWC | 158.52 | 0.00 | 81.88 | 0.00 | 125.07 | 19.87 | 34.13 | 391.55 | +| QY | 0.10 | 0.00 | 0.04 | 0.00 | 0.23 | 0.10 | 1.67 | 2.96 | +| SEAIJRC Covid model | 24.28 | 8.13 | 9.67 | 0.00 | 15.47 | 2.93 | 11.11 | 60.87 | +| SEIR 34 | 2.43 | 0.00 | 0.00 | 0.00 | 1.33 | 0.00 | 2.30 | 8.33 | +| SEIR 36 ref | 2.69 | 0.02 | 0.02 | 0.00 | 0.01 | 0.01 | 0.69 | 4.05 | +| SEIR_1_io | 0.01 | 0.00 | 0.00 | 0.00 | 1.40 | 0.00 | 2.34 | 6.22 | +| SIR 19 | 2.44 | 0.00 | 0.00 | 0.00 | 1.36 | 0.00 | 2.29 | 8.25 | +| SIR 21 | 2.58 | 0.00 | 0.00 | 0.00 | 1.38 | 0.00 | 2.39 | 8.63 | +| SIR 24 | 0.14 | 0.00 | 0.01 | 0.00 | 1.37 | 0.00 | 2.26 | 6.09 | +| SIR 6 | 2.40 | 0.00 | 0.00 | 0.00 | 1.37 | 0.00 | 2.21 | 8.21 | +| SIRS forced | 3.86 | 0.28 | 0.31 | 0.00 | 1.91 | 0.37 | 2.95 | 12.07 | +| SIWR original | 2.59 | 0.00 | 1.55 | 0.00 | 3.28 | 3.16 | 1.94 | 12.93 | +| SIWR with extra output | 3.01 | 0.02 | 0.07 | 0.00 | 0.04 | 0.06 | 0.38 | 4.08 | +| SLIQR | 0.01 | 0.00 | 0.00 | 0.00 | 1.36 | 0.01 | 2.69 | 6.46 | +| St | 4.36 | 0.24 | 0.71 | 0.00 | 3.29 | 0.63 | 15.07 | 25.87 | +| Treatment_io | 2.53 | 0.00 | 0.00 | 0.00 | 1.38 | 0.00 | 2.36 | 8.60 | +| TumorHu2019 | - | - | - | - | - | - | - | - | +| TumorPillis2007 | - | - | - | - | - | - | - | - | *Benchmarking environment:* -* Total RAM (GiB): 2015 -* Processor: AMD EPYC 7702 64-Core Processor -* Julia version: 1.9.1 + - Total RAM (GiB): 2015 + - Processor: AMD EPYC 7702 64-Core Processor + - Julia version: 1.9.1 Versions of the dependencies: -* Primes : 0.5.3 -* BenchmarkTools : 1.3.2 -* IterTools : 1.8.0 -* PrecompileTools : 1.1.2 -* Symbolics : 5.5.0 -* SymbolicUtils : 1.0.5 -* DataStructures : 0.18.14 -* Groebner : 0.3.6 -* ParamPunPam : 0.0.1 -* ModelingToolkit : 8.60.0 -* AbstractAlgebra : 0.27.10 -* MacroTools : 0.5.10 -* Nemo : 0.32.7 -* SpecialFunctions : 2.3.0 + - Primes : 0.5.3 + - BenchmarkTools : 1.3.2 + - IterTools : 1.8.0 + - PrecompileTools : 1.1.2 + - Symbolics : 5.5.0 + - SymbolicUtils : 1.0.5 + - DataStructures : 0.18.14 + - Groebner : 0.3.6 + - ParamPunPam : 0.0.1 + - ModelingToolkit : 8.60.0 + - AbstractAlgebra : 0.27.10 + - MacroTools : 0.5.10 + - Nemo : 0.32.7 + - SpecialFunctions : 2.3.0 diff --git a/benchmarking/IdentifiableFunctions/benchmark_result_22-07-23.md b/benchmarking/IdentifiableFunctions/benchmark_result_22-07-23.md index 655420995..9be5a1873 100644 --- a/benchmarking/IdentifiableFunctions/benchmark_result_22-07-23.md +++ b/benchmarking/IdentifiableFunctions/benchmark_result_22-07-23.md @@ -2,69 +2,70 @@ 2023-07-22T07:22:02.002 -In this experiment: -- Saturation variable had been moved to the last index (the smallest). -- Globally identifiable parameters are not adjoined to the initial generators +In this experiment: -|Model|io|global id.|inclusion|inclusion Zp|ParamPunPam.jl|total| -|-----|---|---|---|---|---|---| -|Akt pathway|2.67|0.00|1.40|0.89|3.82|9.38| -|Bilirubin2_io|0.01|0.00|0.02|0.01|0.68|1.40| -|Biohydrogenation_io|2.62|0.00|1.43|0.95|3.27|8.85| -|CD8 T cell differentiation|2.83|0.00|0.00|0.00|0.84|4.25| -|Chemical reaction network|2.59|0.00|1.39|0.93|3.21|8.71| -|Fujita|2.65|0.00|1.40|0.89|3.83|9.38| -|Goodwin oscillator|0.01|0.00|0.03|0.00|0.31|0.95| -|HIV|2.77|0.00|0.01|0.04|0.77|4.26| -|HIV2_io|2.39|0.00|0.00|0.00|0.81|3.83| -|JAK-STAT 1|10.29|0.00|1.65|1.17|4.34|18.13| -|LLW1987_io|0.00|0.00|1.38|0.91|3.26|6.12| -|MAPK model (5 outputs bis)| - | - | - | - | - | - | -|MAPK model (5 outputs)|30.54|0.00|2.78|2.02|9.12|45.30| -|MAPK model (6 outputs)|5.39|0.00|1.76|1.17|4.50|13.52| -|Modified LV for testing|0.00|0.00|1.36|0.88|3.09|5.86| -|NFkB| - | - | - | - | - | - | -|PK1|2.39|0.00|0.01|0.00|0.74|3.74| -|PK2|14.79|0.00|18.27|4.53|10.63|51.04| -|Pharm|15.09|0.00|18.15|4.61|10.57|51.24| -|QWWC|162.29|0.00|119.75|26.37|39.70|368.93| -|QY|0.11|0.00|4.08|0.10|2.22|7.11| -|SEAIJRC Covid model|22.86|0.00|15.00|2.99|11.24|54.77| -|SEIR 34|2.62|0.00|1.38|0.92|3.17|8.70| -|SEIR 36 ref|2.57|0.00|0.01|0.01|0.70|3.88| -|SEIR_1_io|0.01|0.00|1.34|0.89|3.15|5.95| -|SIR 19|2.55|0.00|1.37|0.92|3.15|8.60| -|SIR 21|2.55|0.00|1.37|0.90|3.10|8.46| -|SIR 24|0.15|0.00|1.37|0.90|3.20|6.21| -|SIR 6|2.39|0.00|1.37|0.87|3.04|8.21| -|SIRS forced|3.57|0.00|1.79|1.10|3.48|10.71| -|SIWR original|2.50|0.00|3.18|0.71|1.85|9.20| -|SIWR with extra output|3.25|0.00|0.09|0.02|0.40|4.38| -|SLIQR|0.01|0.00|1.41|0.92|3.61|6.56| -|St|4.21|0.00|3.47|0.70|15.73|26.19| -|Treatment_io|2.39|0.00|1.38|0.90|3.11|8.33| -|TumorHu2019| - | - | - | - | - | - | -|TumorPillis2007| - | - | - | - | - | - | + - Saturation variable had been moved to the last index (the smallest). + - Globally identifiable parameters are not adjoined to the initial generators + +| Model | io | global id. | inclusion | inclusion Zp | ParamPunPam.jl | total | +|:-------------------------- |:------ |:---------- |:--------- |:------------ |:-------------- |:------ | +| Akt pathway | 2.67 | 0.00 | 1.40 | 0.89 | 3.82 | 9.38 | +| Bilirubin2_io | 0.01 | 0.00 | 0.02 | 0.01 | 0.68 | 1.40 | +| Biohydrogenation_io | 2.62 | 0.00 | 1.43 | 0.95 | 3.27 | 8.85 | +| CD8 T cell differentiation | 2.83 | 0.00 | 0.00 | 0.00 | 0.84 | 4.25 | +| Chemical reaction network | 2.59 | 0.00 | 1.39 | 0.93 | 3.21 | 8.71 | +| Fujita | 2.65 | 0.00 | 1.40 | 0.89 | 3.83 | 9.38 | +| Goodwin oscillator | 0.01 | 0.00 | 0.03 | 0.00 | 0.31 | 0.95 | +| HIV | 2.77 | 0.00 | 0.01 | 0.04 | 0.77 | 4.26 | +| HIV2_io | 2.39 | 0.00 | 0.00 | 0.00 | 0.81 | 3.83 | +| JAK-STAT 1 | 10.29 | 0.00 | 1.65 | 1.17 | 4.34 | 18.13 | +| LLW1987_io | 0.00 | 0.00 | 1.38 | 0.91 | 3.26 | 6.12 | +| MAPK model (5 outputs bis) | - | - | - | - | - | - | +| MAPK model (5 outputs) | 30.54 | 0.00 | 2.78 | 2.02 | 9.12 | 45.30 | +| MAPK model (6 outputs) | 5.39 | 0.00 | 1.76 | 1.17 | 4.50 | 13.52 | +| Modified LV for testing | 0.00 | 0.00 | 1.36 | 0.88 | 3.09 | 5.86 | +| NFkB | - | - | - | - | - | - | +| PK1 | 2.39 | 0.00 | 0.01 | 0.00 | 0.74 | 3.74 | +| PK2 | 14.79 | 0.00 | 18.27 | 4.53 | 10.63 | 51.04 | +| Pharm | 15.09 | 0.00 | 18.15 | 4.61 | 10.57 | 51.24 | +| QWWC | 162.29 | 0.00 | 119.75 | 26.37 | 39.70 | 368.93 | +| QY | 0.11 | 0.00 | 4.08 | 0.10 | 2.22 | 7.11 | +| SEAIJRC Covid model | 22.86 | 0.00 | 15.00 | 2.99 | 11.24 | 54.77 | +| SEIR 34 | 2.62 | 0.00 | 1.38 | 0.92 | 3.17 | 8.70 | +| SEIR 36 ref | 2.57 | 0.00 | 0.01 | 0.01 | 0.70 | 3.88 | +| SEIR_1_io | 0.01 | 0.00 | 1.34 | 0.89 | 3.15 | 5.95 | +| SIR 19 | 2.55 | 0.00 | 1.37 | 0.92 | 3.15 | 8.60 | +| SIR 21 | 2.55 | 0.00 | 1.37 | 0.90 | 3.10 | 8.46 | +| SIR 24 | 0.15 | 0.00 | 1.37 | 0.90 | 3.20 | 6.21 | +| SIR 6 | 2.39 | 0.00 | 1.37 | 0.87 | 3.04 | 8.21 | +| SIRS forced | 3.57 | 0.00 | 1.79 | 1.10 | 3.48 | 10.71 | +| SIWR original | 2.50 | 0.00 | 3.18 | 0.71 | 1.85 | 9.20 | +| SIWR with extra output | 3.25 | 0.00 | 0.09 | 0.02 | 0.40 | 4.38 | +| SLIQR | 0.01 | 0.00 | 1.41 | 0.92 | 3.61 | 6.56 | +| St | 4.21 | 0.00 | 3.47 | 0.70 | 15.73 | 26.19 | +| Treatment_io | 2.39 | 0.00 | 1.38 | 0.90 | 3.11 | 8.33 | +| TumorHu2019 | - | - | - | - | - | - | +| TumorPillis2007 | - | - | - | - | - | - | *Benchmarking environment:* -* Total RAM (GiB): 2015 -* Processor: AMD EPYC 7702 64-Core Processor -* Julia version: 1.9.1 + - Total RAM (GiB): 2015 + - Processor: AMD EPYC 7702 64-Core Processor + - Julia version: 1.9.1 Versions of the dependencies: -* Primes : 0.5.3 -* BenchmarkTools : 1.3.2 -* IterTools : 1.8.0 -* PrecompileTools : 1.1.2 -* Symbolics : 5.5.0 -* SymbolicUtils : 1.0.5 -* DataStructures : 0.18.14 -* Groebner : 0.3.6 -* ParamPunPam : 0.0.1 -* ModelingToolkit : 8.60.0 -* AbstractAlgebra : 0.27.10 -* MacroTools : 0.5.10 -* Nemo : 0.32.7 -* SpecialFunctions : 2.3.0 + - Primes : 0.5.3 + - BenchmarkTools : 1.3.2 + - IterTools : 1.8.0 + - PrecompileTools : 1.1.2 + - Symbolics : 5.5.0 + - SymbolicUtils : 1.0.5 + - DataStructures : 0.18.14 + - Groebner : 0.3.6 + - ParamPunPam : 0.0.1 + - ModelingToolkit : 8.60.0 + - AbstractAlgebra : 0.27.10 + - MacroTools : 0.5.10 + - Nemo : 0.32.7 + - SpecialFunctions : 2.3.0 diff --git a/benchmarking/IdentifiableFunctions/benchmark_result_31-08-23.md b/benchmarking/IdentifiableFunctions/benchmark_result_31-08-23.md index bed4573c6..0175f623b 100644 --- a/benchmarking/IdentifiableFunctions/benchmark_result_31-08-23.md +++ b/benchmarking/IdentifiableFunctions/benchmark_result_31-08-23.md @@ -1,71 +1,70 @@ ## Benchmark results - 2023-08-31T17:41:01.103 Timeout: 2500 s **Timings in seconds**. -|Model|(:gb,)|(:gb,)_with_states|(:normalforms, 2)|(:normalforms, 2)_with_states|(:normalforms, 3)|(:normalforms, 3)_with_states|(:hybrid,)|(:hybrid,)_with_states| -|-----|---|---|---|---|---|---|---|---| -|Akt pathway|16.97|12.05|13.10|12.19|14.83|17.46|21.05|29.73| -|Bilirubin2_io|3.54|11.30|3.76|10.73|3.77|9.68|141.83|25.71| -|Biohydrogenation_io|14.59|6.61|15.12|6.72|13.91|7.33|13.02|9.93| -|CD8 T cell differentiation|5.95|13.33|6.96|13.82|9.33|19.57|8.86|19.41| -|Chemical reaction network|13.60|4.96|13.71|5.29|14.53|6.90|15.20|7.98| -|Fujita|15.97|14.90|15.68|15.44|17.48|25.61|25.15|26.48| -|Goodwin oscillator|1.76|1.95|2.10|1.96|2.03|2.34|3.90|6.94| -|HIV|5.46|12.62|6.12|11.64|7.02|13.80|9.10|21.52| -|HIV2_io|4.66|7.80|6.19|7.82|6.86|8.36|12.27|18.68| -|JAK-STAT 1|33.98|33.29|37.75|40.11|57.40|77.00|65.69|111.43| -|LLW1987_io|10.12|1.70|9.76|2.70|8.47|2.11|10.66|4.92| -|MAPK model (5 outputs bis)| - | - | - | - | - | - | - | - | -|MAPK model (5 outputs)|67.92|71.00|69.87|79.01|90.55|136.27|103.65|226.69| -|MAPK model (6 outputs)|23.04|23.78|24.59|33.32|44.98|106.42|50.99|152.27| -|Modified LV for testing|9.40|9.70|9.52|9.49|9.62|11.62|11.15|9.29| -|PK1|5.31|4.68|5.13|5.49|5.23|6.99|7.12|8.74| -|PK2|189.90|180.75|187.47|184.29|186.32|205.29|175.90|162.14| -|Pharm|177.64|201.92|191.09|214.09|211.23|220.08|177.07|170.27| -|QWWC| - | - | - | - | - | - | - | - | -|QY|13.08|116.44|13.60|123.50|10.30|147.58|1353.50| - | -|SEAIJRC Covid model|187.37|127.66|148.51|201.50|122.81|246.01|128.95|120.77| -|SEIR 34|10.36|6.60|12.44|6.21|10.47|6.67|12.78|9.45| -|SEIR 36 ref|4.43|20.13|6.26|27.50|22.23|33.23|10.43|37.20| -|SEIR_1_io|7.26|3.24|10.11|4.70|14.38|2.52|11.64|6.20| -|SIR 19|11.63|5.44|10.61|6.69|17.00|5.19|14.46|8.52| -|SIR 21|12.20|5.09|14.61|4.28|13.06|5.46|13.56|7.70| -|SIR 24|8.50|2.06|13.77|2.53|10.19|2.14|12.76|4.64| -|SIR 6|11.50|3.44|13.60|4.12|13.44|4.85|13.49|6.93| -|SIRS forced|26.92|14.16|23.31|20.49|35.39|17.48|33.11|19.29| -|SIWR original|27.87|28.67|20.31|27.00|24.83|21.53|24.76|26.80| -|SIWR with extra output|6.00|6.26|6.84|7.13|5.97|6.34|8.69|8.30| -|SLIQR|11.47|4.05|13.26|4.93|11.53|7.78|12.79|8.75| -|St|48.52|63.18|43.27|62.18|48.86|98.67| - | - | -|Treatment_io|10.04|4.46|11.83|4.25|12.85|7.14|17.00|8.33| -|TumorHu2019| - | - | - | - | - | - | - | - | -|TumorPillis2007| - | - | - | - | - | - | - | - | +| Model | (:gb,) | (:gb,)_with_states | (:normalforms, 2) | (:normalforms, 2)_with_states | (:normalforms, 3) | (:normalforms, 3)_with_states | (:hybrid,) | (:hybrid,)_with_states | +|:-------------------------- |:------ |:------------------ |:----------------- |:----------------------------- |:----------------- |:----------------------------- |:---------- |:---------------------- | +| Akt pathway | 16.97 | 12.05 | 13.10 | 12.19 | 14.83 | 17.46 | 21.05 | 29.73 | +| Bilirubin2_io | 3.54 | 11.30 | 3.76 | 10.73 | 3.77 | 9.68 | 141.83 | 25.71 | +| Biohydrogenation_io | 14.59 | 6.61 | 15.12 | 6.72 | 13.91 | 7.33 | 13.02 | 9.93 | +| CD8 T cell differentiation | 5.95 | 13.33 | 6.96 | 13.82 | 9.33 | 19.57 | 8.86 | 19.41 | +| Chemical reaction network | 13.60 | 4.96 | 13.71 | 5.29 | 14.53 | 6.90 | 15.20 | 7.98 | +| Fujita | 15.97 | 14.90 | 15.68 | 15.44 | 17.48 | 25.61 | 25.15 | 26.48 | +| Goodwin oscillator | 1.76 | 1.95 | 2.10 | 1.96 | 2.03 | 2.34 | 3.90 | 6.94 | +| HIV | 5.46 | 12.62 | 6.12 | 11.64 | 7.02 | 13.80 | 9.10 | 21.52 | +| HIV2_io | 4.66 | 7.80 | 6.19 | 7.82 | 6.86 | 8.36 | 12.27 | 18.68 | +| JAK-STAT 1 | 33.98 | 33.29 | 37.75 | 40.11 | 57.40 | 77.00 | 65.69 | 111.43 | +| LLW1987_io | 10.12 | 1.70 | 9.76 | 2.70 | 8.47 | 2.11 | 10.66 | 4.92 | +| MAPK model (5 outputs bis) | - | - | - | - | - | - | - | - | +| MAPK model (5 outputs) | 67.92 | 71.00 | 69.87 | 79.01 | 90.55 | 136.27 | 103.65 | 226.69 | +| MAPK model (6 outputs) | 23.04 | 23.78 | 24.59 | 33.32 | 44.98 | 106.42 | 50.99 | 152.27 | +| Modified LV for testing | 9.40 | 9.70 | 9.52 | 9.49 | 9.62 | 11.62 | 11.15 | 9.29 | +| PK1 | 5.31 | 4.68 | 5.13 | 5.49 | 5.23 | 6.99 | 7.12 | 8.74 | +| PK2 | 189.90 | 180.75 | 187.47 | 184.29 | 186.32 | 205.29 | 175.90 | 162.14 | +| Pharm | 177.64 | 201.92 | 191.09 | 214.09 | 211.23 | 220.08 | 177.07 | 170.27 | +| QWWC | - | - | - | - | - | - | - | - | +| QY | 13.08 | 116.44 | 13.60 | 123.50 | 10.30 | 147.58 | 1353.50 | - | +| SEAIJRC Covid model | 187.37 | 127.66 | 148.51 | 201.50 | 122.81 | 246.01 | 128.95 | 120.77 | +| SEIR 34 | 10.36 | 6.60 | 12.44 | 6.21 | 10.47 | 6.67 | 12.78 | 9.45 | +| SEIR 36 ref | 4.43 | 20.13 | 6.26 | 27.50 | 22.23 | 33.23 | 10.43 | 37.20 | +| SEIR_1_io | 7.26 | 3.24 | 10.11 | 4.70 | 14.38 | 2.52 | 11.64 | 6.20 | +| SIR 19 | 11.63 | 5.44 | 10.61 | 6.69 | 17.00 | 5.19 | 14.46 | 8.52 | +| SIR 21 | 12.20 | 5.09 | 14.61 | 4.28 | 13.06 | 5.46 | 13.56 | 7.70 | +| SIR 24 | 8.50 | 2.06 | 13.77 | 2.53 | 10.19 | 2.14 | 12.76 | 4.64 | +| SIR 6 | 11.50 | 3.44 | 13.60 | 4.12 | 13.44 | 4.85 | 13.49 | 6.93 | +| SIRS forced | 26.92 | 14.16 | 23.31 | 20.49 | 35.39 | 17.48 | 33.11 | 19.29 | +| SIWR original | 27.87 | 28.67 | 20.31 | 27.00 | 24.83 | 21.53 | 24.76 | 26.80 | +| SIWR with extra output | 6.00 | 6.26 | 6.84 | 7.13 | 5.97 | 6.34 | 8.69 | 8.30 | +| SLIQR | 11.47 | 4.05 | 13.26 | 4.93 | 11.53 | 7.78 | 12.79 | 8.75 | +| St | 48.52 | 63.18 | 43.27 | 62.18 | 48.86 | 98.67 | - | - | +| Treatment_io | 10.04 | 4.46 | 11.83 | 4.25 | 12.85 | 7.14 | 17.00 | 8.33 | +| TumorHu2019 | - | - | - | - | - | - | - | - | +| TumorPillis2007 | - | - | - | - | - | - | - | - | *Benchmarking environment:* -* Total RAM (GiB): 188 -* Processor: Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz -* Julia version: 1.9.2 + - Total RAM (GiB): 188 + - Processor: Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz + - Julia version: 1.9.2 Versions of the dependencies: -* Primes : 0.5.4 -* BenchmarkTools : 1.3.2 -* IterTools : 1.8.0 -* PrecompileTools : 1.1.2 -* Symbolics : 5.5.1 -* Combinatorics : 1.0.2 -* SymbolicUtils : 1.2.0 -* DataStructures : 0.18.15 -* Groebner : 0.4.3 -* ParamPunPam : 0.0.3 -* ModelingToolkit : 8.64.0 -* AbstractAlgebra : 0.27.10 -* MacroTools : 0.5.10 -* Nemo : 0.32.7 -* SpecialFunctions : 2.3.0 + - Primes : 0.5.4 + - BenchmarkTools : 1.3.2 + - IterTools : 1.8.0 + - PrecompileTools : 1.1.2 + - Symbolics : 5.5.1 + - Combinatorics : 1.0.2 + - SymbolicUtils : 1.2.0 + - DataStructures : 0.18.15 + - Groebner : 0.4.3 + - ParamPunPam : 0.0.3 + - ModelingToolkit : 8.64.0 + - AbstractAlgebra : 0.27.10 + - MacroTools : 0.5.10 + - Nemo : 0.32.7 + - SpecialFunctions : 2.3.0 diff --git a/benchmarking/IdentifiableFunctions/experiments.jl b/benchmarking/IdentifiableFunctions/experiments.jl index 15be08f40..a741baba5 100644 --- a/benchmarking/IdentifiableFunctions/experiments.jl +++ b/benchmarking/IdentifiableFunctions/experiments.jl @@ -850,18 +850,246 @@ begin y(t) = In(t) * Ninv ) + pivastatin = StructuralIdentifiability.@ODEmodel( + x1'(t) = k3 * x3(t) - r3 * x1(t) - k1 * x1(t) * (T0 - x2(t)) + r1 * x2(t), + x2'(t) = k1 * x1(t) * (T0 - x2(t)) - (r1 + k2) * x2(t), + x3'(t) = r3 * x1(t) - (k3 + k4) * x3(t) + k2 * x2(t), + y1(t) = k * (x2(t) + x3(t)) + ) + + seuir = StructuralIdentifiability.@ODEmodel( + S'(t) = -beta * (U(t) + I(t)) * (S(t) / N), + E'(t) = beta * (U(t) + I(t)) * (S(t) / N) - E(t) * z, + U'(t) = (z - w) * E(t) - U(t) * d, + I'(t) = w * E(t) - I(t) * d, + R'(t) = (U(t) + I(t)) * d, + y1(t) = I(t) + ) + + llw1987 = StructuralIdentifiability.@ODEmodel( + x1'(t) = -p1 * x1(t) + p2 * u(t), + x2'(t) = -p3 * x2(t) + p4 * u(t), + x3'(t) = -(p1 + p3) * x3(t) + (p4 * x1(t) + p2 * x2(t)) * u(t), + y1(t) = x3(t) + ) + + bruno2016 = StructuralIdentifiability.@ODEmodel( + beta'(t) = -kbeta * beta(t), + cry'(t) = -cry(t) * kcrybeta - cry(t) * kcryOH, + zea'(t) = -zea(t) * kzea, + beta10'(t) = cry(t) * kcryOH - beta10(t) * kbeta10 + kbeta * beta(t), + OHbeta10'(t) = cry(t) * kcrybeta + zea(t) * kzea - OHbeta10(t) * kOHbeta10, + betaio'(t) = cry(t) * kcrybeta + beta10(t) * kbeta10 + kbeta * beta(t), + OHbetaio'(t) = cry(t) * kcryOH + zea(t) * kzea + OHbeta10(t) * kOHbeta10, + y1(t) = beta(t), + y2(t) = beta10(t) + ) + + jak_stat = StructuralIdentifiability.@ODEmodel( + x1'(t) = -t1 * x1(t) * 2 * u(t) - t5 * x1(t) + t6 * x2(t), + x2'(t) = t5 * x1(t) - t6 * x2(t), + x3'(t) = t1 * 2 * u(t) * x1(t) - t2 * x3(t) * (-x6(t) + 3), + x4'(t) = t2 * x3(t) * (-x6(t) + 3) - t3 * x4(t), + x5'(t) = t3 * x4(t) - t4 * x5(t), + x6'(t) = + -t7 * x3(t) * x6(t) / (1 + t13 * x1(t)) - + t7 * x4(t) * x6(t) / (1 + t13 * x10(t)) + t8 * (-x6(t) + 3) * 92, + x7'(t) = -t9 * x7(t) * (-x6(t) + 3) + t10 * (-x7(t) + 165) * 92, + x8'(t) = t11 * (-x7(t) + 165), + x9'(t) = -t12 * 2 * u(t) * x9(t), + x10'(t) = x8(t) * t14 / (t15 + x8(t)) - t16 * x10(t), + y1(t) = x1(t) + x3(t) + x4(t), + y2(t) = t18 * (x3(t) + x4(t) + x5(t) + (1 / 3 - x9(t))), + y3(t) = t19 * (x4(t) + x5(t)), + y4(t) = t20 * (-x6(t) + 3), + y5(t) = t21 * x8(t), + y6(t) = t22 * x8(t) * t17 / t11, + y7(t) = x10(t), + y8(t) = -x7(t) + 165 + ) + + st = StructuralIdentifiability.@ODEmodel( + S'(t) = r * S(t) - (e + a * W(t)) * S(t) - d * W(t) * S(t) + g * R(t), + R'(t) = rR * R(t) + (e + a * W(t)) * S(t) - dr * W(t) * R(t) - g * R(t), + W'(t) = Dd * (T - W(t)), + y1(t) = S(t) + R(t), + y2(t) = T + ) + + highDimNonlin = StructuralIdentifiability.@ODEmodel( + x1'(t) = + (-p1 * km * x1(t) - p1 * x1(t)^2 + km * u(t) - x1(t) * vm + x1(t) * u(t)) // + (km + x1(t)), + x2'(t) = -p2 * x2(t) + p1 * x1(t), + x3'(t) = p2 * x2(t) - x3(t) * p3, + x4'(t) = x3(t) * p3 - x4(t) * p4, + x5'(t) = -p5 * x5(t) + x4(t) * p4, + x6'(t) = -p6 * x6(t) + p5 * x5(t), + x7'(t) = -p7 * x7(t) + p6 * x6(t), + x8'(t) = p7 * x7(t) - p8 * x8(t), + x9'(t) = -x9(t) * p9 + p8 * x8(t), + x10'(t) = x9(t) * p9 - x10(t) * p10, + x11'(t) = x10(t) * p10 - x11(t) * p11, + x12'(t) = x11(t) * p11 - p12 * x12(t), + x13'(t) = -x13(t) * p13 + p12 * x12(t), + x14'(t) = x13(t) * p13 - p14 * x14(t), + x15'(t) = -p15 * x15(t) + p14 * x14(t), + x16'(t) = p15 * x15(t) - x16(t) * p16, + x17'(t) = -p17 * x17(t) + x16(t) * p16, + x18'(t) = -p18 * x18(t) + p17 * x17(t), + x19'(t) = -x19(t) * p19 + p18 * x18(t), + x20'(t) = -p20 * x20(t) + x19(t) * p19, + y1(t) = x1(t), + y2(t) = x2(t), + y3(t) = x3(t), + y4(t) = x4(t), + y5(t) = x5(t), + y6(t) = x6(t), + y7(t) = x7(t), + y8(t) = x8(t), + y9(t) = x9(t), + y10(t) = x10(t), + y11(t) = x11(t), + y12(t) = x12(t), + y13(t) = x13(t), + y14(t) = x14(t), + y15(t) = x15(t), + y16(t) = x16(t), + y17(t) = x17(t), + y18(t) = x18(t), + y19(t) = x19(t), + y20(t) = x20(t) + ) + + goodwin = StructuralIdentifiability.@ODEmodel( + x1'(t) = -b * x1(t) + 1 / (c + x4(t)), + x2'(t) = alpha * x1(t) - beta * x2(t), + x3'(t) = gama * x2(t) - delta * x3(t), + x4'(t) = sigma * x4(t) * (gama * x2(t) - delta * x3(t)) / x3(t), + y(t) = x1(t) + ) + + CGV1990 = StructuralIdentifiability.@ODEmodel( + q1'(t) = k4 * q3(t) - (k3 + k7) * q1(t) + u(t), + q3'(t) = + k3 * q1(t) - k4 * q3(t) - k5 * q3(t) * (R * V3 - q35(t)) + k6 * q35(t) - + k5 * q3(t) * (5 * V36 / V3) * (S * V36 - q36(t)) + k6 * q36(t), + q35'(t) = k5 * q3(t) * (R * V3 - q35(t)) - k6 * q35(t), + q36'(t) = k5 * q3(t) * (5 * V36 / V3) * (S * V36 - q36(t)) - k6 * q36(t), + q7'(t) = k7 * q1(t), + y1(t) = q7(t) + ) + + Pivastatin = StructuralIdentifiability.@ODEmodel( + x1'(t) = k3 * x3(t) - r3 * x1(t) - k1 * x1(t) * (T0 - x2(t)) + r1 * x2(t), + x2'(t) = k1 * x1(t) * (T0 - x2(t)) - (r1 + k2) * x2(t), + x3'(t) = r3 * x1(t) - (k3 + k4) * x3(t) + k2 * x2(t), + y1(t) = k * (x2(t) + x3(t)) + ) + using Nemo, Logging using JuliaInterpreter Groebner = StructuralIdentifiability.Groebner - ParamPunPam = StructuralIdentifiability.ParamPunPam + # ParamPunPam = StructuralIdentifiability.ParamPunPam Base.global_logger(ConsoleLogger(Logging.Info)) end +ode = StructuralIdentifiability.@ODEmodel( + x1'(t) = x1 + x2^2 + a^2, + x2'(t) = x2 + a * d^3, + y(t) = x1 +) + +@time new_ode, new_vars, algebraic_relations = + StructuralIdentifiability.reparametrize_global(Bilirubin2_io) + +### +# TODO +ode = StructuralIdentifiability.@ODEmodel( + x1'(t) = x1 + a * x2, + x2'(t) = a * x1 + x2, + y(t) = x1 +) + +@time new_ode, new_vars, algebraic_relations = + StructuralIdentifiability.reparametrize_global(ode) + +### + +StructuralIdentifiability._runtime_logger[:id_total] + +StructuralIdentifiability._runtime_logger[:id_beautifulization] + +@my_profview id_funcs1 = StructuralIdentifiability.find_identifiable_functions( + sliqr, + with_states = true, + strategy = (:hybrid, 3), +) + +StructuralIdentifiability._runtime_logger[:id_npoints_degree] # 56, 156 +StructuralIdentifiability._runtime_logger[:id_npoints_interpolation] # 1656, 1656 + +funcs = StructuralIdentifiability.find_identifiable_functions( + sliqr, + with_states = true, + strategy = (:hybrid, 10), + seed = 42, +) + +@my_profview funcs = StructuralIdentifiability.find_identifiable_functions( + Bilirubin2_io, + with_states = true, + strategy = (:hybrid, 12), +) + +funcs3 = StructuralIdentifiability.find_identifiable_functions( + Bilirubin2_io, + with_states = true, + strategy = (:normalforms, 3), +) + +funcs4 = StructuralIdentifiability.find_identifiable_functions( + Bilirubin2_io, + with_states = true, + strategy = (:normalforms, 5), +) + +F = funcs +F = vcat(funcs[1:6], funcs[8:end]) +for i in 1:length(F) + F_without_i = + StructuralIdentifiability.RationalFunctionField(F[filter(j -> j != i, 1:length(F))]) + res = StructuralIdentifiability.field_contains(F_without_i, [F[i]], 0.99) + @info "" i res +end + #! format: off +new_rff = StructuralIdentifiability.RationalFunctionField(funcs1) +cfs = StructuralIdentifiability.beautifuly_generators(new_rff) +gb_rff = StructuralIdentifiability.RationalFunctionField(cfs) + +K = GF(2^31 - 1) +mqs = gb_rff.mqs +vars = gens(parent(mqs)) +ParamPunPam.reduce_mod_p!(mqs, K) +point = [rand(K) for _ in 1:length(vars) - 1] +ideal_spec = StructuralIdentifiability.specialize_mod_p(mqs, point) + +ord = Groebner.Lex() + +hom_ideal_spec = StructuralIdentifiability.homogenize(ideal_spec) + +Groebner.groebner(hom_ideal_spec, ordering=ord) + +# n = length(vars_shuffled) +# n1, n2 = div(n, 2), n - div(n, 2) +# ord = DegRevLex(vars_shuffled[1:n1]) * DegRevLex(vars_shuffled[(n1 + 1):end]) + funcs1 = StructuralIdentifiability.find_identifiable_functions( - hiv, - with_states = false, + qy, + with_states = true, + strategy=(:hybrid,) ) @my_profview funcs2 = StructuralIdentifiability.find_identifiable_functions( diff --git a/benchmarking/IdentifiableFunctions/homogenization.jl b/benchmarking/IdentifiableFunctions/homogenization.jl new file mode 100644 index 000000000..94fafc0bd --- /dev/null +++ b/benchmarking/IdentifiableFunctions/homogenization.jl @@ -0,0 +1,38 @@ +using StructuralIdentifiability, Groebner, Nemo, ParamPunPam + +Bilirubin2_io = @ODEmodel( + x1'(t) = + -(k21 + k31 + k41 + k01) * x1(t) + k12 * x2(t) + k13 * x3(t) + k14 * x4(t) + u(t), + x2'(t) = k21 * x1(t) - k12 * x2(t), + x3'(t) = k31 * x1(t) - k13 * x3(t), + x4'(t) = k41 * x1(t) - k14 * x4(t), + y1(t) = x1(t) +) + +####### +# Dancing for rain in order to extract some form of the MQS ideal generators + +funcs = find_identifiable_functions(Bilirubin2_io, with_states = true, strategy = (:gb,)) + +rff = StructuralIdentifiability.RationalFunctionField(funcs) +cfs = StructuralIdentifiability.beautifuly_generators(rff) +rff = StructuralIdentifiability.RationalFunctionField(cfs) + +K = GF(2^31 - 1) +mqs = rff.mqs +xs = Nemo.gens(Nemo.parent(mqs)) +ParamPunPam.reduce_mod_p!(mqs, K) +point = [rand(K) for _ in 1:(length(xs) - 1)] +ideal_spec = StructuralIdentifiability.specialize_mod_p(mqs, point) + +####### + +# 5 ms +@time gb = groebner(ideal_spec, ordering = Groebner.DegRevLex()); + +# There is an existent possibility that this would not finish in two and a half lifetimes +# @time gb = groebner(ideal_spec, ordering = Groebner.Lex(), loglevel = -3); + +hom_ideal_spec = StructuralIdentifiability.homogenize(ideal_spec); +# 100 ms +@time Groebner.groebner(hom_ideal_spec, ordering = Groebner.Lex()); diff --git a/benchmarking/IdentifiableFunctions/non-polynomial.jl b/benchmarking/IdentifiableFunctions/non-polynomial.jl new file mode 100644 index 000000000..4447c67b2 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/non-polynomial.jl @@ -0,0 +1,76 @@ +using StructuralIdentifiability + +# 1. +# Non-polynomial +SEUIR = StructuralIdentifiability.@ODEmodel( + S'(t) = -beta * (U(t) + I(t)) * (S(t) / N), + E'(t) = beta * (U(t) + I(t)) * (S(t) / N) - E(t) * z, + U'(t) = (z - w) * E(t) - U(t) * d, + I'(t) = w * E(t) - I(t) * d, + R'(t) = (U(t) + I(t)) * d, + y1(t) = I(t) +) +funcs = StructuralIdentifiability.find_identifiable_functions( + SEUIR, + with_states = true, + strategy = (:hybrid, 3), + seed = 42, +) + +# 2. +# Goodwin oscillator +# ? +Goodwin = StructuralIdentifiability.@ODEmodel( + x1'(t) = -b * x1(t) + 1 / (c + x4(t)), + x2'(t) = alpha * x1(t) - beta * x2(t), + x3'(t) = gama * x2(t) - delta * x3(t), + x4'(t) = sigma * x4(t) * (gama * x2(t) - delta * x3(t)) / x3(t), + y(t) = x1(t) +) +funcs = StructuralIdentifiability.find_identifiable_functions( + Goodwin, + with_states = true, + strategy = (:hybrid, 3), + seed = 42, +) + +# 3. +# KD1999 +# Non-polynomial +KD1999 = StructuralIdentifiability.@ODEmodel( + Ca'(t) = u1(t) * (Ca0 - Ca(t)) / V - k0 * Arr * Ca(t), + Cb'(t) = -u1(t) * Cb(t) / V + k0 * Arr(t) * Ca(t), + T'(t) = + u1(t) * (Ta - T(t)) / V - + (k0 * Arr(t) * Ca(t) * DH + UA * (Tj(t) - T(t)) / V) / (ro * cp), + Tj'(t) = u2(t) * (Th - Tj(t)) / Vh - UA / (roh * cph) * (Tj(t) - T(t)) / Vh, + Arr'(t) = + E * Arr(t) / (R * T(t)^2) * ( + u1(t) * (Ta - T(t)) / V - + (k0 * Arr(t) * Ca(t) * DH + UA * (Tj(t) - T(t)) / V) / (ro * cp) + ), + y1(t) = Cb(t), + y2(t) = T(t) +) +funcs = StructuralIdentifiability.find_identifiable_functions( + KD1999, + with_states = true, + strategy = (:normalforms, 3), + seed = 42, +) + +# 4. +# LLW1987_io +# Non-polynomial +LLW1987_io = StructuralIdentifiability.@ODEmodel( + x1'(t) = -p1 * x1(t) + p2 * u(t), + x2'(t) = -p3 * x2(t) + p4 * u(t), + x3'(t) = -(p1 + p3) * x3(t) + (p4 * x1(t) + p2 * x2(t)) * u(t), + y1(t) = x3(t) +) +funcs = StructuralIdentifiability.find_identifiable_functions( + LLW1987_io, + with_states = true, + strategy = (:normalforms, 3), + seed = 42, +) diff --git a/benchmarking/IdentifiableFunctions/param copy.jl b/benchmarking/IdentifiableFunctions/param copy.jl deleted file mode 100644 index 72a2e13fa..000000000 --- a/benchmarking/IdentifiableFunctions/param copy.jl +++ /dev/null @@ -1,549 +0,0 @@ -# This is a proof of concept implementation of global model reparametrization. - -# using StructuralIdentifiability -using AbstractAlgebra, Nemo, Groebner - -to_fractions(polys::Vector{T}) where {T} = polys .// one(first(polys)) -to_fractions(dennums::Vector{Vector{T}}) where {T} = - StructuralIdentifiability.dennums_to_fractions(dennums) -to_fractions(fracs::Vector{AbstractAlgebra.Generic.Frac{T}}) where {T} = fracs - -""" - check_constructive_field_membership(generators, to_be_reduced) - -Returns the unique expression of `to_be_reduced` in terms of the elements of -`generators`. - -Follows the vein of Algorithm 1.17 from https://doi.org/10.1006/jsco.1998.0246 -""" -function check_constructive_field_membership(generators::AbstractVector, to_be_reduced) - fracs_gen = to_fractions(generators) - frac_to_be_reduced = first(to_fractions([to_be_reduced])) - @assert parent(first(fracs_gen)) == parent(frac_to_be_reduced) - ring = base_ring(parent(frac_to_be_reduced)) - K = base_ring(ring) - tag_strings = map(i -> "T$i", 1:length(fracs_gen)) - sat_string = "t" - @info """ - Tags: - $(join(map(x -> string(x[1]) * " -> " * string(x[2]), zip(fracs_gen, tag_strings)), "\t\n")) - """ - var_strings = vcat(sat_string, map(string, gens(ring)), tag_strings) - ring_tag, xs_tag = PolynomialRing(K, var_strings, ordering = Nemo.ordering(ring)) - orig_vars = xs_tag[2:(nvars(ring) + 1)] - tag_vars = xs_tag[(nvars(ring) + 2):end] - sat_var = xs_tag[1] - @assert all(<(sat_var), tag_vars) - @assert all(orig_var -> all(<(orig_var), tag_vars), orig_vars) - tag_to_gen = Dict(tag_vars[i] => fracs_gen[i] for i in 1:length(fracs_gen)) - @info """ - Original poly ring: $ring - Tagged poly ring: $ring_tag""" - tagged_mqs = Vector{elem_type(ring)}() - num, den = StructuralIdentifiability.unpack_fraction(frac_to_be_reduced) - # Fraction to be reduced is Num // Den, A is a formal parameter. - # - # Construct Num - A * Den to later compute the normal form of it w.r.t. the - # generators. Then, A = Num / Den would be the desired expression. - # - # Note that since A is not present in the generators, the normal form is - # multiplicative by A, and, thus, can be computed separately for Num and Den. - to_be_reduced_tag = ( - StructuralIdentifiability.parent_ring_change(num, ring_tag), - StructuralIdentifiability.parent_ring_change(den, ring_tag), - ) - Q = one(ring_tag) - for i in 1:length(fracs_gen) - num, den = StructuralIdentifiability.unpack_fraction(fracs_gen[i]) - num_tag = StructuralIdentifiability.parent_ring_change(num, ring_tag) - den_tag = StructuralIdentifiability.parent_ring_change(den, ring_tag) - Q = lcm(Q, den_tag) - tagged_poly_mqs = num_tag - tag_vars[i] * den_tag - push!(tagged_mqs, tagged_poly_mqs) - end - push!(tagged_mqs, Q * sat_var - 1) - # ord = DegRevLex([sat_var]) * DegRevLex(orig_vars) * DegRevLex(tag_vars) - ord = Lex() - @info """ - Tagged MQS ideal: - $tagged_mqs - Monom ordering: - $(ord)""" - tagged_mqs_gb = groebner(tagged_mqs, ordering = ord) - tags_syzygies = filter( - poly -> isempty(intersect(vars(poly), vcat(sat_var, orig_vars))), - tagged_mqs_gb, - ) - tagged_mqs_gb = setdiff(tagged_mqs_gb, tags_syzygies) - tagged_mqs_gb = filter(poly -> isempty(intersect(vars(poly), [sat_var])), tagged_mqs_gb) - @info """ - Tagged MQS GB: - $tagged_mqs_gb - Syzygies of tags: - $tags_syzygies - To be reduced: - $to_be_reduced_tag - """ - function switch_ring_to_parametric(poly, new_ring) - param_ring = base_ring(base_ring(new_ring)) - params = gens(param_ring) - orig_vars = gens(ring) - new_poly = zero(new_ring) - for (i, term) in enumerate(terms(poly)) - new_coeff = one(param_ring) * coeff(poly, i) - new_monom = one(new_ring) - for var in vars(term) - exp = degree(term, var) - if string(var) in map(string, params) - new_coeff *= - StructuralIdentifiability.parent_ring_change(var, param_ring)^exp - else - new_monom *= - StructuralIdentifiability.parent_ring_change(var, new_ring)^exp - end - end - new_poly += new_coeff * new_monom - end - new_poly - end - ring_of_tags, = PolynomialRing(K, tag_strings) - parametric_ring, _ = - PolynomialRing(FractionField(ring_of_tags), map(string, orig_vars), ordering = :lex) - tagged_mqs_gb = - map(poly -> switch_ring_to_parametric(poly, parametric_ring), tagged_mqs_gb) - tags_syzygies = - map(poly -> switch_ring_to_parametric(poly, parametric_ring), tagged_mqs_gb) - to_be_reduced_tag = - map(poly -> switch_ring_to_parametric(poly, parametric_ring), to_be_reduced_tag) - _, num_rem = divrem(to_be_reduced_tag[1], tagged_mqs_gb) - _, den_rem = divrem(to_be_reduced_tag[2], tagged_mqs_gb) - @info "" num_rem den_rem - remainder = num_rem // den_rem - _, num_factored = divrem(numerator(remainder), tags_syzygies) - _, den_factored = divrem(denominator(remainder), tags_syzygies) - if iszero(den_factored) || - !isempty( - intersect( - map(string, vars(num_factored)), - map(string, vcat(sat_var, orig_vars)), - ), - ) || - !isempty( - intersect( - map(string, vars(den_factored)), - map(string, vcat(sat_var, orig_vars)), - ), - ) - @warn """ - The fraction ($(frac_to_be_reduced)) is not a function of the generators ($(fracs_gen)). - Normal form: $remainder - Normal form num (syzygies factored out): $num_factored - Normal form den (syzygies factored out): $den_factored - """ - end - num_factored = - StructuralIdentifiability.parent_ring_change(coeff(num_factored, 1), ring_tag) - den_factored = - StructuralIdentifiability.parent_ring_change(coeff(den_factored, 1), ring_tag) - remainder = num_factored // den_factored - remainder, tag_to_gen -end - -# Same as above, but reduces multiple fractions at once. -function check_constructive_field_membership( - generators::AbstractVector, - to_be_reduced::AbstractVector, -) - fracs_gen = to_fractions(generators) - fracs_to_be_reduced = to_fractions(to_be_reduced) - T = elem_type(base_ring(parent(first(fracs_to_be_reduced)))) - remainders = Vector{Generic.Frac{T}}(undef, length(fracs_to_be_reduced)) - tag_to_gen = Dict{T, Generic.Frac{T}}() - for i in 1:length(fracs_to_be_reduced) - frac = fracs_to_be_reduced[i] - remainder, tag_to_gen = check_constructive_field_membership(fracs_gen, frac) - remainders[i] = remainder - end - @assert length(unique(parent, remainders)) == 1 - remainders, tag_to_gen -end - -R, (a, b) = Nemo.QQ["a", "b"] - -T1, T2, T3 = a^2 + b^2, a^3 + b^3, a^4 + b^4 -T1^6 - 4 * T1^3 * T2^2 - 3 * T1^2 * T3^2 + 12 * T1 * T2^2 * T3 - 4 * T2^4 - 2 * T3^3 - -fracs_generators = [a^2 + b^2] -to_be_reduced = [a^2 + b^2] -rem_tags, tag_to_gen = check_constructive_field_membership(fracs_generators, to_be_reduced) -@info "" rem_tags tag_to_gen - -##################### -# Sanity test! - -R, (a, b) = Nemo.QQ["a", "b"] - -fracs_generators = [a^2, (a + b) // (b)] -to_be_reduced = [a^4, (a + b - 5a^2 * b) // (b), (a + b) // (b * a^20)] - -rem_tags, tag_to_gen = check_constructive_field_membership(fracs_generators, to_be_reduced) -@info "" rem_tags tag_to_gen -#= -┌ Info: -│ rem_tags = -│ 3-element Vector{AbstractAlgebra.Generic.Frac{fmpq_mpoly}}: -│ T1^2 -│ -5*T1 + T2 -│ T2//T1^10 -│ tag_to_gen = -│ Dict{fmpq_mpoly, AbstractAlgebra.Generic.Frac{fmpq_mpoly}} with 2 entries: -│ T1 => a^2 -└ T2 => (a + b)//b -=# -##################### - -""" - vector_field_along(derivation, directions) - -Returns the vector field obtained by applying `derivation` to each element of -`directions`. -""" -function vector_field_along(derivation::Dict{T, U}, directions::AbstractVector) where {T, U} - fracs = to_fractions(directions) - new_vector_field = - Dict{AbstractAlgebra.Generic.Frac{T}, AbstractAlgebra.Generic.Frac{T}}() - for func in fracs - df = StructuralIdentifiability.diff_frac(func, derivation) - new_vector_field[func] = df - end - new_vector_field -end - -""" - reparametrize_with_respect_to(ode, new_states, new_params) - -Reparametrizes the `ode` using the given states and parameters. - -## Input - -- `ode`: an ODE model. -- `new_states`: a vector of new states as functions in `parent(ode)`. -- `new_params`: a vector of new parameters as functions in `parent(ode)`. -""" -function reparametrize_with_respect_to(ode, new_states, new_params) - @assert length(new_states) + length(new_params) > 0 - # Compute the new dynamics in terms of the original variables. - # Paying attenton to the order.. - new_vector_field = vector_field_along(ode.x_equations, new_states) - states = collect(keys(new_vector_field)) - dynamics = [new_vector_field[state] for state in states] - # Express the new dynamics in terms of new states and new parameters. - generating_funcs = vcat(states, new_params, ode.u_vars) - new_vars_dynamics, new_vars = - check_constructive_field_membership(generating_funcs, dynamics) - tag_ring = parent(first(keys(new_vars))) - # Express the existing outputs in terms of new states and new parameters. - outputs = ode.y_vars - new_outputs_dynamics, _ = check_constructive_field_membership( - generating_funcs, - [ode.y_equations[output] for output in outputs], - ) - new_outputs = Dict( - StructuralIdentifiability.parent_ring_change(output, tag_ring) => dynamic for - (output, dynamic) in zip(outputs, new_outputs_dynamics) - ) - # NOTE: old inputs map one to one to new inputs. - inputs = ode.u_vars - if !isempty(inputs) - new_inputs_dynamics, _ = - check_constructive_field_membership(generating_funcs, inputs) - new_inputs = Dict( - StructuralIdentifiability.parent_ring_change(input, tag_ring) => new_input - for (input, new_input) in zip(inputs, new_inputs_dynamics) - ) - else - new_inputs = empty(new_outputs) - end - # Construct the new vector field. - new_vars_vector_field = empty(ode.x_equations) - state_to_new_var = Dict(v => k for (k, v) in new_vars) - for i in 1:length(states) - state = states[i] - new_vars_vector_field[state_to_new_var[state]] = new_vars_dynamics[i] - end - @assert parent(first(keys(new_vars_vector_field))) == - base_ring(parent(first(values(new_vars_vector_field)))) == - parent(first(keys(new_outputs))) == - base_ring(parent(first(values(new_outputs)))) == - parent(first(keys(new_vars))) - @assert base_ring(parent(first(values(new_vars)))) == parent(ode) - new_vars_vector_field, new_inputs, new_outputs, new_vars -end - -########################## - -covid = StructuralIdentifiability.@ODEmodel( - S'(t) = -b * S(t) * (I(t) + J(t) + q * A(t)) * Ninv(t), - E'(t) = b * S(t) * (I(t) + J(t) + q * A(t)) * Ninv(t) - k * E(t), - A'(t) = k * (1 - r) * E(t) - g1 * A(t), - I'(t) = k * r * E(t) - (alpha + g1) * I(t), - J'(t) = alpha * I(t) - g2 * J(t), - C'(t) = alpha * I(t), - Ninv'(t) = 0, - y(t) = C(t), - y2(t) = Ninv(t) -) - -id_funcs = StructuralIdentifiability.find_identifiable_functions( - covid, - with_states = true, - strategy = (:hybrid,), -) - -new_states = [J, C, I, r * E, r * S, q * A, A // (r * E - E)] -new_params = [Ninv, g1, k, g2, alpha, b] - -new_vector_field, new_inputs, new_outputs, new_vars = - reparametrize_with_respect_to(covid, new_states, new_params) -@info "" new_vector_field new_inputs new_outputs new_vars - -########################## - -ode = StructuralIdentifiability.@ODEmodel( - x1'(t) = a * x1 - b * x1 * x2 + u(t), - x2'(t) = -c * x2 + d * x1 * x2, - y(t) = x1 -) - -StructuralIdentifiability.find_identifiable_functions( - ode, - with_states = true, - strategy = (:hybrid,), -) - -new_vector_field, new_inputs, new_outputs, new_vars = - reparametrize_with_respect_to(ode, [x1, b * x2], [a, c, d]) -@info "" new_vector_field new_inputs new_outputs new_vars - -##################### -# Sanity test! -# 1. -ode = StructuralIdentifiability.@ODEmodel( - x1'(t) = x1 + x2 + a + b, - x2'(t) = x1 + x2, - y(t) = x1 + x2 -) - -new_vector_field, new_outputs, new_vars = - reparametrize_with_respect_to(ode, [x1 + x2], [a + b]) -@info "" new_vector_field new_outputs new_vars -#= -┌ Info: -│ new_vector_field = -│ Dict{Any, Any} with 1 entry: -│ T1 => 2*T1 + T2 -│ new_outputs = -│ Dict{fmpq_mpoly, AbstractAlgebra.Generic.Frac{fmpq_mpoly}} with 1 entry: -│ y => T1 -│ new_vars = -│ Dict{fmpq_mpoly, AbstractAlgebra.Generic.Frac{fmpq_mpoly}} with 2 entries: -│ T2 => a + b -└ T1 => x2 + x1 -=# - -# 2. -#! format: off -ode = StructuralIdentifiability.@ODEmodel( - x1'(t) = a * x1, - x2'(t) = b * x2, - y(t) = x1*x2 -) - -id_funcs = StructuralIdentifiability.find_identifiable_functions( - ode, - with_states = true, - strategy = (:hybrid,), -) -@info "" id_funcs -#= -┌ Info: -│ id_funcs = -│ 2-element Vector{AbstractAlgebra.Generic.Frac{fmpq_mpoly}}: -│ x2*x1 -└ a + b -=# - -new_states = [x1 * x2] -new_params = [a + b] - -new_vector_field, new_outputs, new_vars = reparametrize_with_respect_to(ode, new_states, new_params) -@info "" new_vector_field new_outputs new_vars -#= -┌ Info: -│ new_vector_field = -│ Dict{Any, Any} with 1 entry: -│ T1 => T1*T2 -│ new_outputs = -│ Dict{fmpq_mpoly, AbstractAlgebra.Generic.Frac{fmpq_mpoly}} with 1 entry: -│ y => T1 -│ new_vars = -│ Dict{fmpq_mpoly, AbstractAlgebra.Generic.Frac{fmpq_mpoly}} with 2 entries: -│ T2 => a + b -└ T1 => x2*x1 -=# - -# 3. -#! format: off -ode = StructuralIdentifiability.@ODEmodel( - x1'(t) = a * x1, - x2'(t) = b * x2, - y(t) = x1 + x2 -) - -new_ode, new_vars = StructuralIdentifiability.reparametrize_global(ode) - -id_funcs = StructuralIdentifiability.find_identifiable_functions( - ode, - with_states = true, - strategy = (:hybrid,), -) -@info "" id_funcs -#= -┌ Info: -│ id_funcs = -│ 5-element Vector{AbstractAlgebra.Generic.Frac{fmpq_mpoly}}: -│ x2*x1 -│ a*b -│ x2 + x1 -│ a + b -└ a*x2 - a*x1 - b*x2 + b*x1 -=# - -new_states = [x1 * x2, x1 + x2, a*x2 - a*x1 - b*x2 + b*x1] -new_params = [a + b, a*b] - -new_vector_field, new_iutputs, new_vars = reparametrize_with_respect_to(ode, new_states, new_params) -@info "" new_vector_field new_outputs new_vars -#= -┌ Info: -│ new_vector_field = -│ Dict{Any, Any} with 3 entries: -│ T1 => 1//2*T1*T4 - 1//2*T3 -│ T2 => T2*T4 -│ T3 => -1//2*T1*T4^2 + 2*T1*T5 + 1//2*T3*T4 -│ new_outputs = -│ Dict{fmpq_mpoly, AbstractAlgebra.Generic.Frac{fmpq_mpoly}} with 1 entry: -│ y => T1 -│ new_vars = -│ Dict{fmpq_mpoly, AbstractAlgebra.Generic.Frac{fmpq_mpoly}} with 5 entries: -│ T1 => x2 + x1 -│ T2 => x2*x1 -│ T3 => a*x2 - a*x1 - b*x2 + b*x1 -│ T4 => a + b -└ T5 => a*b -=# -#! format: on -##################### - -function reparametrize_global(ode::StructuralIdentifiability.ODE{P}) where {P} - id_funcs = StructuralIdentifiability.find_identifiable_functions( - ode, - with_states = true, - strategy = (:hybrid,), - ) - @assert base_ring(parent(first(id_funcs))) == parent(ode) - @info "Constructing a new parametrization" - contains_states(poly::MPolyElem) = any(x -> degree(poly, x) > 0, ode.x_vars) - contains_states(func) = - contains_states(numerator(func)) || contains_states(denominator(func)) - id_funcs_contains_states = filter(contains_states, id_funcs) - @info """ - Original states: $(ode.x_vars) - Original params: $(ode.parameters) - Identifiable and contain states: $(id_funcs_contains_states)""" - new_states = id_funcs_contains_states - new_params = setdiff(id_funcs, id_funcs_contains_states) - @info """ - Reparametrizing with respect to: - New states: $new_states - New params: $new_params""" - new_vector_field, new_inputs, new_outputs, new_vars = - reparametrize_with_respect_to(ode, new_states, new_params) - new_ring = parent(first(keys(new_vector_field))) - new_vars_trimmed = union(map(vars, collect(keys(new_vector_field)))...) - new_vars_trimmed = - union(new_vars_trimmed, map(vars, collect(values(new_vector_field)))...) - # new_vars_trimmed = union(new_vars_trimmed, map(vars, collect(keys(new_inputs)))...) - new_vars_trimmed = union(new_vars_trimmed, map(vars, collect(keys(new_outputs)))...) - new_vars_trimmed = union(new_vars_trimmed, map(vars, collect(values(new_outputs)))...) - new_ring_trimmed, new_vars_trimmed = PolynomialRing( - base_ring(new_ring), - map(string, new_vars_trimmed), - ordering = Nemo.ordering(new_ring), - ) - new_ode = StructuralIdentifiability.ODE{P}( - Dict( - StructuralIdentifiability.parent_ring_change(k, new_ring_trimmed) => - StructuralIdentifiability.parent_ring_change(v, new_ring_trimmed) for - (k, v) in new_vector_field - ), - Dict( - StructuralIdentifiability.parent_ring_change(k, new_ring_trimmed) => - StructuralIdentifiability.parent_ring_change(v, new_ring_trimmed) for - (k, v) in new_outputs - ), - map( - f -> StructuralIdentifiability.parent_ring_change( - numerator(f), - new_ring_trimmed, - ), - collect(values(new_inputs)), - ), - ) - new_vars = Dict( - StructuralIdentifiability.parent_ring_change(k, new_ring_trimmed) => v for - (k, v) in new_vars - ) - @assert base_ring(parent(first(values(new_vars)))) == parent(ode) - return new_ode, new_vars -end - -##################### - -using StructuralIdentifiability - -# Lotka-Volterra, -# parameter b and state x2 are not identifiabile -ode = @ODEmodel( - x1'(t) = a * x1 - b * x1 * x2 + u(t), - x2'(t) = -c * x2 + d * x1 * x2, - y(t) = x1 -) - -new_ode, new_vars = reparametrize_global(ode) -@info "" new_ode new_vars -#= -new_ode = - T2'(t) = -T2(t)*T1(t) + T2(t)*T5 + T6(t) - T1'(t) = T2(t)*T1(t)*T4 - T1(t)*T3 - y(t) = T2(t) - -new_vars = -Dict{Nemo.fmpq_mpoly, AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}} with 6 entries: - T2 => x1 - T3 => c - T1 => b*x2 - T5 => a - T6 => u - T4 => d -=# - -assess_identifiability(new_ode) -#= -Dict{Any, Symbol} with 5 entries: - T2 => :globally - T3 => :globally - T1 => :globally - T5 => :globally - T4 => :globally -=# diff --git a/benchmarking/IdentifiableFunctions/systems/Akt pathway/Akt pathway.jl b/benchmarking/IdentifiableFunctions/results/Akt pathway/Akt pathway.jl similarity index 100% rename from benchmarking/IdentifiableFunctions/systems/Akt pathway/Akt pathway.jl rename to benchmarking/IdentifiableFunctions/results/Akt pathway/Akt pathway.jl index 96d6b1e44..1b8c7e880 100644 --- a/benchmarking/IdentifiableFunctions/systems/Akt pathway/Akt pathway.jl +++ b/benchmarking/IdentifiableFunctions/results/Akt pathway/Akt pathway.jl @@ -4,14 +4,14 @@ using StructuralIdentifiability system = @ODEmodel( EGFR'(t) = -reaction_1_k1*EGF_EGFR(t) + reaction_1_k2*EGF_EGFR(t) - EGFR(t)*EGFR_turnover + EGFR_turnover*pro_EGFR(t), - pAkt'(t) = -pAkt(t)*reaction_7_k1 - pAkt(t)*reaction_5_k1*S6(t) + reaction_6_k1*pAkt_S6(t) + reaction_3_k1*pEGFR_Akt(t) + pAkt_S6(t)*reaction_5_k2, - pEGFR_Akt'(t) = pEGFR(t)*Akt(t)*reaction_2_k1 - reaction_3_k1*pEGFR_Akt(t) - pEGFR_Akt(t)*reaction_2_k2, - S6'(t) = pS6(t)*reaction_8_k1 - pAkt(t)*reaction_5_k1*S6(t) + pAkt_S6(t)*reaction_5_k2, pEGFR'(t) = -reaction_4_k1*pEGFR(t) + reaction_9_k1*EGF_EGFR(t) - pEGFR(t)*Akt(t)*reaction_2_k1 + reaction_3_k1*pEGFR_Akt(t) + pEGFR_Akt(t)*reaction_2_k2, - EGF_EGFR'(t) = reaction_1_k1*EGF_EGFR(t) - reaction_9_k1*EGF_EGFR(t) - reaction_1_k2*EGF_EGFR(t), + pEGFR_Akt'(t) = pEGFR(t)*Akt(t)*reaction_2_k1 - reaction_3_k1*pEGFR_Akt(t) - pEGFR_Akt(t)*reaction_2_k2, Akt'(t) = pAkt(t)*reaction_7_k1 - pEGFR(t)*Akt(t)*reaction_2_k1 + pEGFR_Akt(t)*reaction_2_k2, + pAkt'(t) = -pAkt(t)*reaction_7_k1 - pAkt(t)*reaction_5_k1*S6(t) + reaction_6_k1*pAkt_S6(t) + reaction_3_k1*pEGFR_Akt(t) + pAkt_S6(t)*reaction_5_k2, + S6'(t) = pS6(t)*reaction_8_k1 - pAkt(t)*reaction_5_k1*S6(t) + pAkt_S6(t)*reaction_5_k2, pAkt_S6'(t) = pAkt(t)*reaction_5_k1*S6(t) - reaction_6_k1*pAkt_S6(t) - pAkt_S6(t)*reaction_5_k2, pS6'(t) = -pS6(t)*reaction_8_k1 + reaction_6_k1*pAkt_S6(t), + EGF_EGFR'(t) = reaction_1_k1*EGF_EGFR(t) - reaction_9_k1*EGF_EGFR(t) - reaction_1_k2*EGF_EGFR(t), y1(t) = pEGFR(t)*a1 + a1*pEGFR_Akt(t), y2(t) = a2*pAkt(t) + a2*pAkt_S6(t), y3(t) = pS6(t)*a3 diff --git a/benchmarking/IdentifiableFunctions/results/Akt pathway/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Akt pathway/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..1ac1a22bd --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Akt pathway/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +Akt pathway +id_npoints_degree, 32 +id_npoints_interpolation, 120 +are_id_funcs_polynomial, true diff --git a/benchmarking/IdentifiableFunctions/results/Akt pathway/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Akt pathway/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..6f8391ad8 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Akt pathway/logs_(normalforms, 2)_with_states @@ -0,0 +1,183 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "Akt pathway" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: EGFR, pEGFR, pEGFR_Akt, Akt, pAkt, S6, pAkt_S6, pS6, EGF_EGFR +[ Info: Parameters: a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_2_k2, reaction_5_k2, reaction_8_k1 +[ Info: Inputs: pro_EGFR +[ Info: Outputs: y1, y2, y3 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 9.678161931 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 9.678161931 +[ Info: Computing Wronskians +┌ Info: Computed in 7.60821551 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 7.60821551 +[ Info: Dimensions of the Wronskians [18, 9, 145] +┌ Info: Ranks of the Wronskians computed in 0.023288155 seconds +│ :rank_time = :rank_time +└ rank_times = 0.023288155 + ⌜ # Computing specializations.. Time: 0:00:06 ✓ # Computing specializations.. Time: 0:00:07 + ⌜ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:02 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 1 for den. +│ Maximal number of interpolated terms are: 3 for num. and 1 for den. +└ Points used: 32. +[ Info: Groebner basis computed in 8.970532212 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 2.814834048 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 14 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 12 fractions 12 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 3.05965926 seconds. Result: true +[ Info: Out of 217 initial generators there are 12 indepdendent +[ Info: The ranking of the new set of generators is 368 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 1 for den. +│ Maximal number of interpolated terms are: 3 for num. and 1 for den. +└ Points used: 40. +[ Info: Groebner basis computed in 3.373665288 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.945152294 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 3 for num. and 1 for den. +│ Maximal number of interpolated terms are: 3 for num. and 1 for den. +└ Points used: 48. +[ Info: Groebner basis computed in 0.045049438 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.040445921 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 22 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (25 in total): Nemo.QQMPolyRingElem[a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_2_k2, reaction_5_k2, reaction_8_k1, EGFR, pEGFR, pEGFR_Akt, Akt, pAkt, S6, pAkt_S6, pS6, EGF_EGFR] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 65 +┌ Info: Final cleaning and simplification of generators. +└ Out of 71 fractions 56 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 1.445758786 seconds. Result: true +[ Info: Out of 23 initial generators there are 20 indepdendent +[ Info: The ranking of the new set of generators is 306 +[ Info: The search for identifiable functions concluded in 53.150422866 seconds +[ Info: Processing Akt pathway +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.222761849 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.222761849 +[ Info: Computing Wronskians +┌ Info: Computed in 0.356299972 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.356299972 +[ Info: Dimensions of the Wronskians [18, 9, 145] +┌ Info: Ranks of the Wronskians computed in 0.001329194 seconds +│ :rank_time = :rank_time +└ rank_times = 0.001329194 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 1 for den. +│ Maximal number of interpolated terms are: 3 for num. and 1 for den. +└ Points used: 32. +[ Info: Groebner basis computed in 0.103608571 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.011025471 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 14 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 12 fractions 12 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.023874482 seconds. Result: true +[ Info: Out of 217 initial generators there are 12 indepdendent +[ Info: The ranking of the new set of generators is 368 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 1 for den. +│ Maximal number of interpolated terms are: 3 for num. and 1 for den. +└ Points used: 40. +[ Info: Groebner basis computed in 0.040400255 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.037547957 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 3 for num. and 1 for den. +│ Maximal number of interpolated terms are: 3 for num. and 1 for den. +└ Points used: 48. +[ Info: Groebner basis computed in 0.046277685 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.003988184 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 22 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (25 in total): Nemo.QQMPolyRingElem[a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_2_k2, reaction_5_k2, reaction_8_k1, EGFR, pEGFR, pEGFR_Akt, Akt, pAkt, S6, pAkt_S6, pS6, EGF_EGFR] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 65 +┌ Info: Final cleaning and simplification of generators. +└ Out of 71 fractions 56 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.014461622 seconds. Result: true +[ Info: Out of 23 initial generators there are 20 indepdendent +[ Info: The ranking of the new set of generators is 306 +[ Info: The search for identifiable functions concluded in 2.439343027 seconds +┌ Info: Result is +│ result = +│ 20-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ reaction_8_k1 +│ reaction_5_k2 +│ reaction_2_k2 +│ reaction_3_k1 +│ ⋮ +│ a2*pS6 +│ reaction_9_k1*reaction_2_k1*EGF_EGFR +└ reaction_1_k1 - reaction_9_k1 - reaction_1_k2 diff --git a/benchmarking/IdentifiableFunctions/results/Akt pathway/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Akt pathway/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..5a001ec9f --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Akt pathway/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[reaction_8_k1, reaction_5_k2, reaction_2_k2, reaction_3_k1, reaction_6_k1, reaction_7_k1, reaction_4_k1, pS6*reaction_2_k1, reaction_2_k1*pAkt_S6, reaction_2_k1*S6, pAkt*reaction_2_k1, Akt*reaction_2_k1, pEGFR_Akt*reaction_2_k1, pEGFR*reaction_2_k1, pS6*reaction_5_k1, pS6*a1, pS6*a3, a2*pS6, reaction_9_k1*reaction_2_k1*EGF_EGFR, reaction_1_k1 - reaction_9_k1 - reaction_1_k2] diff --git a/benchmarking/IdentifiableFunctions/results/Akt pathway/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Akt pathway/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..49708d8ec --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Akt pathway/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +Akt pathway +id_total, 2.4396847 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.014461622 +id_inclusion_check_mod_p, 0.041536141 +id_groebner_time, 0.08667794000000001 +id_beautifulization, 0.275739851 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 306.0 diff --git a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/Bilirubin2_io.jl b/benchmarking/IdentifiableFunctions/results/Bilirubin2_io/Bilirubin2_io.jl similarity index 100% rename from benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/Bilirubin2_io.jl rename to benchmarking/IdentifiableFunctions/results/Bilirubin2_io/Bilirubin2_io.jl diff --git a/benchmarking/IdentifiableFunctions/results/Bilirubin2_io/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Bilirubin2_io/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..183e8bb28 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Bilirubin2_io/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +Bilirubin2_io +id_npoints_degree, 56 +id_npoints_interpolation, 1656 +are_id_funcs_polynomial, false diff --git a/benchmarking/IdentifiableFunctions/results/Bilirubin2_io/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Bilirubin2_io/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..211a6deab --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Bilirubin2_io/logs_(normalforms, 2)_with_states @@ -0,0 +1,220 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "Bilirubin2_io" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: x1, x2, x3, x4 +[ Info: Parameters: k01, k31, k21, k12, k13, k14, k41 +[ Info: Inputs: u +[ Info: Outputs: y1 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 6.514810474 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 6.514810474 +[ Info: Computing Wronskians +┌ Info: Computed in 7.22353323 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 7.22353323 +[ Info: Dimensions of the Wronskians [8] +┌ Info: Ranks of the Wronskians computed in 0.021875518 seconds +│ :rank_time = :rank_time +└ rank_times = 0.021875518 + ⌜ # Computing specializations.. Time: 0:00:06 ✓ # Computing specializations.. Time: 0:00:07 + ⌜ # Computing specializations.. Time: 0:00:00 + Points: 205  ⌝ # Computing specializations.. Time: 0:00:00 + Points: 423  ⌟ # Computing specializations.. Time: 0:00:00 + Points: 641  ⌞ # Computing specializations.. Time: 0:00:01 + Points: 866  ⌜ # Computing specializations.. Time: 0:00:01 + Points: 1110  ✓ # Computing specializations.. Time: 0:00:02 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 3 for num. and 1 for den. +└ Points used: 24. +[ Info: Groebner basis computed in 8.815758147 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 2.81269271 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 2 for den. +│ Maximal number of interpolated terms are: 12 for num. and 6 for den. +└ Points used: 256. +[ Info: Groebner basis computed in 0.200990483 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.004649958 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 25 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 7 fractions 7 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 3.561682673 seconds. Result: true +[ Info: Out of 8 initial generators there are 7 indepdendent +[ Info: The ranking of the new set of generators is 466840 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 6 for num. and 6 for den. +└ Points used: 96. +[ Info: Groebner basis computed in 0.543987732 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.042886695 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 4 for den. +│ Maximal number of interpolated terms are: 33 for num. and 33 for den. +└ Points used: 1280. +[ Info: Groebner basis computed in 2.109414906 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.626880256 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 71 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (11 in total): Nemo.QQMPolyRingElem[k01, k31, k21, k12, k13, k14, k41, x1, x2, x3, x4] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 13 +┌ Info: Final cleaning and simplification of generators. +└ Out of 35 fractions 30 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.071055696 seconds. Result: true +[ Info: Out of 15 initial generators there are 12 indepdendent +[ Info: The ranking of the new set of generators is 140294 +[ Info: The search for identifiable functions concluded in 47.033704101 seconds +[ Info: Processing Bilirubin2_io +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.057603829 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.057603829 +[ Info: Computing Wronskians +┌ Info: Computed in 0.004872055 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.004872055 +[ Info: Dimensions of the Wronskians [8] +┌ Info: Ranks of the Wronskians computed in 1.6114e-5 seconds +│ :rank_time = :rank_time +└ rank_times = 1.6114e-5 + ⌜ # Computing specializations.. Time: 0:00:00 + Points: 231  ⌝ # Computing specializations.. Time: 0:00:00 + Points: 459  ⌟ # Computing specializations.. Time: 0:00:00 + Points: 676  ⌞ # Computing specializations.. Time: 0:00:01 + Points: 906  ⌜ # Computing specializations.. Time: 0:00:01 + Points: 1165  ✓ # Computing specializations.. Time: 0:00:02 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 3 for num. and 1 for den. +└ Points used: 24. +[ Info: Groebner basis computed in 0.014521942 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.001579386 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 2 for den. +│ Maximal number of interpolated terms are: 12 for num. and 6 for den. +└ Points used: 256. +[ Info: Groebner basis computed in 0.169174314 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.004975423 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 25 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 7 fractions 7 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.028264887 seconds. Result: true +[ Info: Out of 8 initial generators there are 7 indepdendent +[ Info: The ranking of the new set of generators is 466840 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 6 for num. and 6 for den. +└ Points used: 96. +[ Info: Groebner basis computed in 0.166653718 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.012408133 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 4 for den. +│ Maximal number of interpolated terms are: 33 for num. and 33 for den. +└ Points used: 1280. +[ Info: Groebner basis computed in 2.085673427 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.569100351 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 71 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (11 in total): Nemo.QQMPolyRingElem[k01, k31, k21, k12, k13, k14, k41, x1, x2, x3, x4] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 13 +┌ Info: Final cleaning and simplification of generators. +└ Out of 35 fractions 30 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.080748452 seconds. Result: true +[ Info: Out of 15 initial generators there are 12 indepdendent +[ Info: The ranking of the new set of generators is 140294 +[ Info: The search for identifiable functions concluded in 4.082696468 seconds +┌ Info: Result is +│ result = +│ 12-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ x1 +│ k01 +│ x3 + x2 + x4 +│ k12 + k13 + k14 +│ ⋮ +│ k31*k13 + k21*k12 + k14*k41 +│ (-x3^2*x2 + x3^2*x4 + x3*x2^2 - x3*x4^2 - x2^2*x4 + x2*x4^2)//(k12*x3 - k12*x4 - x3*k14 - k13*x2 + k13*x4 + x2*k14) +└ (k12*x3^2 - k12*x4^2 - x3^2*k14 - k13*x2^2 + k13*x4^2 + x2^2*k14)//(k12*x3 - k12*x4 - x3*k14 - k13*x2 + k13*x4 + x2*k14) diff --git a/benchmarking/IdentifiableFunctions/results/Bilirubin2_io/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Bilirubin2_io/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..0a0e753cf --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Bilirubin2_io/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[x1, k01, x3 + x2 + x4, k12 + k13 + k14, k31 + k21 + k41, x3*x2 + x3*x4 + x2*x4, k12*x2 + x3*k13 + x4*k14, k12*k13 + k12*k14 + k13*k14, k31*x3 + k21*x2 + x4*k41, k31*k13 + k21*k12 + k14*k41, (-x3^2*x2 + x3^2*x4 + x3*x2^2 - x3*x4^2 - x2^2*x4 + x2*x4^2)//(k12*x3 - k12*x4 - x3*k14 - k13*x2 + k13*x4 + x2*k14), (k12*x3^2 - k12*x4^2 - x3^2*k14 - k13*x2^2 + k13*x4^2 + x2^2*k14)//(k12*x3 - k12*x4 - x3*k14 - k13*x2 + k13*x4 + x2*k14)] diff --git a/benchmarking/IdentifiableFunctions/results/Bilirubin2_io/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Bilirubin2_io/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..721b81ee6 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Bilirubin2_io/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +Bilirubin2_io +id_total, 4.083086273 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.080748452 +id_inclusion_check_mod_p, 0.581508484 +id_groebner_time, 2.252327145 +id_beautifulization, 0.759955669 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 140294.0 diff --git a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/Biohydrogenation_io.jl b/benchmarking/IdentifiableFunctions/results/Biohydrogenation_io/Biohydrogenation_io.jl similarity index 100% rename from benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/Biohydrogenation_io.jl rename to benchmarking/IdentifiableFunctions/results/Biohydrogenation_io/Biohydrogenation_io.jl index 41fd8fb13..a92f4ff13 100644 --- a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/Biohydrogenation_io.jl +++ b/benchmarking/IdentifiableFunctions/results/Biohydrogenation_io/Biohydrogenation_io.jl @@ -3,10 +3,10 @@ using StructuralIdentifiability system = @ODEmodel( - x5'(t) = (k5*k8*x4(t) + k5*x6(t)*x4(t) + k5*x5(t)*x4(t) - k6*x5(t)*k7 - x5(t)*k7*x4(t))//(k8*k6 + k8*x4(t) + k6*x6(t) + k6*x5(t) + x6(t)*x4(t) + x5(t)*x4(t)), - x7'(t) = (k9*k10*x6(t) - k9*x6(t)^2)//k10, x4'(t) = (-k5*x4(t))//(k6 + x4(t)), + x5'(t) = (k5*k8*x4(t) + k5*x6(t)*x4(t) + k5*x5(t)*x4(t) - k6*x5(t)*k7 - x5(t)*k7*x4(t))//(k8*k6 + k8*x4(t) + k6*x6(t) + k6*x5(t) + x6(t)*x4(t) + x5(t)*x4(t)), x6'(t) = (-k8*k9*k10*x6(t) + k8*k9*x6(t)^2 - k9*k10*x6(t)^2 - k9*k10*x6(t)*x5(t) + k9*x6(t)^3 + k9*x6(t)^2*x5(t) + k10*x5(t)*k7)//(k8*k10 + k10*x6(t) + k10*x5(t)), + x7'(t) = (k9*k10*x6(t) - k9*x6(t)^2)//k10, y1(t) = x4(t), y2(t) = x5(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/Biohydrogenation_io/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Biohydrogenation_io/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..88c76dae4 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Biohydrogenation_io/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +Biohydrogenation_io +id_npoints_degree, 72 +id_npoints_interpolation, 624 +are_id_funcs_polynomial, true diff --git a/benchmarking/IdentifiableFunctions/results/Biohydrogenation_io/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Biohydrogenation_io/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..c7875ce33 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Biohydrogenation_io/logs_(normalforms, 2)_with_states @@ -0,0 +1,209 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "Biohydrogenation_io" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: x4, x5, x6, x7 +[ Info: Parameters: k5, k8, k9, k6, k10, k7 +[ Info: Inputs: +[ Info: Outputs: y1, y2 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 9.76925305 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 9.76925305 +[ Info: Computing Wronskians +┌ Info: Computed in 7.430508235 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 7.430508235 +[ Info: Dimensions of the Wronskians [3, 36] +┌ Info: Ranks of the Wronskians computed in 0.021579832 seconds +│ :rank_time = :rank_time +└ rank_times = 0.021579832 + ⌜ # Computing specializations.. Time: 0:00:06 ✓ # Computing specializations.. Time: 0:00:07 + ⌜ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:02 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 24. +[ Info: Groebner basis computed in 8.739467815 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 2.917315027 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 9 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 6 fractions 6 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 3.175144434 seconds. Result: true +[ Info: Out of 37 initial generators there are 6 indepdendent +[ Info: The ranking of the new set of generators is 28 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 12. +[ Info: Groebner basis computed in 3.330130616 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.94422884 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 12. +[ Info: Groebner basis computed in 0.010456122 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.002751883 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (8, 8) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 7 for num. and 0 for den. +│ Maximal number of interpolated terms are: 24 for num. and 1 for den. +└ Points used: 576. +[ Info: Groebner basis computed in 0.183661122 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.036062021 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 12 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (10 in total): Nemo.QQMPolyRingElem[k5, k8, k9, k6, k10, k7, x4, x5, x6, x7] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 17 +┌ Info: Final cleaning and simplification of generators. +└ Out of 32 fractions 26 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 1.405326039 seconds. Result: true +[ Info: Out of 11 initial generators there are 9 indepdendent +[ Info: The ranking of the new set of generators is 57 +[ Info: The search for identifiable functions concluded in 51.897747476 seconds +[ Info: Processing Biohydrogenation_io +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.012523842 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.012523842 +[ Info: Computing Wronskians +┌ Info: Computed in 0.010737529 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.010737529 +[ Info: Dimensions of the Wronskians [3, 36] +┌ Info: Ranks of the Wronskians computed in 6.3881e-5 seconds +│ :rank_time = :rank_time +└ rank_times = 6.3881e-5 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 24. +[ Info: Groebner basis computed in 0.01186811 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.001831845 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 9 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 6 fractions 6 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.00270046 seconds. Result: true +[ Info: Out of 37 initial generators there are 6 indepdendent +[ Info: The ranking of the new set of generators is 28 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 12. +[ Info: Groebner basis computed in 0.008367528 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.001915607 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 12. +[ Info: Groebner basis computed in 0.009766999 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.001699177 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (8, 8) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 7 for num. and 0 for den. +│ Maximal number of interpolated terms are: 24 for num. and 1 for den. +└ Points used: 576. +[ Info: Groebner basis computed in 0.178461306 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.027700632 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 12 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (10 in total): Nemo.QQMPolyRingElem[k5, k8, k9, k6, k10, k7, x4, x5, x6, x7] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 17 +┌ Info: Final cleaning and simplification of generators. +└ Out of 32 fractions 26 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.003331788 seconds. Result: true +[ Info: Out of 11 initial generators there are 9 indepdendent +[ Info: The ranking of the new set of generators is 57 +[ Info: The search for identifiable functions concluded in 0.436713338 seconds +┌ Info: Result is +│ result = +│ 9-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ x5 +│ x4 +│ k7 +│ k6 +│ ⋮ +│ k9*k10 +│ k10 - 2*x6 +└ k8 + x6 diff --git a/benchmarking/IdentifiableFunctions/results/Biohydrogenation_io/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Biohydrogenation_io/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..bcf9bbc88 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Biohydrogenation_io/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[x5, x4, k7, k6, k5, k10^2, k9*k10, k10 - 2*x6, k8 + x6] diff --git a/benchmarking/IdentifiableFunctions/results/Biohydrogenation_io/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Biohydrogenation_io/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..cca727848 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Biohydrogenation_io/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +Biohydrogenation_io +id_total, 0.437088339 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.003331788 +id_inclusion_check_mod_p, 0.031315416 +id_groebner_time, 0.196595833 +id_beautifulization, 0.10959258799999999 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 57.0 diff --git a/benchmarking/IdentifiableFunctions/systems/Bruno2016/Bruno2016.jl b/benchmarking/IdentifiableFunctions/results/Bruno2016/Bruno2016.jl similarity index 100% rename from benchmarking/IdentifiableFunctions/systems/Bruno2016/Bruno2016.jl rename to benchmarking/IdentifiableFunctions/results/Bruno2016/Bruno2016.jl index cf0bbd674..77343fcd4 100644 --- a/benchmarking/IdentifiableFunctions/systems/Bruno2016/Bruno2016.jl +++ b/benchmarking/IdentifiableFunctions/results/Bruno2016/Bruno2016.jl @@ -3,13 +3,13 @@ using StructuralIdentifiability system = @ODEmodel( - OHbetaio'(t) = cry(t)*kcryOH + zea(t)*kzea + OHbeta10(t)*kOHbeta10, - betaio'(t) = cry(t)*kcrybeta + beta10(t)*kbeta10 + kbeta*beta(t), + beta'(t) = -kbeta*beta(t), cry'(t) = -cry(t)*kcrybeta - cry(t)*kcryOH, - OHbeta10'(t) = cry(t)*kcrybeta + zea(t)*kzea - OHbeta10(t)*kOHbeta10, - beta10'(t) = cry(t)*kcryOH - beta10(t)*kbeta10 + kbeta*beta(t), zea'(t) = -zea(t)*kzea, - beta'(t) = -kbeta*beta(t), + beta10'(t) = cry(t)*kcryOH - beta10(t)*kbeta10 + kbeta*beta(t), + OHbeta10'(t) = cry(t)*kcrybeta + zea(t)*kzea - OHbeta10(t)*kOHbeta10, + betaio'(t) = cry(t)*kcrybeta + beta10(t)*kbeta10 + kbeta*beta(t), + OHbetaio'(t) = cry(t)*kcryOH + zea(t)*kzea + OHbeta10(t)*kOHbeta10, y1(t) = beta(t), y2(t) = beta10(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/Bruno2016/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Bruno2016/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..9cf2a3a91 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Bruno2016/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +Bruno2016 +id_npoints_degree, 18 +id_npoints_interpolation, 28 +are_id_funcs_polynomial, true diff --git a/benchmarking/IdentifiableFunctions/results/Bruno2016/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Bruno2016/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..9826e4add --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Bruno2016/logs_(normalforms, 2)_with_states @@ -0,0 +1,155 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "Bruno2016" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: beta, cry, zea, beta10, OHbeta10, betaio, OHbetaio +[ Info: Parameters: kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10 +[ Info: Inputs: +[ Info: Outputs: y1, y2 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 9.610506675 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 9.610506675 +[ Info: Computing Wronskians +┌ Info: Computed in 7.223549181 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 7.223549181 +[ Info: Dimensions of the Wronskians [4, 2] +┌ Info: Ranks of the Wronskians computed in 0.020978805 seconds +│ :rank_time = :rank_time +└ rank_times = 0.020978805 + ⌜ # Computing specializations.. Time: 0:00:06 ✓ # Computing specializations.. Time: 0:00:07 + ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 12. +[ Info: Groebner basis computed in 8.729083553 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 2.926038222 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 5 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 3 fractions 3 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 3.20873488 seconds. Result: true +[ Info: Out of 4 initial generators there are 3 indepdendent +[ Info: The ranking of the new set of generators is 7 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 0 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 16. +[ Info: Groebner basis computed in 3.384758619 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.94038478 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 8 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (13 in total): Nemo.QQMPolyRingElem[kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10, beta, cry, zea, beta10, OHbeta10, betaio, OHbetaio] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 7 +┌ Info: Final cleaning and simplification of generators. +└ Out of 17 fractions 11 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 1.412474979 seconds. Result: true +[ Info: Out of 8 initial generators there are 6 indepdendent +[ Info: The ranking of the new set of generators is 24 +[ Info: The search for identifiable functions concluded in 51.209787808 seconds +[ Info: Processing Bruno2016 +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.015725168 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.015725168 +[ Info: Computing Wronskians +┌ Info: Computed in 0.067369396 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.067369396 +[ Info: Dimensions of the Wronskians [4, 2] +┌ Info: Ranks of the Wronskians computed in 1.8333e-5 seconds +│ :rank_time = :rank_time +└ rank_times = 1.8333e-5 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 12. +[ Info: Groebner basis computed in 0.003890404 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.000788904 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 5 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 3 fractions 3 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.000711814 seconds. Result: true +[ Info: Out of 4 initial generators there are 3 indepdendent +[ Info: The ranking of the new set of generators is 7 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 0 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 16. +[ Info: Groebner basis computed in 0.006925947 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.001391106 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 8 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (13 in total): Nemo.QQMPolyRingElem[kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10, beta, cry, zea, beta10, OHbeta10, betaio, OHbetaio] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 7 +┌ Info: Final cleaning and simplification of generators. +└ Out of 17 fractions 11 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.001643429 seconds. Result: true +[ Info: Out of 8 initial generators there are 6 indepdendent +[ Info: The ranking of the new set of generators is 24 +[ Info: The search for identifiable functions concluded in 0.190761424 seconds +┌ Info: Result is +│ result = +│ 6-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ beta10 +│ beta +│ kbeta +│ kbeta10 +│ cry*kcryOH +└ kcrybeta + kcryOH diff --git a/benchmarking/IdentifiableFunctions/results/Bruno2016/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Bruno2016/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..11ad808f2 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Bruno2016/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[beta10, beta, kbeta, kbeta10, cry*kcryOH, kcrybeta + kcryOH] diff --git a/benchmarking/IdentifiableFunctions/results/Bruno2016/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Bruno2016/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..a8e3f180e --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Bruno2016/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +Bruno2016 +id_total, 0.191136103 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.001643429 +id_inclusion_check_mod_p, 0.001391106 +id_groebner_time, 0.006925947 +id_beautifulization, 0.071639499 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 24.0 diff --git a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/CD8 T cell differentiation.jl b/benchmarking/IdentifiableFunctions/results/CD8 T cell differentiation/CD8 T cell differentiation.jl similarity index 92% rename from benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/CD8 T cell differentiation.jl rename to benchmarking/IdentifiableFunctions/results/CD8 T cell differentiation/CD8 T cell differentiation.jl index 910ad5d26..88eb79707 100644 --- a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/CD8 T cell differentiation.jl +++ b/benchmarking/IdentifiableFunctions/results/CD8 T cell differentiation/CD8 T cell differentiation.jl @@ -3,12 +3,12 @@ using StructuralIdentifiability system = @ODEmodel( - M'(t) = S(t)*delta_LM - M(t)*mu_M, - P'(t) = rho_P*P(t)^2 - S(t)*P(t)*mu_PL - E(t)*mu_PE*P(t) - P(t)*mu_P, - E'(t) = -mu_EE*E(t)^2 + delta_NE*N(t)*P(t) - delta_EL*E(t) + E(t)*P(t)*rho_E, N'(t) = -delta_NE*N(t)*P(t) - mu_N*N(t), + E'(t) = -mu_EE*E(t)^2 + delta_NE*N(t)*P(t) - delta_EL*E(t) + E(t)*P(t)*rho_E, S'(t) = -mu_LE*S(t)*E(t) + delta_EL*S(t) - S(t)^2*mu_LL - S(t)*delta_LM, - y3(t) = M(t), + M'(t) = S(t)*delta_LM - M(t)*mu_M, + P'(t) = rho_P*P(t)^2 - S(t)*P(t)*mu_PL - E(t)*mu_PE*P(t) - P(t)*mu_P, y1(t) = N(t), - y2(t) = S(t) + E(t) + y2(t) = S(t) + E(t), + y3(t) = M(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/CD8 T cell differentiation/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/CD8 T cell differentiation/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..cd709eae2 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/CD8 T cell differentiation/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +CD8 T cell differentiation +id_npoints_degree, 20 +id_npoints_interpolation, 20 +are_id_funcs_polynomial, true diff --git a/benchmarking/IdentifiableFunctions/results/CD8 T cell differentiation/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/CD8 T cell differentiation/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..4a0bc9c9a --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/CD8 T cell differentiation/logs_(normalforms, 2)_with_states @@ -0,0 +1,157 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "CD8 T cell differentiation" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: N, E, S, M, P +[ Info: Parameters: rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, delta_LM, mu_PE, mu_PL, mu_LL, mu_P, rho_E +[ Info: Inputs: +[ Info: Outputs: y1, y2, y3 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 15.362481139 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 15.362481139 +[ Info: Computing Wronskians +┌ Info: Computed in 11.573056905 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 11.573056905 +[ Info: Dimensions of the Wronskians [8, 14, 10] +┌ Info: Ranks of the Wronskians computed in 0.034015456 seconds +│ :rank_time = :rank_time +└ rank_times = 0.034015456 + ⌜ # Computing specializations.. Time: 0:00:10 ✓ # Computing specializations.. Time: 0:00:10 + ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 2 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 10. +[ Info: Groebner basis computed in 13.074297936 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 4.222819565 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 14 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 12 fractions 12 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 4.814101729 seconds. Result: true +[ Info: Out of 30 initial generators there are 12 indepdendent +[ Info: The ranking of the new set of generators is 159 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 1 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 10. +[ Info: Groebner basis computed in 5.138238638 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 1.465960933 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 19 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (18 in total): Nemo.QQMPolyRingElem[rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, delta_LM, mu_PE, mu_PL, mu_LL, mu_P, rho_E, N, E, S, M, P] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 46 +┌ Info: Final cleaning and simplification of generators. +└ Out of 34 fractions 19 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 2.266522624 seconds. Result: true +[ Info: Out of 20 initial generators there are 17 indepdendent +[ Info: The ranking of the new set of generators is 159 +[ Info: The search for identifiable functions concluded in 79.747776241 seconds +[ Info: Processing CD8 T cell differentiation +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.028282885 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.028282885 +[ Info: Computing Wronskians +┌ Info: Computed in 0.022808084 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.022808084 +[ Info: Dimensions of the Wronskians [8, 14, 10] +┌ Info: Ranks of the Wronskians computed in 4.3867e-5 seconds +│ :rank_time = :rank_time +└ rank_times = 4.3867e-5 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 2 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 10. +[ Info: Groebner basis computed in 0.018989265 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.003466853 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 14 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 12 fractions 12 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.003787761 seconds. Result: true +[ Info: Out of 30 initial generators there are 12 indepdendent +[ Info: The ranking of the new set of generators is 159 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 1 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 10. +[ Info: Groebner basis computed in 0.020896246 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.003529679 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 19 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (18 in total): Nemo.QQMPolyRingElem[rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, delta_LM, mu_PE, mu_PL, mu_LL, mu_P, rho_E, N, E, S, M, P] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 46 +┌ Info: Final cleaning and simplification of generators. +└ Out of 34 fractions 19 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.005065786 seconds. Result: true +[ Info: Out of 20 initial generators there are 17 indepdendent +[ Info: The ranking of the new set of generators is 159 +[ Info: The search for identifiable functions concluded in 0.716978186 seconds +┌ Info: Result is +│ result = +│ 17-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ M +│ S +│ E +│ N +│ ⋮ +│ P*rho_E +│ delta_NE*P +└ rho_P*P diff --git a/benchmarking/IdentifiableFunctions/results/CD8 T cell differentiation/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/CD8 T cell differentiation/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..e0a8083a4 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/CD8 T cell differentiation/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[M, S, E, N, mu_P, mu_LL, mu_PL, mu_PE, delta_LM, mu_M, mu_N, delta_EL, mu_LE, mu_EE, P*rho_E, delta_NE*P, rho_P*P] diff --git a/benchmarking/IdentifiableFunctions/results/CD8 T cell differentiation/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/CD8 T cell differentiation/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..1800d0e36 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/CD8 T cell differentiation/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +CD8 T cell differentiation +id_total, 0.717486799 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.005065786 +id_inclusion_check_mod_p, 0.003529679 +id_groebner_time, 0.020896246 +id_beautifulization, 0.266809872 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 159.0 diff --git a/benchmarking/IdentifiableFunctions/systems/CGV1990/CGV1990.jl b/benchmarking/IdentifiableFunctions/results/CGV1990/CGV1990.jl similarity index 100% rename from benchmarking/IdentifiableFunctions/systems/CGV1990/CGV1990.jl rename to benchmarking/IdentifiableFunctions/results/CGV1990/CGV1990.jl index 2c720b77a..5d3909701 100644 --- a/benchmarking/IdentifiableFunctions/systems/CGV1990/CGV1990.jl +++ b/benchmarking/IdentifiableFunctions/results/CGV1990/CGV1990.jl @@ -3,10 +3,10 @@ using StructuralIdentifiability system = @ODEmodel( - q35'(t) = k5*R*q3(t)*V3 - k5*q3(t)*q35(t) - k6*q35(t), - q3'(t) = (5*k5*q36(t)*V36*q3(t) - 5*k5*S*V36^2*q3(t) - k5*R*q3(t)*V3^2 + k5*q3(t)*q35(t)*V3 + k3*q1(t)*V3 + q36(t)*k6*V3 - k4*q3(t)*V3 + k6*q35(t)*V3)//V3, q1'(t) = -k3*q1(t) - q1(t)*k7 + k4*q3(t) + u(t), - q7'(t) = q1(t)*k7, + q3'(t) = (5*k5*q36(t)*V36*q3(t) - 5*k5*S*V36^2*q3(t) - k5*R*q3(t)*V3^2 + k5*q3(t)*q35(t)*V3 + k3*q1(t)*V3 + q36(t)*k6*V3 - k4*q3(t)*V3 + k6*q35(t)*V3)//V3, + q35'(t) = k5*R*q3(t)*V3 - k5*q3(t)*q35(t) - k6*q35(t), q36'(t) = (-5*k5*q36(t)*V36*q3(t) + 5*k5*S*V36^2*q3(t) - q36(t)*k6*V3)//V3, + q7'(t) = q1(t)*k7, y1(t) = q7(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/CGV1990/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/CGV1990/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..2e5b1f496 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/CGV1990/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +CGV1990 +id_npoints_degree, 56 +id_npoints_interpolation, 148 +are_id_funcs_polynomial, false diff --git a/benchmarking/IdentifiableFunctions/results/CGV1990/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/CGV1990/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..46a9a02d9 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/CGV1990/logs_(normalforms, 2)_with_states @@ -0,0 +1,208 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "CGV1990" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: q1, q3, q35, q36, q7 +[ Info: Parameters: k5, k3, S, V36, k4, k6, R, k7, V3 +[ Info: Inputs: u +[ Info: Outputs: y1 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 10.942989066 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 10.942989066 +[ Info: Computing Wronskians +┌ Info: Computed in 12.295003664 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 12.295003664 +[ Info: Dimensions of the Wronskians [264] +┌ Info: Ranks of the Wronskians computed in 0.042740719 seconds +│ :rank_time = :rank_time +└ rank_times = 0.042740719 + ⌜ # Computing specializations.. Time: 0:00:10 ✓ # Computing specializations.. Time: 0:00:11 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 2 for num. and 2 for den. +└ Points used: 24. +[ Info: Groebner basis computed in 13.918781432 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 4.623245169 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 3 for den. +│ Maximal number of interpolated terms are: 3 for num. and 2 for den. +└ Points used: 72. +[ Info: Groebner basis computed in 0.546275158 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.037809324 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 25 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 8 fractions 8 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 5.89979207 seconds. Result: true +[ Info: Out of 414 initial generators there are 8 indepdendent +[ Info: The ranking of the new set of generators is 914 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 2 for num. and 2 for den. +└ Points used: 24. +[ Info: Groebner basis computed in 0.679152311 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.057602318 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 3 for num. and 2 for den. +│ Maximal number of interpolated terms are: 2 for num. and 2 for den. +└ Points used: 28. +[ Info: Groebner basis computed in 0.071987304 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.057355518 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 32 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (14 in total): Nemo.QQMPolyRingElem[k5, k3, S, V36, k4, k6, R, k7, V3, q1, q3, q35, q36, q7] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 23 +┌ Info: Final cleaning and simplification of generators. +└ Out of 34 fractions 25 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.081649169 seconds. Result: true +[ Info: Out of 18 initial generators there are 14 indepdendent +[ Info: The ranking of the new set of generators is 2985 +[ Info: The search for identifiable functions concluded in 71.73171464 seconds +[ Info: Processing CGV1990 +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.08917936 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.08917936 +[ Info: Computing Wronskians +┌ Info: Computed in 0.355716519 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.355716519 +[ Info: Dimensions of the Wronskians [264] +┌ Info: Ranks of the Wronskians computed in 0.009651604 seconds +│ :rank_time = :rank_time +└ rank_times = 0.009651604 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 2 for num. and 2 for den. +└ Points used: 24. +[ Info: Groebner basis computed in 0.128192422 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.077685568 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 3 for den. +│ Maximal number of interpolated terms are: 3 for num. and 2 for den. +└ Points used: 72. +[ Info: Groebner basis computed in 0.481487581 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.036790246 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 25 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 8 fractions 8 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.199449451 seconds. Result: true +[ Info: Out of 414 initial generators there are 8 indepdendent +[ Info: The ranking of the new set of generators is 914 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 2 for num. and 2 for den. +└ Points used: 24. +[ Info: Groebner basis computed in 0.126159587 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.011291663 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 3 for num. and 2 for den. +│ Maximal number of interpolated terms are: 2 for num. and 2 for den. +└ Points used: 28. +[ Info: Groebner basis computed in 0.099340501 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.013249408 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 32 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (14 in total): Nemo.QQMPolyRingElem[k5, k3, S, V36, k4, k6, R, k7, V3, q1, q3, q35, q36, q7] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 23 +┌ Info: Final cleaning and simplification of generators. +└ Out of 34 fractions 25 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.066164433 seconds. Result: true +[ Info: Out of 18 initial generators there are 14 indepdendent +[ Info: The ranking of the new set of generators is 2985 +[ Info: The search for identifiable functions concluded in 2.25166845 seconds +┌ Info: Result is +│ result = +│ 14-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ q7 +│ q3 +│ q1 +│ k7 +│ ⋮ +│ (V36^2 + 1//25*V3^2)//(V36*V3) +│ (-S*V3 + 25*V36*R)//(q36 - q35) +└ (-k5*V36 + 1//5*k5*V3)//(q36*V3 - q35*V3) diff --git a/benchmarking/IdentifiableFunctions/results/CGV1990/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/CGV1990/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..0356bf352 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/CGV1990/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[q7, q3, q1, k7, k6, k4, k3, q36*q35, q36 + q35, S*V3 + 25*V36*R, S*V36 + R*V3, (V36^2 + 1//25*V3^2)//(V36*V3), (-S*V3 + 25*V36*R)//(q36 - q35), (-k5*V36 + 1//5*k5*V3)//(q36*V3 - q35*V3)] diff --git a/benchmarking/IdentifiableFunctions/results/CGV1990/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/CGV1990/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..6fe962a93 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/CGV1990/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +CGV1990 +id_total, 2.252067823 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.066164433 +id_inclusion_check_mod_p, 0.024541071 +id_groebner_time, 0.225500088 +id_beautifulization, 0.30685674500000004 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 2985.0 diff --git a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/Chemical reaction network.jl b/benchmarking/IdentifiableFunctions/results/Chemical reaction network/Chemical reaction network.jl similarity index 92% rename from benchmarking/IdentifiableFunctions/systems/Chemical reaction network/Chemical reaction network.jl rename to benchmarking/IdentifiableFunctions/results/Chemical reaction network/Chemical reaction network.jl index fe976fe88..a31bfacdc 100644 --- a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/Chemical reaction network.jl +++ b/benchmarking/IdentifiableFunctions/results/Chemical reaction network/Chemical reaction network.jl @@ -3,12 +3,12 @@ using StructuralIdentifiability system = @ODEmodel( - x6'(t) = -k5*x6(t) - k4*x6(t) + k6*x5(t)*x3(t), x1'(t) = k4*x6(t) + k2*x4(t) - k1*x1(t)*x2(t), x2'(t) = k3*x4(t) + k2*x4(t) - k1*x1(t)*x2(t), x3'(t) = k5*x6(t) + k3*x4(t) - k6*x5(t)*x3(t), - x5'(t) = k5*x6(t) + k4*x6(t) - k6*x5(t)*x3(t), x4'(t) = -k3*x4(t) - k2*x4(t) + k1*x1(t)*x2(t), - y2(t) = x2(t), - y1(t) = x3(t) + x5'(t) = k5*x6(t) + k4*x6(t) - k6*x5(t)*x3(t), + x6'(t) = -k5*x6(t) - k4*x6(t) + k6*x5(t)*x3(t), + y1(t) = x3(t), + y2(t) = x2(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/Chemical reaction network/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Chemical reaction network/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..9a6b15bd1 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Chemical reaction network/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +Chemical reaction network +id_npoints_degree, 18 +id_npoints_interpolation, 26 +are_id_funcs_polynomial, true diff --git a/benchmarking/IdentifiableFunctions/results/Chemical reaction network/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Chemical reaction network/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..41550d38b --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Chemical reaction network/logs_(normalforms, 2)_with_states @@ -0,0 +1,157 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "Chemical reaction network" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: x1, x2, x3, x4, x5, x6 +[ Info: Parameters: k5, k3, k4, k2, k6, k1 +[ Info: Inputs: +[ Info: Outputs: y1, y2 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 15.296813832 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 15.296813832 +[ Info: Computing Wronskians +┌ Info: Computed in 11.544654514 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 11.544654514 +[ Info: Dimensions of the Wronskians [17, 29] +┌ Info: Ranks of the Wronskians computed in 0.032249287 seconds +│ :rank_time = :rank_time +└ rank_times = 0.032249287 + ⌜ # Computing specializations.. Time: 0:00:10 ✓ # Computing specializations.. Time: 0:00:10 + ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 2 for den. +│ Maximal number of interpolated terms are: 1 for num. and 2 for den. +└ Points used: 20. +[ Info: Groebner basis computed in 13.332109944 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 4.481989849 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 8 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 6 fractions 6 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 5.050252958 seconds. Result: true +[ Info: Out of 72 initial generators there are 6 indepdendent +[ Info: The ranking of the new set of generators is 24 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 5.275083012 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 1.334984548 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 14 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (12 in total): Nemo.QQMPolyRingElem[k5, k3, k4, k2, k6, k1, x1, x2, x3, x4, x5, x6] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 1 +┌ Info: Final cleaning and simplification of generators. +└ Out of 24 fractions 12 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 1.743432691 seconds. Result: true +[ Info: Out of 14 initial generators there are 12 indepdendent +[ Info: The ranking of the new set of generators is 78 +[ Info: The search for identifiable functions concluded in 77.031512789 seconds +[ Info: Processing Chemical reaction network +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.046767289 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.046767289 +[ Info: Computing Wronskians +┌ Info: Computed in 0.111353702 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.111353702 +[ Info: Dimensions of the Wronskians [17, 29] +┌ Info: Ranks of the Wronskians computed in 8.5272e-5 seconds +│ :rank_time = :rank_time +└ rank_times = 8.5272e-5 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 2 for den. +│ Maximal number of interpolated terms are: 1 for num. and 2 for den. +└ Points used: 20. +[ Info: Groebner basis computed in 0.023304045 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.003984662 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 8 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 6 fractions 6 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.006250057 seconds. Result: true +[ Info: Out of 72 initial generators there are 6 indepdendent +[ Info: The ranking of the new set of generators is 24 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 0.013790498 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.003964474 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 14 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (12 in total): Nemo.QQMPolyRingElem[k5, k3, k4, k2, k6, k1, x1, x2, x3, x4, x5, x6] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 1 +┌ Info: Final cleaning and simplification of generators. +└ Out of 24 fractions 12 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.004655636 seconds. Result: true +[ Info: Out of 14 initial generators there are 12 indepdendent +[ Info: The ranking of the new set of generators is 78 +[ Info: The search for identifiable functions concluded in 0.360263048 seconds +┌ Info: Result is +│ result = +│ 12-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ x6 +│ x5 +│ x4 +│ x3 +│ ⋮ +│ k4 +│ k3 +└ k5 diff --git a/benchmarking/IdentifiableFunctions/results/Chemical reaction network/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Chemical reaction network/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..a6952f91e --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Chemical reaction network/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[x6, x5, x4, x3, x2, x1, k1, k6, k2, k4, k3, k5] diff --git a/benchmarking/IdentifiableFunctions/results/Chemical reaction network/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Chemical reaction network/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..66e735da8 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Chemical reaction network/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +Chemical reaction network +id_total, 0.360772259 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.004655636 +id_inclusion_check_mod_p, 0.003964474 +id_groebner_time, 0.013790498 +id_beautifulization, 0.12562378800000001 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 78.0 diff --git a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/Crauste_SI.jl b/benchmarking/IdentifiableFunctions/results/Crauste_SI/Crauste_SI.jl similarity index 91% rename from benchmarking/IdentifiableFunctions/systems/Crauste_SI/Crauste_SI.jl rename to benchmarking/IdentifiableFunctions/results/Crauste_SI/Crauste_SI.jl index 63de253bb..c8171d8b9 100644 --- a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/Crauste_SI.jl +++ b/benchmarking/IdentifiableFunctions/results/Crauste_SI/Crauste_SI.jl @@ -3,12 +3,12 @@ using StructuralIdentifiability system = @ODEmodel( - M'(t) = S(t)*delta_LM - M(t)*mu_M, - P'(t) = rho_P*P(t)^2 - S(t)*P(t)*mu_PL - E(t)*mu_PE*P(t) - P(t)*mu_P, - E'(t) = -mu_EE*E(t)^2 + delta_NE*N(t)*P(t) - delta_EL*E(t) + E(t)*P(t)*rho_E, N'(t) = -delta_NE*N(t)*P(t) - mu_N*N(t), + E'(t) = -mu_EE*E(t)^2 + delta_NE*N(t)*P(t) - delta_EL*E(t) + E(t)*P(t)*rho_E, S'(t) = -mu_LE*S(t)*E(t) + delta_EL*S(t) - S(t)^2*mu_LL - S(t)*delta_LM, - y3(t) = M(t), + M'(t) = S(t)*delta_LM - M(t)*mu_M, + P'(t) = rho_P*P(t)^2 - S(t)*P(t)*mu_PL - E(t)*mu_PE*P(t) - P(t)*mu_P, y1(t) = N(t), - y2(t) = S(t) + E(t) + y2(t) = S(t) + E(t), + y3(t) = M(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/Crauste_SI/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Crauste_SI/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..15a4ba194 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Crauste_SI/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +Crauste_SI +id_npoints_degree, 20 +id_npoints_interpolation, 20 +are_id_funcs_polynomial, true diff --git a/benchmarking/IdentifiableFunctions/results/Crauste_SI/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Crauste_SI/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..6cf90d20b --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Crauste_SI/logs_(normalforms, 2)_with_states @@ -0,0 +1,157 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "Crauste_SI" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: N, E, S, M, P +[ Info: Parameters: rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, delta_LM, mu_PE, mu_PL, mu_LL, mu_P, rho_E +[ Info: Inputs: +[ Info: Outputs: y1, y2, y3 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 15.436030351 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 15.436030351 +[ Info: Computing Wronskians +┌ Info: Computed in 11.678134373 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 11.678134373 +[ Info: Dimensions of the Wronskians [8, 14, 10] +┌ Info: Ranks of the Wronskians computed in 0.031052732 seconds +│ :rank_time = :rank_time +└ rank_times = 0.031052732 + ⌜ # Computing specializations.. Time: 0:00:10 ✓ # Computing specializations.. Time: 0:00:11 + ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 2 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 10. +[ Info: Groebner basis computed in 13.67499854 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 4.393607898 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 14 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 12 fractions 12 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 4.886658669 seconds. Result: true +[ Info: Out of 30 initial generators there are 12 indepdendent +[ Info: The ranking of the new set of generators is 159 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 1 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 10. +[ Info: Groebner basis computed in 5.169643386 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 1.510430891 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 19 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (18 in total): Nemo.QQMPolyRingElem[rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, delta_LM, mu_PE, mu_PL, mu_LL, mu_P, rho_E, N, E, S, M, P] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 46 +┌ Info: Final cleaning and simplification of generators. +└ Out of 34 fractions 19 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 1.44185509 seconds. Result: true +[ Info: Out of 20 initial generators there are 17 indepdendent +[ Info: The ranking of the new set of generators is 159 +[ Info: The search for identifiable functions concluded in 80.211375898 seconds +[ Info: Processing Crauste_SI +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.016666137 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.016666137 +[ Info: Computing Wronskians +┌ Info: Computed in 0.01349694 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.01349694 +[ Info: Dimensions of the Wronskians [8, 14, 10] +┌ Info: Ranks of the Wronskians computed in 3.1534e-5 seconds +│ :rank_time = :rank_time +└ rank_times = 3.1534e-5 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 2 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 10. +[ Info: Groebner basis computed in 0.009594418 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.002649753 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 14 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 12 fractions 12 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.002309435 seconds. Result: true +[ Info: Out of 30 initial generators there are 12 indepdendent +[ Info: The ranking of the new set of generators is 159 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 1 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 10. +[ Info: Groebner basis computed in 0.012026891 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.002556836 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 19 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (18 in total): Nemo.QQMPolyRingElem[rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, delta_LM, mu_PE, mu_PL, mu_LL, mu_P, rho_E, N, E, S, M, P] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 46 +┌ Info: Final cleaning and simplification of generators. +└ Out of 34 fractions 19 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.003585332 seconds. Result: true +[ Info: Out of 20 initial generators there are 17 indepdendent +[ Info: The ranking of the new set of generators is 159 +[ Info: The search for identifiable functions concluded in 0.471749473 seconds +┌ Info: Result is +│ result = +│ 17-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ M +│ S +│ E +│ N +│ ⋮ +│ P*rho_E +│ delta_NE*P +└ rho_P*P diff --git a/benchmarking/IdentifiableFunctions/results/Crauste_SI/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Crauste_SI/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..e0a8083a4 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Crauste_SI/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[M, S, E, N, mu_P, mu_LL, mu_PL, mu_PE, delta_LM, mu_M, mu_N, delta_EL, mu_LE, mu_EE, P*rho_E, delta_NE*P, rho_P*P] diff --git a/benchmarking/IdentifiableFunctions/results/Crauste_SI/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Crauste_SI/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..6c725d5ae --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Crauste_SI/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +Crauste_SI +id_total, 0.472120832 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.003585332 +id_inclusion_check_mod_p, 0.002556836 +id_groebner_time, 0.012026891 +id_beautifulization, 0.17943829399999997 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 159.0 diff --git a/benchmarking/IdentifiableFunctions/systems/Fujita/Fujita.jl b/benchmarking/IdentifiableFunctions/results/Fujita/Fujita.jl similarity index 100% rename from benchmarking/IdentifiableFunctions/systems/Fujita/Fujita.jl rename to benchmarking/IdentifiableFunctions/results/Fujita/Fujita.jl index 9b46b26ee..fb7a453f2 100644 --- a/benchmarking/IdentifiableFunctions/systems/Fujita/Fujita.jl +++ b/benchmarking/IdentifiableFunctions/results/Fujita/Fujita.jl @@ -4,14 +4,14 @@ using StructuralIdentifiability system = @ODEmodel( EGFR'(t) = -reaction_1_k1*EGF_EGFR(t) + reaction_1_k2*EGF_EGFR(t) - EGFR(t)*EGFR_turnover + EGFR_turnover*pro_EGFR(t), - pAkt'(t) = -pAkt(t)*reaction_7_k1 - pAkt(t)*reaction_5_k1*S6(t) + reaction_6_k1*pAkt_S6(t) + reaction_3_k1*pEGFR_Akt(t) + pAkt_S6(t)*reaction_5_k2, - pEGFR_Akt'(t) = pEGFR(t)*Akt(t)*reaction_2_k1 - reaction_3_k1*pEGFR_Akt(t) - pEGFR_Akt(t)*reaction_2_k2, - S6'(t) = pS6(t)*reaction_8_k1 - pAkt(t)*reaction_5_k1*S6(t) + pAkt_S6(t)*reaction_5_k2, pEGFR'(t) = -reaction_4_k1*pEGFR(t) + reaction_9_k1*EGF_EGFR(t) - pEGFR(t)*Akt(t)*reaction_2_k1 + reaction_3_k1*pEGFR_Akt(t) + pEGFR_Akt(t)*reaction_2_k2, - EGF_EGFR'(t) = reaction_1_k1*EGF_EGFR(t) - reaction_9_k1*EGF_EGFR(t) - reaction_1_k2*EGF_EGFR(t), + pEGFR_Akt'(t) = pEGFR(t)*Akt(t)*reaction_2_k1 - reaction_3_k1*pEGFR_Akt(t) - pEGFR_Akt(t)*reaction_2_k2, Akt'(t) = pAkt(t)*reaction_7_k1 - pEGFR(t)*Akt(t)*reaction_2_k1 + pEGFR_Akt(t)*reaction_2_k2, + pAkt'(t) = -pAkt(t)*reaction_7_k1 - pAkt(t)*reaction_5_k1*S6(t) + reaction_6_k1*pAkt_S6(t) + reaction_3_k1*pEGFR_Akt(t) + pAkt_S6(t)*reaction_5_k2, + S6'(t) = pS6(t)*reaction_8_k1 - pAkt(t)*reaction_5_k1*S6(t) + pAkt_S6(t)*reaction_5_k2, pAkt_S6'(t) = pAkt(t)*reaction_5_k1*S6(t) - reaction_6_k1*pAkt_S6(t) - pAkt_S6(t)*reaction_5_k2, pS6'(t) = -pS6(t)*reaction_8_k1 + reaction_6_k1*pAkt_S6(t), + EGF_EGFR'(t) = reaction_1_k1*EGF_EGFR(t) - reaction_9_k1*EGF_EGFR(t) - reaction_1_k2*EGF_EGFR(t), y1(t) = pEGFR(t)*a1 + a1*pEGFR_Akt(t), y2(t) = a2*pAkt(t) + a2*pAkt_S6(t), y3(t) = pS6(t)*a3 diff --git a/benchmarking/IdentifiableFunctions/results/Fujita/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Fujita/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..a305924fa --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Fujita/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +Fujita +id_npoints_degree, 32 +id_npoints_interpolation, 120 +are_id_funcs_polynomial, true diff --git a/benchmarking/IdentifiableFunctions/results/Fujita/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Fujita/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..e102d8bca --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Fujita/logs_(normalforms, 2)_with_states @@ -0,0 +1,183 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "Fujita" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: EGFR, pEGFR, pEGFR_Akt, Akt, pAkt, S6, pAkt_S6, pS6, EGF_EGFR +[ Info: Parameters: a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_2_k2, reaction_5_k2, reaction_8_k1 +[ Info: Inputs: pro_EGFR +[ Info: Outputs: y1, y2, y3 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 15.50856847 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 15.50856847 +[ Info: Computing Wronskians +┌ Info: Computed in 10.669908928 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 10.669908928 +[ Info: Dimensions of the Wronskians [18, 9, 145] +┌ Info: Ranks of the Wronskians computed in 0.024702262 seconds +│ :rank_time = :rank_time +└ rank_times = 0.024702262 + ⌜ # Computing specializations.. Time: 0:00:07 ✓ # Computing specializations.. Time: 0:00:07 + ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 1 for den. +│ Maximal number of interpolated terms are: 3 for num. and 1 for den. +└ Points used: 32. +[ Info: Groebner basis computed in 9.303760192 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 2.904246621 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 14 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 12 fractions 12 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 3.210362324 seconds. Result: true +[ Info: Out of 217 initial generators there are 12 indepdendent +[ Info: The ranking of the new set of generators is 368 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 1 for den. +│ Maximal number of interpolated terms are: 3 for num. and 1 for den. +└ Points used: 40. +[ Info: Groebner basis computed in 3.42024615 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.964993129 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 3 for num. and 1 for den. +│ Maximal number of interpolated terms are: 3 for num. and 1 for den. +└ Points used: 48. +[ Info: Groebner basis computed in 0.046632681 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.043357546 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 22 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (25 in total): Nemo.QQMPolyRingElem[a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_2_k2, reaction_5_k2, reaction_8_k1, EGFR, pEGFR, pEGFR_Akt, Akt, pAkt, S6, pAkt_S6, pS6, EGF_EGFR] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 65 +┌ Info: Final cleaning and simplification of generators. +└ Out of 71 fractions 56 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 1.590563364 seconds. Result: true +[ Info: Out of 23 initial generators there are 20 indepdendent +[ Info: The ranking of the new set of generators is 306 +[ Info: The search for identifiable functions concluded in 64.752608206 seconds +[ Info: Processing Fujita +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.227420218 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.227420218 +[ Info: Computing Wronskians +┌ Info: Computed in 0.363128791 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.363128791 +[ Info: Dimensions of the Wronskians [18, 9, 145] +┌ Info: Ranks of the Wronskians computed in 0.001319005 seconds +│ :rank_time = :rank_time +└ rank_times = 0.001319005 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 1 for den. +│ Maximal number of interpolated terms are: 3 for num. and 1 for den. +└ Points used: 32. +[ Info: Groebner basis computed in 0.105492451 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.01120313 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 14 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 12 fractions 12 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.023946581 seconds. Result: true +[ Info: Out of 217 initial generators there are 12 indepdendent +[ Info: The ranking of the new set of generators is 368 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 1 for den. +│ Maximal number of interpolated terms are: 3 for num. and 1 for den. +└ Points used: 40. +[ Info: Groebner basis computed in 0.040949391 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.037549633 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 3 for num. and 1 for den. +│ Maximal number of interpolated terms are: 3 for num. and 1 for den. +└ Points used: 48. +[ Info: Groebner basis computed in 0.046843372 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.003639314 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 22 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (25 in total): Nemo.QQMPolyRingElem[a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_2_k2, reaction_5_k2, reaction_8_k1, EGFR, pEGFR, pEGFR_Akt, Akt, pAkt, S6, pAkt_S6, pS6, EGF_EGFR] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 65 +┌ Info: Final cleaning and simplification of generators. +└ Out of 71 fractions 56 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.021729262 seconds. Result: true +[ Info: Out of 23 initial generators there are 20 indepdendent +[ Info: The ranking of the new set of generators is 306 +[ Info: The search for identifiable functions concluded in 2.497022989 seconds +┌ Info: Result is +│ result = +│ 20-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ reaction_8_k1 +│ reaction_5_k2 +│ reaction_2_k2 +│ reaction_3_k1 +│ ⋮ +│ a2*pS6 +│ reaction_9_k1*reaction_2_k1*EGF_EGFR +└ reaction_1_k1 - reaction_9_k1 - reaction_1_k2 diff --git a/benchmarking/IdentifiableFunctions/results/Fujita/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Fujita/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..5a001ec9f --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Fujita/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[reaction_8_k1, reaction_5_k2, reaction_2_k2, reaction_3_k1, reaction_6_k1, reaction_7_k1, reaction_4_k1, pS6*reaction_2_k1, reaction_2_k1*pAkt_S6, reaction_2_k1*S6, pAkt*reaction_2_k1, Akt*reaction_2_k1, pEGFR_Akt*reaction_2_k1, pEGFR*reaction_2_k1, pS6*reaction_5_k1, pS6*a1, pS6*a3, a2*pS6, reaction_9_k1*reaction_2_k1*EGF_EGFR, reaction_1_k1 - reaction_9_k1 - reaction_1_k2] diff --git a/benchmarking/IdentifiableFunctions/results/Fujita/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Fujita/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..99dc7a573 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Fujita/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +Fujita +id_total, 2.497408428 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.021729262 +id_inclusion_check_mod_p, 0.041188947 +id_groebner_time, 0.087792763 +id_beautifulization, 0.296519379 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 306.0 diff --git a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/Goodwin oscillator.jl b/benchmarking/IdentifiableFunctions/results/Goodwin oscillator/Goodwin oscillator.jl similarity index 100% rename from benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/Goodwin oscillator.jl rename to benchmarking/IdentifiableFunctions/results/Goodwin oscillator/Goodwin oscillator.jl diff --git a/benchmarking/IdentifiableFunctions/results/Goodwin oscillator/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Goodwin oscillator/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..fe24e494c --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Goodwin oscillator/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +Goodwin oscillator +id_npoints_degree, 20 +id_npoints_interpolation, 44 +are_id_funcs_polynomial, false diff --git a/benchmarking/IdentifiableFunctions/results/Goodwin oscillator/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Goodwin oscillator/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..14faa3a11 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Goodwin oscillator/logs_(normalforms, 2)_with_states @@ -0,0 +1,156 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "Goodwin oscillator" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: x1, x2, x3, x4 +[ Info: Parameters: b, alpha, c, gama, delta, sigma, beta +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 7.078050781 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 7.078050781 +[ Info: Computing Wronskians +┌ Info: Computed in 7.602338717 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 7.602338717 +[ Info: Dimensions of the Wronskians [69] +┌ Info: Ranks of the Wronskians computed in 0.023306329 seconds +│ :rank_time = :rank_time +└ rank_times = 0.023306329 + ⌜ # Computing specializations.. Time: 0:00:06 ✓ # Computing specializations.. Time: 0:00:07 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 24. +[ Info: Groebner basis computed in 8.87300459 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 2.983427603 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 7 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 6 fractions 6 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 3.619306041 seconds. Result: true +[ Info: Out of 90 initial generators there are 5 indepdendent +[ Info: The ranking of the new set of generators is 18 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 1 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 20. +[ Info: Groebner basis computed in 0.377815049 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.003870143 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 12 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (11 in total): Nemo.QQMPolyRingElem[b, alpha, c, gama, delta, sigma, beta, x1, x2, x3, x4] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 10 +┌ Info: Final cleaning and simplification of generators. +└ Out of 22 fractions 15 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.008533199 seconds. Result: true +[ Info: Out of 10 initial generators there are 9 indepdendent +[ Info: The ranking of the new set of generators is 138 +[ Info: The search for identifiable functions concluded in 44.482149407 seconds +[ Info: Processing Goodwin oscillator +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.011569849 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.011569849 +[ Info: Computing Wronskians +┌ Info: Computed in 0.068262591 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.068262591 +[ Info: Dimensions of the Wronskians [69] +┌ Info: Ranks of the Wronskians computed in 0.000247482 seconds +│ :rank_time = :rank_time +└ rank_times = 0.000247482 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 24. +[ Info: Groebner basis computed in 0.018145012 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.003494806 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 7 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 6 fractions 6 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.006524787 seconds. Result: true +[ Info: Out of 90 initial generators there are 5 indepdendent +[ Info: The ranking of the new set of generators is 18 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 1 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 20. +[ Info: Groebner basis computed in 0.041792148 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.00367098 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 12 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (11 in total): Nemo.QQMPolyRingElem[b, alpha, c, gama, delta, sigma, beta, x1, x2, x3, x4] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 10 +┌ Info: Final cleaning and simplification of generators. +└ Out of 22 fractions 15 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.008341455 seconds. Result: true +[ Info: Out of 10 initial generators there are 9 indepdendent +[ Info: The ranking of the new set of generators is 138 +[ Info: The search for identifiable functions concluded in 0.287172966 seconds +┌ Info: Result is +│ result = +│ 9-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ x4 +│ x1 +│ sigma +│ c +│ ⋮ +│ delta + beta +│ (alpha*gama)//x3 +└ (gama*x2 + x3*beta)//x3 diff --git a/benchmarking/IdentifiableFunctions/results/Goodwin oscillator/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Goodwin oscillator/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..bdf604353 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Goodwin oscillator/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[x4, x1, sigma, c, b, delta*beta, delta + beta, (alpha*gama)//x3, (gama*x2 + x3*beta)//x3] diff --git a/benchmarking/IdentifiableFunctions/results/Goodwin oscillator/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Goodwin oscillator/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..6b796e18f --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Goodwin oscillator/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +Goodwin oscillator +id_total, 0.287523996 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.008341455 +id_inclusion_check_mod_p, 0.00367098 +id_groebner_time, 0.041792148 +id_beautifulization, 0.091276324 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 138.0 diff --git a/benchmarking/IdentifiableFunctions/systems/HIV/HIV.jl b/benchmarking/IdentifiableFunctions/results/HIV/HIV.jl similarity index 90% rename from benchmarking/IdentifiableFunctions/systems/HIV/HIV.jl rename to benchmarking/IdentifiableFunctions/results/HIV/HIV.jl index 7c6c739dc..f12095c9f 100644 --- a/benchmarking/IdentifiableFunctions/systems/HIV/HIV.jl +++ b/benchmarking/IdentifiableFunctions/results/HIV/HIV.jl @@ -3,11 +3,11 @@ using StructuralIdentifiability system = @ODEmodel( - w'(t) = -b*w(t) + c*w(t)*x(t)*y(t) - c*w(t)*q*y(t), - v'(t) = k*y(t) - v(t)*u, x'(t) = lm - x(t)*d - x(t)*v(t)*beta, - z'(t) = c*w(t)*q*y(t) - h*z(t), y'(t) = x(t)*v(t)*beta - a*y(t), - y2(t) = z(t), - y1(t) = w(t) + v'(t) = k*y(t) - v(t)*u, + w'(t) = -b*w(t) + c*w(t)*x(t)*y(t) - c*w(t)*q*y(t), + z'(t) = c*w(t)*q*y(t) - h*z(t), + y1(t) = w(t), + y2(t) = z(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/HIV/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/HIV/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..536ad874a --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/HIV/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +HIV +id_npoints_degree, 38 +id_npoints_interpolation, 40 +are_id_funcs_polynomial, false diff --git a/benchmarking/IdentifiableFunctions/results/HIV/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/HIV/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..7da4e3715 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/HIV/logs_(normalforms, 2)_with_states @@ -0,0 +1,183 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "HIV" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: x, y, v, w, z +[ Info: Parameters: b, c, h, lm, d, k, u, q, a, beta +[ Info: Inputs: +[ Info: Outputs: y1, y2 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 15.121598103 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 15.121598103 +[ Info: Computing Wronskians +┌ Info: Computed in 11.600649557 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 11.600649557 +[ Info: Dimensions of the Wronskians [18, 40] +┌ Info: Ranks of the Wronskians computed in 0.03182239 seconds +│ :rank_time = :rank_time +└ rank_times = 0.03182239 + ⌜ # Computing specializations.. Time: 0:00:10 ✓ # Computing specializations.. Time: 0:00:11 + ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 12. +[ Info: Groebner basis computed in 13.628719271 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 4.469603793 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 2 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 16. +[ Info: Groebner basis computed in 0.031881999 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.006116587 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 11 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 8 fractions 8 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 4.949745412 seconds. Result: true +[ Info: Out of 81 initial generators there are 8 indepdendent +[ Info: The ranking of the new set of generators is 313 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 12. +[ Info: Groebner basis computed in 5.329090161 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 1.430969866 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 14 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (15 in total): Nemo.QQMPolyRingElem[b, c, h, lm, d, k, u, q, a, beta, x, y, v, w, z] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 33 +┌ Info: Final cleaning and simplification of generators. +└ Out of 21 fractions 13 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 2.288807222 seconds. Result: true +[ Info: Out of 15 initial generators there are 13 indepdendent +[ Info: The ranking of the new set of generators is 694 +[ Info: The search for identifiable functions concluded in 81.266798602 seconds +[ Info: Processing HIV +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.041531383 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.041531383 +[ Info: Computing Wronskians +┌ Info: Computed in 0.039119538 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.039119538 +[ Info: Dimensions of the Wronskians [18, 40] +┌ Info: Ranks of the Wronskians computed in 0.000163735 seconds +│ :rank_time = :rank_time +└ rank_times = 0.000163735 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 12. +[ Info: Groebner basis computed in 0.108065895 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.005199491 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 2 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 16. +[ Info: Groebner basis computed in 0.030773286 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.004982757 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 11 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 8 fractions 8 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.008484532 seconds. Result: true +[ Info: Out of 81 initial generators there are 8 indepdendent +[ Info: The ranking of the new set of generators is 313 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 12. +[ Info: Groebner basis computed in 0.020476693 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.003751261 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 14 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (15 in total): Nemo.QQMPolyRingElem[b, c, h, lm, d, k, u, q, a, beta, x, y, v, w, z] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 33 +┌ Info: Final cleaning and simplification of generators. +└ Out of 21 fractions 13 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.031848171 seconds. Result: true +[ Info: Out of 15 initial generators there are 13 indepdendent +[ Info: The ranking of the new set of generators is 694 +[ Info: The search for identifiable functions concluded in 0.78024452 seconds +┌ Info: Result is +│ result = +│ 13-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ z +│ w +│ a +│ u +│ ⋮ +│ lm//y +│ (k*y)//v +└ (k*beta)//(c*y) diff --git a/benchmarking/IdentifiableFunctions/results/HIV/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/HIV/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..562e5d20d --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/HIV/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[z, w, a, u, d, h, b, v*beta, x//y, q//y, lm//y, (k*y)//v, (k*beta)//(c*y)] diff --git a/benchmarking/IdentifiableFunctions/results/HIV/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/HIV/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..2d54e19f3 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/HIV/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +HIV +id_total, 0.780770468 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.031848171 +id_inclusion_check_mod_p, 0.003751261 +id_groebner_time, 0.020476693 +id_beautifulization, 0.18788758 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 694.0 diff --git a/benchmarking/IdentifiableFunctions/systems/HIV2_io/HIV2_io.jl b/benchmarking/IdentifiableFunctions/results/HIV2_io/HIV2_io.jl similarity index 100% rename from benchmarking/IdentifiableFunctions/systems/HIV2_io/HIV2_io.jl rename to benchmarking/IdentifiableFunctions/results/HIV2_io/HIV2_io.jl index b4f761576..dbadf7987 100644 --- a/benchmarking/IdentifiableFunctions/systems/HIV2_io/HIV2_io.jl +++ b/benchmarking/IdentifiableFunctions/results/HIV2_io/HIV2_io.jl @@ -3,9 +3,9 @@ using StructuralIdentifiability system = @ODEmodel( - x3'(t) = b*x1(t)*q2*x4(t) - x3(t)*w2 + k1*x2(t), x1'(t) = -b*x1(t)*x4(t) - d*x1(t) + s, x2'(t) = b*q1*x1(t)*x4(t) - w1*x2(t) - k1*x2(t), + x3'(t) = b*x1(t)*q2*x4(t) - x3(t)*w2 + k1*x2(t), x4'(t) = -c*x4(t) + k2*x3(t), y1(t) = x1(t), y2(t) = x4(t) diff --git a/benchmarking/IdentifiableFunctions/results/HIV2_io/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/HIV2_io/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..47d678fa0 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/HIV2_io/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +HIV2_io +id_npoints_degree, 50 +id_npoints_interpolation, 592 +are_id_funcs_polynomial, false diff --git a/benchmarking/IdentifiableFunctions/results/HIV2_io/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/HIV2_io/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..df9cc6a81 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/HIV2_io/logs_(normalforms, 2)_with_states @@ -0,0 +1,212 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "HIV2_io" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: x1, x2, x3, x4 +[ Info: Parameters: b, c, q1, w1, k2, d, s, k1, w2, q2 +[ Info: Inputs: +[ Info: Outputs: y1, y2 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 14.39345378 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 14.39345378 +[ Info: Computing Wronskians +┌ Info: Computed in 11.745306305 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 11.745306305 +[ Info: Dimensions of the Wronskians [4, 7] +┌ Info: Ranks of the Wronskians computed in 0.036473836 seconds +│ :rank_time = :rank_time +└ rank_times = 0.036473836 + ⌜ # Computing specializations.. Time: 0:00:09 ✓ # Computing specializations.. Time: 0:00:10 + ⌜ # Computing specializations.. Time: 0:00:00 + Points: 191  ✓ # Computing specializations.. Time: 0:00:00 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 1 for den. +│ Maximal number of interpolated terms are: 5 for num. and 1 for den. +└ Points used: 80. +[ Info: Groebner basis computed in 12.671052123 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 4.308751347 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 3 for num. and 1 for den. +│ Maximal number of interpolated terms are: 5 for num. and 1 for den. +└ Points used: 96. +[ Info: Groebner basis computed in 0.049694168 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.003686827 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 11 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 8 fractions 8 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 4.840188122 seconds. Result: true +[ Info: Out of 9 initial generators there are 8 indepdendent +[ Info: The ranking of the new set of generators is 120 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 5 for num. and 1 for den. +└ Points used: 96. +[ Info: Groebner basis computed in 0.869296378 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.006902103 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 4 for den. +│ Maximal number of interpolated terms are: 11 for num. and 8 for den. +└ Points used: 320. +[ Info: Groebner basis computed in 0.655256223 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.08457175 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 28 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (14 in total): Nemo.QQMPolyRingElem[b, c, q1, w1, k2, d, s, k1, w2, q2, x1, x2, x3, x4] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 10 +┌ Info: Final cleaning and simplification of generators. +└ Out of 27 fractions 19 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.532104011 seconds. Result: true +[ Info: Out of 14 initial generators there are 12 indepdendent +[ Info: The ranking of the new set of generators is 866 +[ Info: The search for identifiable functions concluded in 72.343451044 seconds +[ Info: Processing HIV2_io +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.013802676 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.013802676 +[ Info: Computing Wronskians +┌ Info: Computed in 0.009375598 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.009375598 +[ Info: Dimensions of the Wronskians [4, 7] +┌ Info: Ranks of the Wronskians computed in 2.7021e-5 seconds +│ :rank_time = :rank_time +└ rank_times = 2.7021e-5 + ⌜ # Computing specializations.. Time: 0:00:00 + Points: 214  ✓ # Computing specializations.. Time: 0:00:00 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 1 for den. +│ Maximal number of interpolated terms are: 5 for num. and 1 for den. +└ Points used: 80. +[ Info: Groebner basis computed in 0.044873282 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.002400431 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 3 for num. and 1 for den. +│ Maximal number of interpolated terms are: 5 for num. and 1 for den. +└ Points used: 96. +[ Info: Groebner basis computed in 0.048598179 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.071751119 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 11 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 8 fractions 8 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.004604849 seconds. Result: true +[ Info: Out of 9 initial generators there are 8 indepdendent +[ Info: The ranking of the new set of generators is 120 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 5 for num. and 1 for den. +└ Points used: 96. +[ Info: Groebner basis computed in 0.230283908 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.006253371 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 4 for den. +│ Maximal number of interpolated terms are: 11 for num. and 8 for den. +└ Points used: 320. +[ Info: Groebner basis computed in 0.571994021 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.011465661 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 28 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (14 in total): Nemo.QQMPolyRingElem[b, c, q1, w1, k2, d, s, k1, w2, q2, x1, x2, x3, x4] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 10 +┌ Info: Final cleaning and simplification of generators. +└ Out of 27 fractions 19 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.515271673 seconds. Result: true +[ Info: Out of 14 initial generators there are 12 indepdendent +[ Info: The ranking of the new set of generators is 866 +[ Info: The search for identifiable functions concluded in 1.994894319 seconds +┌ Info: Result is +│ result = +│ 12-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ x4 +│ x1 +│ s +│ d +│ ⋮ +│ c*w1 + c*k1 + c*w2 + w1*w2 + k1*w2 +│ (q1*k1*x4 - k2*x3*q2 - w2*q2*x4)//(q2*x4) +└ (c*x3*x4 - k2*x3^2 - x3*w2*x4 + k1*x2*x4)//(q2*x4) diff --git a/benchmarking/IdentifiableFunctions/results/HIV2_io/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/HIV2_io/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..d947df771 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/HIV2_io/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[x4, x1, s, d, b, k2*q2, c*w1*w2 + c*k1*w2, c + w1 + k1 + w2, w1*x4 + k2*x3 + k1*x4 + w2*x4, c*w1 + c*k1 + c*w2 + w1*w2 + k1*w2, (q1*k1*x4 - k2*x3*q2 - w2*q2*x4)//(q2*x4), (c*x3*x4 - k2*x3^2 - x3*w2*x4 + k1*x2*x4)//(q2*x4)] diff --git a/benchmarking/IdentifiableFunctions/results/HIV2_io/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/HIV2_io/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..09b68f80b --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/HIV2_io/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +HIV2_io +id_total, 1.995409658 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.515271673 +id_inclusion_check_mod_p, 0.017719032 +id_groebner_time, 0.802277929 +id_beautifulization, 0.268650362 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 866.0 diff --git a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/HighDimNonLin.jl b/benchmarking/IdentifiableFunctions/results/HighDimNonLin/HighDimNonLin.jl similarity index 97% rename from benchmarking/IdentifiableFunctions/systems/HighDimNonLin/HighDimNonLin.jl rename to benchmarking/IdentifiableFunctions/results/HighDimNonLin/HighDimNonLin.jl index 20117330e..f2da9694c 100644 --- a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/HighDimNonLin.jl +++ b/benchmarking/IdentifiableFunctions/results/HighDimNonLin/HighDimNonLin.jl @@ -3,44 +3,44 @@ using StructuralIdentifiability system = @ODEmodel( - x17'(t) = -p17*x17(t) + x16(t)*p16, - x11'(t) = x10(t)*p10 - x11(t)*p11, + x1'(t) = (-p1*km*x1(t) - p1*x1(t)^2 + km*u(t) - x1(t)*vm + x1(t)*u(t))//(km + x1(t)), x2'(t) = -p2*x2(t) + p1*x1(t), - x9'(t) = -x9(t)*p9 + p8*x8(t), - x13'(t) = -x13(t)*p13 + p12*x12(t), - x18'(t) = -p18*x18(t) + p17*x17(t), - x8'(t) = p7*x7(t) - p8*x8(t), - x20'(t) = -p20*x20(t) + x19(t)*p19, + x3'(t) = p2*x2(t) - x3(t)*p3, + x4'(t) = x3(t)*p3 - x4(t)*p4, x5'(t) = -p5*x5(t) + x4(t)*p4, x6'(t) = -p6*x6(t) + p5*x5(t), - x4'(t) = x3(t)*p3 - x4(t)*p4, - x15'(t) = -p15*x15(t) + p14*x14(t), - x14'(t) = x13(t)*p13 - p14*x14(t), - x19'(t) = -x19(t)*p19 + p18*x18(t), - x10'(t) = x9(t)*p9 - x10(t)*p10, - x16'(t) = p15*x15(t) - x16(t)*p16, x7'(t) = -p7*x7(t) + p6*x6(t), - x1'(t) = (-p1*km*x1(t) - p1*x1(t)^2 + km*u(t) - x1(t)*vm + x1(t)*u(t))//(km + x1(t)), - x3'(t) = p2*x2(t) - x3(t)*p3, + x8'(t) = p7*x7(t) - p8*x8(t), + x9'(t) = -x9(t)*p9 + p8*x8(t), + x10'(t) = x9(t)*p9 - x10(t)*p10, + x11'(t) = x10(t)*p10 - x11(t)*p11, x12'(t) = x11(t)*p11 - p12*x12(t), - y17(t) = x17(t), - y10(t) = x10(t), - y15(t) = x15(t), - y16(t) = x16(t), - y9(t) = x9(t), - y20(t) = x20(t), - y7(t) = x7(t), - y13(t) = x13(t), - y4(t) = x4(t), - y11(t) = x11(t), - y3(t) = x3(t), - y19(t) = x19(t), + x13'(t) = -x13(t)*p13 + p12*x12(t), + x14'(t) = x13(t)*p13 - p14*x14(t), + x15'(t) = -p15*x15(t) + p14*x14(t), + x16'(t) = p15*x15(t) - x16(t)*p16, + x17'(t) = -p17*x17(t) + x16(t)*p16, + x18'(t) = -p18*x18(t) + p17*x17(t), + x19'(t) = -x19(t)*p19 + p18*x18(t), + x20'(t) = -p20*x20(t) + x19(t)*p19, y1(t) = x1(t), - y18(t) = x18(t), - y8(t) = x8(t), y2(t) = x2(t), + y3(t) = x3(t), + y4(t) = x4(t), y5(t) = x5(t), + y6(t) = x6(t), + y7(t) = x7(t), + y8(t) = x8(t), + y9(t) = x9(t), + y10(t) = x10(t), + y11(t) = x11(t), y12(t) = x12(t), + y13(t) = x13(t), y14(t) = x14(t), - y6(t) = x6(t) + y15(t) = x15(t), + y16(t) = x16(t), + y17(t) = x17(t), + y18(t) = x18(t), + y19(t) = x19(t), + y20(t) = x20(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/HighDimNonLin/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/HighDimNonLin/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..6d23e316a --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/HighDimNonLin/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +HighDimNonLin +id_npoints_degree, 16 +id_npoints_interpolation, 22 +are_id_funcs_polynomial, true diff --git a/benchmarking/IdentifiableFunctions/results/HighDimNonLin/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/HighDimNonLin/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..7407ccd62 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/HighDimNonLin/logs_(normalforms, 2)_with_states @@ -0,0 +1,157 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "HighDimNonLin" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20 +[ Info: Parameters: p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p4, p13, p8, p10, vm, p17, p12, p3, p16, p11, p19 +[ Info: Inputs: u +[ Info: Outputs: y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 24.203325531 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 24.203325531 +[ Info: Computing Wronskians +┌ Info: Computed in 20.312308557 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 20.312308557 +[ Info: Dimensions of the Wronskians [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3] +┌ Info: Ranks of the Wronskians computed in 0.037129498 seconds +│ :rank_time = :rank_time +└ rank_times = 0.037129498 + ⌜ # Computing specializations.. Time: 0:00:10 ✓ # Computing specializations.. Time: 0:00:11 + ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 13.929174953 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 4.315151755 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 24 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 22 fractions 22 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 4.612387769 seconds. Result: true +[ Info: Out of 43 initial generators there are 22 indepdendent +[ Info: The ranking of the new set of generators is 253 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 1 for den. +│ Maximal number of interpolated terms are: 1 for num. and 2 for den. +└ Points used: 16. +[ Info: Groebner basis computed in 4.183566194 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 1.335249295 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 44 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (42 in total): Nemo.QQMPolyRingElem[p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p4, p13, p8, p10, vm, p17, p12, p3, p16, p11, p19, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 1 +┌ Info: Final cleaning and simplification of generators. +└ Out of 84 fractions 43 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 2.354380297 seconds. Result: true +[ Info: Out of 62 initial generators there are 42 indepdendent +[ Info: The ranking of the new set of generators is 903 +[ Info: The search for identifiable functions concluded in 96.998092491 seconds +[ Info: Processing HighDimNonLin +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 10.841822154 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 10.841822154 +[ Info: Computing Wronskians +┌ Info: Computed in 7.791635766 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 7.791635766 +[ Info: Dimensions of the Wronskians [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3] +┌ Info: Ranks of the Wronskians computed in 6.3691e-5 seconds +│ :rank_time = :rank_time +└ rank_times = 6.3691e-5 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 0.023190463 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.004264671 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 24 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 22 fractions 22 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.004835494 seconds. Result: true +[ Info: Out of 43 initial generators there are 22 indepdendent +[ Info: The ranking of the new set of generators is 253 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 1 for den. +│ Maximal number of interpolated terms are: 1 for num. and 2 for den. +└ Points used: 16. +[ Info: Groebner basis computed in 0.09135088 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.009462482 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 44 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (42 in total): Nemo.QQMPolyRingElem[p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p4, p13, p8, p10, vm, p17, p12, p3, p16, p11, p19, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 1 +┌ Info: Final cleaning and simplification of generators. +└ Out of 84 fractions 43 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.039790751 seconds. Result: true +[ Info: Out of 62 initial generators there are 42 indepdendent +[ Info: The ranking of the new set of generators is 903 +[ Info: The search for identifiable functions concluded in 20.54945336 seconds +┌ Info: Result is +│ result = +│ 42-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ x20 +│ x19 +│ x18 +│ x17 +│ ⋮ +│ p2 +│ p20 +└ p7 diff --git a/benchmarking/IdentifiableFunctions/results/HighDimNonLin/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/HighDimNonLin/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..8a444b835 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/HighDimNonLin/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[x20, x19, x18, x17, x16, x15, x14, x13, x12, x11, x10, x9, x8, x7, x6, x5, x4, x3, x2, x1, p19, p11, p16, p3, p12, p17, vm, p10, p8, p13, p4, p14, p5, p15, p6, p9, km, p1, p18, p2, p20, p7] diff --git a/benchmarking/IdentifiableFunctions/results/HighDimNonLin/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/HighDimNonLin/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..b8f6b1a8f --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/HighDimNonLin/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +HighDimNonLin +id_total, 20.550042411 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.039790751 +id_inclusion_check_mod_p, 0.009462482 +id_groebner_time, 0.09135088 +id_beautifulization, 0.684572718 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 903.0 diff --git a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/JAK-STAT 1.jl b/benchmarking/IdentifiableFunctions/results/JAK-STAT 1/JAK-STAT 1.jl similarity index 96% rename from benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/JAK-STAT 1.jl rename to benchmarking/IdentifiableFunctions/results/JAK-STAT 1/JAK-STAT 1.jl index ef051daf6..b87912126 100644 --- a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/JAK-STAT 1.jl +++ b/benchmarking/IdentifiableFunctions/results/JAK-STAT 1/JAK-STAT 1.jl @@ -3,22 +3,22 @@ using StructuralIdentifiability system = @ODEmodel( + x1'(t) = t6*x2(t) - t5*x1(t) - 2*u(t)*x1(t)*t1, + x2'(t) = -t6*x2(t) + t5*x1(t), x3'(t) = x6(t)*x3(t)*t2 - 3*x3(t)*t2 + 2*u(t)*x1(t)*t1, + x4'(t) = -t3*x4(t) - x6(t)*x3(t)*t2 + 3*x3(t)*t2, x5'(t) = t3*x4(t) - x5(t)*t4, - x9'(t) = -2*x9(t)*u(t)*t12, + x6'(t) = (-x6(t)*x3(t)*x10(t)*t7*t13 - x6(t)*x3(t)*t7 - 92*x6(t)*x10(t)*x1(t)*t8*t13^2 - 92*x6(t)*x10(t)*t8*t13 - 92*x6(t)*x1(t)*t8*t13 - x6(t)*x1(t)*t7*t13*x4(t) - 92*x6(t)*t8 - x6(t)*t7*x4(t) + 276*x10(t)*x1(t)*t8*t13^2 + 276*x10(t)*t8*t13 + 276*x1(t)*t8*t13 + 276*t8)//(x10(t)*x1(t)*t13^2 + x10(t)*t13 + x1(t)*t13 + 1), x7'(t) = -92*x7(t)*t10 + x7(t)*x6(t)*t9 - 3*x7(t)*t9 + 15180*t10, x8'(t) = -x7(t)*t11 + 165*t11, + x9'(t) = -2*x9(t)*u(t)*t12, x10'(t) = (-x8(t)*t16*x10(t) + x8(t)*t14 - t16*x10(t)*t15)//(x8(t) + t15), - x2'(t) = -t6*x2(t) + t5*x1(t), - x1'(t) = t6*x2(t) - t5*x1(t) - 2*u(t)*x1(t)*t1, - x4'(t) = -t3*x4(t) - x6(t)*x3(t)*t2 + 3*x3(t)*t2, - x6'(t) = (-x6(t)*x3(t)*x10(t)*t7*t13 - x6(t)*x3(t)*t7 - 92*x6(t)*x10(t)*x1(t)*t8*t13^2 - 92*x6(t)*x10(t)*t8*t13 - 92*x6(t)*x1(t)*t8*t13 - x6(t)*x1(t)*t7*t13*x4(t) - 92*x6(t)*t8 - x6(t)*t7*x4(t) + 276*x10(t)*x1(t)*t8*t13^2 + 276*x10(t)*t8*t13 + 276*x1(t)*t8*t13 + 276*t8)//(x10(t)*x1(t)*t13^2 + x10(t)*t13 + x1(t)*t13 + 1), - y4(t) = -t20*x6(t) + 3*t20, y1(t) = x3(t) + x1(t) + x4(t), - y6(t) = (x8(t)*t22*t17)//t11, - y8(t) = -x7(t) + 165, - y5(t) = x8(t)*t21, - y3(t) = t19*x5(t) + t19*x4(t), y2(t) = -x9(t)*t18 + x5(t)*t18 + t18*x3(t) + t18*x4(t) + 1//3*t18, - y7(t) = x10(t) + y3(t) = t19*x5(t) + t19*x4(t), + y4(t) = -t20*x6(t) + 3*t20, + y5(t) = x8(t)*t21, + y6(t) = (x8(t)*t22*t17)//t11, + y7(t) = x10(t), + y8(t) = -x7(t) + 165 ) diff --git a/benchmarking/IdentifiableFunctions/systems/KD1999/KD1999.jl b/benchmarking/IdentifiableFunctions/results/KD1999/KD1999.jl similarity index 94% rename from benchmarking/IdentifiableFunctions/systems/KD1999/KD1999.jl rename to benchmarking/IdentifiableFunctions/results/KD1999/KD1999.jl index 77d7661e7..60c69d412 100644 --- a/benchmarking/IdentifiableFunctions/systems/KD1999/KD1999.jl +++ b/benchmarking/IdentifiableFunctions/results/KD1999/KD1999.jl @@ -3,11 +3,11 @@ using StructuralIdentifiability system = @ODEmodel( + Ca'(t) = (-u1(t)*Ca(t) + u1(t)*Ca0 - V*Ca(t)*k0*Arr(t))//V, Cb'(t) = (-u1(t)*Cb(t) + V*Ca(t)*k0*Arr(t))//V, - Tj'(t) = (Th*cph*u2(t)*roh - cph*u2(t)*roh*Tj(t) - UA*Tj(t) + UA*T(t))//(cph*Vh*roh), T'(t) = (-u1(t)*ro*T(t)*cp + u1(t)*ro*Ta*cp - V*Ca(t)*k0*Arr(t)*DH - UA*Tj(t) + UA*T(t))//(V*ro*cp), - Ca'(t) = (-u1(t)*Ca(t) + u1(t)*Ca0 - V*Ca(t)*k0*Arr(t))//V, + Tj'(t) = (Th*cph*u2(t)*roh - cph*u2(t)*roh*Tj(t) - UA*Tj(t) + UA*T(t))//(cph*Vh*roh), Arr'(t) = (-u1(t)*ro*E*Arr(t)*T(t)*cp + u1(t)*ro*E*Arr(t)*Ta*cp - V*Ca(t)*k0*E*Arr(t)^2*DH - UA*Tj(t)*E*Arr(t) + UA*E*Arr(t)*T(t))//(V*ro*R*T(t)^2*cp), - y2(t) = T(t), - y1(t) = Cb(t) + y1(t) = Cb(t), + y2(t) = T(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/KD1999/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/KD1999/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..eb5e2c691 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/KD1999/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +KD1999 +id_npoints_degree, 20 +id_npoints_interpolation, 22 +are_id_funcs_polynomial, false diff --git a/benchmarking/IdentifiableFunctions/results/KD1999/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/KD1999/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..d585f4b40 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/KD1999/logs_(normalforms, 2)_with_states @@ -0,0 +1,157 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "KD1999" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: Ca, Cb, T, Tj, Arr +[ Info: Parameters: Th, cph, V, Vh, UA, roh, k0, ro, E, R, Ca0, Ta, cp, DH +[ Info: Inputs: u1, u2 +[ Info: Outputs: y1, y2 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 14.859055474 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 14.859055474 +[ Info: Computing Wronskians +┌ Info: Computed in 11.368783578 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 11.368783578 +[ Info: Dimensions of the Wronskians [17, 76] +┌ Info: Ranks of the Wronskians computed in 0.033745197 seconds +│ :rank_time = :rank_time +└ rank_times = 0.033745197 + ⌜ # Computing specializations.. Time: 0:00:10 ✓ # Computing specializations.. Time: 0:00:11 + ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 12. +[ Info: Groebner basis computed in 13.539701276 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 4.269553586 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 11 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 9 fractions 9 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 4.966288486 seconds. Result: true +[ Info: Out of 129 initial generators there are 9 indepdendent +[ Info: The ranking of the new set of generators is 318 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 1 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 10. +[ Info: Groebner basis computed in 4.990149965 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 1.95632299 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 15 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (19 in total): Nemo.QQMPolyRingElem[Th, cph, V, Vh, UA, roh, k0, ro, E, R, Ca0, Ta, cp, DH, Ca, Cb, T, Tj, Arr] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 23 +┌ Info: Final cleaning and simplification of generators. +└ Out of 24 fractions 14 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 2.329164488 seconds. Result: true +[ Info: Out of 33 initial generators there are 14 indepdendent +[ Info: The ranking of the new set of generators is 383 +[ Info: The search for identifiable functions concluded in 79.801675661 seconds +[ Info: Processing KD1999 +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.121730564 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.121730564 +[ Info: Computing Wronskians +┌ Info: Computed in 0.255074091 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.255074091 +[ Info: Dimensions of the Wronskians [17, 76] +┌ Info: Ranks of the Wronskians computed in 0.000493863 seconds +│ :rank_time = :rank_time +└ rank_times = 0.000493863 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 12. +[ Info: Groebner basis computed in 0.035301251 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.078427221 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 11 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 9 fractions 9 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.010188161 seconds. Result: true +[ Info: Out of 129 initial generators there are 9 indepdendent +[ Info: The ranking of the new set of generators is 318 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 1 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 10. +[ Info: Groebner basis computed in 0.042775762 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.006411253 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 15 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (19 in total): Nemo.QQMPolyRingElem[Th, cph, V, Vh, UA, roh, k0, ro, E, R, Ca0, Ta, cp, DH, Ca, Cb, T, Tj, Arr] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 23 +┌ Info: Final cleaning and simplification of generators. +└ Out of 24 fractions 14 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.012873682 seconds. Result: true +[ Info: Out of 33 initial generators there are 14 indepdendent +[ Info: The ranking of the new set of generators is 383 +[ Info: The search for identifiable functions concluded in 0.972061858 seconds +┌ Info: Result is +│ result = +│ 14-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ Tj +│ T +│ Cb +│ Ca +│ ⋮ +│ UA//DH +│ (ro*cp)//DH +└ (cph*roh)//DH diff --git a/benchmarking/IdentifiableFunctions/results/KD1999/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/KD1999/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..dfdce50b5 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/KD1999/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[Tj, T, Cb, Ca, Ta, Ca0, Vh, V, Th, k0*Arr, E//R, UA//DH, (ro*cp)//DH, (cph*roh)//DH] diff --git a/benchmarking/IdentifiableFunctions/results/KD1999/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/KD1999/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..30bebf82a --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/KD1999/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +KD1999 +id_total, 0.972563952 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.012873682 +id_inclusion_check_mod_p, 0.006411253 +id_groebner_time, 0.042775762 +id_beautifulization, 0.13964391 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 383.0 diff --git a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/LLW1987_io.jl b/benchmarking/IdentifiableFunctions/results/LLW1987_io/LLW1987_io.jl similarity index 100% rename from benchmarking/IdentifiableFunctions/systems/LLW1987_io/LLW1987_io.jl rename to benchmarking/IdentifiableFunctions/results/LLW1987_io/LLW1987_io.jl index 1d4e37402..3e7193054 100644 --- a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/LLW1987_io.jl +++ b/benchmarking/IdentifiableFunctions/results/LLW1987_io/LLW1987_io.jl @@ -3,8 +3,8 @@ using StructuralIdentifiability system = @ODEmodel( - x2'(t) = -p3*x2(t) + p4*u(t), x1'(t) = p2*u(t) - p1*x1(t), + x2'(t) = -p3*x2(t) + p4*u(t), x3'(t) = p2*x2(t)*u(t) - p3*x3(t) + p4*u(t)*x1(t) - x3(t)*p1, y1(t) = x3(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/LLW1987_io/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/LLW1987_io/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..323dc2f5c --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/LLW1987_io/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +LLW1987_io +id_npoints_degree, 20 +id_npoints_interpolation, 40 +are_id_funcs_polynomial, false diff --git a/benchmarking/IdentifiableFunctions/results/LLW1987_io/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/LLW1987_io/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..5cd2d6e99 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/LLW1987_io/logs_(normalforms, 2)_with_states @@ -0,0 +1,156 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "LLW1987_io" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: x1, x2, x3 +[ Info: Parameters: p2, p3, p4, p1 +[ Info: Inputs: u +[ Info: Outputs: y1 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 11.187324844 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 11.187324844 +[ Info: Computing Wronskians +┌ Info: Computed in 11.690890688 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 11.690890688 +[ Info: Dimensions of the Wronskians [7] +┌ Info: Ranks of the Wronskians computed in 0.032717557 seconds +│ :rank_time = :rank_time +└ rank_times = 0.032717557 + ⌜ # Computing specializations.. Time: 0:00:10 ✓ # Computing specializations.. Time: 0:00:10 + ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 0 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 16. +[ Info: Groebner basis computed in 13.300662106 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 4.500891006 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 5 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 3 fractions 3 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 5.500234706 seconds. Result: true +[ Info: Out of 12 initial generators there are 3 indepdendent +[ Info: The ranking of the new set of generators is 12 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 2 for num. and 2 for den. +└ Points used: 24. +[ Info: Groebner basis computed in 4.9596624 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 1.43032905 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 11 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (7 in total): Nemo.QQMPolyRingElem[p2, p3, p4, p1, x1, x2, x3] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 5 +┌ Info: Final cleaning and simplification of generators. +└ Out of 15 fractions 10 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 2.330507441 seconds. Result: true +[ Info: Out of 16 initial generators there are 7 indepdendent +[ Info: The ranking of the new set of generators is 273 +[ Info: The search for identifiable functions concluded in 76.083377872 seconds +[ Info: Processing LLW1987_io +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.008702005 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.008702005 +[ Info: Computing Wronskians +┌ Info: Computed in 0.005521375 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.005521375 +[ Info: Dimensions of the Wronskians [7] +┌ Info: Ranks of the Wronskians computed in 2.2835e-5 seconds +│ :rank_time = :rank_time +└ rank_times = 2.2835e-5 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 0 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 16. +[ Info: Groebner basis computed in 0.012522053 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.001524342 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 5 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 3 fractions 3 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.07354508 seconds. Result: true +[ Info: Out of 12 initial generators there are 3 indepdendent +[ Info: The ranking of the new set of generators is 12 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 2 for num. and 2 for den. +└ Points used: 24. +[ Info: Groebner basis computed in 0.021807834 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.003364582 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 11 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (7 in total): Nemo.QQMPolyRingElem[p2, p3, p4, p1, x1, x2, x3] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 5 +┌ Info: Final cleaning and simplification of generators. +└ Out of 15 fractions 10 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.006264301 seconds. Result: true +[ Info: Out of 16 initial generators there are 7 indepdendent +[ Info: The ranking of the new set of generators is 273 +[ Info: The search for identifiable functions concluded in 0.252203768 seconds +┌ Info: Result is +│ result = +│ 7-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ x3 +│ x2*x1 +│ p3*p1 +│ p2*p4 +│ p3 + p1 +│ p2*x2 + p4*x1 +└ (p2*x2 - p4*x1)//(p3 - p1) diff --git a/benchmarking/IdentifiableFunctions/results/LLW1987_io/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/LLW1987_io/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..512bed9df --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/LLW1987_io/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[x3, x2*x1, p3*p1, p2*p4, p3 + p1, p2*x2 + p4*x1, (p2*x2 - p4*x1)//(p3 - p1)] diff --git a/benchmarking/IdentifiableFunctions/results/LLW1987_io/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/LLW1987_io/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..471b60022 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/LLW1987_io/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +LLW1987_io +id_total, 0.252710547 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.006264301 +id_inclusion_check_mod_p, 0.003364582 +id_groebner_time, 0.021807834 +id_beautifulization, 0.07548094000000001 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 273.0 diff --git a/benchmarking/IdentifiableFunctions/systems/LeukaemiaLeon2021/LeukaemiaLeon2021.jl b/benchmarking/IdentifiableFunctions/results/LeukaemiaLeon2021/LeukaemiaLeon2021.jl similarity index 100% rename from benchmarking/IdentifiableFunctions/systems/LeukaemiaLeon2021/LeukaemiaLeon2021.jl rename to benchmarking/IdentifiableFunctions/results/LeukaemiaLeon2021/LeukaemiaLeon2021.jl index a74434465..ef8c4b0e5 100644 --- a/benchmarking/IdentifiableFunctions/systems/LeukaemiaLeon2021/LeukaemiaLeon2021.jl +++ b/benchmarking/IdentifiableFunctions/results/LeukaemiaLeon2021/LeukaemiaLeon2021.jl @@ -3,11 +3,11 @@ using StructuralIdentifiability system = @ODEmodel( - P'(t) = (2*ap*rhop*taop*P(t) - ks*rhop*taop*P(t)^2 - ks*rhop*taop*P(t)*I(t) - ks*P(t)^2 - ks*P(t)*I(t) - rhop*taop*P(t) - P(t))//(ks*taop*P(t) + ks*taop*I(t) + taop), C'(t) = (B(t)*rhoc*taoc*C(t) + rhoc*taoc*L(t)*C(t) + I(t)*taoc*rhob*C(t) - C(t))//taoc, L'(t) = -alpha*L(t)*C(t) + rhol*L(t), - I'(t) = (-alpha*taoi*ks*taop*P(t)*I(t)*beta*C(t) - alpha*taoi*ks*taop*I(t)^2*beta*C(t) - alpha*taoi*taop*I(t)*beta*C(t) - taoi*ks*taop*P(t)*I(t)*rhoi - taoi*ks*taop*I(t)^2*rhoi + taoi*ks*P(t)^2 + taoi*ks*P(t)*I(t) + 2*taoi*ai*taop*I(t)*rhoi - taoi*taop*I(t)*rhoi + taoi*P(t) - ks*taop*P(t)*I(t) - ks*taop*I(t)^2 - taop*I(t))//(taoi*ks*taop*P(t) + taoi*ks*taop*I(t) + taoi*taop), B'(t) = (-alpha*B(t)*taoi*taob*C(t) - B(t)*taoi + taob*I(t))//(taoi*taob), + P'(t) = (2*ap*rhop*taop*P(t) - ks*rhop*taop*P(t)^2 - ks*rhop*taop*P(t)*I(t) - ks*P(t)^2 - ks*P(t)*I(t) - rhop*taop*P(t) - P(t))//(ks*taop*P(t) + ks*taop*I(t) + taop), + I'(t) = (-alpha*taoi*ks*taop*P(t)*I(t)*beta*C(t) - alpha*taoi*ks*taop*I(t)^2*beta*C(t) - alpha*taoi*taop*I(t)*beta*C(t) - taoi*ks*taop*P(t)*I(t)*rhoi - taoi*ks*taop*I(t)^2*rhoi + taoi*ks*P(t)^2 + taoi*ks*P(t)*I(t) + 2*taoi*ai*taop*I(t)*rhoi - taoi*taop*I(t)*rhoi + taoi*P(t) - ks*taop*P(t)*I(t) - ks*taop*I(t)^2 - taop*I(t))//(taoi*ks*taop*P(t) + taoi*ks*taop*I(t) + taoi*taop), y1(t) = C(t), y2(t) = L(t), y3(t) = B(t) + P(t) + I(t) diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs bis)/MAPK model (5 outputs bis).jl b/benchmarking/IdentifiableFunctions/results/MAPK model (5 outputs bis)/MAPK model (5 outputs bis).jl similarity index 97% rename from benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs bis)/MAPK model (5 outputs bis).jl rename to benchmarking/IdentifiableFunctions/results/MAPK model (5 outputs bis)/MAPK model (5 outputs bis).jl index 7cd69203d..abccb884d 100644 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs bis)/MAPK model (5 outputs bis).jl +++ b/benchmarking/IdentifiableFunctions/results/MAPK model (5 outputs bis)/MAPK model (5 outputs bis).jl @@ -4,20 +4,20 @@ using StructuralIdentifiability system = @ODEmodel( KS00'(t) = FS11(t)*gamma1100 + gamma1000*FS10(t) + FS01(t)*gamma0100 + b00*KS00(t) - S00(t)*K(t)*a00, - S01'(t) = -FS11(t)*beta11 - FS11(t)*gamma1100 - FS11(t)*gamma1101 - FS11(t)*gamma1110 + F(t)*alpha11*S11(t), KS01'(t) = c0001*KS00(t) + FS11(t)*gamma1101 - F(t)*alpha01*S01(t) + FS01(t)*beta01 - K(t)*S01(t)*a01 + KS01(t)*b01, - FS11'(t) = -c0111*KS01(t) + K(t)*S01(t)*a01 - KS01(t)*b01, KS10'(t) = -a10*K(t)*S10(t) + FS11(t)*gamma1110 - F(t)*alpha10*S10(t) + KS10(t)*b10 + beta10*FS10(t) + c0010*KS00(t), FS01'(t) = FS11(t)*beta11 - F(t)*alpha11*S11(t) + KS10(t)*c1011 + c0111*KS01(t) + c0011*KS00(t), - S00'(t) = F(t)*alpha10*S10(t) - gamma1000*FS10(t) - beta10*FS10(t), - K'(t) = a10*K(t)*S10(t) - KS10(t)*b10 - KS10(t)*c1011, FS10'(t) = -c0001*KS00(t) - b00*KS00(t) + S00(t)*K(t)*a00 - c0011*KS00(t) - c0010*KS00(t), + FS11'(t) = -c0111*KS01(t) + K(t)*S01(t)*a01 - KS01(t)*b01, + K'(t) = a10*K(t)*S10(t) - KS10(t)*b10 - KS10(t)*c1011, + F'(t) = F(t)*alpha01*S01(t) - FS01(t)*beta01 - FS01(t)*gamma0100, + S00'(t) = F(t)*alpha10*S10(t) - gamma1000*FS10(t) - beta10*FS10(t), + S01'(t) = -FS11(t)*beta11 - FS11(t)*gamma1100 - FS11(t)*gamma1101 - FS11(t)*gamma1110 + F(t)*alpha11*S11(t), S10'(t) = c0001*KS00(t) - a10*K(t)*S10(t) + KS10(t)*b10 + KS10(t)*c1011 + b00*KS00(t) + c0111*KS01(t) - S00(t)*K(t)*a00 - K(t)*S01(t)*a01 + c0011*KS00(t) + c0010*KS00(t) + KS01(t)*b01, S11'(t) = FS11(t)*beta11 + FS11(t)*gamma1100 + FS11(t)*gamma1101 + FS11(t)*gamma1110 - F(t)*alpha10*S10(t) - F(t)*alpha11*S11(t) - F(t)*alpha01*S01(t) + gamma1000*FS10(t) + FS01(t)*beta01 + FS01(t)*gamma0100 + beta10*FS10(t), - F'(t) = F(t)*alpha01*S01(t) - FS01(t)*beta01 - FS01(t)*gamma0100, - y4(t) = S11(t), - y2(t) = S00(t), + y0(t) = K(t), y1(t) = F(t), + y2(t) = S00(t), y3(t) = S01(t) + S10(t), - y0(t) = K(t) + y4(t) = S11(t) ) diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/MAPK model (5 outputs).jl b/benchmarking/IdentifiableFunctions/results/MAPK model (5 outputs)/MAPK model (5 outputs).jl similarity index 97% rename from benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/MAPK model (5 outputs).jl rename to benchmarking/IdentifiableFunctions/results/MAPK model (5 outputs)/MAPK model (5 outputs).jl index 2478c0f64..cef1b7fca 100644 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/MAPK model (5 outputs).jl +++ b/benchmarking/IdentifiableFunctions/results/MAPK model (5 outputs)/MAPK model (5 outputs).jl @@ -3,21 +3,21 @@ using StructuralIdentifiability system = @ODEmodel( + KS00'(t) = FS11(t)*gamma1100 + gamma1000*FS10(t) + FS01(t)*gamma0100 + b00*KS00(t) - S00(t)*K(t)*a00, KS01'(t) = c0001*KS00(t) + FS11(t)*gamma1101 - F(t)*alpha01*S01(t) + FS01(t)*beta01 - K(t)*S01(t)*a01 + KS01(t)*b01, - S01'(t) = -FS11(t)*beta11 - FS11(t)*gamma1100 - FS11(t)*gamma1101 - FS11(t)*gamma1110 + F(t)*alpha11*S11(t), - S10'(t) = c0001*KS00(t) - a10*K(t)*S10(t) + KS10(t)*b10 + KS10(t)*c1011 + b00*KS00(t) + c0111*KS01(t) - S00(t)*K(t)*a00 - K(t)*S01(t)*a01 + c0011*KS00(t) + c0010*KS00(t) + KS01(t)*b01, - FS10'(t) = -c0001*KS00(t) - b00*KS00(t) + S00(t)*K(t)*a00 - c0011*KS00(t) - c0010*KS00(t), - FS11'(t) = -c0111*KS01(t) + K(t)*S01(t)*a01 - KS01(t)*b01, KS10'(t) = -a10*K(t)*S10(t) + FS11(t)*gamma1110 - F(t)*alpha10*S10(t) + KS10(t)*b10 + beta10*FS10(t) + c0010*KS00(t), FS01'(t) = FS11(t)*beta11 - F(t)*alpha11*S11(t) + KS10(t)*c1011 + c0111*KS01(t) + c0011*KS00(t), - S00'(t) = F(t)*alpha10*S10(t) - gamma1000*FS10(t) - beta10*FS10(t), + FS10'(t) = -c0001*KS00(t) - b00*KS00(t) + S00(t)*K(t)*a00 - c0011*KS00(t) - c0010*KS00(t), + FS11'(t) = -c0111*KS01(t) + K(t)*S01(t)*a01 - KS01(t)*b01, K'(t) = a10*K(t)*S10(t) - KS10(t)*b10 - KS10(t)*c1011, - KS00'(t) = FS11(t)*gamma1100 + gamma1000*FS10(t) + FS01(t)*gamma0100 + b00*KS00(t) - S00(t)*K(t)*a00, - S11'(t) = FS11(t)*beta11 + FS11(t)*gamma1100 + FS11(t)*gamma1101 + FS11(t)*gamma1110 - F(t)*alpha10*S10(t) - F(t)*alpha11*S11(t) - F(t)*alpha01*S01(t) + gamma1000*FS10(t) + FS01(t)*beta01 + FS01(t)*gamma0100 + beta10*FS10(t), F'(t) = F(t)*alpha01*S01(t) - FS01(t)*beta01 - FS01(t)*gamma0100, - y5(t) = S11(t), + S00'(t) = F(t)*alpha10*S10(t) - gamma1000*FS10(t) - beta10*FS10(t), + S01'(t) = -FS11(t)*beta11 - FS11(t)*gamma1100 - FS11(t)*gamma1101 - FS11(t)*gamma1110 + F(t)*alpha11*S11(t), + S10'(t) = c0001*KS00(t) - a10*K(t)*S10(t) + KS10(t)*b10 + KS10(t)*c1011 + b00*KS00(t) + c0111*KS01(t) - S00(t)*K(t)*a00 - K(t)*S01(t)*a01 + c0011*KS00(t) + c0010*KS00(t) + KS01(t)*b01, + S11'(t) = FS11(t)*beta11 + FS11(t)*gamma1100 + FS11(t)*gamma1101 + FS11(t)*gamma1110 - F(t)*alpha10*S10(t) - F(t)*alpha11*S11(t) - F(t)*alpha01*S01(t) + gamma1000*FS10(t) + FS01(t)*beta01 + FS01(t)*gamma0100 + beta10*FS10(t), y1(t) = F(t), - y4(t) = S10(t), y2(t) = S00(t), - y3(t) = S01(t) + y3(t) = S01(t), + y4(t) = S10(t), + y5(t) = S11(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/MAPK model (5 outputs)/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/MAPK model (5 outputs)/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..1a5edbda3 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/MAPK model (5 outputs)/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +MAPK model (5 outputs) +id_npoints_degree, 18 +id_npoints_interpolation, 12 +are_id_funcs_polynomial, true diff --git a/benchmarking/IdentifiableFunctions/results/MAPK model (5 outputs)/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/MAPK model (5 outputs)/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..794d2bed9 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/MAPK model (5 outputs)/logs_(normalforms, 2)_with_states @@ -0,0 +1,164 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "MAPK model (5 outputs)" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: KS00, KS01, KS10, FS01, FS10, FS11, K, F, S00, S01, S10, S11 +[ Info: Parameters: c0001, a10, gamma1000, alpha10, b00, beta11, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100 +[ Info: Inputs: +[ Info: Outputs: y1, y2, y3, y4, y5 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 37.691227664 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 37.691227664 +[ Info: Computing Wronskians +┌ Info: Computed in 13.604590091 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 13.604590091 +[ Info: Dimensions of the Wronskians [60, 1, 44, 96, 149] +┌ Info: Ranks of the Wronskians computed in 0.035526511 seconds +│ :rank_time = :rank_time +└ rank_times = 0.035526511 + ⌜ # Computing specializations.. Time: 0:00:14 ✓ # Computing specializations.. Time: 0:00:15 + ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:01 + ⌜ # Computing specializations.. Time: 0:00:00 + Points: 3  ✓ # Computing specializations.. Time: 0:00:00 + ⌜ # Computing specializations.. Time: 0:00:05 ✓ # Computing specializations.. Time: 0:00:05 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 19.700519725 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 7.489208341 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 23 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 22 fractions 22 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 8.099902488 seconds. Result: true +[ Info: Out of 513 initial generators there are 22 indepdendent +[ Info: The ranking of the new set of generators is 253 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 5.453141395 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 1.419844102 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 36 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (34 in total): Nemo.QQMPolyRingElem[c0001, a10, gamma1000, alpha10, b00, beta11, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100, KS00, KS01, KS10, FS01, FS10, FS11, K, F, S00, S01, S10, S11] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 1 +┌ Info: Final cleaning and simplification of generators. +└ Out of 68 fractions 34 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 2.175047454 seconds. Result: true +[ Info: Out of 39 initial generators there are 34 indepdendent +[ Info: The ranking of the new set of generators is 595 +[ Info: The search for identifiable functions concluded in 116.096369962 seconds +[ Info: Processing MAPK model (5 outputs) +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 34.139908 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 34.139908 +[ Info: Computing Wronskians +┌ Info: Computed in 1.609072168 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 1.609072168 +[ Info: Dimensions of the Wronskians [60, 1, 44, 96, 149] +┌ Info: Ranks of the Wronskians computed in 0.00315753 seconds +│ :rank_time = :rank_time +└ rank_times = 0.00315753 + ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 + ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 + ⌜ # Computing specializations.. Time: 0:00:00 + Points: 4  ✓ # Computing specializations.. Time: 0:00:00 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 5.747760262 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 3.769523434 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 23 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 22 fractions 22 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 1.791770695 seconds. Result: true +[ Info: Out of 513 initial generators there are 22 indepdendent +[ Info: The ranking of the new set of generators is 253 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 0.106490439 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.021802897 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 36 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (34 in total): Nemo.QQMPolyRingElem[c0001, a10, gamma1000, alpha10, b00, beta11, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100, KS00, KS01, KS10, FS01, FS10, FS11, K, F, S00, S01, S10, S11] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 1 +┌ Info: Final cleaning and simplification of generators. +└ Out of 68 fractions 34 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.032749226 seconds. Result: true +[ Info: Out of 39 initial generators there are 34 indepdendent +[ Info: The ranking of the new set of generators is 595 +[ Info: The search for identifiable functions concluded in 48.447142427 seconds +┌ Info: Result is +│ result = +│ 34-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ S11 +│ S10 +│ S01 +│ S00 +│ ⋮ +│ gamma1000 +│ a10 +└ c0001 diff --git a/benchmarking/IdentifiableFunctions/results/MAPK model (5 outputs)/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/MAPK model (5 outputs)/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..d55218ed3 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/MAPK model (5 outputs)/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[S11, S10, S01, S00, F, K, FS11, FS10, FS01, KS10, KS01, KS00, gamma0100, gamma1110, a01, c1011, b01, a00, gamma1101, b10, c0010, c0011, gamma1100, alpha01, beta01, alpha11, beta10, c0111, beta11, b00, alpha10, gamma1000, a10, c0001] diff --git a/benchmarking/IdentifiableFunctions/results/MAPK model (5 outputs)/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/MAPK model (5 outputs)/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..fd0e672da --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/MAPK model (5 outputs)/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +MAPK model (5 outputs) +id_total, 48.4476449 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.032749226 +id_inclusion_check_mod_p, 0.021802897 +id_groebner_time, 0.106490439 +id_beautifulization, 0.36911361499999995 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 595.0 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/MAPK model (6 outputs).jl b/benchmarking/IdentifiableFunctions/results/MAPK model (6 outputs)/MAPK model (6 outputs).jl similarity index 97% rename from benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/MAPK model (6 outputs).jl rename to benchmarking/IdentifiableFunctions/results/MAPK model (6 outputs)/MAPK model (6 outputs).jl index a489122b3..2b7683447 100644 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/MAPK model (6 outputs).jl +++ b/benchmarking/IdentifiableFunctions/results/MAPK model (6 outputs)/MAPK model (6 outputs).jl @@ -4,21 +4,21 @@ using StructuralIdentifiability system = @ODEmodel( KS00'(t) = FS11(t)*gamma1100 + gamma1000*FS10(t) + FS01(t)*gamma0100 + b00*KS00(t) - S00(t)*K(t)*a00, - FS01'(t) = FS11(t)*beta11 - F(t)*alpha11*S11(t) + KS10(t)*c1011 + c0111*KS01(t) + c0011*KS00(t), - KS10'(t) = -a10*K(t)*S10(t) + FS11(t)*gamma1110 - F(t)*alpha10*S10(t) + KS10(t)*b10 + beta10*FS10(t) + c0010*KS00(t), - S11'(t) = FS11(t)*beta11 + FS11(t)*gamma1100 + FS11(t)*gamma1101 + FS11(t)*gamma1110 - F(t)*alpha10*S10(t) - F(t)*alpha11*S11(t) - F(t)*alpha01*S01(t) + gamma1000*FS10(t) + FS01(t)*beta01 + FS01(t)*gamma0100 + beta10*FS10(t), - S01'(t) = -FS11(t)*beta11 - FS11(t)*gamma1100 - FS11(t)*gamma1101 - FS11(t)*gamma1110 + F(t)*alpha11*S11(t), - S00'(t) = F(t)*alpha10*S10(t) - gamma1000*FS10(t) - beta10*FS10(t), KS01'(t) = c0001*KS00(t) + FS11(t)*gamma1101 - F(t)*alpha01*S01(t) + FS01(t)*beta01 - K(t)*S01(t)*a01 + KS01(t)*b01, - S10'(t) = c0001*KS00(t) - a10*K(t)*S10(t) + KS10(t)*b10 + KS10(t)*c1011 + b00*KS00(t) + c0111*KS01(t) - S00(t)*K(t)*a00 - K(t)*S01(t)*a01 + c0011*KS00(t) + c0010*KS00(t) + KS01(t)*b01, - K'(t) = a10*K(t)*S10(t) - KS10(t)*b10 - KS10(t)*c1011, + KS10'(t) = -a10*K(t)*S10(t) + FS11(t)*gamma1110 - F(t)*alpha10*S10(t) + KS10(t)*b10 + beta10*FS10(t) + c0010*KS00(t), + FS01'(t) = FS11(t)*beta11 - F(t)*alpha11*S11(t) + KS10(t)*c1011 + c0111*KS01(t) + c0011*KS00(t), FS10'(t) = -c0001*KS00(t) - b00*KS00(t) + S00(t)*K(t)*a00 - c0011*KS00(t) - c0010*KS00(t), FS11'(t) = -c0111*KS01(t) + K(t)*S01(t)*a01 - KS01(t)*b01, + K'(t) = a10*K(t)*S10(t) - KS10(t)*b10 - KS10(t)*c1011, F'(t) = F(t)*alpha01*S01(t) - FS01(t)*beta01 - FS01(t)*gamma0100, + S00'(t) = F(t)*alpha10*S10(t) - gamma1000*FS10(t) - beta10*FS10(t), + S01'(t) = -FS11(t)*beta11 - FS11(t)*gamma1100 - FS11(t)*gamma1101 - FS11(t)*gamma1110 + F(t)*alpha11*S11(t), + S10'(t) = c0001*KS00(t) - a10*K(t)*S10(t) + KS10(t)*b10 + KS10(t)*c1011 + b00*KS00(t) + c0111*KS01(t) - S00(t)*K(t)*a00 - K(t)*S01(t)*a01 + c0011*KS00(t) + c0010*KS00(t) + KS01(t)*b01, + S11'(t) = FS11(t)*beta11 + FS11(t)*gamma1100 + FS11(t)*gamma1101 + FS11(t)*gamma1110 - F(t)*alpha10*S10(t) - F(t)*alpha11*S11(t) - F(t)*alpha01*S01(t) + gamma1000*FS10(t) + FS01(t)*beta01 + FS01(t)*gamma0100 + beta10*FS10(t), y0(t) = K(t), - y4(t) = S10(t), - y3(t) = S01(t), y1(t) = F(t), - y5(t) = S11(t), - y2(t) = S00(t) + y2(t) = S00(t), + y3(t) = S01(t), + y4(t) = S10(t), + y5(t) = S11(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/MAPK model (6 outputs)/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/MAPK model (6 outputs)/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..47b16167e --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/MAPK model (6 outputs)/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +MAPK model (6 outputs) +id_npoints_degree, 18 +id_npoints_interpolation, 12 +are_id_funcs_polynomial, true diff --git a/benchmarking/IdentifiableFunctions/results/MAPK model (6 outputs)/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/MAPK model (6 outputs)/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..96ccaafa1 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/MAPK model (6 outputs)/logs_(normalforms, 2)_with_states @@ -0,0 +1,159 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "MAPK model (6 outputs)" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: KS00, KS01, KS10, FS01, FS10, FS11, K, F, S00, S01, S10, S11 +[ Info: Parameters: c0001, a10, gamma1000, alpha10, b00, beta11, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100 +[ Info: Inputs: +[ Info: Outputs: y0, y1, y2, y3, y4, y5 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 18.463674785 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 18.463674785 +[ Info: Computing Wronskians +┌ Info: Computed in 11.931560881 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 11.931560881 +[ Info: Dimensions of the Wronskians [11, 11, 17, 1, 5, 38] +┌ Info: Ranks of the Wronskians computed in 0.032118838 seconds +│ :rank_time = :rank_time +└ rank_times = 0.032118838 + ⌜ # Computing specializations.. Time: 0:00:11 ✓ # Computing specializations.. Time: 0:00:12 + ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 + ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 14.990461788 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 5.169670757 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 23 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 22 fractions 22 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 5.626815805 seconds. Result: true +[ Info: Out of 100 initial generators there are 22 indepdendent +[ Info: The ranking of the new set of generators is 253 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 4.457963302 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.962042896 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 36 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (34 in total): Nemo.QQMPolyRingElem[c0001, a10, gamma1000, alpha10, b00, beta11, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100, KS00, KS01, KS10, FS01, FS10, FS11, K, F, S00, S01, S10, S11] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 1 +┌ Info: Final cleaning and simplification of generators. +└ Out of 68 fractions 34 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 2.350762433 seconds. Result: true +[ Info: Out of 40 initial generators there are 34 indepdendent +[ Info: The ranking of the new set of generators is 595 +[ Info: The search for identifiable functions concluded in 83.497723699 seconds +[ Info: Processing MAPK model (6 outputs) +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 3.783750104 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 3.783750104 +[ Info: Computing Wronskians +┌ Info: Computed in 0.537204032 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.537204032 +[ Info: Dimensions of the Wronskians [11, 11, 17, 1, 5, 38] +┌ Info: Ranks of the Wronskians computed in 0.0001512 seconds +│ :rank_time = :rank_time +└ rank_times = 0.0001512 + ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 1.182549609 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.775960426 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 23 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 22 fractions 22 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.844515914 seconds. Result: true +[ Info: Out of 100 initial generators there are 22 indepdendent +[ Info: The ranking of the new set of generators is 253 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 0.053183478 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.01483578 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 36 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (34 in total): Nemo.QQMPolyRingElem[c0001, a10, gamma1000, alpha10, b00, beta11, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100, KS00, KS01, KS10, FS01, FS10, FS11, K, F, S00, S01, S10, S11] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 1 +┌ Info: Final cleaning and simplification of generators. +└ Out of 68 fractions 34 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.016644272 seconds. Result: true +[ Info: Out of 40 initial generators there are 34 indepdendent +[ Info: The ranking of the new set of generators is 595 +[ Info: The search for identifiable functions concluded in 7.98978104 seconds +┌ Info: Result is +│ result = +│ 34-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ S11 +│ S10 +│ S01 +│ S00 +│ ⋮ +│ gamma1000 +│ a10 +└ c0001 diff --git a/benchmarking/IdentifiableFunctions/results/MAPK model (6 outputs)/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/MAPK model (6 outputs)/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..d55218ed3 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/MAPK model (6 outputs)/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[S11, S10, S01, S00, F, K, FS11, FS10, FS01, KS10, KS01, KS00, gamma0100, gamma1110, a01, c1011, b01, a00, gamma1101, b10, c0010, c0011, gamma1100, alpha01, beta01, alpha11, beta10, c0111, beta11, b00, alpha10, gamma1000, a10, c0001] diff --git a/benchmarking/IdentifiableFunctions/results/MAPK model (6 outputs)/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/MAPK model (6 outputs)/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..1e5be7b20 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/MAPK model (6 outputs)/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +MAPK model (6 outputs) +id_total, 7.990303699 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.016644272 +id_inclusion_check_mod_p, 0.01483578 +id_groebner_time, 0.053183478 +id_beautifulization, 0.41735193600000003 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 595.0 diff --git a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/Modified LV for testing.jl b/benchmarking/IdentifiableFunctions/results/Modified LV for testing/Modified LV for testing.jl similarity index 100% rename from benchmarking/IdentifiableFunctions/systems/Modified LV for testing/Modified LV for testing.jl rename to benchmarking/IdentifiableFunctions/results/Modified LV for testing/Modified LV for testing.jl diff --git a/benchmarking/IdentifiableFunctions/results/Modified LV for testing/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Modified LV for testing/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..8b20f057a --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Modified LV for testing/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +Modified LV for testing +id_npoints_degree, 20 +id_npoints_interpolation, 32 +are_id_funcs_polynomial, true diff --git a/benchmarking/IdentifiableFunctions/results/Modified LV for testing/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Modified LV for testing/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..a35f0ea2e --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Modified LV for testing/logs_(normalforms, 2)_with_states @@ -0,0 +1,153 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "Modified LV for testing" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y1 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 10.850033215 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 10.850033215 +[ Info: Computing Wronskians +┌ Info: Computed in 10.937907747 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 10.937907747 +[ Info: Dimensions of the Wronskians [5] +┌ Info: Ranks of the Wronskians computed in 0.021594977 seconds +│ :rank_time = :rank_time +└ rank_times = 0.021594977 + ⌜ # Computing specializations.. Time: 0:00:07 ✓ # Computing specializations.. Time: 0:00:08 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 0 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 16. +[ Info: Groebner basis computed in 9.942865012 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 3.013405785 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 4 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 3 fractions 3 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 3.818285688 seconds. Result: true +[ Info: Out of 5 initial generators there are 3 indepdendent +[ Info: The ranking of the new set of generators is 9 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 0 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 16. +[ Info: Groebner basis computed in 0.373914039 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.001170122 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 7 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (6 in total): Nemo.QQMPolyRingElem[a, b, d, c, x1, x2] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 5 +┌ Info: Final cleaning and simplification of generators. +└ Out of 13 fractions 8 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.001228484 seconds. Result: true +[ Info: Out of 6 initial generators there are 5 indepdendent +[ Info: The ranking of the new set of generators is 21 +[ Info: The search for identifiable functions concluded in 57.986269093 seconds +[ Info: Processing Modified LV for testing +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.002011467 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.002011467 +[ Info: Computing Wronskians +┌ Info: Computed in 0.001616232 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.001616232 +[ Info: Dimensions of the Wronskians [5] +┌ Info: Ranks of the Wronskians computed in 1.3284e-5 seconds +│ :rank_time = :rank_time +└ rank_times = 1.3284e-5 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 0 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 16. +[ Info: Groebner basis computed in 0.004172142 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.00091115 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 4 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 3 fractions 3 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.000923102 seconds. Result: true +[ Info: Out of 5 initial generators there are 3 indepdendent +[ Info: The ranking of the new set of generators is 9 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 0 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 16. +[ Info: Groebner basis computed in 0.005948624 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.038796645 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 7 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (6 in total): Nemo.QQMPolyRingElem[a, b, d, c, x1, x2] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 5 +┌ Info: Final cleaning and simplification of generators. +└ Out of 13 fractions 8 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.001218796 seconds. Result: true +[ Info: Out of 6 initial generators there are 5 indepdendent +[ Info: The ranking of the new set of generators is 21 +[ Info: The search for identifiable functions concluded in 0.0695072 seconds +┌ Info: Result is +│ result = +│ 5-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ x1 +│ d +│ x2*c +│ a*b +└ a + b diff --git a/benchmarking/IdentifiableFunctions/results/Modified LV for testing/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Modified LV for testing/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..b10a5d2de --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Modified LV for testing/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[x1, d, x2*c, a*b, a + b] diff --git a/benchmarking/IdentifiableFunctions/results/Modified LV for testing/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Modified LV for testing/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..f586e2685 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Modified LV for testing/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +Modified LV for testing +id_total, 0.07046098 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.001218796 +id_inclusion_check_mod_p, 0.038796645 +id_groebner_time, 0.005948624 +id_beautifulization, 0.007627233000000001 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 21.0 diff --git a/benchmarking/IdentifiableFunctions/systems/NFkB/NFkB.jl b/benchmarking/IdentifiableFunctions/results/NFkB/NFkB.jl similarity index 100% rename from benchmarking/IdentifiableFunctions/systems/NFkB/NFkB.jl rename to benchmarking/IdentifiableFunctions/results/NFkB/NFkB.jl diff --git a/benchmarking/IdentifiableFunctions/systems/PK1/PK1.jl b/benchmarking/IdentifiableFunctions/results/PK1/PK1.jl similarity index 87% rename from benchmarking/IdentifiableFunctions/systems/PK1/PK1.jl rename to benchmarking/IdentifiableFunctions/results/PK1/PK1.jl index 79f64c396..d24c76e75 100644 --- a/benchmarking/IdentifiableFunctions/systems/PK1/PK1.jl +++ b/benchmarking/IdentifiableFunctions/results/PK1/PK1.jl @@ -3,10 +3,10 @@ using StructuralIdentifiability system = @ODEmodel( - x2'(t) = k5*x4(t) - k3*x2(t) - k6*x2(t) + k1*x1(t) - k7*x2(t), x1'(t) = u1(t) - k2*x1(t) - k1*x1(t), + x2'(t) = k5*x4(t) - k3*x2(t) - k6*x2(t) + k1*x1(t) - k7*x2(t), x3'(t) = k3*x2(t) - k4*x3(t) + k2*x1(t), x4'(t) = -k5*x4(t) + k6*x2(t), - y2(t) = s3*x3(t), - y1(t) = s2*x2(t) + y1(t) = s2*x2(t), + y2(t) = s3*x3(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/PK1/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/PK1/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..f35e54879 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/PK1/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +PK1 +id_npoints_degree, 20 +id_npoints_interpolation, 96 +are_id_funcs_polynomial, false diff --git a/benchmarking/IdentifiableFunctions/results/PK1/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/PK1/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..fdbe6b3cd --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/PK1/logs_(normalforms, 2)_with_states @@ -0,0 +1,156 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "PK1" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: x1, x2, x3, x4 +[ Info: Parameters: k5, k3, s3, k4, k2, s2, k6, k1, k7 +[ Info: Inputs: u1 +[ Info: Outputs: y1, y2 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 14.813380484 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 14.813380484 +[ Info: Computing Wronskians +┌ Info: Computed in 10.922344015 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 10.922344015 +[ Info: Dimensions of the Wronskians [6, 6] +┌ Info: Ranks of the Wronskians computed in 0.032538919 seconds +│ :rank_time = :rank_time +└ rank_times = 0.032538919 + ⌜ # Computing specializations.. Time: 0:00:10 ✓ # Computing specializations.. Time: 0:00:11 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 3 for num. and 2 for den. +└ Points used: 48. +[ Info: Groebner basis computed in 13.50388363 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 4.367535206 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 10 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 8 fractions 8 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 4.855497461 seconds. Result: true +[ Info: Out of 10 initial generators there are 8 indepdendent +[ Info: The ranking of the new set of generators is 2211 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 3 for num. and 2 for den. +└ Points used: 48. +[ Info: Groebner basis computed in 0.63031742 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.055419248 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 17 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (13 in total): Nemo.QQMPolyRingElem[k5, k3, s3, k4, k2, s2, k6, k1, k7, x1, x2, x3, x4] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 32 +┌ Info: Final cleaning and simplification of generators. +└ Out of 34 fractions 28 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.00953511 seconds. Result: true +[ Info: Out of 16 initial generators there are 12 indepdendent +[ Info: The ranking of the new set of generators is 1842 +[ Info: The search for identifiable functions concluded in 71.208893628 seconds +[ Info: Processing PK1 +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.019911708 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.019911708 +[ Info: Computing Wronskians +┌ Info: Computed in 0.010543607 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.010543607 +[ Info: Dimensions of the Wronskians [6, 6] +┌ Info: Ranks of the Wronskians computed in 2.6044e-5 seconds +│ :rank_time = :rank_time +└ rank_times = 2.6044e-5 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 3 for num. and 2 for den. +└ Points used: 48. +[ Info: Groebner basis computed in 0.04151999 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.081180041 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 10 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 8 fractions 8 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.006213159 seconds. Result: true +[ Info: Out of 10 initial generators there are 8 indepdendent +[ Info: The ranking of the new set of generators is 2211 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 3 for num. and 2 for den. +└ Points used: 48. +[ Info: Groebner basis computed in 0.047297256 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.044527799 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 17 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (13 in total): Nemo.QQMPolyRingElem[k5, k3, s3, k4, k2, s2, k6, k1, k7, x1, x2, x3, x4] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 32 +┌ Info: Final cleaning and simplification of generators. +└ Out of 34 fractions 28 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.009709858 seconds. Result: true +[ Info: Out of 16 initial generators there are 12 indepdendent +[ Info: The ranking of the new set of generators is 1842 +[ Info: The search for identifiable functions concluded in 0.735015714 seconds +┌ Info: Result is +│ result = +│ 12-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ x1 +│ k6 +│ k4 +│ k5 +│ ⋮ +│ k2 + k1 +│ k3 + k7 +└ (k2*s2)//(k3*k2 + k3*k1) diff --git a/benchmarking/IdentifiableFunctions/results/PK1/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/PK1/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..9e436754c --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/PK1/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[x1, k6, k4, k5, s2*x4, s2*x2, s2*k1, s3*x3, s3*k2, k2 + k1, k3 + k7, (k2*s2)//(k3*k2 + k3*k1)] diff --git a/benchmarking/IdentifiableFunctions/results/PK1/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/PK1/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..e9dfd8791 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/PK1/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +PK1 +id_total, 0.73556951 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.009709858 +id_inclusion_check_mod_p, 0.044527799 +id_groebner_time, 0.047297256 +id_beautifulization, 0.17861074300000002 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 1842.0 diff --git a/benchmarking/IdentifiableFunctions/systems/PK2/PK2.jl b/benchmarking/IdentifiableFunctions/results/PK2/PK2.jl similarity index 100% rename from benchmarking/IdentifiableFunctions/systems/PK2/PK2.jl rename to benchmarking/IdentifiableFunctions/results/PK2/PK2.jl index 2ab4af826..63a1a902b 100644 --- a/benchmarking/IdentifiableFunctions/systems/PK2/PK2.jl +++ b/benchmarking/IdentifiableFunctions/results/PK2/PK2.jl @@ -5,7 +5,7 @@ using StructuralIdentifiability system = @ODEmodel( x0'(t) = (-ka*n*x0(t) - ka*kc*a1*x0(t) + ka*kc*a1*x1(t) - ka*a1*x0(t)^2 + ka*a1*x0(t)*x1(t) - kc*a1*x0(t)*x2(t) + kc*a1*x1(t)*x2(t))//(ka*kc + ka*x0(t) + kc*x2(t)), x1'(t) = a2*x0(t) - a2*x1(t), - x3'(t) = -b2*x3(t) + b2*x2(t), x2'(t) = (ka*kc*b1*x3(t) - ka*kc*b1*x2(t) + ka*b1*x0(t)*x3(t) - ka*b1*x0(t)*x2(t) - n*kc*x2(t) + kc*b1*x3(t)*x2(t) - kc*b1*x2(t)^2)//(ka*kc + ka*x0(t) + kc*x2(t)), + x3'(t) = -b2*x3(t) + b2*x2(t), y1(t) = x0(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/PK2/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/PK2/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..59c02243b --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/PK2/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +PK2 +id_npoints_degree, 20 +id_npoints_interpolation, 12 +are_id_funcs_polynomial, true diff --git a/benchmarking/IdentifiableFunctions/results/PK2/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/PK2/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..747c707a7 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/PK2/logs_(normalforms, 2)_with_states @@ -0,0 +1,165 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "PK2" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: x0, x1, x2, x3 +[ Info: Parameters: a2, ka, n, b2, kc, b1, a1 +[ Info: Inputs: +[ Info: Outputs: y1 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 53.037246487 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 53.037246487 +[ Info: Computing Wronskians +┌ Info: Computed in 59.986032411 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 59.986032411 +[ Info: Dimensions of the Wronskians [2936] +┌ Info: Ranks of the Wronskians computed in 5.139793082 seconds +│ :rank_time = :rank_time +└ rank_times = 5.139793082 + ⌜ # Computing specializations.. Time: 0:00:13 ✓ # Computing specializations.. Time: 0:00:14 + ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 + ⌜ # Computing specializations.. Time: 0:00:00 + Points: 3  ⌝ # Computing specializations.. Time: 0:00:00 + Points: 6  ✓ # Computing specializations.. Time: 0:00:00 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 19.482226699 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 11.509182017 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 8 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 7 fractions 7 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 44.316121869 seconds. Result: true +[ Info: Out of 3535 initial generators there are 7 indepdendent +[ Info: The ranking of the new set of generators is 28 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 0.881529942 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.295687791 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 12 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (11 in total): Nemo.QQMPolyRingElem[a2, ka, n, b2, kc, b1, a1, x0, x1, x2, x3] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 1 +┌ Info: Final cleaning and simplification of generators. +└ Out of 22 fractions 11 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.097952674 seconds. Result: true +[ Info: Out of 12 initial generators there are 11 indepdendent +[ Info: The ranking of the new set of generators is 66 +[ Info: The search for identifiable functions concluded in 221.835859519 seconds +[ Info: Processing PK2 +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 30.806363469 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 30.806363469 +[ Info: Computing Wronskians +┌ Info: Computed in 36.499873724 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 36.499873724 +[ Info: Dimensions of the Wronskians [2936] +┌ Info: Ranks of the Wronskians computed in 4.871100178 seconds +│ :rank_time = :rank_time +└ rank_times = 4.871100178 + ⌜ # Computing specializations.. Time: 0:00:07 ✓ # Computing specializations.. Time: 0:00:07 + ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:01 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:02 + ⌜ # Computing specializations.. Time: 0:00:00 + Points: 3  ⌝ # Computing specializations.. Time: 0:00:00 + Points: 6  ✓ # Computing specializations.. Time: 0:00:01 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 12.781511453 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 8.002843375 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 8 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 7 fractions 7 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 29.790278505 seconds. Result: true +[ Info: Out of 3535 initial generators there are 7 indepdendent +[ Info: The ranking of the new set of generators is 28 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 0.167260907 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.131751129 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 12 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (11 in total): Nemo.QQMPolyRingElem[a2, ka, n, b2, kc, b1, a1, x0, x1, x2, x3] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 1 +┌ Info: Final cleaning and simplification of generators. +└ Out of 22 fractions 11 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.053390691 seconds. Result: true +[ Info: Out of 12 initial generators there are 11 indepdendent +[ Info: The ranking of the new set of generators is 66 +[ Info: The search for identifiable functions concluded in 130.963213386 seconds +┌ Info: Result is +│ result = +│ 11-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ x3 +│ x2 +│ x1 +│ x0 +│ ⋮ +│ n +│ ka +└ a2 diff --git a/benchmarking/IdentifiableFunctions/results/PK2/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/PK2/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..f938dd002 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/PK2/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[x3, x2, x1, x0, a1, b1, kc, b2, n, ka, a2] diff --git a/benchmarking/IdentifiableFunctions/results/PK2/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/PK2/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..5136728c2 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/PK2/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +PK2 +id_total, 130.963747804 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.053390691 +id_inclusion_check_mod_p, 0.131751129 +id_groebner_time, 0.167260907 +id_beautifulization, 0.068425122 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 66.0 diff --git a/benchmarking/IdentifiableFunctions/systems/Pharm/Pharm.jl b/benchmarking/IdentifiableFunctions/results/Pharm/Pharm.jl similarity index 100% rename from benchmarking/IdentifiableFunctions/systems/Pharm/Pharm.jl rename to benchmarking/IdentifiableFunctions/results/Pharm/Pharm.jl index 601e58884..19a2797f1 100644 --- a/benchmarking/IdentifiableFunctions/systems/Pharm/Pharm.jl +++ b/benchmarking/IdentifiableFunctions/results/Pharm/Pharm.jl @@ -5,7 +5,7 @@ using StructuralIdentifiability system = @ODEmodel( x0'(t) = (-ka*n*x0(t) - ka*kc*a1*x0(t) + ka*kc*a1*x1(t) - ka*a1*x0(t)^2 + ka*a1*x0(t)*x1(t) - kc*a1*x0(t)*x2(t) + kc*a1*x1(t)*x2(t))//(ka*kc + ka*x0(t) + kc*x2(t)), x1'(t) = a2*x0(t) - a2*x1(t), - x3'(t) = -b2*x3(t) + b2*x2(t), x2'(t) = (ka*kc*b1*x3(t) - ka*kc*b1*x2(t) + ka*b1*x0(t)*x3(t) - ka*b1*x0(t)*x2(t) - n*kc*x2(t) + kc*b1*x3(t)*x2(t) - kc*b1*x2(t)^2)//(ka*kc + ka*x0(t) + kc*x2(t)), + x3'(t) = -b2*x3(t) + b2*x2(t), y1(t) = x0(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/Pharm/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Pharm/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..e88afc2ea --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Pharm/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +Pharm +id_npoints_degree, 20 +id_npoints_interpolation, 12 +are_id_funcs_polynomial, true diff --git a/benchmarking/IdentifiableFunctions/results/Pharm/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Pharm/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..ef235149c --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Pharm/logs_(normalforms, 2)_with_states @@ -0,0 +1,165 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "Pharm" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: x0, x1, x2, x3 +[ Info: Parameters: a2, ka, n, b2, kc, b1, a1 +[ Info: Inputs: +[ Info: Outputs: y1 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 52.017493982 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 52.017493982 +[ Info: Computing Wronskians +┌ Info: Computed in 54.575132169 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 54.575132169 +[ Info: Dimensions of the Wronskians [2936] +┌ Info: Ranks of the Wronskians computed in 5.1028176 seconds +│ :rank_time = :rank_time +└ rank_times = 5.1028176 + ⌜ # Computing specializations.. Time: 0:00:13 ✓ # Computing specializations.. Time: 0:00:13 + ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 + ⌜ # Computing specializations.. Time: 0:00:00 + Points: 2  ⌝ # Computing specializations.. Time: 0:00:00 + Points: 5  ✓ # Computing specializations.. Time: 0:00:01 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 18.387190271 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 12.041660042 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 8 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 7 fractions 7 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 44.564095832 seconds. Result: true +[ Info: Out of 3535 initial generators there are 7 indepdendent +[ Info: The ranking of the new set of generators is 28 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 0.875667186 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.29973503 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 12 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (11 in total): Nemo.QQMPolyRingElem[a2, ka, n, b2, kc, b1, a1, x0, x1, x2, x3] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 1 +┌ Info: Final cleaning and simplification of generators. +└ Out of 22 fractions 11 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.102167754 seconds. Result: true +[ Info: Out of 12 initial generators there are 11 indepdendent +[ Info: The ranking of the new set of generators is 66 +[ Info: The search for identifiable functions concluded in 215.759236903 seconds +[ Info: Processing Pharm +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 42.81938822 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 42.81938822 +[ Info: Computing Wronskians +┌ Info: Computed in 40.936970633 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 40.936970633 +[ Info: Dimensions of the Wronskians [2936] +┌ Info: Ranks of the Wronskians computed in 4.619619488 seconds +│ :rank_time = :rank_time +└ rank_times = 4.619619488 + ⌜ # Computing specializations.. Time: 0:00:08 ✓ # Computing specializations.. Time: 0:00:08 + ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 + ⌜ # Computing specializations.. Time: 0:00:00 + Points: 3  ⌝ # Computing specializations.. Time: 0:00:00 + Points: 6  ✓ # Computing specializations.. Time: 0:00:00 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 12.328370353 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 7.737195748 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 8 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 7 fractions 7 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 35.593906608 seconds. Result: true +[ Info: Out of 3535 initial generators there are 7 indepdendent +[ Info: The ranking of the new set of generators is 28 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 0.234994529 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.260686525 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 12 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (11 in total): Nemo.QQMPolyRingElem[a2, ka, n, b2, kc, b1, a1, x0, x1, x2, x3] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 1 +┌ Info: Final cleaning and simplification of generators. +└ Out of 22 fractions 11 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.081566736 seconds. Result: true +[ Info: Out of 12 initial generators there are 11 indepdendent +[ Info: The ranking of the new set of generators is 66 +[ Info: The search for identifiable functions concluded in 152.25752809 seconds +┌ Info: Result is +│ result = +│ 11-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ x3 +│ x2 +│ x1 +│ x0 +│ ⋮ +│ n +│ ka +└ a2 diff --git a/benchmarking/IdentifiableFunctions/results/Pharm/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Pharm/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..f938dd002 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Pharm/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[x3, x2, x1, x0, a1, b1, kc, b2, n, ka, a2] diff --git a/benchmarking/IdentifiableFunctions/results/Pharm/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Pharm/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..3af995ea6 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Pharm/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +Pharm +id_total, 152.258156411 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.081566736 +id_inclusion_check_mod_p, 0.260686525 +id_groebner_time, 0.234994529 +id_beautifulization, 0.085272299 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 66.0 diff --git a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/Phosphorylation.jl b/benchmarking/IdentifiableFunctions/results/Phosphorylation/Phosphorylation.jl similarity index 92% rename from benchmarking/IdentifiableFunctions/systems/Phosphorylation/Phosphorylation.jl rename to benchmarking/IdentifiableFunctions/results/Phosphorylation/Phosphorylation.jl index 561d687e1..8f23af362 100644 --- a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/Phosphorylation.jl +++ b/benchmarking/IdentifiableFunctions/results/Phosphorylation/Phosphorylation.jl @@ -3,12 +3,12 @@ using StructuralIdentifiability system = @ODEmodel( + x5'(t) = k5*x6(t) + k4*x6(t) - k6*x5(t)*x3(t), + x6'(t) = -k5*x6(t) - k4*x6(t) + k6*x5(t)*x3(t), x4'(t) = -k3*x4(t) - k2*x4(t) + k1*x1(t)*x2(t), x2'(t) = k3*x4(t) + k2*x4(t) + k1*x1(t)*x2(t), x1'(t) = k4*x6(t) + k2*x4(t) - k1*x1(t)*x2(t), x3'(t) = k5*x6(t) + k3*x4(t) - k6*x5(t)*x3(t), - x5'(t) = k5*x6(t) + k4*x6(t) - k6*x5(t)*x3(t), - x6'(t) = -k5*x6(t) - k4*x6(t) + k6*x5(t)*x3(t), - y2(t) = x2(t), - y1(t) = x3(t) + y1(t) = x3(t), + y2(t) = x2(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/Phosphorylation/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Phosphorylation/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..c23a21bd5 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Phosphorylation/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +Phosphorylation +id_npoints_degree, 18 +id_npoints_interpolation, 26 +are_id_funcs_polynomial, true diff --git a/benchmarking/IdentifiableFunctions/results/Phosphorylation/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Phosphorylation/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..717951ed6 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Phosphorylation/logs_(normalforms, 2)_with_states @@ -0,0 +1,157 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "Phosphorylation" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: x5, x6, x4, x2, x1, x3 +[ Info: Parameters: k5, k3, k4, k2, k6, k1 +[ Info: Inputs: +[ Info: Outputs: y1, y2 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 10.995799981 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 10.995799981 +[ Info: Computing Wronskians +┌ Info: Computed in 11.144162081 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 11.144162081 +[ Info: Dimensions of the Wronskians [35, 50] +┌ Info: Ranks of the Wronskians computed in 0.033295339 seconds +│ :rank_time = :rank_time +└ rank_times = 0.033295339 + ⌜ # Computing specializations.. Time: 0:00:06 ✓ # Computing specializations.. Time: 0:00:07 + ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 2 for den. +│ Maximal number of interpolated terms are: 1 for num. and 2 for den. +└ Points used: 20. +[ Info: Groebner basis computed in 9.606580604 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 3.324032797 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 8 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 6 fractions 6 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 4.214356271 seconds. Result: true +[ Info: Out of 127 initial generators there are 6 indepdendent +[ Info: The ranking of the new set of generators is 24 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 5.307111803 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 1.553871035 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 14 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (12 in total): Nemo.QQMPolyRingElem[k5, k3, k4, k2, k6, k1, x5, x6, x4, x2, x1, x3] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 1 +┌ Info: Final cleaning and simplification of generators. +└ Out of 24 fractions 12 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 2.281154985 seconds. Result: true +[ Info: Out of 14 initial generators there are 12 indepdendent +[ Info: The ranking of the new set of generators is 78 +[ Info: The search for identifiable functions concluded in 65.606524633 seconds +[ Info: Processing Phosphorylation +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.128139706 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.128139706 +[ Info: Computing Wronskians +┌ Info: Computed in 0.053747405 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.053747405 +[ Info: Dimensions of the Wronskians [35, 50] +┌ Info: Ranks of the Wronskians computed in 0.000226294 seconds +│ :rank_time = :rank_time +└ rank_times = 0.000226294 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 2 for den. +│ Maximal number of interpolated terms are: 1 for num. and 2 for den. +└ Points used: 20. +[ Info: Groebner basis computed in 0.033866222 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.077073493 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 8 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 6 fractions 6 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.013392114 seconds. Result: true +[ Info: Out of 127 initial generators there are 6 indepdendent +[ Info: The ranking of the new set of generators is 24 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 0.014020613 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.003644315 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 14 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (12 in total): Nemo.QQMPolyRingElem[k5, k3, k4, k2, k6, k1, x5, x6, x4, x2, x1, x3] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 1 +┌ Info: Final cleaning and simplification of generators. +└ Out of 24 fractions 12 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.004805613 seconds. Result: true +[ Info: Out of 14 initial generators there are 12 indepdendent +[ Info: The ranking of the new set of generators is 78 +[ Info: The search for identifiable functions concluded in 0.452188364 seconds +┌ Info: Result is +│ result = +│ 12-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ x3 +│ x1 +│ x2 +│ x4 +│ ⋮ +│ k4 +│ k3 +└ k5 diff --git a/benchmarking/IdentifiableFunctions/results/Phosphorylation/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Phosphorylation/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..451feabbf --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Phosphorylation/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[x3, x1, x2, x4, x6, x5, k1, k6, k2, k4, k3, k5] diff --git a/benchmarking/IdentifiableFunctions/results/Phosphorylation/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Phosphorylation/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..ce9555fca --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Phosphorylation/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +Phosphorylation +id_total, 0.452696865 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.004805613 +id_inclusion_check_mod_p, 0.003644315 +id_groebner_time, 0.014020613 +id_beautifulization, 0.10696750799999999 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 78.0 diff --git a/benchmarking/IdentifiableFunctions/systems/Pivastatin/Pivastatin.jl b/benchmarking/IdentifiableFunctions/results/Pivastatin/Pivastatin.jl similarity index 100% rename from benchmarking/IdentifiableFunctions/systems/Pivastatin/Pivastatin.jl rename to benchmarking/IdentifiableFunctions/results/Pivastatin/Pivastatin.jl index 972863688..644cc0bcb 100644 --- a/benchmarking/IdentifiableFunctions/systems/Pivastatin/Pivastatin.jl +++ b/benchmarking/IdentifiableFunctions/results/Pivastatin/Pivastatin.jl @@ -4,7 +4,7 @@ using StructuralIdentifiability system = @ODEmodel( x1'(t) = -r3*x1(t) + k3*x3(t) + r1*x2(t) - T0*k1*x1(t) + k1*x1(t)*x2(t), - x3'(t) = r3*x1(t) - k3*x3(t) - k4*x3(t) + k2*x2(t), x2'(t) = -r1*x2(t) - k2*x2(t) + T0*k1*x1(t) - k1*x1(t)*x2(t), + x3'(t) = r3*x1(t) - k3*x3(t) - k4*x3(t) + k2*x2(t), y1(t) = k*x3(t) + k*x2(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/Pivastatin/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Pivastatin/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..e93adfc3b --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Pivastatin/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +Pivastatin +id_npoints_degree, 20 +id_npoints_interpolation, 20 +are_id_funcs_polynomial, true diff --git a/benchmarking/IdentifiableFunctions/results/Pivastatin/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Pivastatin/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..049ba7e40 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Pivastatin/logs_(normalforms, 2)_with_states @@ -0,0 +1,157 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "Pivastatin" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: x1, x2, x3 +[ Info: Parameters: r3, k3, r1, k4, k2, T0, k, k1 +[ Info: Inputs: +[ Info: Outputs: y1 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 12.316450154 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 12.316450154 +[ Info: Computing Wronskians +┌ Info: Computed in 11.701115498 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 11.701115498 +[ Info: Dimensions of the Wronskians [245] +┌ Info: Ranks of the Wronskians computed in 0.041298622 seconds +│ :rank_time = :rank_time +└ rank_times = 0.041298622 + ⌜ # Computing specializations.. Time: 0:00:10 ✓ # Computing specializations.. Time: 0:00:11 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 1 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 10. +[ Info: Groebner basis computed in 14.382425245 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 5.941543532 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 8 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 7 fractions 7 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 10.040724884 seconds. Result: true +[ Info: Out of 251 initial generators there are 7 indepdendent +[ Info: The ranking of the new set of generators is 57 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 1 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 10. +[ Info: Groebner basis computed in 0.592684529 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.004298389 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 12 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (11 in total): Nemo.QQMPolyRingElem[r3, k3, r1, k4, k2, T0, k, k1, x1, x2, x3] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 25 +┌ Info: Final cleaning and simplification of generators. +└ Out of 23 fractions 14 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.005988171 seconds. Result: true +[ Info: Out of 11 initial generators there are 10 indepdendent +[ Info: The ranking of the new set of generators is 70 +[ Info: The search for identifiable functions concluded in 76.861169443 seconds +[ Info: Processing Pivastatin +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.840514132 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.840514132 +[ Info: Computing Wronskians +┌ Info: Computed in 0.212165193 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.212165193 +[ Info: Dimensions of the Wronskians [245] +┌ Info: Ranks of the Wronskians computed in 0.008642421 seconds +│ :rank_time = :rank_time +└ rank_times = 0.008642421 + ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 1 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 10. +[ Info: Groebner basis computed in 1.129757446 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 1.200975881 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 8 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 7 fractions 7 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 4.22799311 seconds. Result: true +[ Info: Out of 251 initial generators there are 7 indepdendent +[ Info: The ranking of the new set of generators is 57 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 1 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 10. +[ Info: Groebner basis computed in 0.019982032 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.004355044 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 12 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (11 in total): Nemo.QQMPolyRingElem[r3, k3, r1, k4, k2, T0, k, k1, x1, x2, x3] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 25 +┌ Info: Final cleaning and simplification of generators. +└ Out of 23 fractions 14 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.146231243 seconds. Result: true +[ Info: Out of 11 initial generators there are 10 indepdendent +[ Info: The ranking of the new set of generators is 70 +[ Info: The search for identifiable functions concluded in 8.441090823 seconds +┌ Info: Result is +│ result = +│ 10-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ k2 +│ k4 +│ r1 +│ k3 +│ ⋮ +│ k1*x1 +│ k*x3 +└ T0*k1 diff --git a/benchmarking/IdentifiableFunctions/results/Pivastatin/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Pivastatin/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..4291d13da --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Pivastatin/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[k2, k4, r1, k3, r3, x3*k1, k1*x2, k1*x1, k*x3, T0*k1] diff --git a/benchmarking/IdentifiableFunctions/results/Pivastatin/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Pivastatin/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..1a8956895 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Pivastatin/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +Pivastatin +id_total, 8.441623306 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.146231243 +id_inclusion_check_mod_p, 0.004355044 +id_groebner_time, 0.019982032 +id_beautifulization, 0.040468673 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 70.0 diff --git a/benchmarking/IdentifiableFunctions/systems/QWWC/QWWC.jl b/benchmarking/IdentifiableFunctions/results/QWWC/QWWC.jl similarity index 100% rename from benchmarking/IdentifiableFunctions/systems/QWWC/QWWC.jl rename to benchmarking/IdentifiableFunctions/results/QWWC/QWWC.jl index a598c6e74..58bf17c74 100644 --- a/benchmarking/IdentifiableFunctions/systems/QWWC/QWWC.jl +++ b/benchmarking/IdentifiableFunctions/results/QWWC/QWWC.jl @@ -3,9 +3,9 @@ using StructuralIdentifiability system = @ODEmodel( - z'(t) = -c*z(t) - w(t)*d + x(t)*y(t), x'(t) = -x(t)*a + z(t)*y(t) + a*y(t), - w'(t) = e*z(t) - w(t)*f + x(t)*y(t), y'(t) = b*x(t) + b*y(t) - x(t)*z(t), + z'(t) = -c*z(t) - w(t)*d + x(t)*y(t), + w'(t) = e*z(t) - w(t)*f + x(t)*y(t), g(t) = x(t) ) diff --git a/benchmarking/IdentifiableFunctions/systems/QY/QY.jl b/benchmarking/IdentifiableFunctions/results/QY/QY.jl similarity index 100% rename from benchmarking/IdentifiableFunctions/systems/QY/QY.jl rename to benchmarking/IdentifiableFunctions/results/QY/QY.jl index 8e67fe374..d9ececc91 100644 --- a/benchmarking/IdentifiableFunctions/systems/QY/QY.jl +++ b/benchmarking/IdentifiableFunctions/results/QY/QY.jl @@ -3,11 +3,11 @@ using StructuralIdentifiability system = @ODEmodel( - P3'(t) = P4(t), P0'(t) = P1(t), - P5'(t) = (-P0(t)*beta_SI*phi*Mar*Ks*siga2 + P0(t)*beta_SI*Mar*Ks*siga2 - P0(t)*phi*M*Mar*Ks*beta_SA + P0(t)*phi*M*Ks*siga2*beta_SA + P0(t)*M*Mar*Ks*beta_SA - P1(t)*beta_SI*phi*Mar*siga2 - P1(t)*beta_SI*phi*Ks*siga2 + P1(t)*beta_SI*Mar*siga2 + P1(t)*beta_SI*Ks*siga2 - P1(t)*phi*M*Mar*beta_SA + P1(t)*phi*M*siga2*beta_SA - P1(t)*phi*Mar*Ks*beta_SA + P1(t)*phi*Ks*siga2*beta_SA + P1(t)*M*Mar*beta_SA + P1(t)*M*Ks*beta_SA + P1(t)*Mar*Ks*beta_SA - beta_SI*phi*P2(t)*siga2 + beta_SI*P2(t)*siga2 + P3(t)*beta_SA - phi*M*Mar*P5(t)*siga2 - phi*M*beta*siga2 - phi*P2(t)*Mar*beta_SA + phi*P2(t)*siga2*beta_SA + M*P2(t)*beta_SA + M*Mar*P5(t)*siga2 + M*beta*siga2 + P2(t)*Mar*beta_SA + P2(t)*Ks*beta_SA)//(phi*M*siga2 - M*siga2), - P4'(t) = (-siga1*P0(t)^2*beta_SI*phi*M*Mar*Ks^2*siga2^2 + siga1*P0(t)^2*beta_SI*M*Mar*Ks^2*siga2^2 - siga1*P0(t)^2*phi*M^2*Mar*Ks^2*siga2*beta_SA + siga1*P0(t)^2*phi*M^2*Ks^2*siga2^2*beta_SA + siga1*P0(t)^2*M^2*Mar*Ks^2*siga2*beta_SA - siga1*P0(t)*P1(t)*beta_SI*phi*M*Mar*Ks^2*siga2 - 2*siga1*P0(t)*P1(t)*beta_SI*phi*M*Mar*Ks*siga2^2 - siga1*P0(t)*P1(t)*beta_SI*phi*M*Ks^2*siga2^2 - siga1*P0(t)*P1(t)*beta_SI*phi*Mar*Ks^2*siga2^2 + siga1*P0(t)*P1(t)*beta_SI*M*Mar*Ks^2*siga2 + 2*siga1*P0(t)*P1(t)*beta_SI*M*Mar*Ks*siga2^2 + siga1*P0(t)*P1(t)*beta_SI*M*Ks^2*siga2^2 + siga1*P0(t)*P1(t)*beta_SI*Mar*Ks^2*siga2^2 - siga1*P0(t)*P1(t)*phi*M^2*Mar*Ks^2*beta_SA - 2*siga1*P0(t)*P1(t)*phi*M^2*Mar*Ks*siga2*beta_SA + siga1*P0(t)*P1(t)*phi*M^2*Ks^2*siga2*beta_SA + 2*siga1*P0(t)*P1(t)*phi*M^2*Ks*siga2^2*beta_SA - 2*siga1*P0(t)*P1(t)*phi*M*Mar*Ks^2*siga2*beta_SA + 2*siga1*P0(t)*P1(t)*phi*M*Ks^2*siga2^2*beta_SA + siga1*P0(t)*P1(t)*M^2*Mar*Ks^2*beta_SA + 2*siga1*P0(t)*P1(t)*M^2*Mar*Ks*siga2*beta_SA + siga1*P0(t)*P1(t)*M^2*Ks^2*siga2*beta_SA + 2*siga1*P0(t)*P1(t)*M*Mar*Ks^2*siga2*beta_SA - siga1*P0(t)*beta_SI*P3(t)*phi*Mar*Ks*siga2 + siga1*P0(t)*beta_SI*P3(t)*Mar*Ks*siga2 - siga1*P0(t)*beta_SI*phi*M*P2(t)*Mar*Ks*siga2 - siga1*P0(t)*beta_SI*phi*M*P2(t)*Ks*siga2^2 - siga1*P0(t)*beta_SI*phi*P2(t)*Mar*Ks^2*siga2 - siga1*P0(t)*beta_SI*phi*P2(t)*Mar*Ks*siga2^2 + siga1*P0(t)*beta_SI*M*P2(t)*Mar*Ks*siga2 + siga1*P0(t)*beta_SI*M*P2(t)*Ks*siga2^2 + siga1*P0(t)*beta_SI*P2(t)*Mar*Ks^2*siga2 + siga1*P0(t)*beta_SI*P2(t)*Mar*Ks*siga2^2 - siga1*P0(t)*P3(t)*phi*M*Mar*Ks*beta_SA + siga1*P0(t)*P3(t)*phi*M*Ks*siga2*beta_SA + siga1*P0(t)*P3(t)*M*Mar*Ks*beta_SA + siga1*P0(t)*P3(t)*M*Ks*siga2*beta_SA - siga1*P0(t)*phi*M^2*P2(t)*Mar*Ks*beta_SA + siga1*P0(t)*phi*M^2*P2(t)*Ks*siga2*beta_SA - siga1*P0(t)*phi*M^2*Mar*P5(t)*Ks*siga2^2 - siga1*P0(t)*phi*M^2*Ks*beta*siga2^2 - siga1*P0(t)*phi*M*P2(t)*Mar*Ks^2*beta_SA - 2*siga1*P0(t)*phi*M*P2(t)*Mar*Ks*siga2*beta_SA + siga1*P0(t)*phi*M*P2(t)*Ks^2*siga2*beta_SA + 2*siga1*P0(t)*phi*M*P2(t)*Ks*siga2^2*beta_SA + siga1*P0(t)*M^2*P2(t)*Mar*Ks*beta_SA + siga1*P0(t)*M^2*P2(t)*Ks*siga2*beta_SA + siga1*P0(t)*M^2*Mar*P5(t)*Ks*siga2^2 + siga1*P0(t)*M^2*Ks*beta*siga2^2 + siga1*P0(t)*M*P2(t)*Mar*Ks^2*beta_SA + 2*siga1*P0(t)*M*P2(t)*Mar*Ks*siga2*beta_SA + siga1*P0(t)*M*P2(t)*Ks^2*siga2*beta_SA - siga1*P1(t)^2*beta_SI*phi*M*Mar*Ks*siga2 - siga1*P1(t)^2*beta_SI*phi*M*Mar*siga2^2 - siga1*P1(t)^2*beta_SI*phi*M*Ks^2*siga2 - siga1*P1(t)^2*beta_SI*phi*M*Ks*siga2^2 - siga1*P1(t)^2*beta_SI*phi*Mar*Ks*siga2^2 - siga1*P1(t)^2*beta_SI*phi*Ks^2*siga2^2 + siga1*P1(t)^2*beta_SI*M*Mar*Ks*siga2 + siga1*P1(t)^2*beta_SI*M*Mar*siga2^2 + siga1*P1(t)^2*beta_SI*M*Ks^2*siga2 + siga1*P1(t)^2*beta_SI*M*Ks*siga2^2 + siga1*P1(t)^2*beta_SI*Mar*Ks*siga2^2 + siga1*P1(t)^2*beta_SI*Ks^2*siga2^2 - siga1*P1(t)^2*phi*M^2*Mar*Ks*beta_SA - siga1*P1(t)^2*phi*M^2*Mar*siga2*beta_SA + siga1*P1(t)^2*phi*M^2*Ks*siga2*beta_SA + siga1*P1(t)^2*phi*M^2*siga2^2*beta_SA - siga1*P1(t)^2*phi*M*Mar*Ks^2*beta_SA - 2*siga1*P1(t)^2*phi*M*Mar*Ks*siga2*beta_SA + siga1*P1(t)^2*phi*M*Ks^2*siga2*beta_SA + 2*siga1*P1(t)^2*phi*M*Ks*siga2^2*beta_SA - siga1*P1(t)^2*phi*Mar*Ks^2*siga2*beta_SA + siga1*P1(t)^2*phi*Ks^2*siga2^2*beta_SA + siga1*P1(t)^2*M^2*Mar*Ks*beta_SA + siga1*P1(t)^2*M^2*Mar*siga2*beta_SA + siga1*P1(t)^2*M^2*Ks^2*beta_SA + siga1*P1(t)^2*M^2*Ks*siga2*beta_SA + siga1*P1(t)^2*M*Mar*Ks^2*beta_SA + 2*siga1*P1(t)^2*M*Mar*Ks*siga2*beta_SA + siga1*P1(t)^2*M*Ks^2*siga2*beta_SA + siga1*P1(t)^2*Mar*Ks^2*siga2*beta_SA - siga1*P1(t)*beta_SI*P3(t)*phi*Mar*siga2 - siga1*P1(t)*beta_SI*P3(t)*phi*Ks*siga2 + siga1*P1(t)*beta_SI*P3(t)*Mar*siga2 + siga1*P1(t)*beta_SI*P3(t)*Ks*siga2 - siga1*P1(t)*beta_SI*phi*M*P2(t)*Mar*siga2 - 2*siga1*P1(t)*beta_SI*phi*M*P2(t)*Ks*siga2 - siga1*P1(t)*beta_SI*phi*M*P2(t)*siga2^2 - siga1*P1(t)*beta_SI*phi*P2(t)*Mar*Ks*siga2 - siga1*P1(t)*beta_SI*phi*P2(t)*Mar*siga2^2 - siga1*P1(t)*beta_SI*phi*P2(t)*Ks^2*siga2 - 2*siga1*P1(t)*beta_SI*phi*P2(t)*Ks*siga2^2 + siga1*P1(t)*beta_SI*M*P2(t)*Mar*siga2 + 2*siga1*P1(t)*beta_SI*M*P2(t)*Ks*siga2 + siga1*P1(t)*beta_SI*M*P2(t)*siga2^2 + siga1*P1(t)*beta_SI*P2(t)*Mar*Ks*siga2 + siga1*P1(t)*beta_SI*P2(t)*Mar*siga2^2 + siga1*P1(t)*beta_SI*P2(t)*Ks^2*siga2 + 2*siga1*P1(t)*beta_SI*P2(t)*Ks*siga2^2 - siga1*P1(t)*P3(t)*phi*M*Mar*beta_SA + siga1*P1(t)*P3(t)*phi*M*siga2*beta_SA - siga1*P1(t)*P3(t)*phi*Mar*Ks*beta_SA + siga1*P1(t)*P3(t)*phi*Ks*siga2*beta_SA + siga1*P1(t)*P3(t)*M*Mar*beta_SA + 2*siga1*P1(t)*P3(t)*M*Ks*beta_SA + siga1*P1(t)*P3(t)*M*siga2*beta_SA + siga1*P1(t)*P3(t)*Mar*Ks*beta_SA + siga1*P1(t)*P3(t)*Ks*siga2*beta_SA - siga1*P1(t)*phi*M^2*P2(t)*Mar*beta_SA + siga1*P1(t)*phi*M^2*P2(t)*siga2*beta_SA - siga1*P1(t)*phi*M^2*Mar*P5(t)*Ks*siga2 - siga1*P1(t)*phi*M^2*Mar*P5(t)*siga2^2 - siga1*P1(t)*phi*M^2*Ks*beta*siga2 - siga1*P1(t)*phi*M^2*Ks*siga2^2 - siga1*P1(t)*phi*M^2*beta*siga2^2 - 3*siga1*P1(t)*phi*M*P2(t)*Mar*Ks*beta_SA - 2*siga1*P1(t)*phi*M*P2(t)*Mar*siga2*beta_SA + 3*siga1*P1(t)*phi*M*P2(t)*Ks*siga2*beta_SA + 2*siga1*P1(t)*phi*M*P2(t)*siga2^2*beta_SA - siga1*P1(t)*phi*M*Mar*P5(t)*Ks*siga2^2 - siga1*P1(t)*phi*M*Ks*beta*siga2^2 - siga1*P1(t)*phi*P2(t)*Mar*Ks^2*beta_SA - 2*siga1*P1(t)*phi*P2(t)*Mar*Ks*siga2*beta_SA + siga1*P1(t)*phi*P2(t)*Ks^2*siga2*beta_SA + 2*siga1*P1(t)*phi*P2(t)*Ks*siga2^2*beta_SA + siga1*P1(t)*M^2*P2(t)*Mar*beta_SA + 2*siga1*P1(t)*M^2*P2(t)*Ks*beta_SA + siga1*P1(t)*M^2*P2(t)*siga2*beta_SA + siga1*P1(t)*M^2*Mar*P5(t)*Ks*siga2 + siga1*P1(t)*M^2*Mar*P5(t)*siga2^2 + siga1*P1(t)*M^2*Ks*beta*siga2 + siga1*P1(t)*M^2*Ks*siga2^2 + siga1*P1(t)*M^2*beta*siga2^2 + 3*siga1*P1(t)*M*P2(t)*Mar*Ks*beta_SA + 2*siga1*P1(t)*M*P2(t)*Mar*siga2*beta_SA + 2*siga1*P1(t)*M*P2(t)*Ks^2*beta_SA + 3*siga1*P1(t)*M*P2(t)*Ks*siga2*beta_SA + siga1*P1(t)*M*Mar*P5(t)*Ks*siga2^2 + siga1*P1(t)*M*Ks*beta*siga2^2 + siga1*P1(t)*P2(t)*Mar*Ks^2*beta_SA + 2*siga1*P1(t)*P2(t)*Mar*Ks*siga2*beta_SA + siga1*P1(t)*P2(t)*Ks^2*siga2*beta_SA - siga1*beta_SI*P3(t)*phi*P2(t)*siga2 + siga1*beta_SI*P3(t)*P2(t)*siga2 - siga1*beta_SI*phi*M*P2(t)^2*siga2 - siga1*beta_SI*phi*P2(t)^2*Ks*siga2 - siga1*beta_SI*phi*P2(t)^2*siga2^2 + siga1*beta_SI*M*P2(t)^2*siga2 + siga1*beta_SI*P2(t)^2*Ks*siga2 + siga1*beta_SI*P2(t)^2*siga2^2 + siga1*P3(t)^2*beta_SA - siga1*P3(t)*phi*M^2*siga2 - siga1*P3(t)*phi*M*Mar*P5(t)*siga2 - siga1*P3(t)*phi*M*Ks*siga2 - siga1*P3(t)*phi*M*beta*siga2 - siga1*P3(t)*phi*M*siga2^2 - siga1*P3(t)*phi*P2(t)*Mar*beta_SA + siga1*P3(t)*phi*P2(t)*siga2*beta_SA + siga1*P3(t)*M^2*siga2 + 2*siga1*P3(t)*M*P2(t)*beta_SA + siga1*P3(t)*M*Mar*P5(t)*siga2 + siga1*P3(t)*M*Ks*siga2 + siga1*P3(t)*M*beta*siga2 + siga1*P3(t)*M*siga2^2 + siga1*P3(t)*P2(t)*Mar*beta_SA + 2*siga1*P3(t)*P2(t)*Ks*beta_SA + siga1*P3(t)*P2(t)*siga2*beta_SA - siga1*phi*M^2*P2(t)*Mar*P5(t)*siga2 - siga1*phi*M^2*P2(t)*Ks*siga2 - siga1*phi*M^2*P2(t)*beta*siga2 - siga1*phi*M^2*P2(t)*siga2^2 - siga1*phi*M*P4(t)*siga2 - siga1*phi*M*P2(t)^2*Mar*beta_SA + siga1*phi*M*P2(t)^2*siga2*beta_SA - siga1*phi*M*P2(t)*Mar*P5(t)*Ks*siga2 - siga1*phi*M*P2(t)*Mar*P5(t)*siga2^2 - siga1*phi*M*P2(t)*Ks*beta*siga2 - siga1*phi*M*P2(t)*Ks*siga2^2 - siga1*phi*M*P2(t)*beta*siga2^2 - siga1*phi*P2(t)^2*Mar*Ks*beta_SA - siga1*phi*P2(t)^2*Mar*siga2*beta_SA + siga1*phi*P2(t)^2*Ks*siga2*beta_SA + siga1*phi*P2(t)^2*siga2^2*beta_SA + siga1*M^2*P2(t)^2*beta_SA + siga1*M^2*P2(t)*Mar*P5(t)*siga2 + siga1*M^2*P2(t)*Ks*siga2 + siga1*M^2*P2(t)*beta*siga2 + siga1*M^2*P2(t)*siga2^2 + siga1*M*P4(t)*siga2 + siga1*M*P2(t)^2*Mar*beta_SA + 2*siga1*M*P2(t)^2*Ks*beta_SA + siga1*M*P2(t)^2*siga2*beta_SA + siga1*M*P2(t)*Mar*P5(t)*Ks*siga2 + siga1*M*P2(t)*Mar*P5(t)*siga2^2 + siga1*M*P2(t)*Ks*beta*siga2 + siga1*M*P2(t)*Ks*siga2^2 + siga1*M*P2(t)*beta*siga2^2 + siga1*P2(t)^2*Mar*Ks*beta_SA + siga1*P2(t)^2*Mar*siga2*beta_SA + siga1*P2(t)^2*Ks^2*beta_SA + siga1*P2(t)^2*Ks*siga2*beta_SA - P0(t)*P1(t)*beta_SI*phi*M*Mar*Ks^2*siga2^2 + P0(t)*P1(t)*beta_SI*M*Mar*Ks^2*siga2^2 - P0(t)*P1(t)*phi*M^2*Mar*Ks^2*siga2*beta_SA + P0(t)*P1(t)*phi*M^2*Ks^2*siga2^2*beta_SA + P0(t)*P1(t)*M^2*Mar*Ks^2*siga2*beta_SA - P0(t)*beta_SI*P3(t)*phi*M*Mar*Ks*siga2 - P0(t)*beta_SI*P3(t)*phi*Mar*Ks^2*siga2 - P0(t)*beta_SI*P3(t)*phi*Mar*Ks*siga2^2 + P0(t)*beta_SI*P3(t)*M*Mar*Ks*siga2 + P0(t)*beta_SI*P3(t)*Mar*Ks^2*siga2 + P0(t)*beta_SI*P3(t)*Mar*Ks*siga2^2 - P0(t)*beta_SI*phi*alpa*Mar*Ks*siga2 - P0(t)*beta_SI*phi*M*P2(t)*Mar*Ks^2*siga2 - P0(t)*beta_SI*phi*M*P2(t)*Mar*Ks*siga2^2 - P0(t)*beta_SI*phi*P4(t)*Mar*Ks*siga2 - P0(t)*beta_SI*phi*P2(t)*Mar*Ks^2*siga2^2 + P0(t)*beta_SI*alpa*Mar*Ks*siga2 + P0(t)*beta_SI*M*P2(t)*Mar*Ks^2*siga2 + P0(t)*beta_SI*M*P2(t)*Mar*Ks*siga2^2 + P0(t)*beta_SI*P4(t)*Mar*Ks*siga2 + P0(t)*beta_SI*P2(t)*Mar*Ks^2*siga2^2 - P0(t)*P3(t)*phi*M^2*Mar*Ks*beta_SA + P0(t)*P3(t)*phi*M^2*Ks*siga2*beta_SA - P0(t)*P3(t)*phi*M*Mar*Ks^2*beta_SA - P0(t)*P3(t)*phi*M*Mar*Ks*siga2*beta_SA + P0(t)*P3(t)*phi*M*Ks^2*siga2*beta_SA + P0(t)*P3(t)*phi*M*Ks*siga2^2*beta_SA + P0(t)*P3(t)*M^2*Mar*Ks*beta_SA + P0(t)*P3(t)*M*Mar*Ks^2*beta_SA + P0(t)*P3(t)*M*Mar*Ks*siga2*beta_SA - P0(t)*phi*alpa*M*Mar*Ks*beta_SA + P0(t)*phi*alpa*M*Ks*siga2*beta_SA - P0(t)*phi*M^2*P2(t)*Mar*Ks^2*beta_SA - P0(t)*phi*M^2*P2(t)*Mar*Ks*siga2*beta_SA + P0(t)*phi*M^2*P2(t)*Ks^2*siga2*beta_SA + P0(t)*phi*M^2*P2(t)*Ks*siga2^2*beta_SA - P0(t)*phi*M*P4(t)*Mar*Ks*beta_SA + P0(t)*phi*M*P4(t)*Ks*siga2*beta_SA - P0(t)*phi*M*P2(t)*Mar*Ks^2*siga2*beta_SA + P0(t)*phi*M*P2(t)*Ks^2*siga2^2*beta_SA + P0(t)*alpa*M*Mar*Ks*beta_SA + P0(t)*M^2*P2(t)*Mar*Ks^2*beta_SA + P0(t)*M^2*P2(t)*Mar*Ks*siga2*beta_SA + P0(t)*M*P4(t)*Mar*Ks*beta_SA + P0(t)*M*P2(t)*Mar*Ks^2*siga2*beta_SA - P1(t)^2*beta_SI*phi*M*Mar*Ks*siga2^2 - P1(t)^2*beta_SI*phi*M*Ks^2*siga2^2 + P1(t)^2*beta_SI*M*Mar*Ks*siga2^2 + P1(t)^2*beta_SI*M*Ks^2*siga2^2 - P1(t)^2*phi*M^2*Mar*Ks*siga2*beta_SA + P1(t)^2*phi*M^2*Ks*siga2^2*beta_SA - P1(t)^2*phi*M*Mar*Ks^2*siga2*beta_SA + P1(t)^2*phi*M*Ks^2*siga2^2*beta_SA + P1(t)^2*M^2*Mar*Ks*siga2*beta_SA + P1(t)^2*M^2*Ks^2*siga2*beta_SA + P1(t)^2*M*Mar*Ks^2*siga2*beta_SA - P1(t)*beta_SI*P3(t)*phi*M*Mar*siga2 - P1(t)*beta_SI*P3(t)*phi*M*Ks*siga2 - P1(t)*beta_SI*P3(t)*phi*Mar*Ks*siga2 - P1(t)*beta_SI*P3(t)*phi*Mar*siga2^2 - P1(t)*beta_SI*P3(t)*phi*Ks^2*siga2 - P1(t)*beta_SI*P3(t)*phi*Ks*siga2^2 + P1(t)*beta_SI*P3(t)*M*Mar*siga2 + P1(t)*beta_SI*P3(t)*M*Ks*siga2 + P1(t)*beta_SI*P3(t)*Mar*Ks*siga2 + P1(t)*beta_SI*P3(t)*Mar*siga2^2 + P1(t)*beta_SI*P3(t)*Ks^2*siga2 + P1(t)*beta_SI*P3(t)*Ks*siga2^2 - P1(t)*beta_SI*phi*alpa*Mar*siga2 - P1(t)*beta_SI*phi*alpa*Ks*siga2 - P1(t)*beta_SI*phi*M*P2(t)*Mar*Ks*siga2 - P1(t)*beta_SI*phi*M*P2(t)*Mar*siga2^2 - P1(t)*beta_SI*phi*M*P2(t)*Ks^2*siga2 - 2*P1(t)*beta_SI*phi*M*P2(t)*Ks*siga2^2 - P1(t)*beta_SI*phi*P4(t)*Mar*siga2 - P1(t)*beta_SI*phi*P4(t)*Ks*siga2 - P1(t)*beta_SI*phi*P2(t)*Mar*Ks*siga2^2 - P1(t)*beta_SI*phi*P2(t)*Ks^2*siga2^2 + P1(t)*beta_SI*alpa*Mar*siga2 + P1(t)*beta_SI*alpa*Ks*siga2 + P1(t)*beta_SI*M*P2(t)*Mar*Ks*siga2 + P1(t)*beta_SI*M*P2(t)*Mar*siga2^2 + P1(t)*beta_SI*M*P2(t)*Ks^2*siga2 + 2*P1(t)*beta_SI*M*P2(t)*Ks*siga2^2 + P1(t)*beta_SI*P4(t)*Mar*siga2 + P1(t)*beta_SI*P4(t)*Ks*siga2 + P1(t)*beta_SI*P2(t)*Mar*Ks*siga2^2 + P1(t)*beta_SI*P2(t)*Ks^2*siga2^2 - P1(t)*P3(t)*phi*M^2*Mar*beta_SA + P1(t)*P3(t)*phi*M^2*siga2*beta_SA - 2*P1(t)*P3(t)*phi*M*Mar*Ks*beta_SA - P1(t)*P3(t)*phi*M*Mar*siga2*beta_SA + 2*P1(t)*P3(t)*phi*M*Ks*siga2*beta_SA + P1(t)*P3(t)*phi*M*siga2^2*beta_SA - P1(t)*P3(t)*phi*Mar*Ks^2*beta_SA - P1(t)*P3(t)*phi*Mar*Ks*siga2*beta_SA + P1(t)*P3(t)*phi*Ks^2*siga2*beta_SA + P1(t)*P3(t)*phi*Ks*siga2^2*beta_SA + P1(t)*P3(t)*M^2*Mar*beta_SA + P1(t)*P3(t)*M^2*Ks*beta_SA + 2*P1(t)*P3(t)*M*Mar*Ks*beta_SA + P1(t)*P3(t)*M*Mar*siga2*beta_SA + P1(t)*P3(t)*M*Ks^2*beta_SA + 2*P1(t)*P3(t)*M*Ks*siga2*beta_SA + P1(t)*P3(t)*Mar*Ks^2*beta_SA + P1(t)*P3(t)*Mar*Ks*siga2*beta_SA - P1(t)*phi*alpa*M*Mar*beta_SA + P1(t)*phi*alpa*M*siga2*beta_SA - P1(t)*phi*alpa*Mar*Ks*beta_SA + P1(t)*phi*alpa*Ks*siga2*beta_SA - P1(t)*phi*M^2*P2(t)*Mar*Ks*beta_SA - P1(t)*phi*M^2*P2(t)*Mar*siga2*beta_SA + P1(t)*phi*M^2*P2(t)*Ks*siga2*beta_SA + P1(t)*phi*M^2*P2(t)*siga2^2*beta_SA - P1(t)*phi*M^2*Mar*P5(t)*Ks*siga2^2 - P1(t)*phi*M^2*Ks*beta*siga2^2 - P1(t)*phi*M*P4(t)*Mar*beta_SA + P1(t)*phi*M*P4(t)*siga2*beta_SA - P1(t)*phi*M*P2(t)*Mar*Ks^2*beta_SA - 3*P1(t)*phi*M*P2(t)*Mar*Ks*siga2*beta_SA + P1(t)*phi*M*P2(t)*Ks^2*siga2*beta_SA + 3*P1(t)*phi*M*P2(t)*Ks*siga2^2*beta_SA - P1(t)*phi*P4(t)*Mar*Ks*beta_SA + P1(t)*phi*P4(t)*Ks*siga2*beta_SA - P1(t)*phi*P2(t)*Mar*Ks^2*siga2*beta_SA + P1(t)*phi*P2(t)*Ks^2*siga2^2*beta_SA + P1(t)*alpa*M*Mar*beta_SA + P1(t)*alpa*M*Ks*beta_SA + P1(t)*alpa*Mar*Ks*beta_SA + P1(t)*M^2*P2(t)*Mar*Ks*beta_SA + P1(t)*M^2*P2(t)*Mar*siga2*beta_SA + P1(t)*M^2*P2(t)*Ks^2*beta_SA + 2*P1(t)*M^2*P2(t)*Ks*siga2*beta_SA + P1(t)*M^2*Mar*P5(t)*Ks*siga2^2 + P1(t)*M^2*Ks*beta*siga2^2 + P1(t)*M*P4(t)*Mar*beta_SA + P1(t)*M*P4(t)*Ks*beta_SA + P1(t)*M*P2(t)*Mar*Ks^2*beta_SA + 3*P1(t)*M*P2(t)*Mar*Ks*siga2*beta_SA + 2*P1(t)*M*P2(t)*Ks^2*siga2*beta_SA + P1(t)*P4(t)*Mar*Ks*beta_SA + P1(t)*P2(t)*Mar*Ks^2*siga2*beta_SA - beta_SI*P3(t)*phi*M*P2(t)*siga2 - beta_SI*P3(t)*phi*P2(t)*Ks*siga2 - beta_SI*P3(t)*phi*P2(t)*siga2^2 + beta_SI*P3(t)*M*P2(t)*siga2 + beta_SI*P3(t)*P2(t)*Ks*siga2 + beta_SI*P3(t)*P2(t)*siga2^2 - beta_SI*phi*alpa*P2(t)*siga2 - beta_SI*phi*M*P2(t)^2*Ks*siga2 - beta_SI*phi*M*P2(t)^2*siga2^2 - beta_SI*phi*P4(t)*P2(t)*siga2 - beta_SI*phi*P2(t)^2*Ks*siga2^2 + beta_SI*alpa*P2(t)*siga2 + beta_SI*M*P2(t)^2*Ks*siga2 + beta_SI*M*P2(t)^2*siga2^2 + beta_SI*P4(t)*P2(t)*siga2 + beta_SI*P2(t)^2*Ks*siga2^2 + P3(t)^2*M*beta_SA + P3(t)^2*Ks*beta_SA + P3(t)^2*siga2*beta_SA - P3(t)*phi*M^2*Mar*P5(t)*siga2 - P3(t)*phi*M^2*Ks*siga2 - P3(t)*phi*M^2*beta*siga2 - P3(t)*phi*M^2*siga2^2 - P3(t)*phi*M*P2(t)*Mar*beta_SA + P3(t)*phi*M*P2(t)*siga2*beta_SA - P3(t)*phi*M*Mar*P5(t)*Ks*siga2 - P3(t)*phi*M*Mar*P5(t)*siga2^2 - P3(t)*phi*M*Ks*beta*siga2 - P3(t)*phi*M*Ks*siga2^2 - P3(t)*phi*M*beta*siga2^2 - P3(t)*phi*P2(t)*Mar*Ks*beta_SA - P3(t)*phi*P2(t)*Mar*siga2*beta_SA + P3(t)*phi*P2(t)*Ks*siga2*beta_SA + P3(t)*phi*P2(t)*siga2^2*beta_SA + P3(t)*alpa*beta_SA + P3(t)*M^2*P2(t)*beta_SA + P3(t)*M^2*Mar*P5(t)*siga2 + P3(t)*M^2*Ks*siga2 + P3(t)*M^2*beta*siga2 + P3(t)*M^2*siga2^2 + P3(t)*M*P2(t)*Mar*beta_SA + 3*P3(t)*M*P2(t)*Ks*beta_SA + 2*P3(t)*M*P2(t)*siga2*beta_SA + P3(t)*M*Mar*P5(t)*Ks*siga2 + P3(t)*M*Mar*P5(t)*siga2^2 + P3(t)*M*Ks*beta*siga2 + P3(t)*M*Ks*siga2^2 + P3(t)*M*beta*siga2^2 + P3(t)*P4(t)*beta_SA + P3(t)*P2(t)*Mar*Ks*beta_SA + P3(t)*P2(t)*Mar*siga2*beta_SA + P3(t)*P2(t)*Ks^2*beta_SA + 2*P3(t)*P2(t)*Ks*siga2*beta_SA - phi*alpa*M*Mar*P5(t)*siga2 - phi*alpa*M*beta*siga2 - phi*alpa*P2(t)*Mar*beta_SA + phi*alpa*P2(t)*siga2*beta_SA - phi*M^2*P4(t)*siga2 - phi*M^2*P2(t)*Mar*P5(t)*Ks*siga2 - phi*M^2*P2(t)*Mar*P5(t)*siga2^2 - phi*M^2*P2(t)*Ks*beta*siga2 - phi*M^2*P2(t)*Ks*siga2^2 - phi*M^2*P2(t)*beta*siga2^2 - phi*M*P4(t)*Mar*P5(t)*siga2 - phi*M*P4(t)*Ks*siga2 - phi*M*P4(t)*beta*siga2 - phi*M*P4(t)*siga2^2 - phi*M*P2(t)^2*Mar*Ks*beta_SA - phi*M*P2(t)^2*Mar*siga2*beta_SA + phi*M*P2(t)^2*Ks*siga2*beta_SA + phi*M*P2(t)^2*siga2^2*beta_SA - phi*M*P2(t)*Mar*P5(t)*Ks*siga2^2 - phi*M*P2(t)*Ks*beta*siga2^2 - phi*P4(t)*P2(t)*Mar*beta_SA + phi*P4(t)*P2(t)*siga2*beta_SA - phi*P2(t)^2*Mar*Ks*siga2*beta_SA + phi*P2(t)^2*Ks*siga2^2*beta_SA + alpa*M*P2(t)*beta_SA + alpa*M*Mar*P5(t)*siga2 + alpa*M*beta*siga2 + alpa*P2(t)*Mar*beta_SA + alpa*P2(t)*Ks*beta_SA + M^2*P4(t)*siga2 + M^2*P2(t)^2*Ks*beta_SA + M^2*P2(t)^2*siga2*beta_SA + M^2*P2(t)*Mar*P5(t)*Ks*siga2 + M^2*P2(t)*Mar*P5(t)*siga2^2 + M^2*P2(t)*Ks*beta*siga2 + M^2*P2(t)*Ks*siga2^2 + M^2*P2(t)*beta*siga2^2 + M*P4(t)*P2(t)*beta_SA + M*P4(t)*Mar*P5(t)*siga2 + M*P4(t)*Ks*siga2 + M*P4(t)*beta*siga2 + M*P4(t)*siga2^2 + M*P2(t)^2*Mar*Ks*beta_SA + M*P2(t)^2*Mar*siga2*beta_SA + M*P2(t)^2*Ks^2*beta_SA + 2*M*P2(t)^2*Ks*siga2*beta_SA + M*P2(t)*Mar*P5(t)*Ks*siga2^2 + M*P2(t)*Ks*beta*siga2^2 + P4(t)*P2(t)*Mar*beta_SA + P4(t)*P2(t)*Ks*beta_SA + P2(t)^2*Mar*Ks*siga2*beta_SA + P2(t)^2*Ks^2*siga2*beta_SA)//(phi*M*siga2 - M*siga2), P1'(t) = P2(t), P2'(t) = P3(t), + P3'(t) = P4(t), + P4'(t) = (-siga1*P0(t)^2*beta_SI*phi*M*Mar*Ks^2*siga2^2 + siga1*P0(t)^2*beta_SI*M*Mar*Ks^2*siga2^2 - siga1*P0(t)^2*phi*M^2*Mar*Ks^2*siga2*beta_SA + siga1*P0(t)^2*phi*M^2*Ks^2*siga2^2*beta_SA + siga1*P0(t)^2*M^2*Mar*Ks^2*siga2*beta_SA - siga1*P0(t)*P1(t)*beta_SI*phi*M*Mar*Ks^2*siga2 - 2*siga1*P0(t)*P1(t)*beta_SI*phi*M*Mar*Ks*siga2^2 - siga1*P0(t)*P1(t)*beta_SI*phi*M*Ks^2*siga2^2 - siga1*P0(t)*P1(t)*beta_SI*phi*Mar*Ks^2*siga2^2 + siga1*P0(t)*P1(t)*beta_SI*M*Mar*Ks^2*siga2 + 2*siga1*P0(t)*P1(t)*beta_SI*M*Mar*Ks*siga2^2 + siga1*P0(t)*P1(t)*beta_SI*M*Ks^2*siga2^2 + siga1*P0(t)*P1(t)*beta_SI*Mar*Ks^2*siga2^2 - siga1*P0(t)*P1(t)*phi*M^2*Mar*Ks^2*beta_SA - 2*siga1*P0(t)*P1(t)*phi*M^2*Mar*Ks*siga2*beta_SA + siga1*P0(t)*P1(t)*phi*M^2*Ks^2*siga2*beta_SA + 2*siga1*P0(t)*P1(t)*phi*M^2*Ks*siga2^2*beta_SA - 2*siga1*P0(t)*P1(t)*phi*M*Mar*Ks^2*siga2*beta_SA + 2*siga1*P0(t)*P1(t)*phi*M*Ks^2*siga2^2*beta_SA + siga1*P0(t)*P1(t)*M^2*Mar*Ks^2*beta_SA + 2*siga1*P0(t)*P1(t)*M^2*Mar*Ks*siga2*beta_SA + siga1*P0(t)*P1(t)*M^2*Ks^2*siga2*beta_SA + 2*siga1*P0(t)*P1(t)*M*Mar*Ks^2*siga2*beta_SA - siga1*P0(t)*beta_SI*P3(t)*phi*Mar*Ks*siga2 + siga1*P0(t)*beta_SI*P3(t)*Mar*Ks*siga2 - siga1*P0(t)*beta_SI*phi*M*P2(t)*Mar*Ks*siga2 - siga1*P0(t)*beta_SI*phi*M*P2(t)*Ks*siga2^2 - siga1*P0(t)*beta_SI*phi*P2(t)*Mar*Ks^2*siga2 - siga1*P0(t)*beta_SI*phi*P2(t)*Mar*Ks*siga2^2 + siga1*P0(t)*beta_SI*M*P2(t)*Mar*Ks*siga2 + siga1*P0(t)*beta_SI*M*P2(t)*Ks*siga2^2 + siga1*P0(t)*beta_SI*P2(t)*Mar*Ks^2*siga2 + siga1*P0(t)*beta_SI*P2(t)*Mar*Ks*siga2^2 - siga1*P0(t)*P3(t)*phi*M*Mar*Ks*beta_SA + siga1*P0(t)*P3(t)*phi*M*Ks*siga2*beta_SA + siga1*P0(t)*P3(t)*M*Mar*Ks*beta_SA + siga1*P0(t)*P3(t)*M*Ks*siga2*beta_SA - siga1*P0(t)*phi*M^2*P2(t)*Mar*Ks*beta_SA + siga1*P0(t)*phi*M^2*P2(t)*Ks*siga2*beta_SA - siga1*P0(t)*phi*M^2*Mar*P5(t)*Ks*siga2^2 - siga1*P0(t)*phi*M^2*Ks*beta*siga2^2 - siga1*P0(t)*phi*M*P2(t)*Mar*Ks^2*beta_SA - 2*siga1*P0(t)*phi*M*P2(t)*Mar*Ks*siga2*beta_SA + siga1*P0(t)*phi*M*P2(t)*Ks^2*siga2*beta_SA + 2*siga1*P0(t)*phi*M*P2(t)*Ks*siga2^2*beta_SA + siga1*P0(t)*M^2*P2(t)*Mar*Ks*beta_SA + siga1*P0(t)*M^2*P2(t)*Ks*siga2*beta_SA + siga1*P0(t)*M^2*Mar*P5(t)*Ks*siga2^2 + siga1*P0(t)*M^2*Ks*beta*siga2^2 + siga1*P0(t)*M*P2(t)*Mar*Ks^2*beta_SA + 2*siga1*P0(t)*M*P2(t)*Mar*Ks*siga2*beta_SA + siga1*P0(t)*M*P2(t)*Ks^2*siga2*beta_SA - siga1*P1(t)^2*beta_SI*phi*M*Mar*Ks*siga2 - siga1*P1(t)^2*beta_SI*phi*M*Mar*siga2^2 - siga1*P1(t)^2*beta_SI*phi*M*Ks^2*siga2 - siga1*P1(t)^2*beta_SI*phi*M*Ks*siga2^2 - siga1*P1(t)^2*beta_SI*phi*Mar*Ks*siga2^2 - siga1*P1(t)^2*beta_SI*phi*Ks^2*siga2^2 + siga1*P1(t)^2*beta_SI*M*Mar*Ks*siga2 + siga1*P1(t)^2*beta_SI*M*Mar*siga2^2 + siga1*P1(t)^2*beta_SI*M*Ks^2*siga2 + siga1*P1(t)^2*beta_SI*M*Ks*siga2^2 + siga1*P1(t)^2*beta_SI*Mar*Ks*siga2^2 + siga1*P1(t)^2*beta_SI*Ks^2*siga2^2 - siga1*P1(t)^2*phi*M^2*Mar*Ks*beta_SA - siga1*P1(t)^2*phi*M^2*Mar*siga2*beta_SA + siga1*P1(t)^2*phi*M^2*Ks*siga2*beta_SA + siga1*P1(t)^2*phi*M^2*siga2^2*beta_SA - siga1*P1(t)^2*phi*M*Mar*Ks^2*beta_SA - 2*siga1*P1(t)^2*phi*M*Mar*Ks*siga2*beta_SA + siga1*P1(t)^2*phi*M*Ks^2*siga2*beta_SA + 2*siga1*P1(t)^2*phi*M*Ks*siga2^2*beta_SA - siga1*P1(t)^2*phi*Mar*Ks^2*siga2*beta_SA + siga1*P1(t)^2*phi*Ks^2*siga2^2*beta_SA + siga1*P1(t)^2*M^2*Mar*Ks*beta_SA + siga1*P1(t)^2*M^2*Mar*siga2*beta_SA + siga1*P1(t)^2*M^2*Ks^2*beta_SA + siga1*P1(t)^2*M^2*Ks*siga2*beta_SA + siga1*P1(t)^2*M*Mar*Ks^2*beta_SA + 2*siga1*P1(t)^2*M*Mar*Ks*siga2*beta_SA + siga1*P1(t)^2*M*Ks^2*siga2*beta_SA + siga1*P1(t)^2*Mar*Ks^2*siga2*beta_SA - siga1*P1(t)*beta_SI*P3(t)*phi*Mar*siga2 - siga1*P1(t)*beta_SI*P3(t)*phi*Ks*siga2 + siga1*P1(t)*beta_SI*P3(t)*Mar*siga2 + siga1*P1(t)*beta_SI*P3(t)*Ks*siga2 - siga1*P1(t)*beta_SI*phi*M*P2(t)*Mar*siga2 - 2*siga1*P1(t)*beta_SI*phi*M*P2(t)*Ks*siga2 - siga1*P1(t)*beta_SI*phi*M*P2(t)*siga2^2 - siga1*P1(t)*beta_SI*phi*P2(t)*Mar*Ks*siga2 - siga1*P1(t)*beta_SI*phi*P2(t)*Mar*siga2^2 - siga1*P1(t)*beta_SI*phi*P2(t)*Ks^2*siga2 - 2*siga1*P1(t)*beta_SI*phi*P2(t)*Ks*siga2^2 + siga1*P1(t)*beta_SI*M*P2(t)*Mar*siga2 + 2*siga1*P1(t)*beta_SI*M*P2(t)*Ks*siga2 + siga1*P1(t)*beta_SI*M*P2(t)*siga2^2 + siga1*P1(t)*beta_SI*P2(t)*Mar*Ks*siga2 + siga1*P1(t)*beta_SI*P2(t)*Mar*siga2^2 + siga1*P1(t)*beta_SI*P2(t)*Ks^2*siga2 + 2*siga1*P1(t)*beta_SI*P2(t)*Ks*siga2^2 - siga1*P1(t)*P3(t)*phi*M*Mar*beta_SA + siga1*P1(t)*P3(t)*phi*M*siga2*beta_SA - siga1*P1(t)*P3(t)*phi*Mar*Ks*beta_SA + siga1*P1(t)*P3(t)*phi*Ks*siga2*beta_SA + siga1*P1(t)*P3(t)*M*Mar*beta_SA + 2*siga1*P1(t)*P3(t)*M*Ks*beta_SA + siga1*P1(t)*P3(t)*M*siga2*beta_SA + siga1*P1(t)*P3(t)*Mar*Ks*beta_SA + siga1*P1(t)*P3(t)*Ks*siga2*beta_SA - siga1*P1(t)*phi*M^2*P2(t)*Mar*beta_SA + siga1*P1(t)*phi*M^2*P2(t)*siga2*beta_SA - siga1*P1(t)*phi*M^2*Mar*P5(t)*Ks*siga2 - siga1*P1(t)*phi*M^2*Mar*P5(t)*siga2^2 - siga1*P1(t)*phi*M^2*Ks*beta*siga2 - siga1*P1(t)*phi*M^2*Ks*siga2^2 - siga1*P1(t)*phi*M^2*beta*siga2^2 - 3*siga1*P1(t)*phi*M*P2(t)*Mar*Ks*beta_SA - 2*siga1*P1(t)*phi*M*P2(t)*Mar*siga2*beta_SA + 3*siga1*P1(t)*phi*M*P2(t)*Ks*siga2*beta_SA + 2*siga1*P1(t)*phi*M*P2(t)*siga2^2*beta_SA - siga1*P1(t)*phi*M*Mar*P5(t)*Ks*siga2^2 - siga1*P1(t)*phi*M*Ks*beta*siga2^2 - siga1*P1(t)*phi*P2(t)*Mar*Ks^2*beta_SA - 2*siga1*P1(t)*phi*P2(t)*Mar*Ks*siga2*beta_SA + siga1*P1(t)*phi*P2(t)*Ks^2*siga2*beta_SA + 2*siga1*P1(t)*phi*P2(t)*Ks*siga2^2*beta_SA + siga1*P1(t)*M^2*P2(t)*Mar*beta_SA + 2*siga1*P1(t)*M^2*P2(t)*Ks*beta_SA + siga1*P1(t)*M^2*P2(t)*siga2*beta_SA + siga1*P1(t)*M^2*Mar*P5(t)*Ks*siga2 + siga1*P1(t)*M^2*Mar*P5(t)*siga2^2 + siga1*P1(t)*M^2*Ks*beta*siga2 + siga1*P1(t)*M^2*Ks*siga2^2 + siga1*P1(t)*M^2*beta*siga2^2 + 3*siga1*P1(t)*M*P2(t)*Mar*Ks*beta_SA + 2*siga1*P1(t)*M*P2(t)*Mar*siga2*beta_SA + 2*siga1*P1(t)*M*P2(t)*Ks^2*beta_SA + 3*siga1*P1(t)*M*P2(t)*Ks*siga2*beta_SA + siga1*P1(t)*M*Mar*P5(t)*Ks*siga2^2 + siga1*P1(t)*M*Ks*beta*siga2^2 + siga1*P1(t)*P2(t)*Mar*Ks^2*beta_SA + 2*siga1*P1(t)*P2(t)*Mar*Ks*siga2*beta_SA + siga1*P1(t)*P2(t)*Ks^2*siga2*beta_SA - siga1*beta_SI*P3(t)*phi*P2(t)*siga2 + siga1*beta_SI*P3(t)*P2(t)*siga2 - siga1*beta_SI*phi*M*P2(t)^2*siga2 - siga1*beta_SI*phi*P2(t)^2*Ks*siga2 - siga1*beta_SI*phi*P2(t)^2*siga2^2 + siga1*beta_SI*M*P2(t)^2*siga2 + siga1*beta_SI*P2(t)^2*Ks*siga2 + siga1*beta_SI*P2(t)^2*siga2^2 + siga1*P3(t)^2*beta_SA - siga1*P3(t)*phi*M^2*siga2 - siga1*P3(t)*phi*M*Mar*P5(t)*siga2 - siga1*P3(t)*phi*M*Ks*siga2 - siga1*P3(t)*phi*M*beta*siga2 - siga1*P3(t)*phi*M*siga2^2 - siga1*P3(t)*phi*P2(t)*Mar*beta_SA + siga1*P3(t)*phi*P2(t)*siga2*beta_SA + siga1*P3(t)*M^2*siga2 + 2*siga1*P3(t)*M*P2(t)*beta_SA + siga1*P3(t)*M*Mar*P5(t)*siga2 + siga1*P3(t)*M*Ks*siga2 + siga1*P3(t)*M*beta*siga2 + siga1*P3(t)*M*siga2^2 + siga1*P3(t)*P2(t)*Mar*beta_SA + 2*siga1*P3(t)*P2(t)*Ks*beta_SA + siga1*P3(t)*P2(t)*siga2*beta_SA - siga1*phi*M^2*P2(t)*Mar*P5(t)*siga2 - siga1*phi*M^2*P2(t)*Ks*siga2 - siga1*phi*M^2*P2(t)*beta*siga2 - siga1*phi*M^2*P2(t)*siga2^2 - siga1*phi*M*P4(t)*siga2 - siga1*phi*M*P2(t)^2*Mar*beta_SA + siga1*phi*M*P2(t)^2*siga2*beta_SA - siga1*phi*M*P2(t)*Mar*P5(t)*Ks*siga2 - siga1*phi*M*P2(t)*Mar*P5(t)*siga2^2 - siga1*phi*M*P2(t)*Ks*beta*siga2 - siga1*phi*M*P2(t)*Ks*siga2^2 - siga1*phi*M*P2(t)*beta*siga2^2 - siga1*phi*P2(t)^2*Mar*Ks*beta_SA - siga1*phi*P2(t)^2*Mar*siga2*beta_SA + siga1*phi*P2(t)^2*Ks*siga2*beta_SA + siga1*phi*P2(t)^2*siga2^2*beta_SA + siga1*M^2*P2(t)^2*beta_SA + siga1*M^2*P2(t)*Mar*P5(t)*siga2 + siga1*M^2*P2(t)*Ks*siga2 + siga1*M^2*P2(t)*beta*siga2 + siga1*M^2*P2(t)*siga2^2 + siga1*M*P4(t)*siga2 + siga1*M*P2(t)^2*Mar*beta_SA + 2*siga1*M*P2(t)^2*Ks*beta_SA + siga1*M*P2(t)^2*siga2*beta_SA + siga1*M*P2(t)*Mar*P5(t)*Ks*siga2 + siga1*M*P2(t)*Mar*P5(t)*siga2^2 + siga1*M*P2(t)*Ks*beta*siga2 + siga1*M*P2(t)*Ks*siga2^2 + siga1*M*P2(t)*beta*siga2^2 + siga1*P2(t)^2*Mar*Ks*beta_SA + siga1*P2(t)^2*Mar*siga2*beta_SA + siga1*P2(t)^2*Ks^2*beta_SA + siga1*P2(t)^2*Ks*siga2*beta_SA - P0(t)*P1(t)*beta_SI*phi*M*Mar*Ks^2*siga2^2 + P0(t)*P1(t)*beta_SI*M*Mar*Ks^2*siga2^2 - P0(t)*P1(t)*phi*M^2*Mar*Ks^2*siga2*beta_SA + P0(t)*P1(t)*phi*M^2*Ks^2*siga2^2*beta_SA + P0(t)*P1(t)*M^2*Mar*Ks^2*siga2*beta_SA - P0(t)*beta_SI*P3(t)*phi*M*Mar*Ks*siga2 - P0(t)*beta_SI*P3(t)*phi*Mar*Ks^2*siga2 - P0(t)*beta_SI*P3(t)*phi*Mar*Ks*siga2^2 + P0(t)*beta_SI*P3(t)*M*Mar*Ks*siga2 + P0(t)*beta_SI*P3(t)*Mar*Ks^2*siga2 + P0(t)*beta_SI*P3(t)*Mar*Ks*siga2^2 - P0(t)*beta_SI*phi*alpa*Mar*Ks*siga2 - P0(t)*beta_SI*phi*M*P2(t)*Mar*Ks^2*siga2 - P0(t)*beta_SI*phi*M*P2(t)*Mar*Ks*siga2^2 - P0(t)*beta_SI*phi*P4(t)*Mar*Ks*siga2 - P0(t)*beta_SI*phi*P2(t)*Mar*Ks^2*siga2^2 + P0(t)*beta_SI*alpa*Mar*Ks*siga2 + P0(t)*beta_SI*M*P2(t)*Mar*Ks^2*siga2 + P0(t)*beta_SI*M*P2(t)*Mar*Ks*siga2^2 + P0(t)*beta_SI*P4(t)*Mar*Ks*siga2 + P0(t)*beta_SI*P2(t)*Mar*Ks^2*siga2^2 - P0(t)*P3(t)*phi*M^2*Mar*Ks*beta_SA + P0(t)*P3(t)*phi*M^2*Ks*siga2*beta_SA - P0(t)*P3(t)*phi*M*Mar*Ks^2*beta_SA - P0(t)*P3(t)*phi*M*Mar*Ks*siga2*beta_SA + P0(t)*P3(t)*phi*M*Ks^2*siga2*beta_SA + P0(t)*P3(t)*phi*M*Ks*siga2^2*beta_SA + P0(t)*P3(t)*M^2*Mar*Ks*beta_SA + P0(t)*P3(t)*M*Mar*Ks^2*beta_SA + P0(t)*P3(t)*M*Mar*Ks*siga2*beta_SA - P0(t)*phi*alpa*M*Mar*Ks*beta_SA + P0(t)*phi*alpa*M*Ks*siga2*beta_SA - P0(t)*phi*M^2*P2(t)*Mar*Ks^2*beta_SA - P0(t)*phi*M^2*P2(t)*Mar*Ks*siga2*beta_SA + P0(t)*phi*M^2*P2(t)*Ks^2*siga2*beta_SA + P0(t)*phi*M^2*P2(t)*Ks*siga2^2*beta_SA - P0(t)*phi*M*P4(t)*Mar*Ks*beta_SA + P0(t)*phi*M*P4(t)*Ks*siga2*beta_SA - P0(t)*phi*M*P2(t)*Mar*Ks^2*siga2*beta_SA + P0(t)*phi*M*P2(t)*Ks^2*siga2^2*beta_SA + P0(t)*alpa*M*Mar*Ks*beta_SA + P0(t)*M^2*P2(t)*Mar*Ks^2*beta_SA + P0(t)*M^2*P2(t)*Mar*Ks*siga2*beta_SA + P0(t)*M*P4(t)*Mar*Ks*beta_SA + P0(t)*M*P2(t)*Mar*Ks^2*siga2*beta_SA - P1(t)^2*beta_SI*phi*M*Mar*Ks*siga2^2 - P1(t)^2*beta_SI*phi*M*Ks^2*siga2^2 + P1(t)^2*beta_SI*M*Mar*Ks*siga2^2 + P1(t)^2*beta_SI*M*Ks^2*siga2^2 - P1(t)^2*phi*M^2*Mar*Ks*siga2*beta_SA + P1(t)^2*phi*M^2*Ks*siga2^2*beta_SA - P1(t)^2*phi*M*Mar*Ks^2*siga2*beta_SA + P1(t)^2*phi*M*Ks^2*siga2^2*beta_SA + P1(t)^2*M^2*Mar*Ks*siga2*beta_SA + P1(t)^2*M^2*Ks^2*siga2*beta_SA + P1(t)^2*M*Mar*Ks^2*siga2*beta_SA - P1(t)*beta_SI*P3(t)*phi*M*Mar*siga2 - P1(t)*beta_SI*P3(t)*phi*M*Ks*siga2 - P1(t)*beta_SI*P3(t)*phi*Mar*Ks*siga2 - P1(t)*beta_SI*P3(t)*phi*Mar*siga2^2 - P1(t)*beta_SI*P3(t)*phi*Ks^2*siga2 - P1(t)*beta_SI*P3(t)*phi*Ks*siga2^2 + P1(t)*beta_SI*P3(t)*M*Mar*siga2 + P1(t)*beta_SI*P3(t)*M*Ks*siga2 + P1(t)*beta_SI*P3(t)*Mar*Ks*siga2 + P1(t)*beta_SI*P3(t)*Mar*siga2^2 + P1(t)*beta_SI*P3(t)*Ks^2*siga2 + P1(t)*beta_SI*P3(t)*Ks*siga2^2 - P1(t)*beta_SI*phi*alpa*Mar*siga2 - P1(t)*beta_SI*phi*alpa*Ks*siga2 - P1(t)*beta_SI*phi*M*P2(t)*Mar*Ks*siga2 - P1(t)*beta_SI*phi*M*P2(t)*Mar*siga2^2 - P1(t)*beta_SI*phi*M*P2(t)*Ks^2*siga2 - 2*P1(t)*beta_SI*phi*M*P2(t)*Ks*siga2^2 - P1(t)*beta_SI*phi*P4(t)*Mar*siga2 - P1(t)*beta_SI*phi*P4(t)*Ks*siga2 - P1(t)*beta_SI*phi*P2(t)*Mar*Ks*siga2^2 - P1(t)*beta_SI*phi*P2(t)*Ks^2*siga2^2 + P1(t)*beta_SI*alpa*Mar*siga2 + P1(t)*beta_SI*alpa*Ks*siga2 + P1(t)*beta_SI*M*P2(t)*Mar*Ks*siga2 + P1(t)*beta_SI*M*P2(t)*Mar*siga2^2 + P1(t)*beta_SI*M*P2(t)*Ks^2*siga2 + 2*P1(t)*beta_SI*M*P2(t)*Ks*siga2^2 + P1(t)*beta_SI*P4(t)*Mar*siga2 + P1(t)*beta_SI*P4(t)*Ks*siga2 + P1(t)*beta_SI*P2(t)*Mar*Ks*siga2^2 + P1(t)*beta_SI*P2(t)*Ks^2*siga2^2 - P1(t)*P3(t)*phi*M^2*Mar*beta_SA + P1(t)*P3(t)*phi*M^2*siga2*beta_SA - 2*P1(t)*P3(t)*phi*M*Mar*Ks*beta_SA - P1(t)*P3(t)*phi*M*Mar*siga2*beta_SA + 2*P1(t)*P3(t)*phi*M*Ks*siga2*beta_SA + P1(t)*P3(t)*phi*M*siga2^2*beta_SA - P1(t)*P3(t)*phi*Mar*Ks^2*beta_SA - P1(t)*P3(t)*phi*Mar*Ks*siga2*beta_SA + P1(t)*P3(t)*phi*Ks^2*siga2*beta_SA + P1(t)*P3(t)*phi*Ks*siga2^2*beta_SA + P1(t)*P3(t)*M^2*Mar*beta_SA + P1(t)*P3(t)*M^2*Ks*beta_SA + 2*P1(t)*P3(t)*M*Mar*Ks*beta_SA + P1(t)*P3(t)*M*Mar*siga2*beta_SA + P1(t)*P3(t)*M*Ks^2*beta_SA + 2*P1(t)*P3(t)*M*Ks*siga2*beta_SA + P1(t)*P3(t)*Mar*Ks^2*beta_SA + P1(t)*P3(t)*Mar*Ks*siga2*beta_SA - P1(t)*phi*alpa*M*Mar*beta_SA + P1(t)*phi*alpa*M*siga2*beta_SA - P1(t)*phi*alpa*Mar*Ks*beta_SA + P1(t)*phi*alpa*Ks*siga2*beta_SA - P1(t)*phi*M^2*P2(t)*Mar*Ks*beta_SA - P1(t)*phi*M^2*P2(t)*Mar*siga2*beta_SA + P1(t)*phi*M^2*P2(t)*Ks*siga2*beta_SA + P1(t)*phi*M^2*P2(t)*siga2^2*beta_SA - P1(t)*phi*M^2*Mar*P5(t)*Ks*siga2^2 - P1(t)*phi*M^2*Ks*beta*siga2^2 - P1(t)*phi*M*P4(t)*Mar*beta_SA + P1(t)*phi*M*P4(t)*siga2*beta_SA - P1(t)*phi*M*P2(t)*Mar*Ks^2*beta_SA - 3*P1(t)*phi*M*P2(t)*Mar*Ks*siga2*beta_SA + P1(t)*phi*M*P2(t)*Ks^2*siga2*beta_SA + 3*P1(t)*phi*M*P2(t)*Ks*siga2^2*beta_SA - P1(t)*phi*P4(t)*Mar*Ks*beta_SA + P1(t)*phi*P4(t)*Ks*siga2*beta_SA - P1(t)*phi*P2(t)*Mar*Ks^2*siga2*beta_SA + P1(t)*phi*P2(t)*Ks^2*siga2^2*beta_SA + P1(t)*alpa*M*Mar*beta_SA + P1(t)*alpa*M*Ks*beta_SA + P1(t)*alpa*Mar*Ks*beta_SA + P1(t)*M^2*P2(t)*Mar*Ks*beta_SA + P1(t)*M^2*P2(t)*Mar*siga2*beta_SA + P1(t)*M^2*P2(t)*Ks^2*beta_SA + 2*P1(t)*M^2*P2(t)*Ks*siga2*beta_SA + P1(t)*M^2*Mar*P5(t)*Ks*siga2^2 + P1(t)*M^2*Ks*beta*siga2^2 + P1(t)*M*P4(t)*Mar*beta_SA + P1(t)*M*P4(t)*Ks*beta_SA + P1(t)*M*P2(t)*Mar*Ks^2*beta_SA + 3*P1(t)*M*P2(t)*Mar*Ks*siga2*beta_SA + 2*P1(t)*M*P2(t)*Ks^2*siga2*beta_SA + P1(t)*P4(t)*Mar*Ks*beta_SA + P1(t)*P2(t)*Mar*Ks^2*siga2*beta_SA - beta_SI*P3(t)*phi*M*P2(t)*siga2 - beta_SI*P3(t)*phi*P2(t)*Ks*siga2 - beta_SI*P3(t)*phi*P2(t)*siga2^2 + beta_SI*P3(t)*M*P2(t)*siga2 + beta_SI*P3(t)*P2(t)*Ks*siga2 + beta_SI*P3(t)*P2(t)*siga2^2 - beta_SI*phi*alpa*P2(t)*siga2 - beta_SI*phi*M*P2(t)^2*Ks*siga2 - beta_SI*phi*M*P2(t)^2*siga2^2 - beta_SI*phi*P4(t)*P2(t)*siga2 - beta_SI*phi*P2(t)^2*Ks*siga2^2 + beta_SI*alpa*P2(t)*siga2 + beta_SI*M*P2(t)^2*Ks*siga2 + beta_SI*M*P2(t)^2*siga2^2 + beta_SI*P4(t)*P2(t)*siga2 + beta_SI*P2(t)^2*Ks*siga2^2 + P3(t)^2*M*beta_SA + P3(t)^2*Ks*beta_SA + P3(t)^2*siga2*beta_SA - P3(t)*phi*M^2*Mar*P5(t)*siga2 - P3(t)*phi*M^2*Ks*siga2 - P3(t)*phi*M^2*beta*siga2 - P3(t)*phi*M^2*siga2^2 - P3(t)*phi*M*P2(t)*Mar*beta_SA + P3(t)*phi*M*P2(t)*siga2*beta_SA - P3(t)*phi*M*Mar*P5(t)*Ks*siga2 - P3(t)*phi*M*Mar*P5(t)*siga2^2 - P3(t)*phi*M*Ks*beta*siga2 - P3(t)*phi*M*Ks*siga2^2 - P3(t)*phi*M*beta*siga2^2 - P3(t)*phi*P2(t)*Mar*Ks*beta_SA - P3(t)*phi*P2(t)*Mar*siga2*beta_SA + P3(t)*phi*P2(t)*Ks*siga2*beta_SA + P3(t)*phi*P2(t)*siga2^2*beta_SA + P3(t)*alpa*beta_SA + P3(t)*M^2*P2(t)*beta_SA + P3(t)*M^2*Mar*P5(t)*siga2 + P3(t)*M^2*Ks*siga2 + P3(t)*M^2*beta*siga2 + P3(t)*M^2*siga2^2 + P3(t)*M*P2(t)*Mar*beta_SA + 3*P3(t)*M*P2(t)*Ks*beta_SA + 2*P3(t)*M*P2(t)*siga2*beta_SA + P3(t)*M*Mar*P5(t)*Ks*siga2 + P3(t)*M*Mar*P5(t)*siga2^2 + P3(t)*M*Ks*beta*siga2 + P3(t)*M*Ks*siga2^2 + P3(t)*M*beta*siga2^2 + P3(t)*P4(t)*beta_SA + P3(t)*P2(t)*Mar*Ks*beta_SA + P3(t)*P2(t)*Mar*siga2*beta_SA + P3(t)*P2(t)*Ks^2*beta_SA + 2*P3(t)*P2(t)*Ks*siga2*beta_SA - phi*alpa*M*Mar*P5(t)*siga2 - phi*alpa*M*beta*siga2 - phi*alpa*P2(t)*Mar*beta_SA + phi*alpa*P2(t)*siga2*beta_SA - phi*M^2*P4(t)*siga2 - phi*M^2*P2(t)*Mar*P5(t)*Ks*siga2 - phi*M^2*P2(t)*Mar*P5(t)*siga2^2 - phi*M^2*P2(t)*Ks*beta*siga2 - phi*M^2*P2(t)*Ks*siga2^2 - phi*M^2*P2(t)*beta*siga2^2 - phi*M*P4(t)*Mar*P5(t)*siga2 - phi*M*P4(t)*Ks*siga2 - phi*M*P4(t)*beta*siga2 - phi*M*P4(t)*siga2^2 - phi*M*P2(t)^2*Mar*Ks*beta_SA - phi*M*P2(t)^2*Mar*siga2*beta_SA + phi*M*P2(t)^2*Ks*siga2*beta_SA + phi*M*P2(t)^2*siga2^2*beta_SA - phi*M*P2(t)*Mar*P5(t)*Ks*siga2^2 - phi*M*P2(t)*Ks*beta*siga2^2 - phi*P4(t)*P2(t)*Mar*beta_SA + phi*P4(t)*P2(t)*siga2*beta_SA - phi*P2(t)^2*Mar*Ks*siga2*beta_SA + phi*P2(t)^2*Ks*siga2^2*beta_SA + alpa*M*P2(t)*beta_SA + alpa*M*Mar*P5(t)*siga2 + alpa*M*beta*siga2 + alpa*P2(t)*Mar*beta_SA + alpa*P2(t)*Ks*beta_SA + M^2*P4(t)*siga2 + M^2*P2(t)^2*Ks*beta_SA + M^2*P2(t)^2*siga2*beta_SA + M^2*P2(t)*Mar*P5(t)*Ks*siga2 + M^2*P2(t)*Mar*P5(t)*siga2^2 + M^2*P2(t)*Ks*beta*siga2 + M^2*P2(t)*Ks*siga2^2 + M^2*P2(t)*beta*siga2^2 + M*P4(t)*P2(t)*beta_SA + M*P4(t)*Mar*P5(t)*siga2 + M*P4(t)*Ks*siga2 + M*P4(t)*beta*siga2 + M*P4(t)*siga2^2 + M*P2(t)^2*Mar*Ks*beta_SA + M*P2(t)^2*Mar*siga2*beta_SA + M*P2(t)^2*Ks^2*beta_SA + 2*M*P2(t)^2*Ks*siga2*beta_SA + M*P2(t)*Mar*P5(t)*Ks*siga2^2 + M*P2(t)*Ks*beta*siga2^2 + P4(t)*P2(t)*Mar*beta_SA + P4(t)*P2(t)*Ks*beta_SA + P2(t)^2*Mar*Ks*siga2*beta_SA + P2(t)^2*Ks^2*siga2*beta_SA)//(phi*M*siga2 - M*siga2), + P5'(t) = (-P0(t)*beta_SI*phi*Mar*Ks*siga2 + P0(t)*beta_SI*Mar*Ks*siga2 - P0(t)*phi*M*Mar*Ks*beta_SA + P0(t)*phi*M*Ks*siga2*beta_SA + P0(t)*M*Mar*Ks*beta_SA - P1(t)*beta_SI*phi*Mar*siga2 - P1(t)*beta_SI*phi*Ks*siga2 + P1(t)*beta_SI*Mar*siga2 + P1(t)*beta_SI*Ks*siga2 - P1(t)*phi*M*Mar*beta_SA + P1(t)*phi*M*siga2*beta_SA - P1(t)*phi*Mar*Ks*beta_SA + P1(t)*phi*Ks*siga2*beta_SA + P1(t)*M*Mar*beta_SA + P1(t)*M*Ks*beta_SA + P1(t)*Mar*Ks*beta_SA - beta_SI*phi*P2(t)*siga2 + beta_SI*P2(t)*siga2 + P3(t)*beta_SA - phi*M*Mar*P5(t)*siga2 - phi*M*beta*siga2 - phi*P2(t)*Mar*beta_SA + phi*P2(t)*siga2*beta_SA + M*P2(t)*beta_SA + M*Mar*P5(t)*siga2 + M*beta*siga2 + P2(t)*Mar*beta_SA + P2(t)*Ks*beta_SA)//(phi*M*siga2 - M*siga2), y(t) = P0(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/QY/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/QY/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..2e635cd9c --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/QY/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +QY +id_npoints_degree, 156 +id_npoints_interpolation, 7672 +are_id_funcs_polynomial, false diff --git a/benchmarking/IdentifiableFunctions/results/QY/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/QY/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..6057706c2 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/QY/logs_(normalforms, 2)_with_states @@ -0,0 +1,481 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "QY" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: P0, P1, P2, P3, P4, P5 +[ Info: Parameters: siga1, beta_SI, phi, alpa, M, Mar, Ks, beta, siga2, beta_SA +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 10.307223936 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 10.307223936 +[ Info: Computing Wronskians +┌ Info: Computed in 7.663582183 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 7.663582183 +[ Info: Dimensions of the Wronskians [64] +┌ Info: Ranks of the Wronskians computed in 0.034241084 seconds +│ :rank_time = :rank_time +└ rank_times = 0.034241084 + ⌜ # Computing specializations.. Time: 0:00:09 ✓ # Computing specializations.. Time: 0:00:10 + ⌜ # Computing specializations.. Time: 0:00:00 + Points: 62  ⌝ # Computing specializations.. Time: 0:00:00 + Points: 138  ⌟ # Computing specializations.. Time: 0:00:00 + Points: 214  ✓ # Computing specializations.. Time: 0:00:01 + ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 + ⌜ # Computing specializations.. Time: 0:00:00 + Points: 69  ⌝ # Computing specializations.. Time: 0:00:00 + Points: 134  ⌟ # Computing specializations.. Time: 0:00:01 + Points: 199  ⌞ # Computing specializations.. Time: 0:00:01 + Points: 271  ✓ # Computing specializations.. Time: 0:00:01 + ⌜ # Computing specializations.. Time: 0:00:00 + Points: 69  ⌝ # Computing specializations.. Time: 0:00:00 + Points: 138  ⌟ # Computing specializations.. Time: 0:00:00 + Points: 207  ⌞ # Computing specializations.. Time: 0:00:01 + Points: 275  ⌜ # Computing specializations.. Time: 0:00:01 + Points: 342  ⌝ # Computing specializations.. Time: 0:00:01 + Points: 412  ⌟ # Computing specializations.. Time: 0:00:02 + Points: 483  ⌞ # Computing specializations.. Time: 0:00:02 + Points: 554  ⌜ # Computing specializations.. Time: 0:00:02 + Points: 619  ⌝ # Computing specializations.. Time: 0:00:03 + Points: 688  ⌟ # Computing specializations.. Time: 0:00:03 + Points: 757  ⌞ # Computing specializations.. Time: 0:00:03 + Points: 827  ⌜ # Computing specializations.. Time: 0:00:04 + Points: 897  ⌝ # Computing specializations.. Time: 0:00:04 + Points: 967  ⌟ # Computing specializations.. Time: 0:00:04 + Points: 1037  ⌞ # Computing specializations.. Time: 0:00:05 + Points: 1107  ⌜ # Computing specializations.. Time: 0:00:05 + Points: 1169  ⌝ # Computing specializations.. Time: 0:00:05 + Points: 1235  ⌟ # Computing specializations.. Time: 0:00:06 + Points: 1305  ⌞ # Computing specializations.. Time: 0:00:06 + Points: 1375  ⌜ # Computing specializations.. Time: 0:00:06 + Points: 1445  ⌝ # Computing specializations.. Time: 0:00:06 + Points: 1515  ⌟ # Computing specializations.. Time: 0:00:07 + Points: 1585  ⌞ # Computing specializations.. Time: 0:00:07 + Points: 1655  ⌜ # Computing specializations.. Time: 0:00:07 + Points: 1726  ⌝ # Computing specializations.. Time: 0:00:08 + Points: 1796  ⌟ # Computing specializations.. Time: 0:00:08 + Points: 1866  ⌞ # Computing specializations.. Time: 0:00:08 + Points: 1938  ⌜ # Computing specializations.. Time: 0:00:09 + Points: 2008  ⌝ # Computing specializations.. Time: 0:00:09 + Points: 2077  ⌟ # Computing specializations.. Time: 0:00:09 + Points: 2146  ✓ # Computing specializations.. Time: 0:00:10 + ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 + ⌜ # Computing specializations.. Time: 0:00:00 + Points: 65  ⌝ # Computing specializations.. Time: 0:00:00 + Points: 128  ⌟ # Computing specializations.. Time: 0:00:00 + Points: 189  ⌞ # Computing specializations.. Time: 0:00:01 + Points: 254  ⌜ # Computing specializations.. Time: 0:00:01 + Points: 317  ⌝ # Computing specializations.. Time: 0:00:01 + Points: 388  ⌟ # Computing specializations.. Time: 0:00:02 + Points: 457  ⌞ # Computing specializations.. Time: 0:00:02 + Points: 521  ⌜ # Computing specializations.. Time: 0:00:02 + Points: 587  ⌝ # Computing specializations.. Time: 0:00:03 + Points: 653  ⌟ # Computing specializations.. Time: 0:00:03 + Points: 722  ⌞ # Computing specializations.. Time: 0:00:03 + Points: 791  ⌜ # Computing specializations.. Time: 0:00:04 + Points: 861  ⌝ # Computing specializations.. Time: 0:00:04 + Points: 930  ⌟ # Computing specializations.. Time: 0:00:04 + Points: 999  ⌞ # Computing specializations.. Time: 0:00:05 + Points: 1068  ⌜ # Computing specializations.. Time: 0:00:05 + Points: 1136  ⌝ # Computing specializations.. Time: 0:00:05 + Points: 1204  ⌟ # Computing specializations.. Time: 0:00:06 + Points: 1270  ⌞ # Computing specializations.. Time: 0:00:06 + Points: 1340  ⌜ # Computing specializations.. Time: 0:00:06 + Points: 1409  ⌝ # Computing specializations.. Time: 0:00:07 + Points: 1475  ⌟ # Computing specializations.. Time: 0:00:07 + Points: 1544  ⌞ # Computing specializations.. Time: 0:00:07 + Points: 1614  ⌜ # Computing specializations.. Time: 0:00:07 + Points: 1684  ⌝ # Computing specializations.. Time: 0:00:08 + Points: 1754  ⌟ # Computing specializations.. Time: 0:00:08 + Points: 1823  ⌞ # Computing specializations.. Time: 0:00:08 + Points: 1891  ⌜ # Computing specializations.. Time: 0:00:09 + Points: 1960  ⌝ # Computing specializations.. Time: 0:00:09 + Points: 2029  ⌟ # Computing specializations.. Time: 0:00:09 + Points: 2099  ⌞ # Computing specializations.. Time: 0:00:10 + Points: 2169  ⌜ # Computing specializations.. Time: 0:00:10 + Points: 2237  ⌝ # Computing specializations.. Time: 0:00:10 + Points: 2305  ⌟ # Computing specializations.. Time: 0:00:11 + Points: 2373  ⌞ # Computing specializations.. Time: 0:00:11 + Points: 2437  ⌜ # Computing specializations.. Time: 0:00:11 + Points: 2475  ⌝ # Computing specializations.. Time: 0:00:12 + Points: 2539  ⌟ # Computing specializations.. Time: 0:00:12 + Points: 2606  ⌞ # Computing specializations.. Time: 0:00:12 + Points: 2673  ⌜ # Computing specializations.. Time: 0:00:13 + Points: 2739  ⌝ # Computing specializations.. Time: 0:00:13 + Points: 2805  ⌟ # Computing specializations.. Time: 0:00:13 + Points: 2873  ⌞ # Computing specializations.. Time: 0:00:14 + Points: 2941  ⌜ # Computing specializations.. Time: 0:00:14 + Points: 3009  ⌝ # Computing specializations.. Time: 0:00:14 + Points: 3078  ⌟ # Computing specializations.. Time: 0:00:15 + Points: 3147  ⌞ # Computing specializations.. Time: 0:00:15 + Points: 3216  ⌜ # Computing specializations.. Time: 0:00:15 + Points: 3284  ⌝ # Computing specializations.. Time: 0:00:15 + Points: 3352  ⌟ # Computing specializations.. Time: 0:00:16 + Points: 3420  ⌞ # Computing specializations.. Time: 0:00:16 + Points: 3485  ⌜ # Computing specializations.. Time: 0:00:16 + Points: 3556  ⌝ # Computing specializations.. Time: 0:00:17 + Points: 3625  ⌟ # Computing specializations.. Time: 0:00:17 + Points: 3690  ⌞ # Computing specializations.. Time: 0:00:18 + Points: 3757  ⌜ # Computing specializations.. Time: 0:00:18 + Points: 3822  ⌝ # Computing specializations.. Time: 0:00:18 + Points: 3881  ⌟ # Computing specializations.. Time: 0:00:18 + Points: 3951  ⌞ # Computing specializations.. Time: 0:00:19 + Points: 4021  ⌜ # Computing specializations.. Time: 0:00:19 + Points: 4074  ⌝ # Computing specializations.. Time: 0:00:19 + Points: 4142  ⌟ # Computing specializations.. Time: 0:00:20 + Points: 4211  ⌞ # Computing specializations.. Time: 0:00:20 + Points: 4280  ⌜ # Computing specializations.. Time: 0:00:21 + Points: 4348  ⌝ # Computing specializations.. Time: 0:00:21 + Points: 4416  ⌟ # Computing specializations.. Time: 0:00:21 + Points: 4485  ⌞ # Computing specializations.. Time: 0:00:21 + Points: 4598  ⌜ # Computing specializations.. Time: 0:00:22 + Points: 4709  ⌝ # Computing specializations.. Time: 0:00:22 + Points: 4787  ⌟ # Computing specializations.. Time: 0:00:23 + Points: 4854  ✓ # Computing specializations.. Time: 0:00:23 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 1 for den. +│ Maximal number of interpolated terms are: 3 for num. and 1 for den. +└ Points used: 40. +[ Info: Groebner basis computed in 13.026478741 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 4.615992501 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 3 for den. +│ Maximal number of interpolated terms are: 14 for num. and 3 for den. +└ Points used: 288. +[ Info: Groebner basis computed in 1.402870684 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.041799746 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 11 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 9 fractions 9 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 12.799673206 seconds. Result: true +[ Info: Out of 64 initial generators there are 9 indepdendent +[ Info: The ranking of the new set of generators is 106246 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 0 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 16. +[ Info: Groebner basis computed in 5.651133836 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 1.622430914 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 3 for den. +│ Maximal number of interpolated terms are: 11 for num. and 3 for den. +└ Points used: 288. +[ Info: Groebner basis computed in 1.62649271 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.116181288 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (8, 8) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 8 for num. and 7 for den. +│ Maximal number of interpolated terms are: 63 for num. and 8 for den. +└ Points used: 2176. +[ Info: Groebner basis computed in 10.268999723 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.19508961 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (16, 16) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 9 for num. and 8 for den. +│ Maximal number of interpolated terms are: 98 for num. and 8 for den. +└ Points used: 4864. +[ Info: Groebner basis computed in 23.974627868 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.129613763 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 17 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (16 in total): Nemo.QQMPolyRingElem[siga1, beta_SI, phi, alpa, M, Mar, Ks, beta, siga2, beta_SA, P0, P1, P2, P3, P4, P5] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 22 +┌ Info: Final cleaning and simplification of generators. +└ Out of 35 fractions 26 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 5.44060277 seconds. Result: true +[ Info: Out of 16 initial generators there are 15 indepdendent +[ Info: The ranking of the new set of generators is 7310506 +[ Info: The search for identifiable functions concluded in 115.613875544 seconds +[ Info: Processing QY +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.093080173 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.093080173 +[ Info: Computing Wronskians +┌ Info: Computed in 0.053931103 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.053931103 +[ Info: Dimensions of the Wronskians [64] +┌ Info: Ranks of the Wronskians computed in 0.000197964 seconds +│ :rank_time = :rank_time +└ rank_times = 0.000197964 + ⌜ # Computing specializations.. Time: 0:00:00 + Points: 112  ⌝ # Computing specializations.. Time: 0:00:00 + Points: 227  ✓ # Computing specializations.. Time: 0:00:00 + ⌜ # Computing specializations.. Time: 0:00:00 + Points: 69  ⌝ # Computing specializations.. Time: 0:00:00 + Points: 135  ⌟ # Computing specializations.. Time: 0:00:00 + Points: 201  ⌞ # Computing specializations.. Time: 0:00:01 + Points: 270  ✓ # Computing specializations.. Time: 0:00:01 + ⌜ # Computing specializations.. Time: 0:00:00 + Points: 71  ⌝ # Computing specializations.. Time: 0:00:00 + Points: 137  ⌟ # Computing specializations.. Time: 0:00:00 + Points: 205  ⌞ # Computing specializations.. Time: 0:00:01 + Points: 274  ⌜ # Computing specializations.. Time: 0:00:01 + Points: 339  ⌝ # Computing specializations.. Time: 0:00:01 + Points: 409  ⌟ # Computing specializations.. Time: 0:00:02 + Points: 479  ⌞ # Computing specializations.. Time: 0:00:02 + Points: 547  ⌜ # Computing specializations.. Time: 0:00:02 + Points: 611  ⌝ # Computing specializations.. Time: 0:00:03 + Points: 680  ⌟ # Computing specializations.. Time: 0:00:03 + Points: 747  ⌞ # Computing specializations.. Time: 0:00:03 + Points: 816  ⌜ # Computing specializations.. Time: 0:00:04 + Points: 885  ⌝ # Computing specializations.. Time: 0:00:04 + Points: 953  ⌟ # Computing specializations.. Time: 0:00:04 + Points: 1021  ⌞ # Computing specializations.. Time: 0:00:05 + Points: 1101  ⌜ # Computing specializations.. Time: 0:00:05 + Points: 1165  ⌝ # Computing specializations.. Time: 0:00:05 + Points: 1231  ⌟ # Computing specializations.. Time: 0:00:05 + Points: 1306  ⌞ # Computing specializations.. Time: 0:00:06 + Points: 1424  ⌜ # Computing specializations.. Time: 0:00:06 + Points: 1543  ⌝ # Computing specializations.. Time: 0:00:06 + Points: 1663  ⌟ # Computing specializations.. Time: 0:00:07 + Points: 1781  ⌞ # Computing specializations.. Time: 0:00:07 + Points: 1880  ⌜ # Computing specializations.. Time: 0:00:08 + Points: 1946  ⌝ # Computing specializations.. Time: 0:00:08 + Points: 2013  ⌟ # Computing specializations.. Time: 0:00:08 + Points: 2080  ⌞ # Computing specializations.. Time: 0:00:08 + Points: 2147  ✓ # Computing specializations.. Time: 0:00:09 + ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 + ⌜ # Computing specializations.. Time: 0:00:00 + Points: 65  ⌝ # Computing specializations.. Time: 0:00:00 + Points: 128  ⌟ # Computing specializations.. Time: 0:00:00 + Points: 191  ⌞ # Computing specializations.. Time: 0:00:01 + Points: 255  ⌜ # Computing specializations.. Time: 0:00:01 + Points: 317  ⌝ # Computing specializations.. Time: 0:00:01 + Points: 382  ⌟ # Computing specializations.. Time: 0:00:02 + Points: 448  ⌞ # Computing specializations.. Time: 0:00:02 + Points: 516  ⌜ # Computing specializations.. Time: 0:00:02 + Points: 582  ⌝ # Computing specializations.. Time: 0:00:03 + Points: 648  ⌟ # Computing specializations.. Time: 0:00:03 + Points: 714  ⌞ # Computing specializations.. Time: 0:00:03 + Points: 778  ⌜ # Computing specializations.. Time: 0:00:04 + Points: 844  ⌝ # Computing specializations.. Time: 0:00:04 + Points: 912  ⌟ # Computing specializations.. Time: 0:00:04 + Points: 982  ⌞ # Computing specializations.. Time: 0:00:05 + Points: 1050  ⌜ # Computing specializations.. Time: 0:00:05 + Points: 1120  ⌝ # Computing specializations.. Time: 0:00:05 + Points: 1189  ⌟ # Computing specializations.. Time: 0:00:06 + Points: 1258  ⌞ # Computing specializations.. Time: 0:00:06 + Points: 1326  ⌜ # Computing specializations.. Time: 0:00:06 + Points: 1394  ⌝ # Computing specializations.. Time: 0:00:07 + Points: 1462  ⌟ # Computing specializations.. Time: 0:00:07 + Points: 1530  ⌞ # Computing specializations.. Time: 0:00:07 + Points: 1598  ⌜ # Computing specializations.. Time: 0:00:07 + Points: 1663  ⌝ # Computing specializations.. Time: 0:00:08 + Points: 1730  ⌟ # Computing specializations.. Time: 0:00:08 + Points: 1799  ⌞ # Computing specializations.. Time: 0:00:08 + Points: 1868  ⌜ # Computing specializations.. Time: 0:00:09 + Points: 1937  ⌝ # Computing specializations.. Time: 0:00:09 + Points: 2006  ⌟ # Computing specializations.. Time: 0:00:09 + Points: 2073  ⌞ # Computing specializations.. Time: 0:00:10 + Points: 2143  ⌜ # Computing specializations.. Time: 0:00:10 + Points: 2212  ⌝ # Computing specializations.. Time: 0:00:10 + Points: 2279  ⌟ # Computing specializations.. Time: 0:00:11 + Points: 2344  ⌞ # Computing specializations.. Time: 0:00:11 + Points: 2405  ⌜ # Computing specializations.. Time: 0:00:11 + Points: 2466  ⌝ # Computing specializations.. Time: 0:00:12 + Points: 2584  ⌟ # Computing specializations.. Time: 0:00:12 + Points: 2702  ⌞ # Computing specializations.. Time: 0:00:12 + Points: 2802  ⌜ # Computing specializations.. Time: 0:00:13 + Points: 2906  ⌝ # Computing specializations.. Time: 0:00:13 + Points: 3009  ⌟ # Computing specializations.. Time: 0:00:13 + Points: 3117  ⌞ # Computing specializations.. Time: 0:00:14 + Points: 3224  ⌜ # Computing specializations.. Time: 0:00:14 + Points: 3312  ⌝ # Computing specializations.. Time: 0:00:15 + Points: 3384  ⌟ # Computing specializations.. Time: 0:00:15 + Points: 3456  ⌞ # Computing specializations.. Time: 0:00:15 + Points: 3525  ⌜ # Computing specializations.. Time: 0:00:16 + Points: 3592  ⌝ # Computing specializations.. Time: 0:00:16 + Points: 3663  ⌟ # Computing specializations.. Time: 0:00:16 + Points: 3733  ⌞ # Computing specializations.. Time: 0:00:17 + Points: 3803  ⌜ # Computing specializations.. Time: 0:00:17 + Points: 3872  ⌝ # Computing specializations.. Time: 0:00:17 + Points: 3943  ⌟ # Computing specializations.. Time: 0:00:17 + Points: 4014  ⌞ # Computing specializations.. Time: 0:00:18 + Points: 4083  ⌜ # Computing specializations.. Time: 0:00:18 + Points: 4151  ⌝ # Computing specializations.. Time: 0:00:18 + Points: 4219  ⌟ # Computing specializations.. Time: 0:00:19 + Points: 4288  ⌞ # Computing specializations.. Time: 0:00:19 + Points: 4355  ⌜ # Computing specializations.. Time: 0:00:19 + Points: 4424  ⌝ # Computing specializations.. Time: 0:00:20 + Points: 4495  ⌟ # Computing specializations.. Time: 0:00:20 + Points: 4564  ⌞ # Computing specializations.. Time: 0:00:20 + Points: 4634  ⌜ # Computing specializations.. Time: 0:00:20 + Points: 4704  ⌝ # Computing specializations.. Time: 0:00:21 + Points: 4774  ⌟ # Computing specializations.. Time: 0:00:21 + Points: 4844  ✓ # Computing specializations.. Time: 0:00:22 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 1 for den. +│ Maximal number of interpolated terms are: 3 for num. and 1 for den. +└ Points used: 40. +[ Info: Groebner basis computed in 0.182431751 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.039668511 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 3 for den. +│ Maximal number of interpolated terms are: 14 for num. and 3 for den. +└ Points used: 288. +[ Info: Groebner basis computed in 0.865865358 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.025456972 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 11 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 9 fractions 9 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 5.939944407 seconds. Result: true +[ Info: Out of 64 initial generators there are 9 indepdendent +[ Info: The ranking of the new set of generators is 106246 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 0 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 16. +[ Info: Groebner basis computed in 0.196585866 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.131901927 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 3 for den. +│ Maximal number of interpolated terms are: 11 for num. and 3 for den. +└ Points used: 288. +[ Info: Groebner basis computed in 1.515592485 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.118398496 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (8, 8) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 8 for num. and 7 for den. +│ Maximal number of interpolated terms are: 63 for num. and 8 for den. +└ Points used: 2176. +[ Info: Groebner basis computed in 9.527328611 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.197369219 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (16, 16) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 9 for num. and 8 for den. +│ Maximal number of interpolated terms are: 98 for num. and 8 for den. +└ Points used: 4864. +[ Info: Groebner basis computed in 22.71748754 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.192174759 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 17 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (16 in total): Nemo.QQMPolyRingElem[siga1, beta_SI, phi, alpa, M, Mar, Ks, beta, siga2, beta_SA, P0, P1, P2, P3, P4, P5] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 22 +┌ Info: Final cleaning and simplification of generators. +└ Out of 35 fractions 26 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 6.200444059 seconds. Result: true +[ Info: Out of 16 initial generators there are 15 indepdendent +[ Info: The ranking of the new set of generators is 7310506 +[ Info: The search for identifiable functions concluded in 49.212118213 seconds +┌ Info: Result is +│ result = +│ 15-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ P4 +│ P3 +│ P2 +│ P1 +│ ⋮ +│ (siga1*beta_SI*phi*siga2 - siga1*beta_SI*siga2 - siga1*phi*siga2*beta_SA - siga1*M*beta_SA - beta_SI*phi*Mar*siga2 + beta_SI*Mar*siga2 - phi*M*Mar*beta_SA + M*Mar*beta_SA)//(siga1*beta_SA + phi*Mar*beta_SA - Mar*beta_SA) +│ (siga1^2*beta_SI*beta_SA - siga1^2*beta_SA^2 + siga1*beta_SI^2*phi*siga2 - siga1*beta_SI^2*siga2 + siga1*beta_SI*phi*Mar*beta_SA - 2*siga1*beta_SI*phi*siga2*beta_SA - siga1*beta_SI*M*beta_SA - siga1*beta_SI*Mar*beta_SA + siga1*beta_SI*siga2*beta_SA - siga1*phi*Mar*beta_SA^2 + siga1*phi*siga2*beta_SA^2 + siga1*Mar*beta_SA^2 - beta_SI^2*phi*Mar*siga2 + beta_SI^2*Mar*siga2 - beta_SI*phi*M*Mar*beta_SA + beta_SI*phi*Mar*siga2*beta_SA + beta_SI*M*Mar*beta_SA - beta_SI*Mar*siga2*beta_SA)//(siga1*M*beta_SA + phi*M*Mar*beta_SA - M*Mar*beta_SA) +└ (siga1^4*beta_SI*beta_SA^2 - siga1^4*beta_SA^3 + 2*siga1^3*beta_SI^2*phi*siga2*beta_SA - 2*siga1^3*beta_SI^2*siga2*beta_SA + 2*siga1^3*beta_SI*phi*Mar*beta_SA^2 - 4*siga1^3*beta_SI*phi*siga2*beta_SA^2 - siga1^3*beta_SI*M*beta_SA^2 - 2*siga1^3*beta_SI*Mar*beta_SA^2 + 3*siga1^3*beta_SI*siga2*beta_SA^2 - 2*siga1^3*phi*Mar*beta_SA^3 + 2*siga1^3*phi*siga2*beta_SA^3 + siga1^3*M*beta_SA^3 + 2*siga1^3*Mar*beta_SA^3 - siga1^3*siga2*beta_SA^3 + siga1^2*beta_SI^3*phi^2*siga2^2 - 2*siga1^2*beta_SI^3*phi*siga2^2 + siga1^2*beta_SI^3*siga2^2 + 2*siga1^2*beta_SI^2*phi^2*Mar*siga2*beta_SA - 3*siga1^2*beta_SI^2*phi^2*siga2^2*beta_SA - siga1^2*beta_SI^2*phi*M*siga2*beta_SA - 6*siga1^2*beta_SI^2*phi*Mar*siga2*beta_SA + 5*siga1^2*beta_SI^2*phi*siga2^2*beta_SA + siga1^2*beta_SI^2*M*siga2*beta_SA + 4*siga1^2*beta_SI^2*Mar*siga2*beta_SA - 2*siga1^2*beta_SI^2*siga2^2*beta_SA + siga1^2*beta_SI*phi^2*Mar^2*beta_SA^2 - 4*siga1^2*beta_SI*phi^2*Mar*siga2*beta_SA^2 + 3*siga1^2*beta_SI*phi^2*siga2^2*beta_SA^2 - 2*siga1^2*beta_SI*phi*M*Mar*beta_SA^2 + 2*siga1^2*beta_SI*phi*M*siga2*beta_SA^2 - 2*siga1^2*beta_SI*phi*Mar^2*beta_SA^2 + 10*siga1^2*beta_SI*phi*Mar*siga2*beta_SA^2 - 4*siga1^2*beta_SI*phi*siga2^2*beta_SA^2 + 2*siga1^2*beta_SI*M*Mar*beta_SA^2 - siga1^2*beta_SI*M*siga2*beta_SA^2 + siga1^2*beta_SI*Mar^2*beta_SA^2 - 6*siga1^2*beta_SI*Mar*siga2*beta_SA^2 + siga1^2*beta_SI*siga2^2*beta_SA^2 - siga1^2*phi^2*Mar^2*beta_SA^3 + 2*siga1^2*phi^2*Mar*siga2*beta_SA^3 - siga1^2*phi^2*siga2^2*beta_SA^3 + 2*siga1^2*phi*M*Mar*beta_SA^3 - siga1^2*phi*M*siga2*beta_SA^3 + 2*siga1^2*phi*Mar^2*beta_SA^3 - 4*siga1^2*phi*Mar*siga2*beta_SA^3 + siga1^2*phi*siga2^2*beta_SA^3 - 2*siga1^2*M*Mar*beta_SA^3 - siga1^2*Mar^2*beta_SA^3 + 2*siga1^2*Mar*siga2*beta_SA^3 - 2*siga1*beta_SI^3*phi^2*Mar*siga2^2 + 4*siga1*beta_SI^3*phi*Mar*siga2^2 - 2*siga1*beta_SI^3*Mar*siga2^2 - siga1*beta_SI^2*phi^2*M*Mar*siga2*beta_SA - 2*siga1*beta_SI^2*phi^2*Mar^2*siga2*beta_SA + 5*siga1*beta_SI^2*phi^2*Mar*siga2^2*beta_SA + 3*siga1*beta_SI^2*phi*M*Mar*siga2*beta_SA + 4*siga1*beta_SI^2*phi*Mar^2*siga2*beta_SA - 9*siga1*beta_SI^2*phi*Mar*siga2^2*beta_SA - 2*siga1*beta_SI^2*M*Mar*siga2*beta_SA - 2*siga1*beta_SI^2*Mar^2*siga2*beta_SA + 4*siga1*beta_SI^2*Mar*siga2^2*beta_SA - siga1*beta_SI*phi^2*M*Mar^2*beta_SA^2 + 2*siga1*beta_SI*phi^2*M*Mar*siga2*beta_SA^2 + 3*siga1*beta_SI*phi^2*Mar^2*siga2*beta_SA^2 - 4*siga1*beta_SI*phi^2*Mar*siga2^2*beta_SA^2 + 2*siga1*beta_SI*phi*M*Mar^2*beta_SA^2 - 4*siga1*beta_SI*phi*M*Mar*siga2*beta_SA^2 - 6*siga1*beta_SI*phi*Mar^2*siga2*beta_SA^2 + 6*siga1*beta_SI*phi*Mar*siga2^2*beta_SA^2 - siga1*beta_SI*M*Mar^2*beta_SA^2 + 2*siga1*beta_SI*M*Mar*siga2*beta_SA^2 + 3*siga1*beta_SI*Mar^2*siga2*beta_SA^2 - 2*siga1*beta_SI*Mar*siga2^2*beta_SA^2 + siga1*phi^2*M*Mar^2*beta_SA^3 - siga1*phi^2*M*Mar*siga2*beta_SA^3 - siga1*phi^2*Mar^2*siga2*beta_SA^3 + siga1*phi^2*Mar*siga2^2*beta_SA^3 - 2*siga1*phi*M*Mar^2*beta_SA^3 + siga1*phi*M*Mar*siga2*beta_SA^3 + 2*siga1*phi*Mar^2*siga2*beta_SA^3 - siga1*phi*Mar*siga2^2*beta_SA^3 + siga1*M*Mar^2*beta_SA^3 - siga1*Mar^2*siga2*beta_SA^3 + beta_SI^3*phi^2*Mar^2*siga2^2 - 2*beta_SI^3*phi*Mar^2*siga2^2 + beta_SI^3*Mar^2*siga2^2 + beta_SI^2*phi^2*M*Mar^2*siga2*beta_SA - 2*beta_SI^2*phi^2*Mar^2*siga2^2*beta_SA - 2*beta_SI^2*phi*M*Mar^2*siga2*beta_SA + 4*beta_SI^2*phi*Mar^2*siga2^2*beta_SA + beta_SI^2*M*Mar^2*siga2*beta_SA - 2*beta_SI^2*Mar^2*siga2^2*beta_SA - beta_SI*phi^2*M*Mar^2*siga2*beta_SA^2 + beta_SI*phi^2*Mar^2*siga2^2*beta_SA^2 + 2*beta_SI*phi*M*Mar^2*siga2*beta_SA^2 - 2*beta_SI*phi*Mar^2*siga2^2*beta_SA^2 - beta_SI*M*Mar^2*siga2*beta_SA^2 + beta_SI*Mar^2*siga2^2*beta_SA^2)//(siga1^2*phi*M^2*siga2*beta_SA - siga1^2*M^2*siga2*beta_SA + siga1*phi^2*M^2*Mar*siga2*beta_SA - 3*siga1*phi*M^2*Mar*siga2*beta_SA + 2*siga1*M^2*Mar*siga2*beta_SA - phi^2*M^2*Mar^2*siga2*beta_SA + 2*phi*M^2*Mar^2*siga2*beta_SA - M^2*Mar^2*siga2*beta_SA) diff --git a/benchmarking/IdentifiableFunctions/results/QY/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/QY/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..ed50084a8 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/QY/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[P4, P3, P2, P1, P0, Ks, Mar, alpa, Mar*P5 + beta, siga1 + M + siga2, siga1*M + siga1*siga2 + M*siga2, (siga1*phi*M*siga2 - siga1*M*siga2 - phi*M*Mar*siga2 + M*Mar*siga2)//(siga1*beta_SA + phi*Mar*beta_SA - Mar*beta_SA), (siga1*beta_SI*phi*siga2 - siga1*beta_SI*siga2 - siga1*phi*siga2*beta_SA - siga1*M*beta_SA - beta_SI*phi*Mar*siga2 + beta_SI*Mar*siga2 - phi*M*Mar*beta_SA + M*Mar*beta_SA)//(siga1*beta_SA + phi*Mar*beta_SA - Mar*beta_SA), (siga1^2*beta_SI*beta_SA - siga1^2*beta_SA^2 + siga1*beta_SI^2*phi*siga2 - siga1*beta_SI^2*siga2 + siga1*beta_SI*phi*Mar*beta_SA - 2*siga1*beta_SI*phi*siga2*beta_SA - siga1*beta_SI*M*beta_SA - siga1*beta_SI*Mar*beta_SA + siga1*beta_SI*siga2*beta_SA - siga1*phi*Mar*beta_SA^2 + siga1*phi*siga2*beta_SA^2 + siga1*Mar*beta_SA^2 - beta_SI^2*phi*Mar*siga2 + beta_SI^2*Mar*siga2 - beta_SI*phi*M*Mar*beta_SA + beta_SI*phi*Mar*siga2*beta_SA + beta_SI*M*Mar*beta_SA - beta_SI*Mar*siga2*beta_SA)//(siga1*M*beta_SA + phi*M*Mar*beta_SA - M*Mar*beta_SA), (siga1^4*beta_SI*beta_SA^2 - siga1^4*beta_SA^3 + 2*siga1^3*beta_SI^2*phi*siga2*beta_SA - 2*siga1^3*beta_SI^2*siga2*beta_SA + 2*siga1^3*beta_SI*phi*Mar*beta_SA^2 - 4*siga1^3*beta_SI*phi*siga2*beta_SA^2 - siga1^3*beta_SI*M*beta_SA^2 - 2*siga1^3*beta_SI*Mar*beta_SA^2 + 3*siga1^3*beta_SI*siga2*beta_SA^2 - 2*siga1^3*phi*Mar*beta_SA^3 + 2*siga1^3*phi*siga2*beta_SA^3 + siga1^3*M*beta_SA^3 + 2*siga1^3*Mar*beta_SA^3 - siga1^3*siga2*beta_SA^3 + siga1^2*beta_SI^3*phi^2*siga2^2 - 2*siga1^2*beta_SI^3*phi*siga2^2 + siga1^2*beta_SI^3*siga2^2 + 2*siga1^2*beta_SI^2*phi^2*Mar*siga2*beta_SA - 3*siga1^2*beta_SI^2*phi^2*siga2^2*beta_SA - siga1^2*beta_SI^2*phi*M*siga2*beta_SA - 6*siga1^2*beta_SI^2*phi*Mar*siga2*beta_SA + 5*siga1^2*beta_SI^2*phi*siga2^2*beta_SA + siga1^2*beta_SI^2*M*siga2*beta_SA + 4*siga1^2*beta_SI^2*Mar*siga2*beta_SA - 2*siga1^2*beta_SI^2*siga2^2*beta_SA + siga1^2*beta_SI*phi^2*Mar^2*beta_SA^2 - 4*siga1^2*beta_SI*phi^2*Mar*siga2*beta_SA^2 + 3*siga1^2*beta_SI*phi^2*siga2^2*beta_SA^2 - 2*siga1^2*beta_SI*phi*M*Mar*beta_SA^2 + 2*siga1^2*beta_SI*phi*M*siga2*beta_SA^2 - 2*siga1^2*beta_SI*phi*Mar^2*beta_SA^2 + 10*siga1^2*beta_SI*phi*Mar*siga2*beta_SA^2 - 4*siga1^2*beta_SI*phi*siga2^2*beta_SA^2 + 2*siga1^2*beta_SI*M*Mar*beta_SA^2 - siga1^2*beta_SI*M*siga2*beta_SA^2 + siga1^2*beta_SI*Mar^2*beta_SA^2 - 6*siga1^2*beta_SI*Mar*siga2*beta_SA^2 + siga1^2*beta_SI*siga2^2*beta_SA^2 - siga1^2*phi^2*Mar^2*beta_SA^3 + 2*siga1^2*phi^2*Mar*siga2*beta_SA^3 - siga1^2*phi^2*siga2^2*beta_SA^3 + 2*siga1^2*phi*M*Mar*beta_SA^3 - siga1^2*phi*M*siga2*beta_SA^3 + 2*siga1^2*phi*Mar^2*beta_SA^3 - 4*siga1^2*phi*Mar*siga2*beta_SA^3 + siga1^2*phi*siga2^2*beta_SA^3 - 2*siga1^2*M*Mar*beta_SA^3 - siga1^2*Mar^2*beta_SA^3 + 2*siga1^2*Mar*siga2*beta_SA^3 - 2*siga1*beta_SI^3*phi^2*Mar*siga2^2 + 4*siga1*beta_SI^3*phi*Mar*siga2^2 - 2*siga1*beta_SI^3*Mar*siga2^2 - siga1*beta_SI^2*phi^2*M*Mar*siga2*beta_SA - 2*siga1*beta_SI^2*phi^2*Mar^2*siga2*beta_SA + 5*siga1*beta_SI^2*phi^2*Mar*siga2^2*beta_SA + 3*siga1*beta_SI^2*phi*M*Mar*siga2*beta_SA + 4*siga1*beta_SI^2*phi*Mar^2*siga2*beta_SA - 9*siga1*beta_SI^2*phi*Mar*siga2^2*beta_SA - 2*siga1*beta_SI^2*M*Mar*siga2*beta_SA - 2*siga1*beta_SI^2*Mar^2*siga2*beta_SA + 4*siga1*beta_SI^2*Mar*siga2^2*beta_SA - siga1*beta_SI*phi^2*M*Mar^2*beta_SA^2 + 2*siga1*beta_SI*phi^2*M*Mar*siga2*beta_SA^2 + 3*siga1*beta_SI*phi^2*Mar^2*siga2*beta_SA^2 - 4*siga1*beta_SI*phi^2*Mar*siga2^2*beta_SA^2 + 2*siga1*beta_SI*phi*M*Mar^2*beta_SA^2 - 4*siga1*beta_SI*phi*M*Mar*siga2*beta_SA^2 - 6*siga1*beta_SI*phi*Mar^2*siga2*beta_SA^2 + 6*siga1*beta_SI*phi*Mar*siga2^2*beta_SA^2 - siga1*beta_SI*M*Mar^2*beta_SA^2 + 2*siga1*beta_SI*M*Mar*siga2*beta_SA^2 + 3*siga1*beta_SI*Mar^2*siga2*beta_SA^2 - 2*siga1*beta_SI*Mar*siga2^2*beta_SA^2 + siga1*phi^2*M*Mar^2*beta_SA^3 - siga1*phi^2*M*Mar*siga2*beta_SA^3 - siga1*phi^2*Mar^2*siga2*beta_SA^3 + siga1*phi^2*Mar*siga2^2*beta_SA^3 - 2*siga1*phi*M*Mar^2*beta_SA^3 + siga1*phi*M*Mar*siga2*beta_SA^3 + 2*siga1*phi*Mar^2*siga2*beta_SA^3 - siga1*phi*Mar*siga2^2*beta_SA^3 + siga1*M*Mar^2*beta_SA^3 - siga1*Mar^2*siga2*beta_SA^3 + beta_SI^3*phi^2*Mar^2*siga2^2 - 2*beta_SI^3*phi*Mar^2*siga2^2 + beta_SI^3*Mar^2*siga2^2 + beta_SI^2*phi^2*M*Mar^2*siga2*beta_SA - 2*beta_SI^2*phi^2*Mar^2*siga2^2*beta_SA - 2*beta_SI^2*phi*M*Mar^2*siga2*beta_SA + 4*beta_SI^2*phi*Mar^2*siga2^2*beta_SA + beta_SI^2*M*Mar^2*siga2*beta_SA - 2*beta_SI^2*Mar^2*siga2^2*beta_SA - beta_SI*phi^2*M*Mar^2*siga2*beta_SA^2 + beta_SI*phi^2*Mar^2*siga2^2*beta_SA^2 + 2*beta_SI*phi*M*Mar^2*siga2*beta_SA^2 - 2*beta_SI*phi*Mar^2*siga2^2*beta_SA^2 - beta_SI*M*Mar^2*siga2*beta_SA^2 + beta_SI*Mar^2*siga2^2*beta_SA^2)//(siga1^2*phi*M^2*siga2*beta_SA - siga1^2*M^2*siga2*beta_SA + siga1*phi^2*M^2*Mar*siga2*beta_SA - 3*siga1*phi*M^2*Mar*siga2*beta_SA + 2*siga1*M^2*Mar*siga2*beta_SA - phi^2*M^2*Mar^2*siga2*beta_SA + 2*phi*M^2*Mar^2*siga2*beta_SA - M^2*Mar^2*siga2*beta_SA)] diff --git a/benchmarking/IdentifiableFunctions/results/QY/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/QY/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..db5d4ce86 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/QY/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +QY +id_total, 49.212565616 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 6.200444059 +id_inclusion_check_mod_p, 0.6398444010000001 +id_groebner_time, 33.956994502 +id_beautifulization, 0.23166432 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 7.310506e+06 diff --git a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/Ruminal lipolysis.jl b/benchmarking/IdentifiableFunctions/results/Ruminal lipolysis/Ruminal lipolysis.jl similarity index 91% rename from benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/Ruminal lipolysis.jl rename to benchmarking/IdentifiableFunctions/results/Ruminal lipolysis/Ruminal lipolysis.jl index b51bad9c5..4797d486a 100644 --- a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/Ruminal lipolysis.jl +++ b/benchmarking/IdentifiableFunctions/results/Ruminal lipolysis/Ruminal lipolysis.jl @@ -6,9 +6,9 @@ system = @ODEmodel( x1'(t) = (-x5(t)*x1(t))//(k2 + x1(t)), x2'(t) = (-k4*k2*x2(t) - k4*x1(t)*x2(t) + 2//3*x5(t)*x1(t))//(k2 + x1(t)), x3'(t) = -k4*x3(t) + 1//2*k4*x2(t), - x5'(t) = -k3*x5(t), x4'(t) = (k4*k2*x3(t) + 1//2*k4*k2*x2(t) + k4*x3(t)*x1(t) + 1//2*k4*x1(t)*x2(t) + 1//3*x5(t)*x1(t))//(k2 + x1(t)), - y3(t) = x4(t), + x5'(t) = -k3*x5(t), y1(t) = x1(t), - y2(t) = x3(t) + x2(t) + y2(t) = x3(t) + x2(t), + y3(t) = x4(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/Ruminal lipolysis/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Ruminal lipolysis/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..7fe51e4af --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Ruminal lipolysis/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +Ruminal lipolysis +id_npoints_degree, 18 +id_npoints_interpolation, 12 +are_id_funcs_polynomial, true diff --git a/benchmarking/IdentifiableFunctions/results/Ruminal lipolysis/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Ruminal lipolysis/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..2439833c7 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Ruminal lipolysis/logs_(normalforms, 2)_with_states @@ -0,0 +1,221 @@ +┌ Warning: Module Symbolics with build ID fafbfcfd-7555-b08f-0000-0c272e332419 is missing from the cache. +│ This may mean Symbolics [0c5d862f-8b57-4792-8d23-62f2024744c7] does not support precompilation but is imported by a module that does. +└ @ Base loading.jl:1793 +WARNING: using OrdinaryDiffEq.isconstant in module ModelingToolkit conflicts with an existing identifier. +WARNING: using OrdinaryDiffEq.islinear in module ModelingToolkit conflicts with an existing identifier. +┌ Error: Error during loading of extension SparseDiffToolsSymbolicsExt of SparseDiffTools, use `Base.retry_load_extensions()` to retry. +│ exception = +│ 1-element ExceptionStack: +│ Declaring __precompile__(false) is not allowed in files that are being precompiled. +│ Stacktrace: +│ [1] _require(pkg::Base.PkgId, env::Nothing) +│ @ Base ./loading.jl:1825 +│ [2] _require_prelocked(uuidkey::Base.PkgId, env::Nothing) +│ @ Base ./loading.jl:1660 +│ [3] _require_prelocked(uuidkey::Base.PkgId) +│ @ Base ./loading.jl:1658 +│ [4] run_extension_callbacks(extid::Base.ExtensionId) +│ @ Base ./loading.jl:1255 +│ [5] run_extension_callbacks(pkgid::Base.PkgId) +│ @ Base ./loading.jl:1290 +│ [6] run_package_callbacks(modkey::Base.PkgId) +│ @ Base ./loading.jl:1124 +│ [7] _tryrequire_from_serialized(modkey::Base.PkgId, path::String, ocachepath::String, sourcepath::String, depmods::Vector{Any}) +│ @ Base ./loading.jl:1398 +│ [8] _require_search_from_serialized(pkg::Base.PkgId, sourcepath::String, build_id::UInt128) +│ @ Base ./loading.jl:1494 +│ [9] _require(pkg::Base.PkgId, env::String) +│ @ Base ./loading.jl:1783 +│ [10] _require_prelocked(uuidkey::Base.PkgId, env::String) +│ @ Base ./loading.jl:1660 +│ [11] macro expansion +│ @ ./loading.jl:1648 [inlined] +│ [12] macro expansion +│ @ ./lock.jl:267 [inlined] +│ [13] require(into::Module, mod::Symbol) +│ @ Base ./loading.jl:1611 +│ [14] include(mod::Module, _path::String) +│ @ Base ./Base.jl:457 +│ [15] include(x::String) +│ @ ModelingToolkit ~/.julia/packages/ModelingToolkit/okjHa/src/ModelingToolkit.jl:4 +│ [16] top-level scope +│ @ ~/.julia/packages/ModelingToolkit/okjHa/src/ModelingToolkit.jl:124 +│ [17] include +│ @ ./Base.jl:457 [inlined] +│ [18] include_package_for_output(pkg::Base.PkgId, input::String, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::String) +│ @ Base ./loading.jl:2049 +│ [19] top-level scope +│ @ stdin:3 +│ [20] eval +│ @ ./boot.jl:370 [inlined] +│ [21] include_string(mapexpr::typeof(identity), mod::Module, code::String, filename::String) +│ @ Base ./loading.jl:1903 +│ [22] include_string +│ @ ./loading.jl:1913 [inlined] +│ [23] exec_options(opts::Base.JLOptions) +│ @ Base ./client.jl:305 +│ [24] _start() +│ @ Base ./client.jl:522 +└ @ Base loading.jl:1261 +┌ Warning: The call to compilecache failed to create a usable precompiled cache file for ModelingToolkit [961ee093-0014-501f-94e3-6117800e7a78] +│ exception = Required dependency Symbolics [0c5d862f-8b57-4792-8d23-62f2024744c7] failed to load from a cache file. +└ @ Base loading.jl:1818 +WARNING: using OrdinaryDiffEq.islinear in module ModelingToolkit conflicts with an existing identifier. +WARNING: using OrdinaryDiffEq.isconstant in module ModelingToolkit conflicts with an existing identifier. +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "Ruminal lipolysis" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: x1, x2, x3, x4, x5 +[ Info: Parameters: k3, k4, k2 +[ Info: Inputs: +[ Info: Outputs: y1, y2, y3 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 9.574967995 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 9.574967995 +[ Info: Computing Wronskians +┌ Info: Computed in 7.595830055 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 7.595830055 +[ Info: Dimensions of the Wronskians [1, 8, 4] +┌ Info: Ranks of the Wronskians computed in 0.022167335 seconds +│ :rank_time = :rank_time +└ rank_times = 0.022167335 + ⌜ # Computing specializations.. Time: 0:00:06 ✓ # Computing specializations.. Time: 0:00:07 + ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 8.497906243 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 3.16011332 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 5 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 3 fractions 3 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 4.874185656 seconds. Result: true +[ Info: Out of 14 initial generators there are 3 indepdendent +[ Info: The ranking of the new set of generators is 6 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 5.157628316 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 1.437942842 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 9 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (8 in total): Nemo.QQMPolyRingElem[k3, k4, k2, x1, x2, x3, x4, x5] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 1 +┌ Info: Final cleaning and simplification of generators. +└ Out of 16 fractions 8 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 2.134745423 seconds. Result: true +[ Info: Out of 11 initial generators there are 8 indepdendent +[ Info: The ranking of the new set of generators is 36 +[ Info: The search for identifiable functions concluded in 57.191180859 seconds +[ Info: Processing Ruminal lipolysis +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.023516976 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.023516976 +[ Info: Computing Wronskians +┌ Info: Computed in 0.013421767 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.013421767 +[ Info: Dimensions of the Wronskians [1, 8, 4] +┌ Info: Ranks of the Wronskians computed in 2.7826e-5 seconds +│ :rank_time = :rank_time +└ rank_times = 2.7826e-5 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 0.00489423 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.001199902 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 5 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 3 fractions 3 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.001083309 seconds. Result: true +[ Info: Out of 14 initial generators there are 3 indepdendent +[ Info: The ranking of the new set of generators is 6 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 0.075210711 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.002226097 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 9 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (8 in total): Nemo.QQMPolyRingElem[k3, k4, k2, x1, x2, x3, x4, x5] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 1 +┌ Info: Final cleaning and simplification of generators. +└ Out of 16 fractions 8 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.002477007 seconds. Result: true +[ Info: Out of 11 initial generators there are 8 indepdendent +[ Info: The ranking of the new set of generators is 36 +[ Info: The search for identifiable functions concluded in 0.205720394 seconds +┌ Info: Result is +│ result = +│ 8-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ x5 +│ x4 +│ x3 +│ x2 +│ x1 +│ k2 +│ k4 +└ k3 diff --git a/benchmarking/IdentifiableFunctions/results/Ruminal lipolysis/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Ruminal lipolysis/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..af4ba4537 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Ruminal lipolysis/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[x5, x4, x3, x2, x1, k2, k4, k3] diff --git a/benchmarking/IdentifiableFunctions/results/Ruminal lipolysis/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Ruminal lipolysis/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..3af8c0c28 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Ruminal lipolysis/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +Ruminal lipolysis +id_total, 0.206210212 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.002477007 +id_inclusion_check_mod_p, 0.002226097 +id_groebner_time, 0.075210711 +id_beautifulization, 0.071172542 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 36.0 diff --git a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/SEAIJRC Covid model.jl b/benchmarking/IdentifiableFunctions/results/SEAIJRC Covid model/SEAIJRC Covid model.jl similarity index 100% rename from benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/SEAIJRC Covid model.jl rename to benchmarking/IdentifiableFunctions/results/SEAIJRC Covid model/SEAIJRC Covid model.jl index a97910f08..4085cc325 100644 --- a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/SEAIJRC Covid model.jl +++ b/benchmarking/IdentifiableFunctions/results/SEAIJRC Covid model/SEAIJRC Covid model.jl @@ -3,13 +3,13 @@ using StructuralIdentifiability system = @ODEmodel( + S'(t) = -b*S(t)*Ninv(t)*A(t)*q - b*S(t)*Ninv(t)*I(t) - b*S(t)*Ninv(t)*J(t), + E'(t) = b*S(t)*Ninv(t)*A(t)*q + b*S(t)*Ninv(t)*I(t) + b*S(t)*Ninv(t)*J(t) - E(t)*k, A'(t) = -E(t)*k*r + E(t)*k - A(t)*g1, - Ninv'(t) = 0, I'(t) = -alpha*I(t) + E(t)*k*r - g1*I(t), - C'(t) = alpha*I(t), J'(t) = alpha*I(t) - g2*J(t), - S'(t) = -b*S(t)*Ninv(t)*A(t)*q - b*S(t)*Ninv(t)*I(t) - b*S(t)*Ninv(t)*J(t), - E'(t) = b*S(t)*Ninv(t)*A(t)*q + b*S(t)*Ninv(t)*I(t) + b*S(t)*Ninv(t)*J(t) - E(t)*k, + C'(t) = alpha*I(t), + Ninv'(t) = 0, y(t) = C(t), y2(t) = Ninv(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/SEAIJRC Covid model/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SEAIJRC Covid model/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..aa3b7daef --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SEAIJRC Covid model/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +SEAIJRC Covid model +id_npoints_degree, 20 +id_npoints_interpolation, 44 +are_id_funcs_polynomial, false diff --git a/benchmarking/IdentifiableFunctions/results/SEAIJRC Covid model/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SEAIJRC Covid model/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..9c6646466 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SEAIJRC Covid model/logs_(normalforms, 2)_with_states @@ -0,0 +1,249 @@ +┌ Warning: Module Symbolics with build ID fafbfcfd-011a-198d-0000-0c25e359d248 is missing from the cache. +│ This may mean Symbolics [0c5d862f-8b57-4792-8d23-62f2024744c7] does not support precompilation but is imported by a module that does. +└ @ Base loading.jl:1793 +WARNING: using OrdinaryDiffEq.isconstant in module ModelingToolkit conflicts with an existing identifier. +WARNING: using OrdinaryDiffEq.islinear in module ModelingToolkit conflicts with an existing identifier. +┌ Error: Error during loading of extension SparseDiffToolsSymbolicsExt of SparseDiffTools, use `Base.retry_load_extensions()` to retry. +│ exception = +│ 1-element ExceptionStack: +│ Declaring __precompile__(false) is not allowed in files that are being precompiled. +│ Stacktrace: +│ [1] _require(pkg::Base.PkgId, env::Nothing) +│ @ Base ./loading.jl:1825 +│ [2] _require_prelocked(uuidkey::Base.PkgId, env::Nothing) +│ @ Base ./loading.jl:1660 +│ [3] _require_prelocked(uuidkey::Base.PkgId) +│ @ Base ./loading.jl:1658 +│ [4] run_extension_callbacks(extid::Base.ExtensionId) +│ @ Base ./loading.jl:1255 +│ [5] run_extension_callbacks(pkgid::Base.PkgId) +│ @ Base ./loading.jl:1290 +│ [6] run_package_callbacks(modkey::Base.PkgId) +│ @ Base ./loading.jl:1124 +│ [7] _tryrequire_from_serialized(modkey::Base.PkgId, path::String, ocachepath::String, sourcepath::String, depmods::Vector{Any}) +│ @ Base ./loading.jl:1398 +│ [8] _require_search_from_serialized(pkg::Base.PkgId, sourcepath::String, build_id::UInt128) +│ @ Base ./loading.jl:1494 +│ [9] _require(pkg::Base.PkgId, env::String) +│ @ Base ./loading.jl:1783 +│ [10] _require_prelocked(uuidkey::Base.PkgId, env::String) +│ @ Base ./loading.jl:1660 +│ [11] macro expansion +│ @ ./loading.jl:1648 [inlined] +│ [12] macro expansion +│ @ ./lock.jl:267 [inlined] +│ [13] require(into::Module, mod::Symbol) +│ @ Base ./loading.jl:1611 +│ [14] include(mod::Module, _path::String) +│ @ Base ./Base.jl:457 +│ [15] include(x::String) +│ @ ModelingToolkit ~/.julia/packages/ModelingToolkit/okjHa/src/ModelingToolkit.jl:4 +│ [16] top-level scope +│ @ ~/.julia/packages/ModelingToolkit/okjHa/src/ModelingToolkit.jl:124 +│ [17] include +│ @ ./Base.jl:457 [inlined] +│ [18] include_package_for_output(pkg::Base.PkgId, input::String, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::String) +│ @ Base ./loading.jl:2049 +│ [19] top-level scope +│ @ stdin:3 +│ [20] eval +│ @ ./boot.jl:370 [inlined] +│ [21] include_string(mapexpr::typeof(identity), mod::Module, code::String, filename::String) +│ @ Base ./loading.jl:1903 +│ [22] include_string +│ @ ./loading.jl:1913 [inlined] +│ [23] exec_options(opts::Base.JLOptions) +│ @ Base ./client.jl:305 +│ [24] _start() +│ @ Base ./client.jl:522 +└ @ Base loading.jl:1261 +┌ Warning: The call to compilecache failed to create a usable precompiled cache file for ModelingToolkit [961ee093-0014-501f-94e3-6117800e7a78] +│ exception = Required dependency Symbolics [0c5d862f-8b57-4792-8d23-62f2024744c7] failed to load from a cache file. +└ @ Base loading.jl:1818 +WARNING: using OrdinaryDiffEq.islinear in module ModelingToolkit conflicts with an existing identifier. +WARNING: using OrdinaryDiffEq.isconstant in module ModelingToolkit conflicts with an existing identifier. +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "SEAIJRC Covid model" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: S, E, A, I, J, C, Ninv +[ Info: Parameters: b, alpha, g2, k, g1, q, r +[ Info: Inputs: +[ Info: Outputs: y, y2 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 37.990983157 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 37.990983157 +[ Info: Computing Wronskians +┌ Info: Computed in 21.817572619 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 21.817572619 +[ Info: Dimensions of the Wronskians [1282, 1] +┌ Info: Ranks of the Wronskians computed in 0.896873537 seconds +│ :rank_time = :rank_time +└ rank_times = 0.896873537 + ⌜ # Computing specializations.. Time: 0:00:13 ✓ # Computing specializations.. Time: 0:00:14 + ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 + ⌜ # Computing specializations.. Time: 0:00:00 + Points: 2  ⌝ # Computing specializations.. Time: 0:00:00 + Points: 4  ⌟ # Computing specializations.. Time: 0:00:01 + Points: 6  ⌞ # Computing specializations.. Time: 0:00:01 + Points: 8  ⌜ # Computing specializations.. Time: 0:00:01 + Points: 10  ⌝ # Computing specializations.. Time: 0:00:02 + Points: 12  ⌟ # Computing specializations.. Time: 0:00:02 + Points: 14  ⌞ # Computing specializations.. Time: 0:00:02 + Points: 16  ⌜ # Computing specializations.. Time: 0:00:03 + Points: 18  ⌝ # Computing specializations.. Time: 0:00:03 + Points: 20  ⌟ # Computing specializations.. Time: 0:00:03 + Points: 22  ⌞ # Computing specializations.. Time: 0:00:04 + Points: 24  ✓ # Computing specializations.. Time: 0:00:04 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 2 for num. and 2 for den. +└ Points used: 24. +[ Info: Groebner basis computed in 23.921068314 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 10.120221205 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 10 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 6 fractions 6 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 35.595747739 seconds. Result: true +[ Info: Out of 1464 initial generators there are 6 indepdendent +[ Info: The ranking of the new set of generators is 1750 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 1 for den. +│ Maximal number of interpolated terms are: 2 for num. and 2 for den. +└ Points used: 20. +[ Info: Groebner basis computed in 0.869028638 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.015689321 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 17 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (14 in total): Nemo.QQMPolyRingElem[b, alpha, g2, k, g1, q, r, S, E, A, I, J, C, Ninv] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 31 +┌ Info: Final cleaning and simplification of generators. +└ Out of 25 fractions 14 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.030300362 seconds. Result: true +[ Info: Out of 14 initial generators there are 13 indepdendent +[ Info: The ranking of the new set of generators is 318 +[ Info: The search for identifiable functions concluded in 158.693012687 seconds +[ Info: Processing SEAIJRC Covid model +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 22.165127019 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 22.165127019 +[ Info: Computing Wronskians +┌ Info: Computed in 10.034975461 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 10.034975461 +[ Info: Dimensions of the Wronskians [1282, 1] +┌ Info: Ranks of the Wronskians computed in 0.673468484 seconds +│ :rank_time = :rank_time +└ rank_times = 0.673468484 + ⌜ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:02 + ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 + ⌜ # Computing specializations.. Time: 0:00:00 + Points: 2  ⌝ # Computing specializations.. Time: 0:00:00 + Points: 4  ⌟ # Computing specializations.. Time: 0:00:01 + Points: 6  ⌞ # Computing specializations.. Time: 0:00:01 + Points: 8  ⌜ # Computing specializations.. Time: 0:00:01 + Points: 10  ⌝ # Computing specializations.. Time: 0:00:02 + Points: 12  ⌟ # Computing specializations.. Time: 0:00:02 + Points: 14  ⌞ # Computing specializations.. Time: 0:00:02 + Points: 16  ⌜ # Computing specializations.. Time: 0:00:03 + Points: 18  ⌝ # Computing specializations.. Time: 0:00:03 + Points: 20  ⌟ # Computing specializations.. Time: 0:00:04 + Points: 22  ⌞ # Computing specializations.. Time: 0:00:04 + Points: 24  ✓ # Computing specializations.. Time: 0:00:04 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 2 for num. and 2 for den. +└ Points used: 24. +[ Info: Groebner basis computed in 10.772932369 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 5.447440952 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 10 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 6 fractions 6 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 30.268024114 seconds. Result: true +[ Info: Out of 1464 initial generators there are 6 indepdendent +[ Info: The ranking of the new set of generators is 1750 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 1 for den. +│ Maximal number of interpolated terms are: 2 for num. and 2 for den. +└ Points used: 20. +[ Info: Groebner basis computed in 0.179462154 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.016398101 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 17 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (14 in total): Nemo.QQMPolyRingElem[b, alpha, g2, k, g1, q, r, S, E, A, I, J, C, Ninv] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 31 +┌ Info: Final cleaning and simplification of generators. +└ Out of 25 fractions 14 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.030839954 seconds. Result: true +[ Info: Out of 14 initial generators there are 13 indepdendent +[ Info: The ranking of the new set of generators is 318 +[ Info: The search for identifiable functions concluded in 85.125647665 seconds +┌ Info: Result is +│ result = +│ 13-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ Ninv +│ C +│ J +│ I +│ ⋮ +│ S*r +│ A*q +└ (A*r)//(r - 1) diff --git a/benchmarking/IdentifiableFunctions/results/SEAIJRC Covid model/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SEAIJRC Covid model/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..41f4bc654 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SEAIJRC Covid model/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[Ninv, C, J, I, g1, k, g2, alpha, b, E*r, S*r, A*q, (A*r)//(r - 1)] diff --git a/benchmarking/IdentifiableFunctions/results/SEAIJRC Covid model/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SEAIJRC Covid model/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..c8ebcb868 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SEAIJRC Covid model/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +SEAIJRC Covid model +id_total, 85.126137809 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.030839954 +id_inclusion_check_mod_p, 0.016398101 +id_groebner_time, 0.179462154 +id_beautifulization, 0.112446321 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 318.0 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 34/SEIR 34.jl b/benchmarking/IdentifiableFunctions/results/SEIR 34/SEIR 34.jl similarity index 91% rename from benchmarking/IdentifiableFunctions/systems/SEIR 34/SEIR 34.jl rename to benchmarking/IdentifiableFunctions/results/SEIR 34/SEIR 34.jl index 12cf93465..4c1f2b641 100644 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 34/SEIR 34.jl +++ b/benchmarking/IdentifiableFunctions/results/SEIR 34/SEIR 34.jl @@ -3,13 +3,13 @@ using StructuralIdentifiability system = @ODEmodel( - I'(t) = -gamma*I(t) + epsilon*E(t) - mu*I(t), - R'(t) = gamma*I(t) - R(t)*mu, A'(t) = 0, N'(t) = 0, S'(t) = (-S(t)*N(t)*mu - S(t)*r*beta*I(t) + N(t)*A(t))//N(t), E'(t) = (S(t)*r*beta*I(t) - epsilon*E(t)*N(t) - E(t)*N(t)*mu)//N(t), - y3(t) = N(t), + I'(t) = -gamma*I(t) + epsilon*E(t) - mu*I(t), + R'(t) = gamma*I(t) - R(t)*mu, y1(t) = K*I(t), - y2(t) = A(t) + y2(t) = A(t), + y3(t) = N(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/SEIR 34/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SEIR 34/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..a81e90b16 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SEIR 34/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +SEIR 34 +id_npoints_degree, 56 +id_npoints_interpolation, 120 +are_id_funcs_polynomial, false diff --git a/benchmarking/IdentifiableFunctions/results/SEIR 34/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SEIR 34/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..c03051f65 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SEIR 34/logs_(normalforms, 2)_with_states @@ -0,0 +1,218 @@ +┌ Warning: Module Groebner with build ID fafbfcfd-ec24-cca2-0000-0c1711bae778 is missing from the cache. +│ This may mean Groebner [0b43b601-686d-58a3-8a1c-6623616c7cd4] does not support precompilation but is imported by a module that does. +└ @ Base loading.jl:1793 +WARNING: using OrdinaryDiffEq.isconstant in module ModelingToolkit conflicts with an existing identifier. +WARNING: using OrdinaryDiffEq.islinear in module ModelingToolkit conflicts with an existing identifier. +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "SEIR 34" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: A, N, S, E, I, R +[ Info: Parameters: gamma, K, epsilon, mu, r, beta +[ Info: Inputs: +[ Info: Outputs: y1, y2, y3 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 14.987737658 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 14.987737658 +[ Info: Computing Wronskians +┌ Info: Computed in 11.66197221 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 11.66197221 +[ Info: Dimensions of the Wronskians [1, 9, 1] +┌ Info: Ranks of the Wronskians computed in 0.03236805 seconds +│ :rank_time = :rank_time +└ rank_times = 0.03236805 +┌ Warning: One of the Wronskians has corank greater than one, so the results of the algorithm will be valid only for multiexperiment identifiability. If you still would like to assess single-experiment identifiability, we recommend using SIAN (https://github.com/alexeyovchinnikov/SIAN-Julia) +└ @ StructuralIdentifiability ~/StructuralIdentifiability.jl/src/global_identifiability.jl:111 + ⌜ # Computing specializations.. Time: 0:00:07 ✓ # Computing specializations.. Time: 0:00:08 + ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 24. +[ Info: Groebner basis computed in 9.627389029 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 2.923708229 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 3 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 36. +[ Info: Groebner basis computed in 0.045599353 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.001481321 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 11 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 5 fractions 5 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 3.241482378 seconds. Result: true +[ Info: Out of 9 initial generators there are 5 indepdendent +[ Info: The ranking of the new set of generators is 1510 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 1 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 20. +[ Info: Groebner basis computed in 3.47026361 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.97035082 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 4 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 40. +[ Info: Groebner basis computed in 0.019239757 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.035932435 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 15 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (12 in total): Nemo.QQMPolyRingElem[gamma, K, epsilon, mu, r, beta, A, N, S, E, I, R] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 25 +┌ Info: Final cleaning and simplification of generators. +└ Out of 31 fractions 25 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 1.610288338 seconds. Result: true +[ Info: Out of 11 initial generators there are 10 indepdendent +[ Info: The ranking of the new set of generators is 107 +[ Info: The search for identifiable functions concluded in 67.956370842 seconds +[ Info: Processing SEIR 34 +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.020701611 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.020701611 +[ Info: Computing Wronskians +┌ Info: Computed in 0.013709356 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.013709356 +[ Info: Dimensions of the Wronskians [1, 9, 1] +┌ Info: Ranks of the Wronskians computed in 1.6612e-5 seconds +│ :rank_time = :rank_time +└ rank_times = 1.6612e-5 +┌ Warning: One of the Wronskians has corank greater than one, so the results of the algorithm will be valid only for multiexperiment identifiability. If you still would like to assess single-experiment identifiability, we recommend using SIAN (https://github.com/alexeyovchinnikov/SIAN-Julia) +└ @ StructuralIdentifiability ~/StructuralIdentifiability.jl/src/global_identifiability.jl:111 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 24. +[ Info: Groebner basis computed in 0.008958648 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.064345405 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 3 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 36. +[ Info: Groebner basis computed in 0.014629976 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.001339273 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 11 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 5 fractions 5 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.002014983 seconds. Result: true +[ Info: Out of 9 initial generators there are 5 indepdendent +[ Info: The ranking of the new set of generators is 1510 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 1 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 20. +[ Info: Groebner basis computed in 0.0103924 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.002314676 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 4 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 40. +[ Info: Groebner basis computed in 0.051282058 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.002365989 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 15 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (12 in total): Nemo.QQMPolyRingElem[gamma, K, epsilon, mu, r, beta, A, N, S, E, I, R] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 25 +┌ Info: Final cleaning and simplification of generators. +└ Out of 31 fractions 25 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.010953265 seconds. Result: true +[ Info: Out of 11 initial generators there are 10 indepdendent +[ Info: The ranking of the new set of generators is 107 +[ Info: The search for identifiable functions concluded in 0.388503355 seconds +┌ Info: Result is +│ result = +│ 10-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ S +│ N +│ A +│ mu +│ ⋮ +│ E + I +│ gamma + epsilon +└ (gamma*r*beta + epsilon*r*beta)//gamma diff --git a/benchmarking/IdentifiableFunctions/results/SEIR 34/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SEIR 34/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..63f10e974 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SEIR 34/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[S, N, A, mu, K*I, K*epsilon, gamma*I, E + I, gamma + epsilon, (gamma*r*beta + epsilon*r*beta)//gamma] diff --git a/benchmarking/IdentifiableFunctions/results/SEIR 34/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SEIR 34/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..c586d7583 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SEIR 34/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +SEIR 34 +id_total, 0.388857991 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.010953265 +id_inclusion_check_mod_p, 0.0046806650000000005 +id_groebner_time, 0.061674458 +id_beautifulization, 0.09280166 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 107.0 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/SEIR 36 ref.jl b/benchmarking/IdentifiableFunctions/results/SEIR 36 ref/SEIR 36 ref.jl similarity index 95% rename from benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/SEIR 36 ref.jl rename to benchmarking/IdentifiableFunctions/results/SEIR 36 ref/SEIR 36 ref.jl index 683e13880..ad573c208 100644 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/SEIR 36 ref.jl +++ b/benchmarking/IdentifiableFunctions/results/SEIR 36 ref/SEIR 36 ref.jl @@ -3,20 +3,20 @@ using StructuralIdentifiability system = @ODEmodel( - q'(t) = 0, - F'(t) = mu_d*Di(t) + mu_i*I(t), + N'(t) = 0, nu'(t) = 0, + q'(t) = 0, S'(t) = (nu(t)*N(t)^2 - S(t)*mu_0*N(t) - S(t)*q(t)*Di(t)*beta_d - S(t)*beta*I(t))//N(t), + E'(t) = (S(t)*q(t)*Di(t)*beta_d + S(t)*beta*I(t) - mu_0*E(t)*N(t) - E(t)*N(t)*s - E(t)*N(t)*phi_e)//N(t), + I'(t) = -gamma*I(t) - phi*I(t) - mu_0*I(t) + E(t)*s - mu_i*I(t), De'(t) = -De(t)*mu_0 - De(t)*s_d + E(t)*phi_e, - N'(t) = 0, Di'(t) = De(t)*s_d + phi*I(t) - mu_0*Di(t) - mu_d*Di(t) - Di(t)*gamma_d, R'(t) = gamma*I(t) - mu_0*R(t) + Di(t)*gamma_d, - E'(t) = (S(t)*q(t)*Di(t)*beta_d + S(t)*beta*I(t) - mu_0*E(t)*N(t) - E(t)*N(t)*s - E(t)*N(t)*phi_e)//N(t), - I'(t) = -gamma*I(t) - phi*I(t) - mu_0*I(t) + E(t)*s - mu_i*I(t), - y4(t) = nu(t), - y3(t) = N(t), - y2(t) = Di(t), + F'(t) = mu_d*Di(t) + mu_i*I(t), y1(t) = De(t), - y6(t) = q(t), - y5(t) = F(t) + y2(t) = Di(t), + y5(t) = F(t), + y3(t) = N(t), + y4(t) = nu(t), + y6(t) = q(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/SEIR 36 ref/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SEIR 36 ref/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..d75db06d5 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SEIR 36 ref/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +SEIR 36 ref +id_npoints_degree, 20 +id_npoints_interpolation, 16 +are_id_funcs_polynomial, true diff --git a/benchmarking/IdentifiableFunctions/results/SEIR 36 ref/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SEIR 36 ref/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..6353f9690 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SEIR 36 ref/logs_(normalforms, 2)_with_states @@ -0,0 +1,228 @@ +┌ Warning: Module Groebner with build ID fafbfcfd-36ca-1ab6-0000-0c12f01cbcb6 is missing from the cache. +│ This may mean Groebner [0b43b601-686d-58a3-8a1c-6623616c7cd4] does not support precompilation but is imported by a module that does. +└ @ Base loading.jl:1793 +WARNING: using OrdinaryDiffEq.islinear in module ModelingToolkit conflicts with an existing identifier. +WARNING: using OrdinaryDiffEq.isconstant in module ModelingToolkit conflicts with an existing identifier. +┌ Warning: The call to compilecache failed to create a usable precompiled cache file for SparseDiffToolsSymbolicsExt [cd430d6f-1330-5ba3-8763-ae950e38ad4f] +│ exception = Invalid input in module list: expected Symbolics. +└ @ Base loading.jl:1818 +┌ Error: Error during loading of extension SparseDiffToolsSymbolicsExt of SparseDiffTools, use `Base.retry_load_extensions()` to retry. +│ exception = +│ 1-element ExceptionStack: +│ Declaring __precompile__(false) is not allowed in files that are being precompiled. +│ Stacktrace: +│ [1] _require(pkg::Base.PkgId, env::Nothing) +│ @ Base ./loading.jl:1825 +│ [2] _require_prelocked(uuidkey::Base.PkgId, env::Nothing) +│ @ Base ./loading.jl:1660 +│ [3] _require_prelocked(uuidkey::Base.PkgId) +│ @ Base ./loading.jl:1658 +│ [4] run_extension_callbacks(extid::Base.ExtensionId) +│ @ Base ./loading.jl:1255 +│ [5] run_extension_callbacks(pkgid::Base.PkgId) +│ @ Base ./loading.jl:1290 +│ [6] run_package_callbacks(modkey::Base.PkgId) +│ @ Base ./loading.jl:1124 +│ [7] _tryrequire_from_serialized(modkey::Base.PkgId, path::String, ocachepath::String, sourcepath::String, depmods::Vector{Any}) +│ @ Base ./loading.jl:1398 +│ [8] _require_search_from_serialized(pkg::Base.PkgId, sourcepath::String, build_id::UInt128) +│ @ Base ./loading.jl:1494 +│ [9] _require(pkg::Base.PkgId, env::String) +│ @ Base ./loading.jl:1783 +│ [10] _require_prelocked(uuidkey::Base.PkgId, env::String) +│ @ Base ./loading.jl:1660 +│ [11] macro expansion +│ @ ./loading.jl:1648 [inlined] +│ [12] macro expansion +│ @ ./lock.jl:267 [inlined] +│ [13] require(into::Module, mod::Symbol) +│ @ Base ./loading.jl:1611 +│ [14] include(mod::Module, _path::String) +│ @ Base ./Base.jl:457 +│ [15] include(x::String) +│ @ ModelingToolkit ~/.julia/packages/ModelingToolkit/okjHa/src/ModelingToolkit.jl:4 +│ [16] top-level scope +│ @ ~/.julia/packages/ModelingToolkit/okjHa/src/ModelingToolkit.jl:124 +│ [17] include +│ @ ./Base.jl:457 [inlined] +│ [18] include_package_for_output(pkg::Base.PkgId, input::String, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::String) +│ @ Base ./loading.jl:2049 +│ [19] top-level scope +│ @ stdin:3 +│ [20] eval +│ @ ./boot.jl:370 [inlined] +│ [21] include_string(mapexpr::typeof(identity), mod::Module, code::String, filename::String) +│ @ Base ./loading.jl:1903 +│ [22] include_string +│ @ ./loading.jl:1913 [inlined] +│ [23] exec_options(opts::Base.JLOptions) +│ @ Base ./client.jl:305 +│ [24] _start() +│ @ Base ./client.jl:522 +└ @ Base loading.jl:1261 +WARNING: using OrdinaryDiffEq.isconstant in module ModelingToolkit conflicts with an existing identifier. +WARNING: using OrdinaryDiffEq.islinear in module ModelingToolkit conflicts with an existing identifier. +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "SEIR 36 ref" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +┌ Warning: The call to compilecache failed to create a usable precompiled cache file for ModelingToolkit [961ee093-0014-501f-94e3-6117800e7a78] +│ exception = Required dependency Symbolics [0c5d862f-8b57-4792-8d23-62f2024744c7] failed to load from a cache file. +└ @ Base loading.jl:1818 +[ Info: Summary of the model: +[ Info: State variables: N, nu, q, S, E, I, De, Di, R, F +[ Info: Parameters: gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d +[ Info: Inputs: +[ Info: Outputs: y1, y2, y5, y3, y4, y6 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 15.281896062 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 15.281896062 +[ Info: Computing Wronskians +┌ Info: Computed in 11.984745988 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 11.984745988 +[ Info: Dimensions of the Wronskians [47, 1, 4, 5, 1, 1] +┌ Info: Ranks of the Wronskians computed in 0.033317953 seconds +│ :rank_time = :rank_time +└ rank_times = 0.033317953 +┌ Warning: One of the Wronskians has corank greater than one, so the results of the algorithm will be valid only for multiexperiment identifiability. If you still would like to assess single-experiment identifiability, we recommend using SIAN (https://github.com/alexeyovchinnikov/SIAN-Julia) +└ @ StructuralIdentifiability ~/StructuralIdentifiability.jl/src/global_identifiability.jl:111 + ⌜ # Computing specializations.. Time: 0:00:09 ✓ # Computing specializations.. Time: 0:00:10 + ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 12.629419526 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 4.354744416 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 12 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 11 fractions 11 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 4.929207254 seconds. Result: true +[ Info: Out of 53 initial generators there are 11 indepdendent +[ Info: The ranking of the new set of generators is 66 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 2 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 10. +[ Info: Groebner basis computed in 5.272475063 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 1.495628862 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 22 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (21 in total): Nemo.QQMPolyRingElem[gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d, N, nu, q, S, E, I, De, Di, R, F] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 21 +┌ Info: Final cleaning and simplification of generators. +└ Out of 41 fractions 21 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 1.73342245 seconds. Result: true +[ Info: Out of 23 initial generators there are 20 indepdendent +[ Info: The ranking of the new set of generators is 210 +[ Info: The search for identifiable functions concluded in 79.28406249 seconds +[ Info: Processing SEIR 36 ref +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.276944784 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.276944784 +[ Info: Computing Wronskians +┌ Info: Computed in 0.213127533 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.213127533 +[ Info: Dimensions of the Wronskians [47, 1, 4, 5, 1, 1] +┌ Info: Ranks of the Wronskians computed in 9.4804e-5 seconds +│ :rank_time = :rank_time +└ rank_times = 9.4804e-5 +┌ Warning: One of the Wronskians has corank greater than one, so the results of the algorithm will be valid only for multiexperiment identifiability. If you still would like to assess single-experiment identifiability, we recommend using SIAN (https://github.com/alexeyovchinnikov/SIAN-Julia) +└ @ StructuralIdentifiability ~/StructuralIdentifiability.jl/src/global_identifiability.jl:111 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 0.011362526 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.045797608 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 12 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 11 fractions 11 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.006916743 seconds. Result: true +[ Info: Out of 53 initial generators there are 11 indepdendent +[ Info: The ranking of the new set of generators is 66 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 2 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 10. +[ Info: Groebner basis computed in 0.015326926 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.00322329 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 22 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (21 in total): Nemo.QQMPolyRingElem[gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d, N, nu, q, S, E, I, De, Di, R, F] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 21 +┌ Info: Final cleaning and simplification of generators. +└ Out of 41 fractions 21 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.004013308 seconds. Result: true +[ Info: Out of 23 initial generators there are 20 indepdendent +[ Info: The ranking of the new set of generators is 210 +[ Info: The search for identifiable functions concluded in 0.777361048 seconds +┌ Info: Result is +│ result = +│ 20-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ F +│ Di +│ De +│ I +│ ⋮ +│ mu_0 +│ phi +└ gamma diff --git a/benchmarking/IdentifiableFunctions/results/SEIR 36 ref/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SEIR 36 ref/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..3fdeef898 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SEIR 36 ref/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[F, Di, De, I, E, S, q, nu, N, beta_d, gamma_d, phi_e, beta, mu_i, s, mu_d, s_d, mu_0, phi, gamma] diff --git a/benchmarking/IdentifiableFunctions/results/SEIR 36 ref/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SEIR 36 ref/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..6bb31c0a9 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SEIR 36 ref/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +SEIR 36 ref +id_total, 0.777714783 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.004013308 +id_inclusion_check_mod_p, 0.00322329 +id_groebner_time, 0.015326926 +id_beautifulization, 0.138064335 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 210.0 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR2T/SEIR2T.jl b/benchmarking/IdentifiableFunctions/results/SEIR2T/SEIR2T.jl similarity index 87% rename from benchmarking/IdentifiableFunctions/systems/SEIR2T/SEIR2T.jl rename to benchmarking/IdentifiableFunctions/results/SEIR2T/SEIR2T.jl index d61ca9ecd..232137568 100644 --- a/benchmarking/IdentifiableFunctions/systems/SEIR2T/SEIR2T.jl +++ b/benchmarking/IdentifiableFunctions/results/SEIR2T/SEIR2T.jl @@ -4,10 +4,10 @@ using StructuralIdentifiability system = @ODEmodel( S'(t) = (-b*In(t)*S(t))//N(t), + E'(t) = (b*In(t)*S(t) - N(t)*nu*E(t))//N(t), In'(t) = -a*In(t) + nu*E(t), N'(t) = 0, - E'(t) = (b*In(t)*S(t) - N(t)*nu*E(t))//N(t), Cu'(t) = nu*E(t), - y2(t) = N(t), - y1(t) = Cu(t) + y1(t) = Cu(t), + y2(t) = N(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/SEIR2T/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SEIR2T/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..3fe48933d --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SEIR2T/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +SEIR2T +id_npoints_degree, 18 +id_npoints_interpolation, 12 +are_id_funcs_polynomial, true diff --git a/benchmarking/IdentifiableFunctions/results/SEIR2T/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SEIR2T/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..d3f7e97e1 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SEIR2T/logs_(normalforms, 2)_with_states @@ -0,0 +1,224 @@ +┌ Warning: Module Groebner with build ID fafbfcfd-36ca-1ab6-0000-0c12f01cbcb6 is missing from the cache. +│ This may mean Groebner [0b43b601-686d-58a3-8a1c-6623616c7cd4] does not support precompilation but is imported by a module that does. +└ @ Base loading.jl:1793 +┌ Warning: Module Symbolics with build ID fafbfcfd-011a-198d-0000-0c25e359d248 is missing from the cache. +│ This may mean Symbolics [0c5d862f-8b57-4792-8d23-62f2024744c7] does not support precompilation but is imported by a module that does. +└ @ Base loading.jl:1793 +WARNING: using OrdinaryDiffEq.isconstant in module ModelingToolkit conflicts with an existing identifier. +WARNING: using OrdinaryDiffEq.islinear in module ModelingToolkit conflicts with an existing identifier. +┌ Error: Error during loading of extension SparseDiffToolsSymbolicsExt of SparseDiffTools, use `Base.retry_load_extensions()` to retry. +│ exception = +│ 1-element ExceptionStack: +│ Declaring __precompile__(false) is not allowed in files that are being precompiled. +│ Stacktrace: +│ [1] _require(pkg::Base.PkgId, env::Nothing) +│ @ Base ./loading.jl:1825 +│ [2] _require_prelocked(uuidkey::Base.PkgId, env::Nothing) +│ @ Base ./loading.jl:1660 +│ [3] _require_prelocked(uuidkey::Base.PkgId) +│ @ Base ./loading.jl:1658 +│ [4] run_extension_callbacks(extid::Base.ExtensionId) +│ @ Base ./loading.jl:1255 +│ [5] run_extension_callbacks(pkgid::Base.PkgId) +│ @ Base ./loading.jl:1290 +│ [6] run_package_callbacks(modkey::Base.PkgId) +│ @ Base ./loading.jl:1124 +│ [7] _tryrequire_from_serialized(modkey::Base.PkgId, path::String, ocachepath::String, sourcepath::String, depmods::Vector{Any}) +│ @ Base ./loading.jl:1398 +│ [8] _require_search_from_serialized(pkg::Base.PkgId, sourcepath::String, build_id::UInt128) +│ @ Base ./loading.jl:1494 +│ [9] _require(pkg::Base.PkgId, env::String) +│ @ Base ./loading.jl:1783 +│ [10] _require_prelocked(uuidkey::Base.PkgId, env::String) +│ @ Base ./loading.jl:1660 +│ [11] macro expansion +│ @ ./loading.jl:1648 [inlined] +│ [12] macro expansion +│ @ ./lock.jl:267 [inlined] +│ [13] require(into::Module, mod::Symbol) +│ @ Base ./loading.jl:1611 +│ [14] include(mod::Module, _path::String) +│ @ Base ./Base.jl:457 +│ [15] include(x::String) +│ @ ModelingToolkit ~/.julia/packages/ModelingToolkit/okjHa/src/ModelingToolkit.jl:4 +│ [16] top-level scope +│ @ ~/.julia/packages/ModelingToolkit/okjHa/src/ModelingToolkit.jl:124 +│ [17] include +│ @ ./Base.jl:457 [inlined] +│ [18] include_package_for_output(pkg::Base.PkgId, input::String, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::String) +│ @ Base ./loading.jl:2049 +│ [19] top-level scope +│ @ stdin:3 +│ [20] eval +│ @ ./boot.jl:370 [inlined] +│ [21] include_string(mapexpr::typeof(identity), mod::Module, code::String, filename::String) +│ @ Base ./loading.jl:1903 +│ [22] include_string +│ @ ./loading.jl:1913 [inlined] +│ [23] exec_options(opts::Base.JLOptions) +│ @ Base ./client.jl:305 +│ [24] _start() +│ @ Base ./client.jl:522 +└ @ Base loading.jl:1261 +WARNING: using OrdinaryDiffEq.isconstant in module ModelingToolkit conflicts with an existing identifier. +WARNING: using OrdinaryDiffEq.islinear in module ModelingToolkit conflicts with an existing identifier. +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "SEIR2T" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +┌ Warning: The call to compilecache failed to create a usable precompiled cache file for ModelingToolkit [961ee093-0014-501f-94e3-6117800e7a78] +│ exception = Required dependency Symbolics [0c5d862f-8b57-4792-8d23-62f2024744c7] failed to load from a cache file. +└ @ Base loading.jl:1818 +[ Info: Summary of the model: +[ Info: State variables: S, E, In, N, Cu +[ Info: Parameters: a, b, nu +[ Info: Inputs: +[ Info: Outputs: y1, y2 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 14.858377445 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 14.858377445 +[ Info: Computing Wronskians +┌ Info: Computed in 11.658021205 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 11.658021205 +[ Info: Dimensions of the Wronskians [1, 26] +┌ Info: Ranks of the Wronskians computed in 0.031541335 seconds +│ :rank_time = :rank_time +└ rank_times = 0.031541335 + ⌜ # Computing specializations.. Time: 0:00:10 ✓ # Computing specializations.. Time: 0:00:11 + ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 13.379143242 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 4.499348463 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 5 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 3 fractions 3 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 5.062164436 seconds. Result: true +[ Info: Out of 39 initial generators there are 3 indepdendent +[ Info: The ranking of the new set of generators is 6 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 5.19037132 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 1.466494906 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 9 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (8 in total): Nemo.QQMPolyRingElem[a, b, nu, S, E, In, N, Cu] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 1 +┌ Info: Final cleaning and simplification of generators. +└ Out of 16 fractions 8 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 2.299034996 seconds. Result: true +[ Info: Out of 9 initial generators there are 8 indepdendent +[ Info: The ranking of the new set of generators is 36 +[ Info: The search for identifiable functions concluded in 78.441444531 seconds +[ Info: Processing SEIR2T +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.020059543 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.020059543 +[ Info: Computing Wronskians +┌ Info: Computed in 0.084427471 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.084427471 +[ Info: Dimensions of the Wronskians [1, 26] +┌ Info: Ranks of the Wronskians computed in 6.3e-5 seconds +│ :rank_time = :rank_time +└ rank_times = 6.3e-5 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 0.006636594 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.001979743 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 5 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 3 fractions 3 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.00214214 seconds. Result: true +[ Info: Out of 39 initial generators there are 3 indepdendent +[ Info: The ranking of the new set of generators is 6 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 0.00963749 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.002202181 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 9 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (8 in total): Nemo.QQMPolyRingElem[a, b, nu, S, E, In, N, Cu] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 1 +┌ Info: Final cleaning and simplification of generators. +└ Out of 16 fractions 8 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.002617487 seconds. Result: true +[ Info: Out of 9 initial generators there are 8 indepdendent +[ Info: The ranking of the new set of generators is 36 +[ Info: The search for identifiable functions concluded in 0.230485315 seconds +┌ Info: Result is +│ result = +│ 8-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ Cu +│ N +│ In +│ E +│ S +│ nu +│ b +└ a diff --git a/benchmarking/IdentifiableFunctions/results/SEIR2T/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SEIR2T/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..4df0b1e47 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SEIR2T/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[Cu, N, In, E, S, nu, b, a] diff --git a/benchmarking/IdentifiableFunctions/results/SEIR2T/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SEIR2T/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..40b10051a --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SEIR2T/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +SEIR2T +id_total, 0.230946693 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.002617487 +id_inclusion_check_mod_p, 0.002202181 +id_groebner_time, 0.00963749 +id_beautifulization, 0.09255854699999999 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 36.0 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIRT/SEIRT.jl b/benchmarking/IdentifiableFunctions/results/SEIRT/SEIRT.jl similarity index 88% rename from benchmarking/IdentifiableFunctions/systems/SEIRT/SEIRT.jl rename to benchmarking/IdentifiableFunctions/results/SEIRT/SEIRT.jl index 2a9df503f..c72e37a64 100644 --- a/benchmarking/IdentifiableFunctions/systems/SEIRT/SEIRT.jl +++ b/benchmarking/IdentifiableFunctions/results/SEIRT/SEIRT.jl @@ -3,11 +3,11 @@ using StructuralIdentifiability system = @ODEmodel( - I'(t) = -lambda*I(t) + alpha*E(t), + S'(t) = (-beta*I(t)*S(t))//N(t), E'(t) = (-alpha*N(t)*E(t) + beta*I(t)*S(t))//N(t), - N'(t) = 0, + I'(t) = -lambda*I(t) + alpha*E(t), R'(t) = lambda*I(t), - S'(t) = (-beta*I(t)*S(t))//N(t), - y2(t) = N(t), - y1(t) = I(t) + N'(t) = 0, + y1(t) = I(t), + y2(t) = N(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/SEIRT/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SEIRT/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..4727cffab --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SEIRT/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +SEIRT +id_npoints_degree, 32 +id_npoints_interpolation, 120 +are_id_funcs_polynomial, true diff --git a/benchmarking/IdentifiableFunctions/results/SEIRT/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SEIRT/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..089a648dd --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SEIRT/logs_(normalforms, 2)_with_states @@ -0,0 +1,196 @@ +┌ Warning: Module Groebner with build ID fafbfcfd-23ce-df9e-0000-0c127c6f1c94 is missing from the cache. +│ This may mean Groebner [0b43b601-686d-58a3-8a1c-6623616c7cd4] does not support precompilation but is imported by a module that does. +└ @ Base loading.jl:1793 +┌ Warning: Module Groebner with build ID fafbfcfd-e38f-37d1-0000-0c1083141a1f is missing from the cache. +│ This may mean Groebner [0b43b601-686d-58a3-8a1c-6623616c7cd4] does not support precompilation but is imported by a module that does. +└ @ Base loading.jl:1793 +┌ Warning: Module Groebner with build ID fafbfcfd-e38f-37d1-0000-0c1083141a1f is missing from the cache. +│ This may mean Groebner [0b43b601-686d-58a3-8a1c-6623616c7cd4] does not support precompilation but is imported by a module that does. +└ @ Base loading.jl:1793 +┌ Warning: Module Symbolics with build ID ffffffff-ffff-ffff-0000-0c2883439594 is missing from the cache. +│ This may mean Symbolics [0c5d862f-8b57-4792-8d23-62f2024744c7] does not support precompilation but is imported by a module that does. +└ @ Base loading.jl:1793 +WARNING: using OrdinaryDiffEq.islinear in module ModelingToolkit conflicts with an existing identifier. +WARNING: using OrdinaryDiffEq.isconstant in module ModelingToolkit conflicts with an existing identifier. +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "SEIRT" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: S, E, I, R, N +[ Info: Parameters: lambda, alpha, beta +[ Info: Inputs: +[ Info: Outputs: y1, y2 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 14.963437926 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 14.963437926 +[ Info: Computing Wronskians +┌ Info: Computed in 11.513246231 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 11.513246231 +[ Info: Dimensions of the Wronskians [1, 5] +┌ Info: Ranks of the Wronskians computed in 0.033544397 seconds +│ :rank_time = :rank_time +└ rank_times = 0.033544397 + ⌜ # Computing specializations.. Time: 0:00:10 ✓ # Computing specializations.. Time: 0:00:11 + ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 0 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 16. +[ Info: Groebner basis computed in 13.326565836 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 4.580654287 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 4 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 3 fractions 3 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 5.111312332 seconds. Result: true +[ Info: Out of 6 initial generators there are 3 indepdendent +[ Info: The ranking of the new set of generators is 9 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 4 for num. and 2 for den. +└ Points used: 48. +[ Info: Groebner basis computed in 5.30852175 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 1.441456615 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 3 for num. and 2 for den. +│ Maximal number of interpolated terms are: 4 for num. and 2 for den. +└ Points used: 56. +[ Info: Groebner basis computed in 0.027933207 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.003681361 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 13 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (8 in total): Nemo.QQMPolyRingElem[lambda, alpha, beta, S, E, I, R, N] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 19 +┌ Info: Final cleaning and simplification of generators. +└ Out of 19 fractions 16 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 2.278346117 seconds. Result: true +[ Info: Out of 8 initial generators there are 7 indepdendent +[ Info: The ranking of the new set of generators is 40 +[ Info: The search for identifiable functions concluded in 80.526661083 seconds +[ Info: Processing SEIRT +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.017409073 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.017409073 +[ Info: Computing Wronskians +┌ Info: Computed in 0.064441137 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.064441137 +[ Info: Dimensions of the Wronskians [1, 5] +┌ Info: Ranks of the Wronskians computed in 2.53e-5 seconds +│ :rank_time = :rank_time +└ rank_times = 2.53e-5 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 0 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 16. +[ Info: Groebner basis computed in 0.007252134 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.001168218 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 4 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 3 fractions 3 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.001216442 seconds. Result: true +[ Info: Out of 6 initial generators there are 3 indepdendent +[ Info: The ranking of the new set of generators is 9 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 4 for num. and 2 for den. +└ Points used: 48. +[ Info: Groebner basis computed in 0.025624842 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.002566499 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 3 for num. and 2 for den. +│ Maximal number of interpolated terms are: 4 for num. and 2 for den. +└ Points used: 56. +[ Info: Groebner basis computed in 0.030540385 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.058848349 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 13 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (8 in total): Nemo.QQMPolyRingElem[lambda, alpha, beta, S, E, I, R, N] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 19 +┌ Info: Final cleaning and simplification of generators. +└ Out of 19 fractions 16 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.004356683 seconds. Result: true +[ Info: Out of 8 initial generators there are 7 indepdendent +[ Info: The ranking of the new set of generators is 40 +[ Info: The search for identifiable functions concluded in 0.354843428 seconds +┌ Info: Result is +│ result = +│ 7-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ N +│ I +│ beta +│ alpha*S +│ lambda*alpha +│ lambda + alpha +└ alpha*I + alpha*E diff --git a/benchmarking/IdentifiableFunctions/results/SEIRT/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SEIRT/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..97668696f --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SEIRT/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[N, I, beta, alpha*S, lambda*alpha, lambda + alpha, alpha*I + alpha*E] diff --git a/benchmarking/IdentifiableFunctions/results/SEIRT/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SEIRT/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..6b358b087 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SEIRT/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +SEIRT +id_total, 0.355297773 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.004356683 +id_inclusion_check_mod_p, 0.061414848 +id_groebner_time, 0.056165227 +id_beautifulization, 0.075103394 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 40.0 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/SEIR_1_io.jl b/benchmarking/IdentifiableFunctions/results/SEIR_1_io/SEIR_1_io.jl similarity index 100% rename from benchmarking/IdentifiableFunctions/systems/SEIR_1_io/SEIR_1_io.jl rename to benchmarking/IdentifiableFunctions/results/SEIR_1_io/SEIR_1_io.jl index 2d9316d95..fdd7e9643 100644 --- a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/SEIR_1_io.jl +++ b/benchmarking/IdentifiableFunctions/results/SEIR_1_io/SEIR_1_io.jl @@ -3,10 +3,10 @@ using StructuralIdentifiability system = @ODEmodel( + S'(t) = -beta*I(t)*S(t), + E'(t) = beta*I(t)*S(t) - v*E(t), + I'(t) = I(t)*gamma*psi - I(t)*gamma - I(t)*psi + v*E(t), R'(t) = -I(t)*gamma*psi + I(t)*gamma + gamma*Q(t), Q'(t) = I(t)*psi - gamma*Q(t), - I'(t) = I(t)*gamma*psi - I(t)*gamma - I(t)*psi + v*E(t), - E'(t) = beta*I(t)*S(t) - v*E(t), - S'(t) = -beta*I(t)*S(t), y1(t) = Q(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/SEIR_1_io/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SEIR_1_io/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..432382971 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SEIR_1_io/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +SEIR_1_io +id_npoints_degree, 38 +id_npoints_interpolation, 168 +are_id_funcs_polynomial, false diff --git a/benchmarking/IdentifiableFunctions/results/SEIR_1_io/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SEIR_1_io/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..917d1536f --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SEIR_1_io/logs_(normalforms, 2)_with_states @@ -0,0 +1,250 @@ +┌ Warning: Module Groebner with build ID fafbfcfd-e38f-37d1-0000-0c1083141a1f is missing from the cache. +│ This may mean Groebner [0b43b601-686d-58a3-8a1c-6623616c7cd4] does not support precompilation but is imported by a module that does. +└ @ Base loading.jl:1793 +┌ Warning: Module Symbolics with build ID fafbfcfd-011a-198d-0000-0c25e359d248 is missing from the cache. +│ This may mean Symbolics [0c5d862f-8b57-4792-8d23-62f2024744c7] does not support precompilation but is imported by a module that does. +└ @ Base loading.jl:1793 +WARNING: using OrdinaryDiffEq.isconstant in module ModelingToolkit conflicts with an existing identifier. +WARNING: using OrdinaryDiffEq.islinear in module ModelingToolkit conflicts with an existing identifier. +┌ Error: Error during loading of extension SparseDiffToolsSymbolicsExt of SparseDiffTools, use `Base.retry_load_extensions()` to retry. +│ exception = +│ 1-element ExceptionStack: +│ Declaring __precompile__(false) is not allowed in files that are being precompiled. +│ Stacktrace: +│ [1] _require(pkg::Base.PkgId, env::Nothing) +│ @ Base ./loading.jl:1825 +│ [2] _require_prelocked(uuidkey::Base.PkgId, env::Nothing) +│ @ Base ./loading.jl:1660 +│ [3] _require_prelocked(uuidkey::Base.PkgId) +│ @ Base ./loading.jl:1658 +│ [4] run_extension_callbacks(extid::Base.ExtensionId) +│ @ Base ./loading.jl:1255 +│ [5] run_extension_callbacks(pkgid::Base.PkgId) +│ @ Base ./loading.jl:1290 +│ [6] run_package_callbacks(modkey::Base.PkgId) +│ @ Base ./loading.jl:1124 +│ [7] _tryrequire_from_serialized(modkey::Base.PkgId, path::String, ocachepath::String, sourcepath::String, depmods::Vector{Any}) +│ @ Base ./loading.jl:1398 +│ [8] _require_search_from_serialized(pkg::Base.PkgId, sourcepath::String, build_id::UInt128) +│ @ Base ./loading.jl:1494 +│ [9] _require(pkg::Base.PkgId, env::String) +│ @ Base ./loading.jl:1783 +│ [10] _require_prelocked(uuidkey::Base.PkgId, env::String) +│ @ Base ./loading.jl:1660 +│ [11] macro expansion +│ @ ./loading.jl:1648 [inlined] +│ [12] macro expansion +│ @ ./lock.jl:267 [inlined] +│ [13] require(into::Module, mod::Symbol) +│ @ Base ./loading.jl:1611 +│ [14] include(mod::Module, _path::String) +│ @ Base ./Base.jl:457 +│ [15] include(x::String) +│ @ ModelingToolkit ~/.julia/packages/ModelingToolkit/okjHa/src/ModelingToolkit.jl:4 +│ [16] top-level scope +│ @ ~/.julia/packages/ModelingToolkit/okjHa/src/ModelingToolkit.jl:124 +│ [17] include +│ @ ./Base.jl:457 [inlined] +│ [18] include_package_for_output(pkg::Base.PkgId, input::String, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::String) +│ @ Base ./loading.jl:2049 +│ [19] top-level scope +│ @ stdin:3 +│ [20] eval +│ @ ./boot.jl:370 [inlined] +│ [21] include_string(mapexpr::typeof(identity), mod::Module, code::String, filename::String) +│ @ Base ./loading.jl:1903 +│ [22] include_string +│ @ ./loading.jl:1913 [inlined] +│ [23] exec_options(opts::Base.JLOptions) +│ @ Base ./client.jl:305 +│ [24] _start() +│ @ Base ./client.jl:522 +└ @ Base loading.jl:1261 +WARNING: using OrdinaryDiffEq.islinear in module ModelingToolkit conflicts with an existing identifier. +WARNING: using OrdinaryDiffEq.isconstant in module ModelingToolkit conflicts with an existing identifier. +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "SEIR_1_io" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +┌ Warning: The call to compilecache failed to create a usable precompiled cache file for ModelingToolkit [961ee093-0014-501f-94e3-6117800e7a78] +│ exception = Required dependency Symbolics [0c5d862f-8b57-4792-8d23-62f2024744c7] failed to load from a cache file. +└ @ Base loading.jl:1818 +[ Info: Summary of the model: +[ Info: State variables: S, E, I, R, Q +[ Info: Parameters: beta, gamma, v, psi +[ Info: Inputs: +[ Info: Outputs: y1 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 10.580514418 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 10.580514418 +[ Info: Computing Wronskians +┌ Info: Computed in 11.512913351 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 11.512913351 +[ Info: Dimensions of the Wronskians [15] +┌ Info: Ranks of the Wronskians computed in 0.033978314 seconds +│ :rank_time = :rank_time +└ rank_times = 0.033978314 + ⌜ # Computing specializations.. Time: 0:00:10 ✓ # Computing specializations.. Time: 0:00:10 + ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 4 for num. and 2 for den. +└ Points used: 48. +[ Info: Groebner basis computed in 13.316464652 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 4.620160681 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 8 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 4 fractions 4 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 5.702402407 seconds. Result: true +[ Info: Out of 18 initial generators there are 4 indepdendent +[ Info: The ranking of the new set of generators is 690 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 4 for num. and 2 for den. +└ Points used: 48. +[ Info: Groebner basis computed in 5.28268861 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 1.467603715 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 3 for den. +│ Maximal number of interpolated terms are: 4 for num. and 3 for den. +└ Points used: 72. +[ Info: Groebner basis computed in 0.047463799 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.004834266 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 15 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (9 in total): Nemo.QQMPolyRingElem[beta, gamma, v, psi, S, E, I, R, Q] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 35 +┌ Info: Final cleaning and simplification of generators. +└ Out of 15 fractions 13 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 2.312039813 seconds. Result: true +[ Info: Out of 9 initial generators there are 8 indepdendent +[ Info: The ranking of the new set of generators is 59150 +[ Info: The search for identifiable functions concluded in 76.810540272 seconds +[ Info: Processing SEIR_1_io +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.013821427 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.013821427 +[ Info: Computing Wronskians +┌ Info: Computed in 0.012568032 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.012568032 +[ Info: Dimensions of the Wronskians [15] +┌ Info: Ranks of the Wronskians computed in 3.8253e-5 seconds +│ :rank_time = :rank_time +└ rank_times = 3.8253e-5 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 4 for num. and 2 for den. +└ Points used: 48. +[ Info: Groebner basis computed in 0.023285556 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.063337333 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 8 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 4 fractions 4 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.002686253 seconds. Result: true +[ Info: Out of 18 initial generators there are 4 indepdendent +[ Info: The ranking of the new set of generators is 690 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 4 for num. and 2 for den. +└ Points used: 48. +[ Info: Groebner basis computed in 0.031627232 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.003128036 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 3 for den. +│ Maximal number of interpolated terms are: 4 for num. and 3 for den. +└ Points used: 72. +[ Info: Groebner basis computed in 0.092174798 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.004175772 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 15 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (9 in total): Nemo.QQMPolyRingElem[beta, gamma, v, psi, S, E, I, R, Q] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 35 +┌ Info: Final cleaning and simplification of generators. +└ Out of 15 fractions 13 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.040439877 seconds. Result: true +[ Info: Out of 9 initial generators there are 8 indepdendent +[ Info: The ranking of the new set of generators is 59150 +[ Info: The search for identifiable functions concluded in 0.554938256 seconds +┌ Info: Result is +│ result = +│ 8-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ Q +│ gamma +│ I*psi +│ beta*I +│ beta*gamma - beta*v +│ v*psi - v - psi +│ (gamma*S)//(I*gamma*psi - I*gamma - I*psi) +└ (I*gamma*psi - I*psi + gamma*E)//(I*gamma*psi - I*gamma - I*psi) diff --git a/benchmarking/IdentifiableFunctions/results/SEIR_1_io/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SEIR_1_io/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..061b6581a --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SEIR_1_io/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[Q, gamma, I*psi, beta*I, beta*gamma - beta*v, v*psi - v - psi, (gamma*S)//(I*gamma*psi - I*gamma - I*psi), (I*gamma*psi - I*psi + gamma*E)//(I*gamma*psi - I*gamma - I*psi)] diff --git a/benchmarking/IdentifiableFunctions/results/SEIR_1_io/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SEIR_1_io/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..04f984111 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SEIR_1_io/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +SEIR_1_io +id_total, 0.555433773 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.040439877 +id_inclusion_check_mod_p, 0.007303808 +id_groebner_time, 0.12380203000000001 +id_beautifulization, 0.10064168899999999 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 59150.0 diff --git a/benchmarking/IdentifiableFunctions/systems/SEUIR/SEUIR.jl b/benchmarking/IdentifiableFunctions/results/SEUIR/SEUIR.jl similarity index 100% rename from benchmarking/IdentifiableFunctions/systems/SEUIR/SEUIR.jl rename to benchmarking/IdentifiableFunctions/results/SEUIR/SEUIR.jl index 986e857f2..fbe1980d7 100644 --- a/benchmarking/IdentifiableFunctions/systems/SEUIR/SEUIR.jl +++ b/benchmarking/IdentifiableFunctions/results/SEUIR/SEUIR.jl @@ -3,10 +3,10 @@ using StructuralIdentifiability system = @ODEmodel( - R'(t) = d*U(t) + d*I(t), - U'(t) = -w*E(t) + E(t)*z - d*U(t), - E'(t) = (S(t)*U(t)*beta + S(t)*beta*I(t) - E(t)*N*z)//N, S'(t) = (-S(t)*U(t)*beta - S(t)*beta*I(t))//N, + E'(t) = (S(t)*U(t)*beta + S(t)*beta*I(t) - E(t)*N*z)//N, + U'(t) = -w*E(t) + E(t)*z - d*U(t), I'(t) = w*E(t) - d*I(t), + R'(t) = d*U(t) + d*I(t), y1(t) = I(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/SEUIR/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SEUIR/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..c6510ce45 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SEUIR/logs_(normalforms, 2)_with_states @@ -0,0 +1,78 @@ +ERROR: LoadError: UndefVarError: `homogenize_generators!` not defined +Stacktrace: + [1] _groebner(polynomials::Vector{AbstractAlgebra.Generic.MPoly{Rational{BigInt}}}, kws::Groebner.KeywordsHandler{Groebner.InputOrdering}, representation::Groebner.PolynomialRepresentation) + @ Groebner ~/Groebner.jl/src/groebner/groebner.jl:45 + [2] _groebner(polynomials::Vector{AbstractAlgebra.Generic.MPoly{Rational{BigInt}}}, kws::Groebner.KeywordsHandler{Groebner.InputOrdering}) + @ Groebner ~/Groebner.jl/src/groebner/groebner.jl:12 + [3] groebner(polynomials::Vector{AbstractAlgebra.Generic.MPoly{Rational{BigInt}}}; options::Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}) + @ Groebner ~/Groebner.jl/src/interface.jl:74 + [4] groebner + @ ~/Groebner.jl/src/interface.jl:67 [inlined] + [5] macro expansion + @ ~/Groebner.jl/src/precompile.jl:14 [inlined] + [6] macro expansion + @ ~/.julia/packages/SnoopPrecompile/1XXT1/src/SnoopPrecompile.jl:62 [inlined] + [7] macro expansion + @ ~/Groebner.jl/src/precompile.jl:8 [inlined] + [8] top-level scope + @ ~/.julia/packages/SnoopPrecompile/1XXT1/src/SnoopPrecompile.jl:119 + [9] include(mod::Module, _path::String) + @ Base ./Base.jl:457 + [10] include(x::String) + @ Groebner ~/Groebner.jl/src/Groebner.jl:1 + [11] top-level scope + @ ~/Groebner.jl/src/Groebner.jl:139 + [12] include + @ ./Base.jl:457 [inlined] + [13] include_package_for_output(pkg::Base.PkgId, input::String, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::String) + @ Base ./loading.jl:2049 + [14] top-level scope + @ stdin:3 +in expression starting at /home/demin/Groebner.jl/src/precompile.jl:5 +in expression starting at /home/demin/Groebner.jl/src/Groebner.jl:1 +in expression starting at stdin:3 +ERROR: LoadError: Failed to precompile Groebner [0b43b601-686d-58a3-8a1c-6623616c7cd4] to "/home/demin/.julia/compiled/v1.9/Groebner/jl_DEFWqb". +Stacktrace: + [1] error(s::String) + @ Base ./error.jl:35 + [2] compilecache(pkg::Base.PkgId, path::String, internal_stderr::IO, internal_stdout::IO, keep_loaded_modules::Bool) + @ Base ./loading.jl:2300 + [3] compilecache + @ ./loading.jl:2167 [inlined] + [4] _require(pkg::Base.PkgId, env::String) + @ Base ./loading.jl:1805 + [5] _require_prelocked(uuidkey::Base.PkgId, env::String) + @ Base ./loading.jl:1660 + [6] macro expansion + @ ./loading.jl:1648 [inlined] + [7] macro expansion + @ ./lock.jl:267 [inlined] + [8] require(into::Module, mod::Symbol) + @ Base ./loading.jl:1611 + [9] include + @ ./Base.jl:457 [inlined] + [10] include_package_for_output(pkg::Base.PkgId, input::String, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::String) + @ Base ./loading.jl:2049 + [11] top-level scope + @ stdin:3 +in expression starting at /home/demin/StructuralIdentifiability.jl/src/StructuralIdentifiability.jl:1 +in expression starting at stdin:3 +ERROR: LoadError: Failed to precompile StructuralIdentifiability [220ca800-aa68-49bb-acd8-6037fa93a544] to "/home/demin/.julia/compiled/v1.9/StructuralIdentifiability/jl_mdbKO4". +Stacktrace: + [1] error(s::String) + @ Base ./error.jl:35 + [2] compilecache(pkg::Base.PkgId, path::String, internal_stderr::IO, internal_stdout::IO, keep_loaded_modules::Bool) + @ Base ./loading.jl:2300 + [3] compilecache + @ ./loading.jl:2167 [inlined] + [4] _require(pkg::Base.PkgId, env::String) + @ Base ./loading.jl:1805 + [5] _require_prelocked(uuidkey::Base.PkgId, env::String) + @ Base ./loading.jl:1660 + [6] macro expansion + @ ./loading.jl:1648 [inlined] + [7] macro expansion + @ ./lock.jl:267 [inlined] + [8] require(into::Module, mod::Symbol) + @ Base ./loading.jl:1611 +in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:4 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 19/SIR 19.jl b/benchmarking/IdentifiableFunctions/results/SIR 19/SIR 19.jl similarity index 90% rename from benchmarking/IdentifiableFunctions/systems/SIR 19/SIR 19.jl rename to benchmarking/IdentifiableFunctions/results/SIR 19/SIR 19.jl index a5713fe62..e8b714902 100644 --- a/benchmarking/IdentifiableFunctions/systems/SIR 19/SIR 19.jl +++ b/benchmarking/IdentifiableFunctions/results/SIR 19/SIR 19.jl @@ -3,13 +3,13 @@ using StructuralIdentifiability system = @ODEmodel( - I'(t) = (S(t)*beta*I(t) - N(t)*mu*I(t) - N(t)*r*I(t))//N(t), N'(t) = 0, - D'(t) = mu*I(t), - C'(t) = S(t)*pp - q*C(t), S'(t) = (-S(t)*N(t)*pp - S(t)*beta*I(t) + N(t)*q*C(t))//N(t), + I'(t) = (S(t)*beta*I(t) - N(t)*mu*I(t) - N(t)*r*I(t))//N(t), R'(t) = r*I(t), + C'(t) = S(t)*pp - q*C(t), + D'(t) = mu*I(t), y1(t) = N(t), - y3(t) = C(t), - y2(t) = D(t) + y2(t) = D(t), + y3(t) = C(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/SIR 19/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SIR 19/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..ee9c6466c --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SIR 19/logs_(normalforms, 2)_with_states @@ -0,0 +1,78 @@ +ERROR: LoadError: UndefVarError: `homogenize_generators!` not defined +Stacktrace: + [1] _groebner(polynomials::Vector{AbstractAlgebra.Generic.MPoly{Rational{BigInt}}}, kws::Groebner.KeywordsHandler{Groebner.InputOrdering}, representation::Groebner.PolynomialRepresentation) + @ Groebner ~/Groebner.jl/src/groebner/groebner.jl:45 + [2] _groebner(polynomials::Vector{AbstractAlgebra.Generic.MPoly{Rational{BigInt}}}, kws::Groebner.KeywordsHandler{Groebner.InputOrdering}) + @ Groebner ~/Groebner.jl/src/groebner/groebner.jl:12 + [3] groebner(polynomials::Vector{AbstractAlgebra.Generic.MPoly{Rational{BigInt}}}; options::Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}) + @ Groebner ~/Groebner.jl/src/interface.jl:74 + [4] groebner + @ ~/Groebner.jl/src/interface.jl:67 [inlined] + [5] macro expansion + @ ~/Groebner.jl/src/precompile.jl:14 [inlined] + [6] macro expansion + @ ~/.julia/packages/SnoopPrecompile/1XXT1/src/SnoopPrecompile.jl:62 [inlined] + [7] macro expansion + @ ~/Groebner.jl/src/precompile.jl:8 [inlined] + [8] top-level scope + @ ~/.julia/packages/SnoopPrecompile/1XXT1/src/SnoopPrecompile.jl:119 + [9] include(mod::Module, _path::String) + @ Base ./Base.jl:457 + [10] include(x::String) + @ Groebner ~/Groebner.jl/src/Groebner.jl:1 + [11] top-level scope + @ ~/Groebner.jl/src/Groebner.jl:139 + [12] include + @ ./Base.jl:457 [inlined] + [13] include_package_for_output(pkg::Base.PkgId, input::String, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::String) + @ Base ./loading.jl:2049 + [14] top-level scope + @ stdin:3 +in expression starting at /home/demin/Groebner.jl/src/precompile.jl:5 +in expression starting at /home/demin/Groebner.jl/src/Groebner.jl:1 +in expression starting at stdin:3 +ERROR: LoadError: Failed to precompile Groebner [0b43b601-686d-58a3-8a1c-6623616c7cd4] to "/home/demin/.julia/compiled/v1.9/Groebner/jl_8vRSJe". +Stacktrace: + [1] error(s::String) + @ Base ./error.jl:35 + [2] compilecache(pkg::Base.PkgId, path::String, internal_stderr::IO, internal_stdout::IO, keep_loaded_modules::Bool) + @ Base ./loading.jl:2300 + [3] compilecache + @ ./loading.jl:2167 [inlined] + [4] _require(pkg::Base.PkgId, env::String) + @ Base ./loading.jl:1805 + [5] _require_prelocked(uuidkey::Base.PkgId, env::String) + @ Base ./loading.jl:1660 + [6] macro expansion + @ ./loading.jl:1648 [inlined] + [7] macro expansion + @ ./lock.jl:267 [inlined] + [8] require(into::Module, mod::Symbol) + @ Base ./loading.jl:1611 + [9] include + @ ./Base.jl:457 [inlined] + [10] include_package_for_output(pkg::Base.PkgId, input::String, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::String) + @ Base ./loading.jl:2049 + [11] top-level scope + @ stdin:3 +in expression starting at /home/demin/StructuralIdentifiability.jl/src/StructuralIdentifiability.jl:1 +in expression starting at stdin:3 +ERROR: LoadError: Failed to precompile StructuralIdentifiability [220ca800-aa68-49bb-acd8-6037fa93a544] to "/home/demin/.julia/compiled/v1.9/StructuralIdentifiability/jl_ZLp6ZB". +Stacktrace: + [1] error(s::String) + @ Base ./error.jl:35 + [2] compilecache(pkg::Base.PkgId, path::String, internal_stderr::IO, internal_stdout::IO, keep_loaded_modules::Bool) + @ Base ./loading.jl:2300 + [3] compilecache + @ ./loading.jl:2167 [inlined] + [4] _require(pkg::Base.PkgId, env::String) + @ Base ./loading.jl:1805 + [5] _require_prelocked(uuidkey::Base.PkgId, env::String) + @ Base ./loading.jl:1660 + [6] macro expansion + @ ./loading.jl:1648 [inlined] + [7] macro expansion + @ ./lock.jl:267 [inlined] + [8] require(into::Module, mod::Symbol) + @ Base ./loading.jl:1611 +in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:4 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 21/SIR 21.jl b/benchmarking/IdentifiableFunctions/results/SIR 21/SIR 21.jl similarity index 90% rename from benchmarking/IdentifiableFunctions/systems/SIR 21/SIR 21.jl rename to benchmarking/IdentifiableFunctions/results/SIR 21/SIR 21.jl index a6dc0e2d0..ac21ed434 100644 --- a/benchmarking/IdentifiableFunctions/systems/SIR 21/SIR 21.jl +++ b/benchmarking/IdentifiableFunctions/results/SIR 21/SIR 21.jl @@ -3,13 +3,13 @@ using StructuralIdentifiability system = @ODEmodel( - I'(t) = (S(t)*beta*I(t) - N(t)*mu*I(t) - N(t)*r*I(t))//N(t), N'(t) = 0, - D'(t) = mu*I(t), - C'(t) = S(t)*pp - q*C(t), S'(t) = (-S(t)*N(t)*pp - S(t)*beta*I(t) + N(t)*q*C(t))//N(t), + I'(t) = (S(t)*beta*I(t) - N(t)*mu*I(t) - N(t)*r*I(t))//N(t), R'(t) = r*I(t), + C'(t) = S(t)*pp - q*C(t), + D'(t) = mu*I(t), y1(t) = N(t), - y3(t) = C(t), - y2(t) = D(t) + y2(t) = D(t), + y3(t) = C(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/SIR 21/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SIR 21/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..936d4eed8 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SIR 21/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +SIR 21 +id_npoints_degree, 18 +id_npoints_interpolation, 18 +are_id_funcs_polynomial, true diff --git a/benchmarking/IdentifiableFunctions/results/SIR 21/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SIR 21/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..97d6d5461 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SIR 21/logs_(normalforms, 2)_with_states @@ -0,0 +1,157 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "SIR 21" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: N, S, I, R, C, D +[ Info: Parameters: mu, q, r, pp, beta +[ Info: Inputs: +[ Info: Outputs: y1, y2, y3 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 14.351878197 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 14.351878197 +[ Info: Computing Wronskians +┌ Info: Computed in 10.702412887 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 10.702412887 +[ Info: Dimensions of the Wronskians [4, 4, 1] +┌ Info: Ranks of the Wronskians computed in 0.033219563 seconds +│ :rank_time = :rank_time +└ rank_times = 0.033219563 + ⌜ # Computing specializations.. Time: 0:00:09 ✓ # Computing specializations.. Time: 0:00:10 + ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 2 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 10. +[ Info: Groebner basis computed in 12.207048291 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 4.413272925 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 7 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 5 fractions 5 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 3.255084876 seconds. Result: true +[ Info: Out of 6 initial generators there are 5 indepdendent +[ Info: The ranking of the new set of generators is 16 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 1 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 8. +[ Info: Groebner basis computed in 5.098887789 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 1.429165442 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 12 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (11 in total): Nemo.QQMPolyRingElem[mu, q, r, pp, beta, N, S, I, R, C, D] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 11 +┌ Info: Final cleaning and simplification of generators. +└ Out of 20 fractions 10 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 2.275451604 seconds. Result: true +[ Info: Out of 12 initial generators there are 10 indepdendent +[ Info: The ranking of the new set of generators is 55 +[ Info: The search for identifiable functions concluded in 74.457492858 seconds +[ Info: Processing SIR 21 +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.033018859 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.033018859 +[ Info: Computing Wronskians +┌ Info: Computed in 0.020808819 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.020808819 +[ Info: Dimensions of the Wronskians [4, 4, 1] +┌ Info: Ranks of the Wronskians computed in 2.7172e-5 seconds +│ :rank_time = :rank_time +└ rank_times = 2.7172e-5 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 2 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 10. +[ Info: Groebner basis computed in 0.008153599 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.001527324 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 7 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 5 fractions 5 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.001304269 seconds. Result: true +[ Info: Out of 6 initial generators there are 5 indepdendent +[ Info: The ranking of the new set of generators is 16 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 1 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 8. +[ Info: Groebner basis computed in 0.011243637 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.002474475 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 12 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (11 in total): Nemo.QQMPolyRingElem[mu, q, r, pp, beta, N, S, I, R, C, D] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 11 +┌ Info: Final cleaning and simplification of generators. +└ Out of 20 fractions 10 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.003069568 seconds. Result: true +[ Info: Out of 12 initial generators there are 10 indepdendent +[ Info: The ranking of the new set of generators is 55 +[ Info: The search for identifiable functions concluded in 0.296440214 seconds +┌ Info: Result is +│ result = +│ 10-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ D +│ C +│ I +│ S +│ ⋮ +│ r +│ q +└ mu diff --git a/benchmarking/IdentifiableFunctions/results/SIR 21/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SIR 21/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..41bb2be32 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SIR 21/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[D, C, I, S, N, beta, pp, r, q, mu] diff --git a/benchmarking/IdentifiableFunctions/results/SIR 21/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SIR 21/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..2fe865ca5 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SIR 21/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +SIR 21 +id_total, 0.296923969 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.003069568 +id_inclusion_check_mod_p, 0.002474475 +id_groebner_time, 0.011243637 +id_beautifulization, 0.194230856 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 55.0 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 24/SIR 24.jl b/benchmarking/IdentifiableFunctions/results/SIR 24/SIR 24.jl similarity index 100% rename from benchmarking/IdentifiableFunctions/systems/SIR 24/SIR 24.jl rename to benchmarking/IdentifiableFunctions/results/SIR 24/SIR 24.jl index b87537189..a4eb0f2a7 100644 --- a/benchmarking/IdentifiableFunctions/systems/SIR 24/SIR 24.jl +++ b/benchmarking/IdentifiableFunctions/results/SIR 24/SIR 24.jl @@ -3,9 +3,9 @@ using StructuralIdentifiability system = @ODEmodel( - R'(t) = (u1(t)*I(t) + gamma*S(t)*I(t) + gamma*I(t)^2 - S(t)*R(t)*mu - R(t)*mu*I(t))//(S(t) + I(t)), - S'(t) = (-c*S(t)*phi*I(t) + S(t)^2 + S(t)*A(t) - S(t)*mu + S(t)*I(t) + A(t)*I(t) - mu*I(t))//(S(t) + I(t)), A'(t) = 0, + S'(t) = (-c*S(t)*phi*I(t) + S(t)^2 + S(t)*A(t) - S(t)*mu + S(t)*I(t) + A(t)*I(t) - mu*I(t))//(S(t) + I(t)), I'(t) = (-u1(t)*I(t) - gamma*S(t)*I(t) - gamma*I(t)^2 + c*S(t)*phi*I(t) - S(t)*mu*I(t) - mu*I(t)^2)//(S(t) + I(t)), + R'(t) = (u1(t)*I(t) + gamma*S(t)*I(t) + gamma*I(t)^2 - S(t)*R(t)*mu - R(t)*mu*I(t))//(S(t) + I(t)), y1(t) = K*I(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/SIR 24/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SIR 24/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..5e5566ec3 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SIR 24/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +SIR 24 +id_npoints_degree, 20 +id_npoints_interpolation, 40 +are_id_funcs_polynomial, true diff --git a/benchmarking/IdentifiableFunctions/results/SIR 24/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SIR 24/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..8d3fd9a6e --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SIR 24/logs_(normalforms, 2)_with_states @@ -0,0 +1,155 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "SIR 24" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: A, S, I, R +[ Info: Parameters: gamma, c, K, phi, mu +[ Info: Inputs: u1 +[ Info: Outputs: y1 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 10.757810632 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 10.757810632 +[ Info: Computing Wronskians +┌ Info: Computed in 8.865002047 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 8.865002047 +[ Info: Dimensions of the Wronskians [27] +┌ Info: Ranks of the Wronskians computed in 0.021543348 seconds +│ :rank_time = :rank_time +└ rank_times = 0.021543348 + ⌜ # Computing specializations.. Time: 0:00:09 ✓ # Computing specializations.. Time: 0:00:10 + ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 24. +[ Info: Groebner basis computed in 12.851896459 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 4.680837467 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 5 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 4 fractions 4 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 5.786824917 seconds. Result: true +[ Info: Out of 68 initial generators there are 3 indepdendent +[ Info: The ranking of the new set of generators is 9 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 0 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 16. +[ Info: Groebner basis computed in 5.304351725 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 1.492009406 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 8 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (9 in total): Nemo.QQMPolyRingElem[gamma, c, K, phi, mu, A, S, I, R] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 7 +┌ Info: Final cleaning and simplification of generators. +└ Out of 21 fractions 16 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 2.384757791 seconds. Result: true +[ Info: Out of 18 initial generators there are 6 indepdendent +[ Info: The ranking of the new set of generators is 29 +[ Info: The search for identifiable functions concluded in 68.019583352 seconds +[ Info: Processing SIR 24 +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.07451518 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.07451518 +[ Info: Computing Wronskians +┌ Info: Computed in 0.023554032 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.023554032 +[ Info: Dimensions of the Wronskians [27] +┌ Info: Ranks of the Wronskians computed in 6.2525e-5 seconds +│ :rank_time = :rank_time +└ rank_times = 6.2525e-5 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 24. +[ Info: Groebner basis computed in 0.023634679 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.004244255 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 5 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 4 fractions 4 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.008183417 seconds. Result: true +[ Info: Out of 68 initial generators there are 3 indepdendent +[ Info: The ranking of the new set of generators is 9 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 0 for den. +│ Maximal number of interpolated terms are: 2 for num. and 1 for den. +└ Points used: 16. +[ Info: Groebner basis computed in 0.080243513 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.004594389 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 8 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (9 in total): Nemo.QQMPolyRingElem[gamma, c, K, phi, mu, A, S, I, R] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 7 +┌ Info: Final cleaning and simplification of generators. +└ Out of 21 fractions 16 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.015280007 seconds. Result: true +[ Info: Out of 18 initial generators there are 6 indepdendent +[ Info: The ranking of the new set of generators is 29 +[ Info: The search for identifiable functions concluded in 0.359294394 seconds +┌ Info: Result is +│ result = +│ 6-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ I +│ S +│ K +│ c*phi +│ -A + mu +└ gamma + A diff --git a/benchmarking/IdentifiableFunctions/results/SIR 24/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SIR 24/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..accd85449 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SIR 24/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[I, S, K, c*phi, -A + mu, gamma + A] diff --git a/benchmarking/IdentifiableFunctions/results/SIR 24/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SIR 24/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..2c3659cbf --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SIR 24/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +SIR 24 +id_total, 0.359755457 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.015280007 +id_inclusion_check_mod_p, 0.004594389 +id_groebner_time, 0.080243513 +id_beautifulization, 0.07128977 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 29.0 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 6/SIR 6.jl b/benchmarking/IdentifiableFunctions/results/SIR 6/SIR 6.jl similarity index 86% rename from benchmarking/IdentifiableFunctions/systems/SIR 6/SIR 6.jl rename to benchmarking/IdentifiableFunctions/results/SIR 6/SIR 6.jl index e77ea7c3e..8cf9495f8 100644 --- a/benchmarking/IdentifiableFunctions/systems/SIR 6/SIR 6.jl +++ b/benchmarking/IdentifiableFunctions/results/SIR 6/SIR 6.jl @@ -3,10 +3,10 @@ using StructuralIdentifiability system = @ODEmodel( + N'(t) = 0, + S'(t) = (-beta*I(t)*S(t))//N(t), I'(t) = (-N(t)*I(t)*gamma + beta*I(t)*S(t))//N(t), R'(t) = I(t)*gamma, - S'(t) = (-beta*I(t)*S(t))//N(t), - N'(t) = 0, - y2(t) = N(t), - y1(t) = I(t)*K + y1(t) = I(t)*K, + y2(t) = N(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/SIR 6/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SIR 6/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..efd68b974 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SIR 6/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +SIR 6 +id_npoints_degree, 36 +id_npoints_interpolation, 34 +are_id_funcs_polynomial, true diff --git a/benchmarking/IdentifiableFunctions/results/SIR 6/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SIR 6/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..2260e1a4b --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SIR 6/logs_(normalforms, 2)_with_states @@ -0,0 +1,180 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "SIR 6" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: N, S, I, R +[ Info: Parameters: beta, gamma, K +[ Info: Inputs: +[ Info: Outputs: y1, y2 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 14.894061447 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 14.894061447 +[ Info: Computing Wronskians +┌ Info: Computed in 11.582395517 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 11.582395517 +[ Info: Dimensions of the Wronskians [3, 1] +┌ Info: Ranks of the Wronskians computed in 0.031683844 seconds +│ :rank_time = :rank_time +└ rank_times = 0.031683844 + ⌜ # Computing specializations.. Time: 0:00:10 ✓ # Computing specializations.. Time: 0:00:10 + ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 1 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 8. +[ Info: Groebner basis computed in 13.081403646 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 4.328903063 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 4 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 2 fractions 2 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 5.033323009 seconds. Result: true +[ Info: Out of 3 initial generators there are 2 indepdendent +[ Info: The ranking of the new set of generators is 30 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 2 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 10. +[ Info: Groebner basis computed in 4.869793422 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 1.460323289 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 2 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 16. +[ Info: Groebner basis computed in 0.010303523 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.038785817 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 7 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (7 in total): Nemo.QQMPolyRingElem[beta, gamma, K, N, S, I, R] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 7 +┌ Info: Final cleaning and simplification of generators. +└ Out of 12 fractions 10 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 2.272401785 seconds. Result: true +[ Info: Out of 6 initial generators there are 5 indepdendent +[ Info: The ranking of the new set of generators is 21 +[ Info: The search for identifiable functions concluded in 79.494977939 seconds +[ Info: Processing SIR 6 +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.013263428 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.013263428 +[ Info: Computing Wronskians +┌ Info: Computed in 0.005970669 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.005970669 +[ Info: Dimensions of the Wronskians [3, 1] +┌ Info: Ranks of the Wronskians computed in 2.2861e-5 seconds +│ :rank_time = :rank_time +└ rank_times = 2.2861e-5 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 1 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 8. +[ Info: Groebner basis computed in 0.004213319 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.000975665 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 4 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 2 fractions 2 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.000827314 seconds. Result: true +[ Info: Out of 3 initial generators there are 2 indepdendent +[ Info: The ranking of the new set of generators is 30 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 2 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 10. +[ Info: Groebner basis computed in 0.063941383 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.001725929 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 2 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 16. +[ Info: Groebner basis computed in 0.010994837 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.002350587 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 7 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (7 in total): Nemo.QQMPolyRingElem[beta, gamma, K, N, S, I, R] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 7 +┌ Info: Final cleaning and simplification of generators. +└ Out of 12 fractions 10 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.002637676 seconds. Result: true +[ Info: Out of 6 initial generators there are 5 indepdendent +[ Info: The ranking of the new set of generators is 21 +[ Info: The search for identifiable functions concluded in 0.201855831 seconds +┌ Info: Result is +│ result = +│ 5-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ N +│ gamma +│ I*K +│ K*S +└ beta*I diff --git a/benchmarking/IdentifiableFunctions/results/SIR 6/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SIR 6/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..6834fef43 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SIR 6/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[N, gamma, I*K, K*S, beta*I] diff --git a/benchmarking/IdentifiableFunctions/results/SIR 6/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SIR 6/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..a1d167d4b --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SIR 6/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +SIR 6 +id_total, 0.202326215 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.002637676 +id_inclusion_check_mod_p, 0.004076516 +id_groebner_time, 0.07493622 +id_beautifulization, 0.080178157 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 21.0 diff --git a/benchmarking/IdentifiableFunctions/systems/SIRS forced/SIRS forced.jl b/benchmarking/IdentifiableFunctions/results/SIRS forced/SIRS forced.jl similarity index 91% rename from benchmarking/IdentifiableFunctions/systems/SIRS forced/SIRS forced.jl rename to benchmarking/IdentifiableFunctions/results/SIRS forced/SIRS forced.jl index dd06f306b..a093c8adf 100644 --- a/benchmarking/IdentifiableFunctions/systems/SIRS forced/SIRS forced.jl +++ b/benchmarking/IdentifiableFunctions/results/SIRS forced/SIRS forced.jl @@ -3,11 +3,11 @@ using StructuralIdentifiability system = @ODEmodel( + s'(t) = -b1*b0*s(t)*x1(t)*i(t) - b0*s(t)*i(t) - s(t)*mu + mu + g*r(t), i'(t) = -nu*i(t) + b1*b0*s(t)*x1(t)*i(t) + b0*s(t)*i(t) - mu*i(t), r'(t) = nu*i(t) - mu*r(t) - g*r(t), - s'(t) = -b1*b0*s(t)*x1(t)*i(t) - b0*s(t)*i(t) - s(t)*mu + mu + g*r(t), x1'(t) = -M*x2(t), x2'(t) = M*x1(t), - y2(t) = r(t), - y1(t) = i(t) + y1(t) = i(t), + y2(t) = r(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/SIRS forced/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SIRS forced/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..39a6be5b2 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SIRS forced/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +SIRS forced +id_npoints_degree, 20 +id_npoints_interpolation, 20 +are_id_funcs_polynomial, false diff --git a/benchmarking/IdentifiableFunctions/results/SIRS forced/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SIRS forced/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..79d217f76 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SIRS forced/logs_(normalforms, 2)_with_states @@ -0,0 +1,159 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "SIRS forced" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: s, i, r, x1, x2 +[ Info: Parameters: nu, b1, b0, M, mu, g +[ Info: Inputs: +[ Info: Outputs: y1, y2 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 16.658412403 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 16.658412403 +[ Info: Computing Wronskians +┌ Info: Computed in 18.45154327 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 18.45154327 +[ Info: Dimensions of the Wronskians [830, 3] +┌ Info: Ranks of the Wronskians computed in 0.300729871 seconds +│ :rank_time = :rank_time +└ rank_times = 0.300729871 + ⌜ # Computing specializations.. Time: 0:00:10 ✓ # Computing specializations.. Time: 0:00:11 + ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 + ⌜ # Computing specializations.. Time: 0:00:05 ✓ # Computing specializations.. Time: 0:00:05 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 8. +[ Info: Groebner basis computed in 14.213579354 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 4.819117597 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 7 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 5 fractions 5 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 5.643041017 seconds. Result: true +[ Info: Out of 2586 initial generators there are 5 indepdendent +[ Info: The ranking of the new set of generators is 16 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 12. +[ Info: Groebner basis computed in 5.686192354 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 1.513150959 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 15 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (11 in total): Nemo.QQMPolyRingElem[nu, b1, b0, M, mu, g, s, i, r, x1, x2] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 10 +┌ Info: Final cleaning and simplification of generators. +└ Out of 19 fractions 10 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 2.160465681 seconds. Result: true +[ Info: Out of 12 initial generators there are 10 indepdendent +[ Info: The ranking of the new set of generators is 88 +[ Info: The search for identifiable functions concluded in 91.516983391 seconds +[ Info: Processing SIRS forced +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.680425068 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.680425068 +[ Info: Computing Wronskians +┌ Info: Computed in 6.869759315 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 6.869759315 +[ Info: Dimensions of the Wronskians [830, 3] +┌ Info: Ranks of the Wronskians computed in 0.260705481 seconds +│ :rank_time = :rank_time +└ rank_times = 0.260705481 + ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 8. +[ Info: Groebner basis computed in 0.877218309 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.527777511 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 7 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 5 fractions 5 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.683026495 seconds. Result: true +[ Info: Out of 2586 initial generators there are 5 indepdendent +[ Info: The ranking of the new set of generators is 16 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 12. +[ Info: Groebner basis computed in 0.039240526 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.006821147 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 15 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (11 in total): Nemo.QQMPolyRingElem[nu, b1, b0, M, mu, g, s, i, r, x1, x2] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 10 +┌ Info: Final cleaning and simplification of generators. +└ Out of 19 fractions 10 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.012642143 seconds. Result: true +[ Info: Out of 12 initial generators there are 10 indepdendent +[ Info: The ranking of the new set of generators is 88 +[ Info: The search for identifiable functions concluded in 10.615889044 seconds +┌ Info: Result is +│ result = +│ 10-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ r +│ i +│ s +│ g +│ ⋮ +│ M^2 +│ b1*x1 +└ (M*x2)//x1 diff --git a/benchmarking/IdentifiableFunctions/results/SIRS forced/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SIRS forced/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..68fb2873f --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SIRS forced/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[r, i, s, g, mu, b0, nu, M^2, b1*x1, (M*x2)//x1] diff --git a/benchmarking/IdentifiableFunctions/results/SIRS forced/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SIRS forced/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..1073d11c3 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SIRS forced/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +SIRS forced +id_total, 10.616364422 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.012642143 +id_inclusion_check_mod_p, 0.006821147 +id_groebner_time, 0.039240526 +id_beautifulization, 0.40044504999999997 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 88.0 diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR original/SIWR original.jl b/benchmarking/IdentifiableFunctions/results/SIWR original/SIWR original.jl similarity index 100% rename from benchmarking/IdentifiableFunctions/systems/SIWR original/SIWR original.jl rename to benchmarking/IdentifiableFunctions/results/SIWR original/SIWR original.jl index 5d737d1a0..d3d08064c 100644 --- a/benchmarking/IdentifiableFunctions/systems/SIWR original/SIWR original.jl +++ b/benchmarking/IdentifiableFunctions/results/SIWR original/SIWR original.jl @@ -3,9 +3,9 @@ using StructuralIdentifiability system = @ODEmodel( - I'(t) = bi*S(t)*I(t) - gam*I(t) + S(t)*bw*W(t) - mu*I(t), - R'(t) = gam*I(t) - R(t)*mu - R(t)*a, S'(t) = -bi*S(t)*I(t) - S(t)*mu - S(t)*bw*W(t) + R(t)*a + mu, + I'(t) = bi*S(t)*I(t) - gam*I(t) + S(t)*bw*W(t) - mu*I(t), W'(t) = xi*I(t) - xi*W(t), + R'(t) = gam*I(t) - R(t)*mu - R(t)*a, y(t) = k*I(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/SIWR original/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SIWR original/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..5a8ba4d3e --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SIWR original/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +SIWR original +id_npoints_degree, 18 +id_npoints_interpolation, 12 +are_id_funcs_polynomial, true diff --git a/benchmarking/IdentifiableFunctions/results/SIWR original/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SIWR original/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..aab44a8ac --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SIWR original/logs_(normalforms, 2)_with_states @@ -0,0 +1,159 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "SIWR original" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: S, I, W, R +[ Info: Parameters: bi, gam, mu, bw, k, xi, a +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 8.10564193 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 8.10564193 +[ Info: Computing Wronskians +┌ Info: Computed in 8.502304946 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 8.502304946 +[ Info: Dimensions of the Wronskians [676] +┌ Info: Ranks of the Wronskians computed in 0.11006203 seconds +│ :rank_time = :rank_time +└ rank_times = 0.11006203 + ⌜ # Computing specializations.. Time: 0:00:07 ✓ # Computing specializations.. Time: 0:00:07 + ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 9.591010066 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 5.376246417 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 8 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 7 fractions 7 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 12.131289871 seconds. Result: true +[ Info: Out of 770 initial generators there are 7 indepdendent +[ Info: The ranking of the new set of generators is 28 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 0.639543479 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.006943916 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 13 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (11 in total): Nemo.QQMPolyRingElem[bi, gam, mu, bw, k, xi, a, S, I, W, R] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 1 +┌ Info: Final cleaning and simplification of generators. +└ Out of 22 fractions 11 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.007799909 seconds. Result: true +[ Info: Out of 12 initial generators there are 11 indepdendent +[ Info: The ranking of the new set of generators is 66 +[ Info: The search for identifiable functions concluded in 60.212306651 seconds +[ Info: Processing SIWR original +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.920860111 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.920860111 +[ Info: Computing Wronskians +┌ Info: Computed in 1.831905202 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 1.831905202 +[ Info: Dimensions of the Wronskians [676] +┌ Info: Ranks of the Wronskians computed in 0.122624402 seconds +│ :rank_time = :rank_time +└ rank_times = 0.122624402 + ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 + ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 1.696328522 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 1.36495185 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 8 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 7 fractions 7 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 6.311628865 seconds. Result: true +[ Info: Out of 770 initial generators there are 7 indepdendent +[ Info: The ranking of the new set of generators is 28 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 0.024490053 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.042327699 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 13 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (11 in total): Nemo.QQMPolyRingElem[bi, gam, mu, bw, k, xi, a, S, I, W, R] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 1 +┌ Info: Final cleaning and simplification of generators. +└ Out of 22 fractions 11 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.014277095 seconds. Result: true +[ Info: Out of 12 initial generators there are 11 indepdendent +[ Info: The ranking of the new set of generators is 66 +[ Info: The search for identifiable functions concluded in 13.723273508 seconds +┌ Info: Result is +│ result = +│ 11-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ R +│ W +│ I +│ S +│ ⋮ +│ mu +│ gam +└ bi diff --git a/benchmarking/IdentifiableFunctions/results/SIWR original/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SIWR original/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..0250a9b21 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SIWR original/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[R, W, I, S, a, xi, k, bw, mu, gam, bi] diff --git a/benchmarking/IdentifiableFunctions/results/SIWR original/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SIWR original/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..424b91306 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SIWR original/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +SIWR original +id_total, 13.723748611 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.014277095 +id_inclusion_check_mod_p, 0.042327699 +id_groebner_time, 0.024490053 +id_beautifulization, 0.06897956499999999 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 66.0 diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/SIWR with extra output.jl b/benchmarking/IdentifiableFunctions/results/SIWR with extra output/SIWR with extra output.jl similarity index 86% rename from benchmarking/IdentifiableFunctions/systems/SIWR with extra output/SIWR with extra output.jl rename to benchmarking/IdentifiableFunctions/results/SIWR with extra output/SIWR with extra output.jl index 586b3c839..54c77e3a5 100644 --- a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/SIWR with extra output.jl +++ b/benchmarking/IdentifiableFunctions/results/SIWR with extra output/SIWR with extra output.jl @@ -3,10 +3,10 @@ using StructuralIdentifiability system = @ODEmodel( - R'(t) = gam*I(t) - R(t)*mu - R(t)*a, - W'(t) = xi*I(t) - xi*W(t), - I'(t) = bi*S(t)*I(t) - gam*I(t) + S(t)*bw*W(t) - mu*I(t), S'(t) = -bi*S(t)*I(t) - S(t)*mu - S(t)*bw*W(t) + R(t)*a + mu, - y2(t) = S(t) + R(t) + I(t), - y(t) = k*I(t) + I'(t) = bi*S(t)*I(t) - gam*I(t) + S(t)*bw*W(t) - mu*I(t), + W'(t) = xi*I(t) - xi*W(t), + R'(t) = gam*I(t) - R(t)*mu - R(t)*a, + y(t) = k*I(t), + y2(t) = S(t) + R(t) + I(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/SIWR with extra output/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SIWR with extra output/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..5a7fe3970 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SIWR with extra output/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +SIWR with extra output +id_npoints_degree, 18 +id_npoints_interpolation, 12 +are_id_funcs_polynomial, true diff --git a/benchmarking/IdentifiableFunctions/results/SIWR with extra output/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SIWR with extra output/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..ec89adaf0 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SIWR with extra output/logs_(normalforms, 2)_with_states @@ -0,0 +1,156 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "SIWR with extra output" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: S, I, W, R +[ Info: Parameters: bi, gam, mu, bw, k, xi, a +[ Info: Inputs: +[ Info: Outputs: y, y2 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 15.762548034 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 15.762548034 +[ Info: Computing Wronskians +┌ Info: Computed in 11.46851165 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 11.46851165 +[ Info: Dimensions of the Wronskians [2, 123] +┌ Info: Ranks of the Wronskians computed in 0.034107292 seconds +│ :rank_time = :rank_time +└ rank_times = 0.034107292 + ⌜ # Computing specializations.. Time: 0:00:10 ✓ # Computing specializations.. Time: 0:00:11 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 13.626079677 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 4.503365033 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 8 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 7 fractions 7 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 4.995673876 seconds. Result: true +[ Info: Out of 134 initial generators there are 7 indepdendent +[ Info: The ranking of the new set of generators is 28 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 0.599177174 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.004197108 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 13 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (11 in total): Nemo.QQMPolyRingElem[bi, gam, mu, bw, k, xi, a, S, I, W, R] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 1 +┌ Info: Final cleaning and simplification of generators. +└ Out of 22 fractions 11 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.004610447 seconds. Result: true +[ Info: Out of 13 initial generators there are 11 indepdendent +[ Info: The ranking of the new set of generators is 66 +[ Info: The search for identifiable functions concluded in 70.932284768 seconds +[ Info: Processing SIWR with extra output +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.069094782 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.069094782 +[ Info: Computing Wronskians +┌ Info: Computed in 0.111163694 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.111163694 +[ Info: Dimensions of the Wronskians [2, 123] +┌ Info: Ranks of the Wronskians computed in 0.001259917 seconds +│ :rank_time = :rank_time +└ rank_times = 0.001259917 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 0.129467991 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.035984269 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 8 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 7 fractions 7 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.102916353 seconds. Result: true +[ Info: Out of 134 initial generators there are 7 indepdendent +[ Info: The ranking of the new set of generators is 28 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 0.017762352 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.060670404 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 13 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (11 in total): Nemo.QQMPolyRingElem[bi, gam, mu, bw, k, xi, a, S, I, W, R] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 1 +┌ Info: Final cleaning and simplification of generators. +└ Out of 22 fractions 11 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.011634936 seconds. Result: true +[ Info: Out of 13 initial generators there are 11 indepdendent +[ Info: The ranking of the new set of generators is 66 +[ Info: The search for identifiable functions concluded in 0.671278301 seconds +┌ Info: Result is +│ result = +│ 11-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ R +│ W +│ I +│ S +│ ⋮ +│ mu +│ gam +└ bi diff --git a/benchmarking/IdentifiableFunctions/results/SIWR with extra output/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SIWR with extra output/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..0250a9b21 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SIWR with extra output/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[R, W, I, S, a, xi, k, bw, mu, gam, bi] diff --git a/benchmarking/IdentifiableFunctions/results/SIWR with extra output/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SIWR with extra output/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..416932a50 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SIWR with extra output/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +SIWR with extra output +id_total, 0.671799786 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.011634936 +id_inclusion_check_mod_p, 0.060670404 +id_groebner_time, 0.017762352 +id_beautifulization, 0.098525842 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 66.0 diff --git a/benchmarking/IdentifiableFunctions/systems/SLIQR/SLIQR.jl b/benchmarking/IdentifiableFunctions/results/SLIQR/SLIQR.jl similarity index 100% rename from benchmarking/IdentifiableFunctions/systems/SLIQR/SLIQR.jl rename to benchmarking/IdentifiableFunctions/results/SLIQR/SLIQR.jl index c3ae75f43..9baa7f7a6 100644 --- a/benchmarking/IdentifiableFunctions/systems/SLIQR/SLIQR.jl +++ b/benchmarking/IdentifiableFunctions/results/SLIQR/SLIQR.jl @@ -4,8 +4,8 @@ using StructuralIdentifiability system = @ODEmodel( S'(t) = -b*In(t)*S(t)*Ninv - S(t)*Ninv*u(t), - In'(t) = -In(t)*g + s*Q(t) + a*L(t), L'(t) = b*In(t)*S(t)*Ninv - a*L(t), + In'(t) = -In(t)*g + s*Q(t) + a*L(t), Q'(t) = -e*In(t)*g + In(t)*g - s*Q(t), y(t) = In(t)*Ninv ) diff --git a/benchmarking/IdentifiableFunctions/results/SLIQR/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SLIQR/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..c2a392f65 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SLIQR/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +SLIQR +id_npoints_degree, 76 +id_npoints_interpolation, 1072 +are_id_funcs_polynomial, false diff --git a/benchmarking/IdentifiableFunctions/results/SLIQR/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SLIQR/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..5e50888f1 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SLIQR/logs_(normalforms, 2)_with_states @@ -0,0 +1,235 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "SLIQR" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: S, L, In, Q +[ Info: Parameters: b, e, Ninv, s, g, a +[ Info: Inputs: u +[ Info: Outputs: y +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 10.604983194 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 10.604983194 +[ Info: Computing Wronskians +┌ Info: Computed in 11.515244479 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 11.515244479 +[ Info: Dimensions of the Wronskians [32] +┌ Info: Ranks of the Wronskians computed in 0.032716748 seconds +│ :rank_time = :rank_time +└ rank_times = 0.032716748 + ⌜ # Computing specializations.. Time: 0:00:10 ✓ # Computing specializations.. Time: 0:00:11 + ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 2 for num. and 3 for den. +└ Points used: 48. +[ Info: Groebner basis computed in 13.415749534 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 4.791811864 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 2 for den. +│ Maximal number of interpolated terms are: 6 for num. and 3 for den. +└ Points used: 128. +[ Info: Groebner basis computed in 0.073206759 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.003813141 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (8, 8) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 7 for num. and 6 for den. +│ Maximal number of interpolated terms are: 14 for num. and 11 for den. +└ Points used: 480. +[ Info: Groebner basis computed in 0.375822487 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.004795277 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 14 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 6 fractions 6 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 5.903449456 seconds. Result: true +[ Info: Out of 40 initial generators there are 6 indepdendent +[ Info: The ranking of the new set of generators is 17563 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 5 for num. and 1 for den. +└ Points used: 96. +[ Info: Groebner basis computed in 5.456496618 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 1.52680689 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 4 for den. +│ Maximal number of interpolated terms are: 9 for num. and 5 for den. +└ Points used: 320. +[ Info: Groebner basis computed in 0.34618291 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.008604568 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 21 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (10 in total): Nemo.QQMPolyRingElem[b, e, Ninv, s, g, a, S, L, In, Q] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 22 +┌ Info: Final cleaning and simplification of generators. +└ Out of 23 fractions 18 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 1.556930696 seconds. Result: true +[ Info: Out of 15 initial generators there are 10 indepdendent +[ Info: The ranking of the new set of generators is 335 +[ Info: The search for identifiable functions concluded in 77.149576238 seconds +[ Info: Processing SLIQR +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.012710968 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.012710968 +[ Info: Computing Wronskians +┌ Info: Computed in 0.017732936 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.017732936 +[ Info: Dimensions of the Wronskians [32] +┌ Info: Ranks of the Wronskians computed in 8.2428e-5 seconds +│ :rank_time = :rank_time +└ rank_times = 8.2428e-5 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 2 for num. and 3 for den. +└ Points used: 48. +[ Info: Groebner basis computed in 0.030119024 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.003140538 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 2 for den. +│ Maximal number of interpolated terms are: 6 for num. and 3 for den. +└ Points used: 128. +[ Info: Groebner basis computed in 0.141316562 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.003241907 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (8, 8) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 7 for num. and 6 for den. +│ Maximal number of interpolated terms are: 14 for num. and 11 for den. +└ Points used: 480. +[ Info: Groebner basis computed in 0.370236937 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.004917861 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 14 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 6 fractions 6 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.011369638 seconds. Result: true +[ Info: Out of 40 initial generators there are 6 indepdendent +[ Info: The ranking of the new set of generators is 17563 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 5 for num. and 1 for den. +└ Points used: 96. +[ Info: Groebner basis computed in 0.123303956 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.005221797 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 4 for den. +│ Maximal number of interpolated terms are: 9 for num. and 5 for den. +└ Points used: 320. +[ Info: Groebner basis computed in 0.304654909 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.008035454 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 21 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (10 in total): Nemo.QQMPolyRingElem[b, e, Ninv, s, g, a, S, L, In, Q] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 22 +┌ Info: Final cleaning and simplification of generators. +└ Out of 23 fractions 18 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.069377428 seconds. Result: true +[ Info: Out of 15 initial generators there are 10 indepdendent +[ Info: The ranking of the new set of generators is 335 +[ Info: The search for identifiable functions concluded in 1.416013942 seconds +┌ Info: Result is +│ result = +│ 10-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ In +│ s +│ Ninv +│ b +│ ⋮ +│ In*a + Q*a + a*L +│ e*s*g - s*g + g*a +└ (e*S - S)//(e*Q) diff --git a/benchmarking/IdentifiableFunctions/results/SLIQR/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SLIQR/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..76f7235e1 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SLIQR/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[In, s, Ninv, b, S*a, g + a, s*Q - Q*a, In*a + Q*a + a*L, e*s*g - s*g + g*a, (e*S - S)//(e*Q)] diff --git a/benchmarking/IdentifiableFunctions/results/SLIQR/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/SLIQR/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..4a2e9f4e0 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/SLIQR/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +SLIQR +id_total, 1.416539053 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.069377428 +id_inclusion_check_mod_p, 0.013257251 +id_groebner_time, 0.42795886499999997 +id_beautifulization, 0.150045806 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 335.0 diff --git a/benchmarking/IdentifiableFunctions/systems/St/St.jl b/benchmarking/IdentifiableFunctions/results/St/St.jl similarity index 100% rename from benchmarking/IdentifiableFunctions/systems/St/St.jl rename to benchmarking/IdentifiableFunctions/results/St/St.jl diff --git a/benchmarking/IdentifiableFunctions/results/St/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/St/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..211173a05 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/St/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +St +id_npoints_degree, 56 +id_npoints_interpolation, 1472 +are_id_funcs_polynomial, false diff --git a/benchmarking/IdentifiableFunctions/results/St/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/St/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..f65112846 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/St/logs_(normalforms, 2)_with_states @@ -0,0 +1,362 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "St" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: S, R, W +[ Info: Parameters: e, rR, dr, d, g, r, a, T, Dd +[ Info: Inputs: +[ Info: Outputs: y1, y2 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 17.258683911 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 17.258683911 +[ Info: Computing Wronskians +┌ Info: Computed in 11.560008122 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 11.560008122 +[ Info: Dimensions of the Wronskians [34, 2] +┌ Info: Ranks of the Wronskians computed in 0.03312828 seconds +│ :rank_time = :rank_time +└ rank_times = 0.03312828 + ⌜ # Computing specializations.. Time: 0:00:10 ✓ # Computing specializations.. Time: 0:00:11 + ⌜ # Computing specializations.. Time: 0:00:00 + Points: 15  ⌝ # Computing specializations.. Time: 0:00:00 + Points: 31  ⌟ # Computing specializations.. Time: 0:00:00 + Points: 49  ⌞ # Computing specializations.. Time: 0:00:01 + Points: 66  ⌜ # Computing specializations.. Time: 0:00:01 + Points: 84  ✓ # Computing specializations.. Time: 0:00:01 + ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 + ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 + ⌜ # Computing specializations.. Time: 0:00:00 + Points: 16  ⌝ # Computing specializations.. Time: 0:00:00 + Points: 33  ⌟ # Computing specializations.. Time: 0:00:00 + Points: 50  ⌞ # Computing specializations.. Time: 0:00:01 + Points: 67  ⌜ # Computing specializations.. Time: 0:00:01 + Points: 83  ⌝ # Computing specializations.. Time: 0:00:01 + Points: 100  ⌟ # Computing specializations.. Time: 0:00:02 + Points: 117  ⌞ # Computing specializations.. Time: 0:00:02 + Points: 135  ⌜ # Computing specializations.. Time: 0:00:02 + Points: 152  ⌝ # Computing specializations.. Time: 0:00:03 + Points: 169  ⌟ # Computing specializations.. Time: 0:00:03 + Points: 186  ⌞ # Computing specializations.. Time: 0:00:03 + Points: 203  ⌜ # Computing specializations.. Time: 0:00:04 + Points: 220  ⌝ # Computing specializations.. Time: 0:00:04 + Points: 237  ⌟ # Computing specializations.. Time: 0:00:04 + Points: 254  ⌞ # Computing specializations.. Time: 0:00:04 + Points: 270  ⌜ # Computing specializations.. Time: 0:00:05 + Points: 288  ⌝ # Computing specializations.. Time: 0:00:05 + Points: 305  ⌟ # Computing specializations.. Time: 0:00:05 + Points: 322  ⌞ # Computing specializations.. Time: 0:00:06 + Points: 336  ⌜ # Computing specializations.. Time: 0:00:06 + Points: 354  ⌝ # Computing specializations.. Time: 0:00:06 + Points: 371  ⌟ # Computing specializations.. Time: 0:00:07 + Points: 388  ⌞ # Computing specializations.. Time: 0:00:07 + Points: 405  ⌜ # Computing specializations.. Time: 0:00:07 + Points: 422  ⌝ # Computing specializations.. Time: 0:00:08 + Points: 439  ⌟ # Computing specializations.. Time: 0:00:08 + Points: 457  ⌞ # Computing specializations.. Time: 0:00:08 + Points: 474  ⌜ # Computing specializations.. Time: 0:00:09 + Points: 491  ⌝ # Computing specializations.. Time: 0:00:09 + Points: 508  ⌟ # Computing specializations.. Time: 0:00:09 + Points: 525  ⌞ # Computing specializations.. Time: 0:00:09 + Points: 542  ⌜ # Computing specializations.. Time: 0:00:10 + Points: 559  ⌝ # Computing specializations.. Time: 0:00:10 + Points: 576  ⌟ # Computing specializations.. Time: 0:00:10 + Points: 592  ⌞ # Computing specializations.. Time: 0:00:11 + Points: 608  ⌜ # Computing specializations.. Time: 0:00:11 + Points: 624  ⌝ # Computing specializations.. Time: 0:00:11 + Points: 640  ✓ # Computing specializations.. Time: 0:00:12 + ⌜ # Computing specializations.. Time: 0:00:00 + Points: 22  ⌝ # Computing specializations.. Time: 0:00:00 + Points: 45  ⌟ # Computing specializations.. Time: 0:00:00 + Points: 68  ⌞ # Computing specializations.. Time: 0:00:01 + Points: 91  ✓ # Computing specializations.. Time: 0:00:01 + ⌜ # Computing specializations.. Time: 0:00:00 + Points: 23  ⌝ # Computing specializations.. Time: 0:00:00 + Points: 47  ⌟ # Computing specializations.. Time: 0:00:00 + Points: 72  ⌞ # Computing specializations.. Time: 0:00:01 + Points: 96  ⌜ # Computing specializations.. Time: 0:00:01 + Points: 121  ⌝ # Computing specializations.. Time: 0:00:01 + Points: 145  ⌟ # Computing specializations.. Time: 0:00:02 + Points: 169  ⌞ # Computing specializations.. Time: 0:00:02 + Points: 194  ⌜ # Computing specializations.. Time: 0:00:02 + Points: 218  ⌝ # Computing specializations.. Time: 0:00:03 + Points: 242  ⌟ # Computing specializations.. Time: 0:00:03 + Points: 267  ⌞ # Computing specializations.. Time: 0:00:03 + Points: 292  ⌜ # Computing specializations.. Time: 0:00:04 + Points: 316  ⌝ # Computing specializations.. Time: 0:00:04 + Points: 340  ⌟ # Computing specializations.. Time: 0:00:04 + Points: 364  ⌞ # Computing specializations.. Time: 0:00:04 + Points: 388  ⌜ # Computing specializations.. Time: 0:00:05 + Points: 413  ⌝ # Computing specializations.. Time: 0:00:05 + Points: 437  ⌟ # Computing specializations.. Time: 0:00:05 + Points: 462  ⌞ # Computing specializations.. Time: 0:00:06 + Points: 487  ⌜ # Computing specializations.. Time: 0:00:06 + Points: 511  ⌝ # Computing specializations.. Time: 0:00:06 + Points: 535  ⌟ # Computing specializations.. Time: 0:00:07 + Points: 559  ⌞ # Computing specializations.. Time: 0:00:07 + Points: 584  ⌜ # Computing specializations.. Time: 0:00:07 + Points: 607  ⌝ # Computing specializations.. Time: 0:00:08 + Points: 630  ✓ # Computing specializations.. Time: 0:00:08 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 7 for num. and 2 for den. +└ Points used: 96. +[ Info: Groebner basis computed in 16.199455292 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 5.025309584 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 4 for den. +│ Maximal number of interpolated terms are: 21 for num. and 20 for den. +└ Points used: 640. +[ Info: Groebner basis computed in 13.074567867 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.527874369 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 77 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 7 fractions 7 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 7.305299799 seconds. Result: true +[ Info: Out of 39 initial generators there are 7 indepdendent +[ Info: The ranking of the new set of generators is 20503 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 7 for num. and 4 for den. +└ Points used: 96. +[ Info: Groebner basis computed in 2.018077495 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.226197947 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 4 for den. +│ Maximal number of interpolated terms are: 22 for num. and 12 for den. +└ Points used: 640. +[ Info: Groebner basis computed in 8.994702587 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.158968909 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 64 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (12 in total): Nemo.QQMPolyRingElem[e, rR, dr, d, g, r, a, T, Dd, S, R, W] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 10 +┌ Info: Final cleaning and simplification of generators. +└ Out of 19 fractions 15 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 3.205094555 seconds. Result: true +[ Info: Out of 12 initial generators there are 11 indepdendent +[ Info: The ranking of the new set of generators is 1824206 +[ Info: The search for identifiable functions concluded in 107.270947627 seconds +[ Info: Processing St +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 1.628550952 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 1.628550952 +[ Info: Computing Wronskians +┌ Info: Computed in 0.085729298 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.085729298 +[ Info: Dimensions of the Wronskians [34, 2] +┌ Info: Ranks of the Wronskians computed in 8.8085e-5 seconds +│ :rank_time = :rank_time +└ rank_times = 8.8085e-5 + ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 + ⌜ # Computing specializations.. Time: 0:00:00 + Points: 16  ⌝ # Computing specializations.. Time: 0:00:00 + Points: 33  ⌟ # Computing specializations.. Time: 0:00:00 + Points: 50  ⌞ # Computing specializations.. Time: 0:00:01 + Points: 67  ⌜ # Computing specializations.. Time: 0:00:01 + Points: 84  ✓ # Computing specializations.. Time: 0:00:01 + ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 + ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 + ⌜ # Computing specializations.. Time: 0:00:00 + Points: 15  ⌝ # Computing specializations.. Time: 0:00:00 + Points: 31  ⌟ # Computing specializations.. Time: 0:00:00 + Points: 47  ⌞ # Computing specializations.. Time: 0:00:01 + Points: 63  ⌜ # Computing specializations.. Time: 0:00:01 + Points: 90  ⌝ # Computing specializations.. Time: 0:00:01 + Points: 119  ⌟ # Computing specializations.. Time: 0:00:02 + Points: 148  ⌞ # Computing specializations.. Time: 0:00:02 + Points: 177  ⌜ # Computing specializations.. Time: 0:00:02 + Points: 206  ⌝ # Computing specializations.. Time: 0:00:03 + Points: 235  ⌟ # Computing specializations.. Time: 0:00:03 + Points: 264  ⌞ # Computing specializations.. Time: 0:00:03 + Points: 293  ⌜ # Computing specializations.. Time: 0:00:04 + Points: 321  ⌝ # Computing specializations.. Time: 0:00:04 + Points: 348  ⌟ # Computing specializations.. Time: 0:00:04 + Points: 377  ⌞ # Computing specializations.. Time: 0:00:04 + Points: 406  ⌜ # Computing specializations.. Time: 0:00:05 + Points: 435  ⌝ # Computing specializations.. Time: 0:00:05 + Points: 464  ⌟ # Computing specializations.. Time: 0:00:05 + Points: 492  ⌞ # Computing specializations.. Time: 0:00:06 + Points: 520  ⌜ # Computing specializations.. Time: 0:00:06 + Points: 548  ⌝ # Computing specializations.. Time: 0:00:06 + Points: 575  ⌟ # Computing specializations.. Time: 0:00:07 + Points: 597  ⌞ # Computing specializations.. Time: 0:00:07 + Points: 626  ✓ # Computing specializations.. Time: 0:00:08 + ⌜ # Computing specializations.. Time: 0:00:00 + Points: 22  ⌝ # Computing specializations.. Time: 0:00:00 + Points: 45  ⌟ # Computing specializations.. Time: 0:00:00 + Points: 68  ⌞ # Computing specializations.. Time: 0:00:01 + Points: 90  ✓ # Computing specializations.. Time: 0:00:01 + ⌜ # Computing specializations.. Time: 0:00:00 + Points: 21  ⌝ # Computing specializations.. Time: 0:00:00 + Points: 45  ⌟ # Computing specializations.. Time: 0:00:00 + Points: 70  ⌞ # Computing specializations.. Time: 0:00:01 + Points: 93  ⌜ # Computing specializations.. Time: 0:00:01 + Points: 112  ⌝ # Computing specializations.. Time: 0:00:02 + Points: 131  ⌟ # Computing specializations.. Time: 0:00:02 + Points: 147  ⌞ # Computing specializations.. Time: 0:00:02 + Points: 162  ⌜ # Computing specializations.. Time: 0:00:02 + Points: 177  ⌝ # Computing specializations.. Time: 0:00:03 + Points: 193  ⌟ # Computing specializations.. Time: 0:00:03 + Points: 209  ⌞ # Computing specializations.. Time: 0:00:03 + Points: 230  ⌜ # Computing specializations.. Time: 0:00:04 + Points: 255  ⌝ # Computing specializations.. Time: 0:00:04 + Points: 278  ⌟ # Computing specializations.. Time: 0:00:04 + Points: 302  ⌞ # Computing specializations.. Time: 0:00:05 + Points: 325  ⌜ # Computing specializations.. Time: 0:00:05 + Points: 347  ⌝ # Computing specializations.. Time: 0:00:05 + Points: 364  ⌟ # Computing specializations.. Time: 0:00:06 + Points: 380  ⌞ # Computing specializations.. Time: 0:00:06 + Points: 396  ⌜ # Computing specializations.. Time: 0:00:06 + Points: 412  ⌝ # Computing specializations.. Time: 0:00:07 + Points: 428  ⌟ # Computing specializations.. Time: 0:00:07 + Points: 444  ⌞ # Computing specializations.. Time: 0:00:07 + Points: 460  ⌜ # Computing specializations.. Time: 0:00:08 + Points: 476  ⌝ # Computing specializations.. Time: 0:00:08 + Points: 492  ⌟ # Computing specializations.. Time: 0:00:08 + Points: 507  ⌞ # Computing specializations.. Time: 0:00:08 + Points: 523  ⌜ # Computing specializations.. Time: 0:00:09 + Points: 539  ⌝ # Computing specializations.. Time: 0:00:09 + Points: 555  ⌟ # Computing specializations.. Time: 0:00:09 + Points: 571  ⌞ # Computing specializations.. Time: 0:00:10 + Points: 587  ⌜ # Computing specializations.. Time: 0:00:10 + Points: 603  ⌝ # Computing specializations.. Time: 0:00:10 + Points: 619  ⌟ # Computing specializations.. Time: 0:00:11 + Points: 634  ✓ # Computing specializations.. Time: 0:00:11 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 7 for num. and 2 for den. +└ Points used: 96. +[ Info: Groebner basis computed in 2.419476127 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.562057172 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 4 for den. +│ Maximal number of interpolated terms are: 21 for num. and 20 for den. +└ Points used: 640. +[ Info: Groebner basis computed in 8.844723147 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.396376502 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 77 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 7 fractions 7 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 3.952837116 seconds. Result: true +[ Info: Out of 39 initial generators there are 7 indepdendent +[ Info: The ranking of the new set of generators is 20503 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 7 for num. and 4 for den. +└ Points used: 96. +[ Info: Groebner basis computed in 1.652280197 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.21800423 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 4 for den. +│ Maximal number of interpolated terms are: 22 for num. and 12 for den. +└ Points used: 640. +[ Info: Groebner basis computed in 12.251662553 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.208063728 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 64 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (12 in total): Nemo.QQMPolyRingElem[e, rR, dr, d, g, r, a, T, Dd, S, R, W] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 10 +┌ Info: Final cleaning and simplification of generators. +└ Out of 19 fractions 15 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 3.15107478 seconds. Result: true +[ Info: Out of 12 initial generators there are 11 indepdendent +[ Info: The ranking of the new set of generators is 1824206 +[ Info: The search for identifiable functions concluded in 37.541896901 seconds +┌ Info: Result is +│ result = +│ 11-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ Dd +│ T +│ S + R +│ rR*R - S*d*T + S*r - dr*R*T +│ ⋮ +│ (dr*d + dr*a)//(dr^2 + d^2 + 2*d*a + a^2) +│ (-e*dr^2*g + 2*e*dr*d*g + e*dr*g*a - e*d^2*g - e*d*g*a - rR*dr*g*a + rR*d*g*a + rR*g*a^2 + dr*g^2*a + dr*g*r*a - d*g^2*a - d*g*r*a - g*r*a^2)//(S^2*dr*a - S^2*d*a - S*dr^2*R + 2*S*dr*R*d + S*dr*R*a - S*R*d^2 - S*R*d*a) +└ (-e*S*dr^2 + 2*e*S*dr*d + e*S*dr*a - e*S*d^2 - e*S*d*a - rR*S*dr*a + rR*S*d*a + rR*S*a^2 + 2*S*dr*g*a + S*dr*r*a - 2*S*d*g*a - S*d*r*a - S*r*a^2 - dr^2*R*g + 2*dr*R*d*g + dr*R*g*a - R*d^2*g - R*d*g*a)//(S^2*dr*a - S^2*d*a - S*dr^2*R + 2*S*dr*R*d + S*dr*R*a - S*R*d^2 - S*R*d*a) diff --git a/benchmarking/IdentifiableFunctions/results/St/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/St/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..17ed1880d --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/St/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[Dd, T, S + R, rR*R - S*d*T + S*r - dr*R*T, e - rR + dr*W + d*W + g - r + a*W, e - rR + dr*T + d*T + g - r + a*T, (rR*d - dr*r)//(dr - d), (S*d + dr*R)//(dr + d + a), (dr*d + dr*a)//(dr^2 + d^2 + 2*d*a + a^2), (-e*dr^2*g + 2*e*dr*d*g + e*dr*g*a - e*d^2*g - e*d*g*a - rR*dr*g*a + rR*d*g*a + rR*g*a^2 + dr*g^2*a + dr*g*r*a - d*g^2*a - d*g*r*a - g*r*a^2)//(S^2*dr*a - S^2*d*a - S*dr^2*R + 2*S*dr*R*d + S*dr*R*a - S*R*d^2 - S*R*d*a), (-e*S*dr^2 + 2*e*S*dr*d + e*S*dr*a - e*S*d^2 - e*S*d*a - rR*S*dr*a + rR*S*d*a + rR*S*a^2 + 2*S*dr*g*a + S*dr*r*a - 2*S*d*g*a - S*d*r*a - S*r*a^2 - dr^2*R*g + 2*dr*R*d*g + dr*R*g*a - R*d^2*g - R*d*g*a)//(S^2*dr*a - S^2*d*a - S*dr^2*R + 2*S*dr*R*d + S*dr*R*a - S*R*d^2 - S*R*d*a)] diff --git a/benchmarking/IdentifiableFunctions/results/St/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/St/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..f7d72955a --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/St/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +St +id_total, 37.542441098 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 3.15107478 +id_inclusion_check_mod_p, 0.42606795799999997 +id_groebner_time, 13.903942749999999 +id_beautifulization, 1.382519096 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 1.824206e+06 diff --git a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/Transfection_4State.jl b/benchmarking/IdentifiableFunctions/results/Transfection_4State/Transfection_4State.jl similarity index 100% rename from benchmarking/IdentifiableFunctions/systems/Transfection_4State/Transfection_4State.jl rename to benchmarking/IdentifiableFunctions/results/Transfection_4State/Transfection_4State.jl index 699318121..0cba00983 100644 --- a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/Transfection_4State.jl +++ b/benchmarking/IdentifiableFunctions/results/Transfection_4State/Transfection_4State.jl @@ -3,9 +3,9 @@ using StructuralIdentifiability system = @ODEmodel( - mRNAenz'(t) = enz(t)*d2*mRNA(t) - mRNAenz(t)*d3, - enz'(t) = -enz(t)*d2*mRNA(t) + mRNAenz(t)*d3, - GFP'(t) = -b*GFP(t) + kTL*mRNA(t), mRNA'(t) = -enz(t)*d2*mRNA(t) - mRNA(t)*d1, + GFP'(t) = -b*GFP(t) + kTL*mRNA(t), + enz'(t) = -enz(t)*d2*mRNA(t) + mRNAenz(t)*d3, + mRNAenz'(t) = enz(t)*d2*mRNA(t) - mRNAenz(t)*d3, y1(t) = GFP(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/Transfection_4State/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Transfection_4State/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..c568518eb --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Transfection_4State/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +Transfection_4State +id_npoints_degree, 18 +id_npoints_interpolation, 18 +are_id_funcs_polynomial, true diff --git a/benchmarking/IdentifiableFunctions/results/Transfection_4State/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Transfection_4State/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..d89041ad2 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Transfection_4State/logs_(normalforms, 2)_with_states @@ -0,0 +1,157 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "Transfection_4State" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: mRNA, GFP, enz, mRNAenz +[ Info: Parameters: b, kTL, d2, d1, d3 +[ Info: Inputs: +[ Info: Outputs: y1 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 10.635337734 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 10.635337734 +[ Info: Computing Wronskians +┌ Info: Computed in 11.647648369 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 11.647648369 +[ Info: Dimensions of the Wronskians [18] +┌ Info: Ranks of the Wronskians computed in 0.032839175 seconds +│ :rank_time = :rank_time +└ rank_times = 0.032839175 + ⌜ # Computing specializations.. Time: 0:00:10 ✓ # Computing specializations.. Time: 0:00:10 + ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 1 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 8. +[ Info: Groebner basis computed in 13.092070216 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 4.623747114 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 6 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 4 fractions 4 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 5.693170009 seconds. Result: true +[ Info: Out of 27 initial generators there are 4 indepdendent +[ Info: The ranking of the new set of generators is 37 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 1 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 10. +[ Info: Groebner basis computed in 5.242148339 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 1.55917241 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 10 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (9 in total): Nemo.QQMPolyRingElem[b, kTL, d2, d1, d3, mRNA, GFP, enz, mRNAenz] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 16 +┌ Info: Final cleaning and simplification of generators. +└ Out of 18 fractions 11 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 2.360029937 seconds. Result: true +[ Info: Out of 9 initial generators there are 8 indepdendent +[ Info: The ranking of the new set of generators is 46 +[ Info: The search for identifiable functions concluded in 76.605015119 seconds +[ Info: Processing Transfection_4State +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.011571088 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.011571088 +[ Info: Computing Wronskians +┌ Info: Computed in 0.010277658 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.010277658 +[ Info: Dimensions of the Wronskians [18] +┌ Info: Ranks of the Wronskians computed in 3.6363e-5 seconds +│ :rank_time = :rank_time +└ rank_times = 3.6363e-5 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 1 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 8. +[ Info: Groebner basis computed in 0.008043477 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.001950477 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 6 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 4 fractions 4 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.002092256 seconds. Result: true +[ Info: Out of 27 initial generators there are 4 indepdendent +[ Info: The ranking of the new set of generators is 37 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 1 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 10. +[ Info: Groebner basis computed in 0.061431241 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.002508368 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 10 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (9 in total): Nemo.QQMPolyRingElem[b, kTL, d2, d1, d3, mRNA, GFP, enz, mRNAenz] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 16 +┌ Info: Final cleaning and simplification of generators. +└ Out of 18 fractions 11 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.003604613 seconds. Result: true +[ Info: Out of 9 initial generators there are 8 indepdendent +[ Info: The ranking of the new set of generators is 46 +[ Info: The search for identifiable functions concluded in 0.234337092 seconds +┌ Info: Result is +│ result = +│ 8-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ GFP +│ d3 +│ d1 +│ b +│ d2*mRNAenz +│ enz*d2 +│ d2*mRNA +└ kTL*mRNAenz diff --git a/benchmarking/IdentifiableFunctions/results/Transfection_4State/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Transfection_4State/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..f5ef8e08c --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Transfection_4State/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[GFP, d3, d1, b, d2*mRNAenz, enz*d2, d2*mRNA, kTL*mRNAenz] diff --git a/benchmarking/IdentifiableFunctions/results/Transfection_4State/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Transfection_4State/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..da85be11b --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Transfection_4State/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +Transfection_4State +id_total, 0.23480352 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.003604613 +id_inclusion_check_mod_p, 0.002508368 +id_groebner_time, 0.061431241 +id_beautifulization, 0.07345858 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 46.0 diff --git a/benchmarking/IdentifiableFunctions/systems/Treatment_io/Treatment_io.jl b/benchmarking/IdentifiableFunctions/results/Treatment_io/Treatment_io.jl similarity index 100% rename from benchmarking/IdentifiableFunctions/systems/Treatment_io/Treatment_io.jl rename to benchmarking/IdentifiableFunctions/results/Treatment_io/Treatment_io.jl index 9d4606488..eb56d7d48 100644 --- a/benchmarking/IdentifiableFunctions/systems/Treatment_io/Treatment_io.jl +++ b/benchmarking/IdentifiableFunctions/results/Treatment_io/Treatment_io.jl @@ -3,10 +3,10 @@ using StructuralIdentifiability system = @ODEmodel( - Tr'(t) = In(t)*g - nu*Tr(t), - N'(t) = 0, S'(t) = (-b*In(t)*S(t) - b*S(t)*d*Tr(t))//N(t), In'(t) = (b*In(t)*S(t) + b*S(t)*d*Tr(t) - In(t)*N(t)*g - In(t)*N(t)*a)//N(t), + Tr'(t) = In(t)*g - nu*Tr(t), + N'(t) = 0, y1(t) = Tr(t), y2(t) = N(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/Treatment_io/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Treatment_io/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..b0c9e2902 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Treatment_io/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +Treatment_io +id_npoints_degree, 72 +id_npoints_interpolation, 264 +are_id_funcs_polynomial, true diff --git a/benchmarking/IdentifiableFunctions/results/Treatment_io/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Treatment_io/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..718f7b993 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Treatment_io/logs_(normalforms, 2)_with_states @@ -0,0 +1,209 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "Treatment_io" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: S, In, Tr, N +[ Info: Parameters: b, nu, d, g, a +[ Info: Inputs: +[ Info: Outputs: y1, y2 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 14.794947052 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 14.794947052 +[ Info: Computing Wronskians +┌ Info: Computed in 11.624716204 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 11.624716204 +[ Info: Dimensions of the Wronskians [10, 1] +┌ Info: Ranks of the Wronskians computed in 0.030770391 seconds +│ :rank_time = :rank_time +└ rank_times = 0.030770391 + ⌜ # Computing specializations.. Time: 0:00:10 ✓ # Computing specializations.. Time: 0:00:10 + ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 1 for den. +│ Maximal number of interpolated terms are: 4 for num. and 1 for den. +└ Points used: 40. +[ Info: Groebner basis computed in 13.239814153 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 4.473080475 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 10 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 4 fractions 4 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 4.972652471 seconds. Result: true +[ Info: Out of 12 initial generators there are 4 indepdendent +[ Info: The ranking of the new set of generators is 62 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 3 for num. and 1 for den. +└ Points used: 48. +[ Info: Groebner basis computed in 5.341926983 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 1.475743896 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 3 for den. +│ Maximal number of interpolated terms are: 4 for num. and 1 for den. +└ Points used: 72. +[ Info: Groebner basis computed in 0.101438923 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.003947647 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (8, 8) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 8 for num. and 3 for den. +│ Maximal number of interpolated terms are: 4 for num. and 1 for den. +└ Points used: 104. +[ Info: Groebner basis computed in 0.132816762 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.004831968 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 21 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (9 in total): Nemo.QQMPolyRingElem[b, nu, d, g, a, S, In, Tr, N] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 9 +┌ Info: Final cleaning and simplification of generators. +└ Out of 20 fractions 15 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 1.60474987 seconds. Result: true +[ Info: Out of 9 initial generators there are 8 indepdendent +[ Info: The ranking of the new set of generators is 77 +[ Info: The search for identifiable functions concluded in 79.409337429 seconds +[ Info: Processing Treatment_io +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.00848791 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.00848791 +[ Info: Computing Wronskians +┌ Info: Computed in 0.006481304 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.006481304 +[ Info: Dimensions of the Wronskians [10, 1] +┌ Info: Ranks of the Wronskians computed in 1.9652e-5 seconds +│ :rank_time = :rank_time +└ rank_times = 1.9652e-5 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 1 for den. +│ Maximal number of interpolated terms are: 4 for num. and 1 for den. +└ Points used: 40. +[ Info: Groebner basis computed in 0.015410113 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.001618724 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 10 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 4 fractions 4 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.004029379 seconds. Result: true +[ Info: Out of 12 initial generators there are 4 indepdendent +[ Info: The ranking of the new set of generators is 62 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 3 for num. and 1 for den. +└ Points used: 48. +[ Info: Groebner basis computed in 0.024949519 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.002529538 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 3 for den. +│ Maximal number of interpolated terms are: 4 for num. and 1 for den. +└ Points used: 72. +[ Info: Groebner basis computed in 0.066568563 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.002509969 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (8, 8) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 8 for num. and 3 for den. +│ Maximal number of interpolated terms are: 4 for num. and 1 for den. +└ Points used: 104. +[ Info: Groebner basis computed in 0.114227557 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.004404247 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 21 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (9 in total): Nemo.QQMPolyRingElem[b, nu, d, g, a, S, In, Tr, N] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 9 +┌ Info: Final cleaning and simplification of generators. +└ Out of 20 fractions 15 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.010055207 seconds. Result: true +[ Info: Out of 9 initial generators there are 8 indepdendent +[ Info: The ranking of the new set of generators is 77 +[ Info: The search for identifiable functions concluded in 0.436714014 seconds +┌ Info: Result is +│ result = +│ 8-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ N +│ Tr +│ S*g +│ b*S +│ nu + d*g +│ nu*g + nu*a +│ nu + g + a +└ In*g + Tr*g + Tr*a diff --git a/benchmarking/IdentifiableFunctions/results/Treatment_io/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Treatment_io/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..884aa6faa --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Treatment_io/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[N, Tr, S*g, b*S, nu + d*g, nu*g + nu*a, nu + g + a, In*g + Tr*g + Tr*a] diff --git a/benchmarking/IdentifiableFunctions/results/Treatment_io/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/Treatment_io/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..749a4c466 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/Treatment_io/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +Treatment_io +id_total, 0.437094834 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.010055207 +id_inclusion_check_mod_p, 0.009443754 +id_groebner_time, 0.20574563899999998 +id_beautifulization, 0.13833241300000002 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 77.0 diff --git a/benchmarking/IdentifiableFunctions/systems/TumorHu2019/TumorHu2019.jl b/benchmarking/IdentifiableFunctions/results/TumorHu2019/TumorHu2019.jl similarity index 100% rename from benchmarking/IdentifiableFunctions/systems/TumorHu2019/TumorHu2019.jl rename to benchmarking/IdentifiableFunctions/results/TumorHu2019/TumorHu2019.jl index 483ff5d53..edeaca4a5 100644 --- a/benchmarking/IdentifiableFunctions/systems/TumorHu2019/TumorHu2019.jl +++ b/benchmarking/IdentifiableFunctions/results/TumorHu2019/TumorHu2019.jl @@ -3,10 +3,10 @@ using StructuralIdentifiability system = @ODEmodel( - z'(t) = (r3*k3*w(t) + r3*k3*m3 + r3*w(t)*v(t) + r3*m3*v(t) - k3*w(t)*mu3*z(t) - k3*mu3*m3*z(t) - w(t)*mu3*v(t)*z(t) - mu3*m3*v(t)*z(t) + v(t)*z(t)*b3)//(k3*w(t) + k3*m3 + w(t)*v(t) + m3*v(t)), - v'(t) = (-k5*mu5*v(t) + b5*x(t)*z(t) - mu5*x(t)*v(t))//(k5 + x(t)), x'(t) = (-m1*r1*b1*x(t)^2 + m1*r1*x(t) - m1*b1^2*x(t)^2*y(t) + m1*b1*x(t)*y(t) - d1*x(t)*z(t) - w(t)*r1*b1*x(t)^2 + w(t)*r1*x(t) - w(t)*b1^2*x(t)^2*y(t) + w(t)*b1*x(t)*y(t))//(m1 + w(t)), - w'(t) = (-m4*w(t)*mu4*k4 - m4*w(t)*mu4*x(t) + m4*x(t)*z(t)*b4 - w(t)*mu4*k4*v(t) - w(t)*mu4*x(t)*v(t) + k4*x(t)*r4*y(t) + x(t)^2*r4*y(t) + x(t)*v(t)*z(t)*b4)//(m4*k4 + m4*x(t) + k4*v(t) + x(t)*v(t)), y'(t) = (-mu2*w(t)*y(t) - mu2*k2*y(t) - b2^2*w(t)*y(t)^2 - b2*r2*w(t)*y(t)^2 - b2*r2*k2*y(t)^2 + b2*w(t)*y(t) + r2*w(t)*y(t) + r2*k2*y(t))//(w(t) + k2), + z'(t) = (r3*k3*w(t) + r3*k3*m3 + r3*w(t)*v(t) + r3*m3*v(t) - k3*w(t)*mu3*z(t) - k3*mu3*m3*z(t) - w(t)*mu3*v(t)*z(t) - mu3*m3*v(t)*z(t) + v(t)*z(t)*b3)//(k3*w(t) + k3*m3 + w(t)*v(t) + m3*v(t)), + w'(t) = (-m4*w(t)*mu4*k4 - m4*w(t)*mu4*x(t) + m4*x(t)*z(t)*b4 - w(t)*mu4*k4*v(t) - w(t)*mu4*x(t)*v(t) + k4*x(t)*r4*y(t) + x(t)^2*r4*y(t) + x(t)*v(t)*z(t)*b4)//(m4*k4 + m4*x(t) + k4*v(t) + x(t)*v(t)), + v'(t) = (-k5*mu5*v(t) + b5*x(t)*z(t) - mu5*x(t)*v(t))//(k5 + x(t)), y1(t) = z(t) ) diff --git a/benchmarking/IdentifiableFunctions/systems/TumorPillis2007/TumorPillis2007.jl b/benchmarking/IdentifiableFunctions/results/TumorPillis2007/TumorPillis2007.jl similarity index 100% rename from benchmarking/IdentifiableFunctions/systems/TumorPillis2007/TumorPillis2007.jl rename to benchmarking/IdentifiableFunctions/results/TumorPillis2007/TumorPillis2007.jl index 9a96f403a..f10f8fdf9 100644 --- a/benchmarking/IdentifiableFunctions/systems/TumorPillis2007/TumorPillis2007.jl +++ b/benchmarking/IdentifiableFunctions/results/TumorPillis2007/TumorPillis2007.jl @@ -3,13 +3,13 @@ using StructuralIdentifiability system = @ODEmodel( - C'(t) = alpha2 - KC*M(t)*C(t) - beta*C(t), + T'(t) = -b*T(t)^2*a - D(t)*T(t) - KT*M(t)*T(t) - c1*N(t)*T(t) + T(t)*a, + L'(t) = (u1(t)*gI + u1(t)*I(t) + r2*gI*T(t)*C(t) + r2*T(t)*I(t)*C(t) + pI*I(t)*L(t) - KL*M(t)*gI*L(t) - KL*M(t)*I(t)*L(t) - gI*q*T(t)*L(t) - gI*m*L(t) - gI*L(t)^2*ucte - q*T(t)*I(t)*L(t) - m*I(t)*L(t) - I(t)*L(t)^2*ucte)//(gI + I(t)), N'(t) = (-p*h*N(t)*T(t) - p*N(t)*T(t)^2 - h*KN*N(t)*M(t) - h*N(t)*f + h*alpha1 - KN*N(t)*M(t)*T(t) + N(t)*g*T(t) - N(t)*T(t)*f + alpha1*T(t))//(h + T(t)), + C'(t) = alpha2 - KC*M(t)*C(t) - beta*C(t), I'(t) = (u2(t)*gt + u2(t)*T(t) + w*gt*I(t)*L(t) + w*T(t)*I(t)*L(t) - muI*gt*I(t) - muI*T(t)*I(t) + pt*T(t)*L(t))//(gt + T(t)), M'(t) = u1(t) - gamma*M(t), - T'(t) = -b*T(t)^2*a - D(t)*T(t) - KT*M(t)*T(t) - c1*N(t)*T(t) + T(t)*a, - L'(t) = (u1(t)*gI + u1(t)*I(t) + r2*gI*T(t)*C(t) + r2*T(t)*I(t)*C(t) + pI*I(t)*L(t) - KL*M(t)*gI*L(t) - KL*M(t)*I(t)*L(t) - gI*q*T(t)*L(t) - gI*m*L(t) - gI*L(t)^2*ucte - q*T(t)*I(t)*L(t) - m*I(t)*L(t) - I(t)*L(t)^2*ucte)//(gI + I(t)), - y2(t) = N(t), y1(t) = L(t), + y2(t) = N(t), y3(t) = M(t) ) diff --git a/benchmarking/IdentifiableFunctions/systems/cLV1 (1o)/cLV1 (1o).jl b/benchmarking/IdentifiableFunctions/results/cLV1 (1o)/cLV1 (1o).jl similarity index 100% rename from benchmarking/IdentifiableFunctions/systems/cLV1 (1o)/cLV1 (1o).jl rename to benchmarking/IdentifiableFunctions/results/cLV1 (1o)/cLV1 (1o).jl index 286ba61ed..2e4a0aa69 100644 --- a/benchmarking/IdentifiableFunctions/systems/cLV1 (1o)/cLV1 (1o).jl +++ b/benchmarking/IdentifiableFunctions/results/cLV1 (1o)/cLV1 (1o).jl @@ -3,8 +3,8 @@ using StructuralIdentifiability system = @ODEmodel( + pi1'(t) = u1(t)*B21*pi2(t)*pi1(t) - u1(t)*pi1(t)^2*B11 + u1(t)*pi1(t)*B11 + A23*pi2(t)*pi1(t)*pi3(t) + pi2(t)^2*pi1(t)*A22 + pi2(t)*A21*pi1(t)^2 + pi2(t)*g2*pi1(t) - pi2(t)*pi1(t)^2*A12 + pi2(t)*pi1(t)*A12 - A11*pi1(t)^3 + A11*pi1(t)^2 - pi1(t)^2*A13*pi3(t) - pi1(t)^2*g1 + pi1(t)*A13*pi3(t) + pi1(t)*g1, pi2'(t) = u1(t)*B21*pi2(t)^2 + u1(t)*B21*pi2(t) - u1(t)*pi2(t)*pi1(t)*B11 + A23*pi2(t)^2*pi3(t) + A23*pi2(t)*pi3(t) + pi2(t)^3*A22 + pi2(t)^2*A21*pi1(t) + pi2(t)^2*g2 - pi2(t)^2*pi1(t)*A12 + pi2(t)^2*A22 + pi2(t)*A21*pi1(t) - pi2(t)*A11*pi1(t)^2 + pi2(t)*g2 - pi2(t)*pi1(t)*A13*pi3(t) - pi2(t)*pi1(t)*g1, pi3'(t) = u1(t)*B21*pi2(t)*pi3(t) + u1(t)*B31*pi3(t) - u1(t)*pi1(t)*pi3(t)*B11 + A23*pi2(t)*pi3(t)^2 + A33*pi3(t)^2 + pi2(t)^2*pi3(t)*A22 + pi2(t)*A21*pi1(t)*pi3(t) + pi2(t)*g2*pi3(t) - pi2(t)*pi1(t)*pi3(t)*A12 + pi2(t)*pi3(t)*A32 - A11*pi1(t)^2*pi3(t) + g3*pi3(t) + pi1(t)*A31*pi3(t) - pi1(t)*A13*pi3(t)^2 - pi1(t)*g1*pi3(t), - pi1'(t) = u1(t)*B21*pi2(t)*pi1(t) - u1(t)*pi1(t)^2*B11 + u1(t)*pi1(t)*B11 + A23*pi2(t)*pi1(t)*pi3(t) + pi2(t)^2*pi1(t)*A22 + pi2(t)*A21*pi1(t)^2 + pi2(t)*g2*pi1(t) - pi2(t)*pi1(t)^2*A12 + pi2(t)*pi1(t)*A12 - A11*pi1(t)^3 + A11*pi1(t)^2 - pi1(t)^2*A13*pi3(t) - pi1(t)^2*g1 + pi1(t)*A13*pi3(t) + pi1(t)*g1, y1(t) = pi1(t) ) diff --git a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/cLV1 (2o).jl b/benchmarking/IdentifiableFunctions/results/cLV1 (2o)/cLV1 (2o).jl similarity index 100% rename from benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/cLV1 (2o).jl rename to benchmarking/IdentifiableFunctions/results/cLV1 (2o)/cLV1 (2o).jl diff --git a/benchmarking/IdentifiableFunctions/results/cLV1 (2o)/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/cLV1 (2o)/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..b221a5621 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/cLV1 (2o)/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +cLV1 (2o) +id_npoints_degree, 18 +id_npoints_interpolation, 20 +are_id_funcs_polynomial, true diff --git a/benchmarking/IdentifiableFunctions/results/cLV1 (2o)/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/cLV1 (2o)/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..ed0270508 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/cLV1 (2o)/logs_(normalforms, 2)_with_states @@ -0,0 +1,156 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "cLV1 (2o)" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: pi1, pi2, pi3 +[ Info: Parameters: B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22 +[ Info: Inputs: u1 +[ Info: Outputs: y1, y2 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 15.0120548 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 15.0120548 +[ Info: Computing Wronskians +┌ Info: Computed in 11.616729838 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 11.616729838 +[ Info: Dimensions of the Wronskians [47, 6] +┌ Info: Ranks of the Wronskians computed in 0.031121541 seconds +│ :rank_time = :rank_time +└ rank_times = 0.031121541 + ⌜ # Computing specializations.. Time: 0:00:10 ✓ # Computing specializations.. Time: 0:00:11 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 1 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 8. +[ Info: Groebner basis computed in 13.881616504 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 4.431768692 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 16 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 14 fractions 14 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 4.905830479 seconds. Result: true +[ Info: Out of 101 initial generators there are 14 indepdendent +[ Info: The ranking of the new set of generators is 186 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 12. +[ Info: Groebner basis computed in 0.538455204 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.006605278 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 19 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (18 in total): Nemo.QQMPolyRingElem[B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22, pi1, pi2, pi3] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 46 +┌ Info: Final cleaning and simplification of generators. +└ Out of 34 fractions 18 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.009696428 seconds. Result: true +[ Info: Out of 24 initial generators there are 17 indepdendent +[ Info: The ranking of the new set of generators is 159 +[ Info: The search for identifiable functions concluded in 72.200436989 seconds +[ Info: Processing cLV1 (2o) +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.029025411 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.029025411 +[ Info: Computing Wronskians +┌ Info: Computed in 0.03495418 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.03495418 +[ Info: Dimensions of the Wronskians [47, 6] +┌ Info: Ranks of the Wronskians computed in 0.00016301 seconds +│ :rank_time = :rank_time +└ rank_times = 0.00016301 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 1 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 8. +[ Info: Groebner basis computed in 0.107284733 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.009882524 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 16 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 14 fractions 14 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.015763968 seconds. Result: true +[ Info: Out of 101 initial generators there are 14 indepdendent +[ Info: The ranking of the new set of generators is 186 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 2 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 12. +[ Info: Groebner basis computed in 0.026941371 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.028049886 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 19 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (18 in total): Nemo.QQMPolyRingElem[B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22, pi1, pi2, pi3] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 46 +┌ Info: Final cleaning and simplification of generators. +└ Out of 34 fractions 18 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.009838584 seconds. Result: true +[ Info: Out of 24 initial generators there are 17 indepdendent +[ Info: The ranking of the new set of generators is 159 +[ Info: The search for identifiable functions concluded in 0.801695608 seconds +┌ Info: Result is +│ result = +│ 17-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ pi2 +│ pi1 +│ A22 +│ A12 +│ ⋮ +│ A13*pi3 +│ A33*pi3 +└ A23*pi3 diff --git a/benchmarking/IdentifiableFunctions/results/cLV1 (2o)/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/cLV1 (2o)/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..6de087a18 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/cLV1 (2o)/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[pi2, pi1, A22, A12, A32, B11, g1, A31, g2, g3, A11, A21, B31, B21, A13*pi3, A33*pi3, A23*pi3] diff --git a/benchmarking/IdentifiableFunctions/results/cLV1 (2o)/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/cLV1 (2o)/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..cc0eec795 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/cLV1 (2o)/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +cLV1 (2o) +id_total, 0.802229253 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.009838584 +id_inclusion_check_mod_p, 0.028049886 +id_groebner_time, 0.026941371 +id_beautifulization, 0.204637139 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 159.0 diff --git a/benchmarking/IdentifiableFunctions/systems/cholera/cholera.jl b/benchmarking/IdentifiableFunctions/results/cholera/cholera.jl similarity index 85% rename from benchmarking/IdentifiableFunctions/systems/cholera/cholera.jl rename to benchmarking/IdentifiableFunctions/results/cholera/cholera.jl index f638933d2..786f0ec39 100644 --- a/benchmarking/IdentifiableFunctions/systems/cholera/cholera.jl +++ b/benchmarking/IdentifiableFunctions/results/cholera/cholera.jl @@ -3,10 +3,10 @@ using StructuralIdentifiability system = @ODEmodel( - R'(t) = gam*I(t) - R(t)*mu - R(t)*a, - I'(t) = bi*S(t)*I(t) - gam*I(t) + S(t)*bw*W(t) - mu*I(t), S'(t) = -bi*S(t)*I(t) - S(t)*mu - S(t)*bw*W(t) + R(t)*a + mu, + I'(t) = bi*S(t)*I(t) - gam*I(t) + S(t)*bw*W(t) - mu*I(t), W'(t) = xi*I(t) - xi*W(t), - y2(t) = S(t) + R(t) + I(t), - y1(t) = k*I(t) + R'(t) = gam*I(t) - R(t)*mu - R(t)*a, + y1(t) = k*I(t), + y2(t) = S(t) + R(t) + I(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/cholera/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/cholera/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..4a3800ac0 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/cholera/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +cholera +id_npoints_degree, 18 +id_npoints_interpolation, 12 +are_id_funcs_polynomial, true diff --git a/benchmarking/IdentifiableFunctions/results/cholera/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/cholera/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..631952e41 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/cholera/logs_(normalforms, 2)_with_states @@ -0,0 +1,156 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "cholera" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: S, I, W, R +[ Info: Parameters: bi, gam, mu, bw, k, xi, a +[ Info: Inputs: +[ Info: Outputs: y1, y2 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 15.677801485 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 15.677801485 +[ Info: Computing Wronskians +┌ Info: Computed in 11.538705969 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 11.538705969 +[ Info: Dimensions of the Wronskians [2, 123] +┌ Info: Ranks of the Wronskians computed in 0.032946562 seconds +│ :rank_time = :rank_time +└ rank_times = 0.032946562 + ⌜ # Computing specializations.. Time: 0:00:10 ✓ # Computing specializations.. Time: 0:00:10 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 13.441066284 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 4.45582847 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 8 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 7 fractions 7 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 4.989225338 seconds. Result: true +[ Info: Out of 134 initial generators there are 7 indepdendent +[ Info: The ranking of the new set of generators is 28 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 0.600942137 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.004421482 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 13 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (11 in total): Nemo.QQMPolyRingElem[bi, gam, mu, bw, k, xi, a, S, I, W, R] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 1 +┌ Info: Final cleaning and simplification of generators. +└ Out of 22 fractions 11 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.004500585 seconds. Result: true +[ Info: Out of 13 initial generators there are 11 indepdendent +[ Info: The ranking of the new set of generators is 66 +[ Info: The search for identifiable functions concluded in 70.623883624 seconds +[ Info: Processing cholera +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.067195355 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.067195355 +[ Info: Computing Wronskians +┌ Info: Computed in 0.107483111 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.107483111 +[ Info: Dimensions of the Wronskians [2, 123] +┌ Info: Ranks of the Wronskians computed in 0.001346296 seconds +│ :rank_time = :rank_time +└ rank_times = 0.001346296 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 0.125824859 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.038428066 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 8 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 7 fractions 7 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.102959567 seconds. Result: true +[ Info: Out of 134 initial generators there are 7 indepdendent +[ Info: The ranking of the new set of generators is 28 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 0.01784669 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.059316671 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 13 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (11 in total): Nemo.QQMPolyRingElem[bi, gam, mu, bw, k, xi, a, S, I, W, R] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 1 +┌ Info: Final cleaning and simplification of generators. +└ Out of 22 fractions 11 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.010918814 seconds. Result: true +[ Info: Out of 13 initial generators there are 11 indepdendent +[ Info: The ranking of the new set of generators is 66 +[ Info: The search for identifiable functions concluded in 0.65595764 seconds +┌ Info: Result is +│ result = +│ 11-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ R +│ W +│ I +│ S +│ ⋮ +│ mu +│ gam +└ bi diff --git a/benchmarking/IdentifiableFunctions/results/cholera/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/cholera/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..0250a9b21 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/cholera/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[R, W, I, S, a, xi, k, bw, mu, gam, bi] diff --git a/benchmarking/IdentifiableFunctions/results/cholera/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/cholera/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..51f873104 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/cholera/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +cholera +id_total, 0.656497359 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.010918814 +id_inclusion_check_mod_p, 0.059316671 +id_groebner_time, 0.01784669 +id_beautifulization, 0.091324858 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 66.0 diff --git a/benchmarking/IdentifiableFunctions/results/generalizedLoktaVolterra (1o)/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/generalizedLoktaVolterra (1o)/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..cbf14b6f9 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/generalizedLoktaVolterra (1o)/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +generalizedLoktaVolterra (1o) +id_npoints_degree, 18 +id_npoints_interpolation, 26 +are_id_funcs_polynomial, true diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/generalizedLoktaVolterra (1o).jl b/benchmarking/IdentifiableFunctions/results/generalizedLoktaVolterra (1o)/generalizedLoktaVolterra (1o).jl similarity index 100% rename from benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/generalizedLoktaVolterra (1o).jl rename to benchmarking/IdentifiableFunctions/results/generalizedLoktaVolterra (1o)/generalizedLoktaVolterra (1o).jl diff --git a/benchmarking/IdentifiableFunctions/results/generalizedLoktaVolterra (1o)/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/generalizedLoktaVolterra (1o)/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..24395fd66 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/generalizedLoktaVolterra (1o)/logs_(normalforms, 2)_with_states @@ -0,0 +1,156 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "generalizedLoktaVolterra (1o)" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: beta22, beta21, r1, beta11, beta12, r2 +[ Info: Inputs: +[ Info: Outputs: y1 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 10.555778102 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 10.555778102 +[ Info: Computing Wronskians +┌ Info: Computed in 11.533682323 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 11.533682323 +[ Info: Dimensions of the Wronskians [7] +┌ Info: Ranks of the Wronskians computed in 0.032648735 seconds +│ :rank_time = :rank_time +└ rank_times = 0.032648735 + ⌜ # Computing specializations.. Time: 0:00:10 ✓ # Computing specializations.. Time: 0:00:10 + ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 1 for den. +│ Maximal number of interpolated terms are: 1 for num. and 2 for den. +└ Points used: 16. +[ Info: Groebner basis computed in 13.160779312 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 4.657741323 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 7 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 5 fractions 5 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 5.668266165 seconds. Result: true +[ Info: Out of 6 initial generators there are 5 indepdendent +[ Info: The ranking of the new set of generators is 42 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 1 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 10. +[ Info: Groebner basis computed in 5.176437317 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 1.418069046 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 9 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (8 in total): Nemo.QQMPolyRingElem[beta22, beta21, r1, beta11, beta12, r2, x1, x2] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 13 +┌ Info: Final cleaning and simplification of generators. +└ Out of 14 fractions 8 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 2.344932987 seconds. Result: true +[ Info: Out of 8 initial generators there are 7 indepdendent +[ Info: The ranking of the new set of generators is 31 +[ Info: The search for identifiable functions concluded in 76.217687085 seconds +[ Info: Processing generalizedLoktaVolterra (1o) +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.003142893 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.003142893 +[ Info: Computing Wronskians +┌ Info: Computed in 0.003091205 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.003091205 +[ Info: Dimensions of the Wronskians [7] +┌ Info: Ranks of the Wronskians computed in 2.1608e-5 seconds +│ :rank_time = :rank_time +└ rank_times = 2.1608e-5 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 1 for den. +│ Maximal number of interpolated terms are: 1 for num. and 2 for den. +└ Points used: 16. +[ Info: Groebner basis computed in 0.011279423 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.001643882 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 7 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 5 fractions 5 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.001391813 seconds. Result: true +[ Info: Out of 6 initial generators there are 5 indepdendent +[ Info: The ranking of the new set of generators is 42 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 2 for num. and 1 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 10. +[ Info: Groebner basis computed in 0.050300016 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.002077398 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 9 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (8 in total): Nemo.QQMPolyRingElem[beta22, beta21, r1, beta11, beta12, r2, x1, x2] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 13 +┌ Info: Final cleaning and simplification of generators. +└ Out of 14 fractions 8 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.003718148 seconds. Result: true +[ Info: Out of 8 initial generators there are 7 indepdendent +[ Info: The ranking of the new set of generators is 31 +[ Info: The search for identifiable functions concluded in 0.174732019 seconds +┌ Info: Result is +│ result = +│ 7-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ x1 +│ r2 +│ beta11 +│ r1 +│ beta21 +│ x2*beta12 +└ beta22*x2 diff --git a/benchmarking/IdentifiableFunctions/results/generalizedLoktaVolterra (1o)/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/generalizedLoktaVolterra (1o)/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..1b0ebdae7 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/generalizedLoktaVolterra (1o)/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[x1, r2, beta11, r1, beta21, x2*beta12, beta22*x2] diff --git a/benchmarking/IdentifiableFunctions/results/generalizedLoktaVolterra (1o)/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/generalizedLoktaVolterra (1o)/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..bc955a5fa --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/generalizedLoktaVolterra (1o)/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +generalizedLoktaVolterra (1o) +id_total, 0.175207849 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.003718148 +id_inclusion_check_mod_p, 0.002077398 +id_groebner_time, 0.050300016 +id_beautifulization, 0.051225724 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 31.0 diff --git a/benchmarking/IdentifiableFunctions/results/generalizedLoktaVolterra (2o)/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/generalizedLoktaVolterra (2o)/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..ae0b250e3 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/generalizedLoktaVolterra (2o)/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +generalizedLoktaVolterra (2o) +id_npoints_degree, 16 +id_npoints_interpolation, 12 +are_id_funcs_polynomial, true diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/generalizedLoktaVolterra (2o).jl b/benchmarking/IdentifiableFunctions/results/generalizedLoktaVolterra (2o)/generalizedLoktaVolterra (2o).jl similarity index 87% rename from benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/generalizedLoktaVolterra (2o).jl rename to benchmarking/IdentifiableFunctions/results/generalizedLoktaVolterra (2o)/generalizedLoktaVolterra (2o).jl index b2974d96f..6140fa17c 100644 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/generalizedLoktaVolterra (2o).jl +++ b/benchmarking/IdentifiableFunctions/results/generalizedLoktaVolterra (2o)/generalizedLoktaVolterra (2o).jl @@ -5,6 +5,6 @@ using StructuralIdentifiability system = @ODEmodel( x1'(t) = r1*x1(t) + beta11*x1(t)^2 + x2(t)*beta12*x1(t), x2'(t) = beta22*x2(t)^2 + beta21*x2(t)*x1(t) + x2(t)*r2, - y2(t) = x2(t), - y1(t) = x1(t) + y1(t) = x1(t), + y2(t) = x2(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/generalizedLoktaVolterra (2o)/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/generalizedLoktaVolterra (2o)/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..0b7bd5fdf --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/generalizedLoktaVolterra (2o)/logs_(normalforms, 2)_with_states @@ -0,0 +1,157 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "generalizedLoktaVolterra (2o)" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: beta22, beta21, r1, beta11, beta12, r2 +[ Info: Inputs: +[ Info: Outputs: y1, y2 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 8.918950837 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 8.918950837 +[ Info: Computing Wronskians +┌ Info: Computed in 7.515286501 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 7.515286501 +[ Info: Dimensions of the Wronskians [4, 4] +┌ Info: Ranks of the Wronskians computed in 0.022594012 seconds +│ :rank_time = :rank_time +└ rank_times = 0.022594012 + ⌜ # Computing specializations.. Time: 0:00:08 ✓ # Computing specializations.. Time: 0:00:08 + ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 10.530526848 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 2.935004419 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 8 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 6 fractions 6 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 3.048521898 seconds. Result: true +[ Info: Out of 6 initial generators there are 6 indepdendent +[ Info: The ranking of the new set of generators is 21 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 4.081021784 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.959361102 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 10 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (8 in total): Nemo.QQMPolyRingElem[beta22, beta21, r1, beta11, beta12, r2, x1, x2] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 1 +┌ Info: Final cleaning and simplification of generators. +└ Out of 16 fractions 8 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 1.483561774 seconds. Result: true +[ Info: Out of 10 initial generators there are 8 indepdendent +[ Info: The ranking of the new set of generators is 36 +[ Info: The search for identifiable functions concluded in 53.059704748 seconds +[ Info: Processing generalizedLoktaVolterra (2o) +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.003457166 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.003457166 +[ Info: Computing Wronskians +┌ Info: Computed in 0.002119997 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.002119997 +[ Info: Dimensions of the Wronskians [4, 4] +┌ Info: Ranks of the Wronskians computed in 1.431e-5 seconds +│ :rank_time = :rank_time +└ rank_times = 1.431e-5 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 0.003220748 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.000792972 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 8 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 6 fractions 6 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.000707984 seconds. Result: true +[ Info: Out of 6 initial generators there are 6 indepdendent +[ Info: The ranking of the new set of generators is 21 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 0.004382842 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.00154479 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 10 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (8 in total): Nemo.QQMPolyRingElem[beta22, beta21, r1, beta11, beta12, r2, x1, x2] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 1 +┌ Info: Final cleaning and simplification of generators. +└ Out of 16 fractions 8 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.001484219 seconds. Result: true +[ Info: Out of 10 initial generators there are 8 indepdendent +[ Info: The ranking of the new set of generators is 36 +[ Info: The search for identifiable functions concluded in 0.087953814 seconds +┌ Info: Result is +│ result = +│ 8-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ x2 +│ x1 +│ r2 +│ beta12 +│ beta11 +│ r1 +│ beta21 +└ beta22 diff --git a/benchmarking/IdentifiableFunctions/results/generalizedLoktaVolterra (2o)/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/generalizedLoktaVolterra (2o)/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..790550f45 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/generalizedLoktaVolterra (2o)/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[x2, x1, r2, beta12, beta11, r1, beta21, beta22] diff --git a/benchmarking/IdentifiableFunctions/results/generalizedLoktaVolterra (2o)/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/generalizedLoktaVolterra (2o)/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..0d6897939 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/generalizedLoktaVolterra (2o)/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +generalizedLoktaVolterra (2o) +id_total, 0.088303857 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.001484219 +id_inclusion_check_mod_p, 0.00154479 +id_groebner_time, 0.004382842 +id_beautifulization, 0.06529297599999999 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 36.0 diff --git a/benchmarking/IdentifiableFunctions/results/p53/data_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/p53/data_(normalforms, 2)_with_states new file mode 100644 index 000000000..4eca2ab3c --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/p53/data_(normalforms, 2)_with_states @@ -0,0 +1,4 @@ +p53 +id_npoints_degree, 56 +id_npoints_interpolation, 64 +are_id_funcs_polynomial, true diff --git a/benchmarking/IdentifiableFunctions/results/p53/logs_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/p53/logs_(normalforms, 2)_with_states new file mode 100644 index 000000000..9e6f525d0 --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/p53/logs_(normalforms, 2)_with_states @@ -0,0 +1,208 @@ +┌ Info: +└ FUNCTION_NAME = "find_identifiable_functions" +┌ Info: +└ PROBLEM_NAME = "p53" +┌ Info: +└ KWARGS = (with_states = true, strategy = (:normalforms, 2)) +┌ Info: +└ GLOBAL_ID = Symbol("(:normalforms, 2)_with_states") +[ Info: Summary of the model: +[ Info: State variables: x1, x2, x3, x4 +[ Info: Parameters: p7, p4, p13, p18, p8, p23, p1, p3, p10, p25, p16, p11, p22, p20, p17, p21, p9, p6, p12, p15, p24, p5, p14 +[ Info: Inputs: u1 +[ Info: Outputs: y1, y2, y3, y4 +[ Info: Summary of the model: +[ Info: State variables: x1, x2 +[ Info: Parameters: a, b, d, c +[ Info: Inputs: +[ Info: Outputs: y +[ Info: Computing IO-equations +┌ Info: Computed in 14.163507411 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 14.163507411 +[ Info: Computing Wronskians +┌ Info: Computed in 11.676616122 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 11.676616122 +[ Info: Dimensions of the Wronskians [7, 14, 12, 12] +┌ Info: Ranks of the Wronskians computed in 0.032366773 seconds +│ :rank_time = :rank_time +└ rank_times = 0.032366773 + ⌜ # Computing specializations.. Time: 0:00:10 ✓ # Computing specializations.. Time: 0:00:11 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 13.515394476 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 4.423137645 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 4 for den. +│ Maximal number of interpolated terms are: 1 for num. and 2 for den. +└ Points used: 40. +[ Info: Groebner basis computed in 0.059058224 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.006647068 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 25 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 23 fractions 23 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 5.12047205 seconds. Result: true +[ Info: Out of 41 initial generators there are 23 indepdendent +[ Info: The ranking of the new set of generators is 279 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 0.599986894 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.0079001 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 12. +[ Info: Groebner basis computed in 0.102138121 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.007208837 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 28 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (27 in total): Nemo.QQMPolyRingElem[p7, p4, p13, p18, p8, p23, p1, p3, p10, p25, p16, p11, p22, p20, p17, p21, p9, p6, p12, p15, p24, p5, p14, x1, x2, x3, x4] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 27 +┌ Info: Final cleaning and simplification of generators. +└ Out of 53 fractions 27 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.026691814 seconds. Result: true +[ Info: Out of 37 initial generators there are 27 indepdendent +[ Info: The ranking of the new set of generators is 381 +[ Info: The search for identifiable functions concluded in 71.957218067 seconds +[ Info: Processing p53 +┌ Info: Averaging over 1 runs. +│ Using keyword arguments: +│ NamedTuple{(:with_states, :strategy), Tuple{Bool, Tuple{Symbol, Int64}}} +│ (with_states = true, strategy = (:normalforms, 2)) +└ ID: (:normalforms, 2)_with_states +[ Info: Computing IO-equations +┌ Info: Computed in 0.093909736 seconds +│ :ioeq_time = :ioeq_time +└ ioeq_time = 0.093909736 +[ Info: Computing Wronskians +┌ Info: Computed in 0.035544173 seconds +│ :wrnsk_time = :wrnsk_time +└ wrnsk_time = 0.035544173 +[ Info: Dimensions of the Wronskians [7, 14, 12, 12] +┌ Info: Ranks of the Wronskians computed in 5.1382e-5 seconds +│ :rank_time = :rank_time +└ rank_times = 5.1382e-5 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 0.028096026 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.005100219 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 4 for den. +│ Maximal number of interpolated terms are: 1 for num. and 2 for den. +└ Points used: 40. +[ Info: Groebner basis computed in 0.057270238 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.054563503 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 25 rational functions +┌ Info: Final cleaning and simplification of generators. +└ Out of 23 fractions 23 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.011939676 seconds. Result: true +[ Info: Out of 41 initial generators there are 23 indepdendent +[ Info: The ranking of the new set of generators is 279 +[ Info: Simplifying identifiable functions +┌ Info: Computing parametric Groebner basis up to degrees (2, 2) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 1 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 6. +[ Info: Groebner basis computed in 0.040413155 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.007601385 seconds. Result: false +┌ Info: Computing parametric Groebner basis up to degrees (4, 4) +│ Ordering, input / target: degrevlex / InputOrdering +│ Rational interpolator: VanDerHoevenLecerf +│ Polynomial interpolator: PrimesBenOrTiwari +│ Estimate degrees: true +└ Assess correctness: false +┌ Info: Basis interpolated exponents summary: +│ Maximal interpolated degrees are: 4 for num. and 0 for den. +│ Maximal number of interpolated terms are: 1 for num. and 1 for den. +└ Points used: 12. +[ Info: Groebner basis computed in 0.082809262 seconds +[ Info: Checking two-sided inclusion modulo a prime +[ Info: Inclusion checked in 0.006848878 seconds. Result: true +[ Info: The coefficients of the Groebner basis are presented by 28 rational functions +┌ Info: Computing normal forms (probabilistic) +│ Variables (27 in total): Nemo.QQMPolyRingElem[p7, p4, p13, p18, p8, p23, p1, p3, p10, p25, p16, p11, p22, p20, p17, p21, p9, p6, p12, p15, p24, p5, p14, x1, x2, x3, x4] +│ Up to degree: 2 +└ Modulo: Finite field of characteristic 1073741827 +[ Info: Used specialization points: 27 +┌ Info: Final cleaning and simplification of generators. +└ Out of 53 fractions 27 are syntactically unique. +[ Info: Checking inclusion with probability 0.995 +[ Info: Inclusion checked in 0.038334575 seconds. Result: true +[ Info: Out of 37 initial generators there are 27 indepdendent +[ Info: The ranking of the new set of generators is 381 +[ Info: The search for identifiable functions concluded in 1.210215725 seconds +┌ Info: Result is +│ result = +│ 27-element Vector{AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}}: +│ x4 +│ x3 +│ x2 +│ x1 +│ ⋮ +│ p4 +│ p7 +└ p22^4 diff --git a/benchmarking/IdentifiableFunctions/systems/p53/p53.jl b/benchmarking/IdentifiableFunctions/results/p53/p53.jl similarity index 97% rename from benchmarking/IdentifiableFunctions/systems/p53/p53.jl rename to benchmarking/IdentifiableFunctions/results/p53/p53.jl index 71909cbb5..2f1d63f63 100644 --- a/benchmarking/IdentifiableFunctions/systems/p53/p53.jl +++ b/benchmarking/IdentifiableFunctions/results/p53/p53.jl @@ -3,12 +3,12 @@ using StructuralIdentifiability system = @ODEmodel( - x3'(t) = (u1(t)*p18*p16*x3(t)*x1(t) - p16*x3(t)*x1(t) - p17*x3(t)*p15 + p17*p14 - x3(t)^2*p15 + x3(t)*p14)//(p17 + x3(t)), x1'(t) = (-u1(t)*p4*p6*x1(t)^2 - u1(t)*p4*x1(t)^2 + u1(t)*p1*x1(t)*x4(t) + u1(t)*p1*p5*x4(t) - u1(t)*p3*x1(t)^2 - u1(t)*p3*x1(t)*p5 - p7*p4*x1(t)^2 + p7*p1*x1(t)*x4(t) + p7*p1*p5*x4(t) - p7*p3*x1(t)^2 - p7*p3*x1(t)*p5)//(u1(t)*x1(t) + u1(t)*p5 + p7*x1(t) + p7*p5), - x4'(t) = (u1(t)*p23*p25*p22^4*x1(t)*x2(t)*p24 - u1(t)*p23*p25*p22^4*x2(t) + u1(t)*p23*p25*x1(t)*x2(t)*p24 - u1(t)*p23*p25*x2(t) - u1(t)*p23*p22^4*x1(t)*p24 + u1(t)*p23*p22^4 - u1(t)*p23*x1(t)*p24 + u1(t)*p23 - p25*p22^4*p21*p24 + p25*p22^4*p21 + p25*p22^4*x1(t)*x2(t)*p24 - p25*p22^4*x2(t) - p25*p21*x3(t)^4*p24 + p25*p21*x3(t)^4 + p25*x1(t)*x2(t)*p24 - p25*x2(t) - p20*p22^8*x4(t) + p20*p22^8 - p20*p22^4*x3(t)^4*x4(t) + p20*p22^4*x3(t)^4 - p20*p22^4*x4(t) + p20*p22^4 - p20*x3(t)^4*x4(t) + p20*x3(t)^4 + p22^8*p21*x3(t)^4 + p22^4*p21*x3(t)^8 + p22^4*p21*x3(t)^4 + p22^4*p21*p24 - p22^4*p21 - p22^4*x1(t)*p24 + p22^4 + p21*x3(t)^8 + p21*x3(t)^4*p24 - p21*x3(t)^4 - x1(t)*p24 + 1)//(p22^8 + p22^4*x3(t)^4 + p22^4 + x3(t)^4), x2'(t) = (u1(t)*p8*p11 + u1(t)*p8*x2(t) - u1(t)*p10*p12*x1(t)*x2(t) - u1(t)*p10*x1(t)*x2(t) - u1(t)*p11*p9*x2(t) - u1(t)*p9*x2(t)^2 + p13*p8*p11 + p13*p8*x2(t) - p13*p10*x1(t)*x2(t) - p13*p11*p9*x2(t) - p13*p9*x2(t)^2)//(u1(t)*p11 + u1(t)*x2(t) + p13*p11 + p13*x2(t)), + x3'(t) = (u1(t)*p18*p16*x3(t)*x1(t) - p16*x3(t)*x1(t) - p17*x3(t)*p15 + p17*p14 - x3(t)^2*p15 + x3(t)*p14)//(p17 + x3(t)), + x4'(t) = (u1(t)*p23*p25*p22^4*x1(t)*x2(t)*p24 - u1(t)*p23*p25*p22^4*x2(t) + u1(t)*p23*p25*x1(t)*x2(t)*p24 - u1(t)*p23*p25*x2(t) - u1(t)*p23*p22^4*x1(t)*p24 + u1(t)*p23*p22^4 - u1(t)*p23*x1(t)*p24 + u1(t)*p23 - p25*p22^4*p21*p24 + p25*p22^4*p21 + p25*p22^4*x1(t)*x2(t)*p24 - p25*p22^4*x2(t) - p25*p21*x3(t)^4*p24 + p25*p21*x3(t)^4 + p25*x1(t)*x2(t)*p24 - p25*x2(t) - p20*p22^8*x4(t) + p20*p22^8 - p20*p22^4*x3(t)^4*x4(t) + p20*p22^4*x3(t)^4 - p20*p22^4*x4(t) + p20*p22^4 - p20*x3(t)^4*x4(t) + p20*x3(t)^4 + p22^8*p21*x3(t)^4 + p22^4*p21*x3(t)^8 + p22^4*p21*x3(t)^4 + p22^4*p21*p24 - p22^4*p21 - p22^4*x1(t)*p24 + p22^4 + p21*x3(t)^8 + p21*x3(t)^4*p24 - p21*x3(t)^4 - x1(t)*p24 + 1)//(p22^8 + p22^4*x3(t)^4 + p22^4 + x3(t)^4), + y1(t) = x1(t), y2(t) = x2(t), y3(t) = x3(t), - y4(t) = x4(t), - y1(t) = x1(t) + y4(t) = x4(t) ) diff --git a/benchmarking/IdentifiableFunctions/results/p53/result_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/p53/result_(normalforms, 2)_with_states new file mode 100644 index 000000000..b7a609bdb --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/p53/result_(normalforms, 2)_with_states @@ -0,0 +1 @@ +AbstractAlgebra.Generic.Frac{Nemo.QQMPolyRingElem}[x4, x3, x2, x1, p14, p5, p24, p15, p12, p6, p9, p21, p17, p20, p11, p16, p25, p10, p3, p1, p23, p8, p18, p13, p4, p7, p22^4] diff --git a/benchmarking/IdentifiableFunctions/results/p53/timings_(normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/results/p53/timings_(normalforms, 2)_with_states new file mode 100644 index 000000000..058378b9a --- /dev/null +++ b/benchmarking/IdentifiableFunctions/results/p53/timings_(normalforms, 2)_with_states @@ -0,0 +1,11 @@ +p53 +id_total, 1.210717446 +id_io_time, 0.0 +id_global_time, 0.0 +id_inclusion_check, 0.038334575 +id_inclusion_check_mod_p, 0.014450263000000001 +id_groebner_time, 0.123222417 +id_beautifulization, 0.337158046 +id_normalforms_time, 0.0 +id_gbfan_time, 0.0 +id_ranking, 381.0 diff --git a/benchmarking/IdentifiableFunctions/run_benchmarks.jl b/benchmarking/IdentifiableFunctions/run_benchmarks.jl index 12b55c427..fddbaf63e 100644 --- a/benchmarking/IdentifiableFunctions/run_benchmarks.jl +++ b/benchmarking/IdentifiableFunctions/run_benchmarks.jl @@ -1,3 +1,34 @@ +#= +This script runs benchmarks and collects useful statistics. + +To benchmark a particular function `StructuralIdentifiability.XYZ`, execute the +following command in your favorite terminal from this directory: + +``` +$ julia run_benchmarks.jl XYZ +``` + +`XYZ` can be one of the following: +- `find_identifiable_functions`, +- `reparametrize_global`. + +Going into details, this will: +1. Load all benchmark models from benchmarks.jl and create a directory + `benchmark_results`. +2. Run the function `StructuralIdentifiability.XYZ`, collect useful runtime + statistics, and write them to `benchmark_results`. +3. Read the statistics from `benchmark_results` and produce a table with + results. + +Below in the file there is a description of some potentially useful command line +arguments. +A more involved way of running benchmarks could be the following: + +``` +julia run_benchmarks.jl XYZ --target="id_total, id_are_polynomial" --timeout=3600 --keywords="(strategy=(:hybrid,),with_states=true); (strategy=(:normalforms,3),with_states=true)" +``` +=# + using ArgParse using CpuId, Logging, Pkg, Printf using Base.Threads @@ -9,9 +40,9 @@ using StructuralIdentifiability using StructuralIdentifiability: _runtime_logger, ODE using StructuralIdentifiability.ParamPunPam -global_logger(Logging.SimpleLogger(stdout, Logging.Warn)) +global_logger(Logging.ConsoleLogger(stdout, Logging.Warn)) include("benchmarks.jl") -global_logger(Logging.SimpleLogger(stdout, Logging.Info)) +global_logger(Logging.ConsoleLogger(stdout, Logging.Info)) const _progressbar_color = :light_green const _progressbar_value_color = :light_green @@ -20,28 +51,71 @@ progressbar_enabled() = include("utils.jl") +const BENCHMARK_TABLE = "benchmark_result.md" + function parse_commandline() s = ArgParseSettings() #! format: off @add_arg_table s begin + "function" + help = "The function to benchmark." + arg_type = String + required = true + "--keywords" + help = """ + Keyword arguments to be passed to `function`. + Semicolon-separated list of named tuples.""" + arg_type = String + default = "" + # default = "(strategy=(:gb, ),); (strategy=(:gb, ),with_states=true); (strategy=(:normalforms, 2),); (strategy=(:normalforms, 2),with_states=true); (strategy=(:normalforms, 3),); (strategy=(:normalforms, 3),with_states=true); (strategy=(:hybrid, ),); (strategy=(:hybrid, ),with_states=true)" + "--target" + help = """ + Statistics to be displayed in the table. + Comma-separated list of entities. + NOTE: each of these must be present in the list of + `ALL_POSSIBLE_CATEGORIES` in `utils.jl`""" + arg_type = String + default = "id_total" "--timeout" help = "Timeout, s." arg_type = Int default = 300 + "--workers" + help = "The number of available worker processes." + arg_type = Int + default = 4 "--skip" - help = "Systems to skip." + help = "Skip specified benchmark models." arg_type = Vector{String} - default = ["NFkB"] + default = ["NFkB", + "JAK-STAT 1", + "LeukaemiaLeon2021", + "MAPK model (5 outputs bis)", + "QWWC", + "TumorHu2019", + "TumorPillis2007", + "cLV1 (1o)"] + "--models" + help = """ + Run specified benchmark models. + A comma-separated list of names. + Leave empty for selecting all models.""" + arg_type = String + default = "" + "--augment" + help = "Augment the benchmark dataset with similar models." + arg_type = Bool + default = false "--regen" help = "Re-generate the folder with benchmarks from scratch." arg_type = Bool - default = true - "--keywords" + default = false + "--tableonly" help = """ - Keyword arguments to `find_identifiable_functions`. - Semicolon-separated list of named tuples.""" - default = String - default = "(strategy=(:gb, ),); (strategy=(:gb, ),with_states=true); (strategy=(:normalforms, 2),); (strategy=(:normalforms, 2),with_states=true); (strategy=(:normalforms, 3),); (strategy=(:normalforms, 3),with_states=true); (strategy=(:hybrid, ),); (strategy=(:hybrid, ),with_states=true)" + Do not run benchmarks. + Just construct the table from the existing directory.""" + arg_type = Bool + default = false end #! format: on @@ -50,11 +124,12 @@ end function populate_benchmarks(args, kwargs) regen = args["regen"] - !regen && return true + dir_present = isdir((@__DIR__) * "/$BENCHMARK_RESULTS/") + dir_present && !regen && return false @debug "Re-generating the benchmarks folder" try - if isdir((@__DIR__) * "/systems/") - rm((@__DIR__) * "/systems/", recursive = true, force = true) + if isdir((@__DIR__) * "/$BENCHMARK_RESULTS/") + rm((@__DIR__) * "/$BENCHMARK_RESULTS/", recursive = true, force = true) end catch err @info "Something went wrong when deleting the benchmarks folder" @@ -74,8 +149,8 @@ function populate_benchmarks(args, kwargs) name = bmark[:name] system = bmark[:ode] @debug "Generating $name" - mkpath((@__DIR__) * "/systems/$name/") - fd = open((@__DIR__) * "/systems/$name/$name.jl", "w") + mkpath((@__DIR__) * "/$BENCHMARK_RESULTS/$name/") + fd = open((@__DIR__) * "/$BENCHMARK_RESULTS/$name/$name.jl", "w") println(fd, "# $name") println(fd, "#! format: off") println(fd, "using StructuralIdentifiability") @@ -91,40 +166,53 @@ end function run_benchmarks(args, kwargs) to_skip = args["skip"] timeout = args["timeout"] - dirnames = first(walkdir((@__DIR__) * "/systems/"))[2] - to_run_names = setdiff(dirnames, to_skip) - to_run_indices = collect(1:length(to_run_names)) + @assert timeout > 0 + function_name = args["function"] + @assert function_name in ("find_identifiable_functions", "reparametrize_global") + nworkers = args["workers"] + @assert nworkers > 0 - nworkers = 16 + dirnames = first(walkdir((@__DIR__) * "/$BENCHMARK_RESULTS/"))[2] + models_from_args = filter(s -> !isempty(s), map(strip, split(args["models"], ","))) + to_run_names = if isempty(models_from_args) + dirnames + else + models_from_args + end + to_run_names = setdiff(to_run_names, to_skip) + to_run_indices = collect(1:length(to_run_names)) @info """ - Running benchmarks. + Benchmarking `$function_name`.""" + @info """ + Passing these keyword arguments to `$function_name`: + \t$(join(map(string, kwargs), "\n\t"))""" + @info """ Number of benchmark systems: $(length(to_run_indices)) Workers: $(nworkers) - Timeout: $timeout seconds - Keywords for `find_identifiable_functions`: - \t$(join(map(string, kwargs), "\n\t"))""" + Timeout: $timeout seconds""" @info """ Benchmark systems: $to_run_names""" seconds_passed(from_t) = round((time_ns() - from_t) / 1e9, digits = 2) - queue = [(kw, idx) for kw in kwargs for idx in to_run_indices] - procs = [] - log_fd = [] - keywords = [] - exited = [] + queue = [ + (problem_id = problem, function_kwargs = kw) for kw in kwargs for + problem in to_run_indices + ] + processes = [] + running = [] errored = [] - running = 0 - generate_showvalues(procs) = + generate_showvalues(processes) = () -> [( :Active, join( map( - proc -> string(proc.name) * " / " * string(proc.id), - filter(proc -> process_running(proc.proc), procs), + proc -> + string(proc.problem_name) * " / " * string(proc.global_run_id), + filter(proc -> process_running(proc.julia_process), processes), ), ", ", ), @@ -138,73 +226,90 @@ function run_benchmarks(args, kwargs) enabled = progressbar_enabled(), color = _progressbar_color, ) - while true - if !isempty(queue) && running < nworkers + if !isempty(queue) && length(running) < nworkers + task = pop!(queue) + function_kwargs = task.function_kwargs + problem_id = task.problem_id + problem_name = to_run_names[problem_id] + global_id = keywords_to_global_id(function_kwargs) + @debug "Running $problem_name / $global_id. Kwargs:\n$function_kwargs" + logfn = generic_filename("logs", global_id) + logs = open((@__DIR__) * "/$BENCHMARK_RESULTS/$problem_name/$logfn", "w") + # escaping ':' for Windows + function_kwargs_esc = replace(string(function_kwargs), ":" => "\\:") + cmd = Cmd([ + "julia", + (@__DIR__) * "/run_single_benchmark.jl", + "$function_name", + "$problem_name", + "$function_kwargs_esc", + ]) + cmd = Cmd(cmd, ignorestatus = true, detach = false, env = copy(ENV)) + proc = run(pipeline(cmd, stdout = logs, stderr = logs), wait = false) + push!( + processes, + ( + problem_id = problem_id, + problem_name = problem_name, + function_name = function_name, + function_kwargs = function_kwargs, + julia_process = proc, + start_time = time_ns(), + global_run_id = global_id, + logfile = logs, + # errfile = errs, + ), + ) + push!(running, processes[end]) next!( prog, - showvalues = generate_showvalues(procs), + showvalues = generate_showvalues(processes), step = 0, valuecolor = _progressbar_value_color, # spinner = "⌜⌝⌟⌞", ) - (kw, idx) = pop!(queue) - name = to_run_names[idx] - id = keywords_to_id(kw) - @debug "Running $name / $id" - logs = open((@__DIR__) * "/systems/$name/logs_$id", "w") - cmd = Cmd(["julia", (@__DIR__) * "/run_single_benchmark.jl", "$name", "$kw"]) - cmd = Cmd(cmd, ignorestatus = true, detach = false, env = copy(ENV)) - proc = run(pipeline(cmd, stdout = logs, stderr = logs), wait = false) - push!(log_fd, logs) - push!(keywords, kw) - push!( - procs, - (index = idx, name = name, proc = proc, start_time = time_ns(), id = id), - ) - running += 1 end sleep(0.2) - i = 1 - for i in 1:length(procs) - i in exited && continue - proc = procs[i] - if process_exited(proc.proc) - running -= 1 - push!(exited, i) - if proc.proc.exitcode != 0 - push!(errored, i) + to_be_removed = [] + for i in 1:length(running) + proc = running[i] + if process_exited(proc.julia_process) + push!(to_be_removed, i) + if proc.julia_process.exitcode != 0 + push!(errored, proc) end - close(log_fd[i]) - kw = keywords[i] + close(proc.logfile) + # close(proc.errfile) + kw = proc.function_kwargs start_time = proc.start_time next!( prog, - showvalues = generate_showvalues(procs), + showvalues = generate_showvalues(processes), valuecolor = _progressbar_value_color, ) - @debug "Yielded $(proc.name) / $(kw) after $(seconds_passed(start_time)) seconds" + @debug "Yielded $(proc.problem_name) / $(kw) after $(seconds_passed(start_time)) seconds" end - if process_running(proc.proc) + if process_running(proc.julia_process) start_time = proc.start_time if seconds_passed(start_time) > timeout - kill(proc.proc) - close(log_fd[i]) - kw = keywords[i] - running -= 1 - push!(exited, i) + push!(to_be_removed, i) + kill(proc.julia_process) + close(proc.logfile) + # close(proc.errfile) + kw = proc.function_kwargs next!( prog, - showvalues = generate_showvalues(procs), + showvalues = generate_showvalues(processes), valuecolor = _progressbar_value_color, ) - @debug "Timed-out $(proc.name) / $(kw) after $(seconds_passed(start_time)) seconds" + @debug "Timed-out $(proc.problem_name) / $(kw) after $(seconds_passed(start_time)) seconds" end end end - if length(exited) == length(to_run_names) * length(kwargs) - @debug "Exited $exited" + deleteat!(running, to_be_removed) + if isempty(queue) && isempty(running) @debug "All benchmarks finished" break end @@ -213,8 +318,8 @@ function run_benchmarks(args, kwargs) if !isempty(errored) printstyled("(!) Maybe errored:\n", color = :red) - for i in errored - println("\t$(procs[i].name) / $(procs[i].id)") + for proc in errored + println("\t$(proc.problem_name) / $(proc.global_run_id)") end end @@ -222,114 +327,127 @@ function run_benchmarks(args, kwargs) end function collect_timings(args, kwargs, names; content = :compare) - resulting_md = "" - - resulting_md *= """ - ## Benchmark results - - Timestamp: $(now()) - Timeout: $(args["timeout"]) s + function_name = args["function"] + targets = map(Symbol, map(strip, split(args["target"], ","))) + @assert all(target -> target in ALL_CATEGORIES, targets) + @assert length(targets) > 0 + @info """ + Collecting benchmark results for `$function_name`. - **Timings in seconds.** + Keyword arguments of interest: + \t$(join(map(string, kwargs), "\n\t")) + Statistics of interest: + \t$(join(map(string, targets), "\n\t")) """ cannot_collect = [] names = sort(names) - runtimes = Dict() + kwids = map(keywords_to_global_id, kwargs) + + # Collect timings and data from directory BENCHMARK_RESULTS. + data = Dict() for name in names @debug "==== Reading $name" - runtimes[name] = Dict() - for kw in kwargs - timings = nothing - id = keywords_to_id(kw) - runtimes[name][id] = Dict() + data[name] = Dict() + for kwid in kwids + timings_file = nothing + ##### + data[name][kwid] = Dict() + timingsfn = timings_filename(kwid) try - @debug "==== Opening /systems/$name/timings_$id" - timings = open((@__DIR__) * "/systems/$name/timings_$id", "r") + @debug "==== Opening /$BENCHMARK_RESULTS/$name/$timingsfn" + timings_file = + open((@__DIR__) * "/$BENCHMARK_RESULTS/$name/$timingsfn", "r") catch e - @debug "Cannot collect timings for $name / $id" - push!(cannot_collect, (name, id)) + @debug "Cannot collect timings for $name / $kwid" + push!(cannot_collect, (name, kwid)) continue end - lines = readlines(timings) + lines = readlines(timings_file) if isempty(lines) - @debug "Cannot collect timings for $name / $id" - push!(cannot_collect, (name, id)) + @debug "Cannot collect timings for $name / $kwid" + push!(cannot_collect, (name, kwid)) continue end @assert lines[1] == name for line in lines[2:end] k, v = split(line, ", ") - runtimes[name][id][Symbol(k)] = parse(Float64, v) + data[name][kwid][Symbol(k)] = parse(Float64, v) + end + close(timings_file) + ##### + datafn = data_filename(kwid) + data_file = nothing + try + @debug "==== Opening /$BENCHMARK_RESULTS/$name/$datafn" + data_file = open((@__DIR__) * "/$BENCHMARK_RESULTS/$name/$datafn", "r") + catch e + @debug "Cannot collect data for $name / $kwid" + push!(cannot_collect, (name, kwid)) + continue + end + lines = readlines(data_file) + if isempty(lines) + @debug "Cannot collect data for $name / $kwid" + push!(cannot_collect, (name, kwid)) + continue end - close(timings) + @assert lines[1] == name + for line in lines[2:end] + k, v = map(strip, split(line, ",")) + data[name][kwid][Symbol(k)] = v + end + close(data_file) end end if !isempty(cannot_collect) printstyled("(!) Cannot collect timings for:\n", color = :red) - for (name, id) in cannot_collect - println("\t$name / $id") + for (name, kwid) in cannot_collect + println("\t$name / $kwid") end end - if content === :compare - ids = map(keywords_to_id, kwargs) - resulting_md *= "|Model|" * join(map(String ∘ Symbol, ids), "|") * "|\n" - resulting_md *= "|-----|" * join(["---" for _ in ids], "|") * "|\n" - for name in names - times = runtimes[name] - resulting_md *= "|$name|" - for c in ids - if isempty(times[c]) - resulting_md *= " - " * "|" - else - resulting_md *= @sprintf("%.2f", times[c][:id_total]) * "|" - end - end - resulting_md *= "\n" - end - elseif length(content) == 2 - @assert content[1] === :compare - feature = content[2] - ids = map(keywords_to_id, kwargs) - resulting_md *= "|Model|" * join(map(s -> String(Symbol(s)), ids), "|") * "|\n" - resulting_md *= "|-----|" * join(["---" for _ in ids], "|") * "|\n" - for name in names - times = runtimes[name] - resulting_md *= "|$name|" - for c in ids - if isempty(times[c]) - resulting_md *= " - " * "|" - else - # resulting_md *= @sprintf("%.2f", times[c][feature]) * "|" - resulting_md *= repr(round(Int, times[c][feature])) * "|" - end + # Print the table to BENCHMARK_TABLE. + resulting_md = "" + resulting_md *= """ + ## Benchmark results + + $(now()) + + - Benchmarked function: `$(args["function"])` + - Workers: $(args["workers"]) + - Timeout: $(args["timeout"]) s + + **All timings in seconds.** + + """ + + makecolname(kw, target) = + kw === Symbol("") ? HUMAN_READABLE_CATEGORIES[target] : + Symbol(Symbol(kw), Symbol(" / "), HUMAN_READABLE_CATEGORIES[target]) + columns = [makecolname(kwid, target) for kwid in kwids for target in targets] + resulting_md *= "|Model|" * join(map(string, columns), "|") * "|\n" + resulting_md *= "|-----|" * join(["---" for _ in columns], "|") * "|\n" + for name in names + model_data = data[name] + resulting_md *= "|$name|" + for kwid in kwids + if !haskey(model_data, kwid) + resulting_md *= (" - " * "|")^length(columns) + continue end - resulting_md *= "\n" - end - else - kw = first(kwargs) - id = keywords_to_id(kw) - resulting_md *= "\nKeywords:\n$kw\n" - resulting_md *= - "|Model|" * - join(map(c -> HUMAN_READABLE_CATEGORIES[c], ALL_CATEGORIES), "|") * - "|\n" - resulting_md *= "|-----|" * join(["---" for _ in ALL_CATEGORIES], "|") * "|\n" - for name in names - times = runtimes[name] - resulting_md *= "|$name|" - for c in ALL_CATEGORIES - if isempty(times) + for target in targets + if !haskey(model_data[kwid], target) resulting_md *= " - " * "|" else - resulting_md *= @sprintf("%.2f", times[c]) * "|" + formatting_style = CATEGORY_FORMAT[target] + resulting_md *= formatting_style(model_data[kwid][target]) * "|" end end - resulting_md *= "\n" end + resulting_md *= "\n" end resulting_md *= "\n*Benchmarking environment:*\n\n" @@ -346,7 +464,7 @@ function collect_timings(args, kwargs, names; content = :compare) end end - open((@__DIR__) * "/benchmark_result.md", "w") do io + open((@__DIR__) * "/$BENCHMARK_TABLE", "w") do io write(io, resulting_md) end end @@ -354,18 +472,38 @@ end function main() timestamp = time_ns() args = parse_commandline() - kwargs = parse_keywords(args["keywords"]) @debug "Command-line args:" for (arg, val) in args @debug "$arg => $val" end - @debug "Keywords for `find_identifiable_functions`" + kwargs = parse_keywords(args["keywords"]) + @debug "Keywords for `$(args["function"])`" @debug kwargs - flag = populate_benchmarks(args, kwargs) - systems = run_benchmarks(args, kwargs) - collect_timings(args, kwargs, systems, content = :compare) + if args["tableonly"] + dirnames = first(walkdir((@__DIR__) * "/$BENCHMARK_RESULTS/"))[2] + models_from_args = filter(s -> !isempty(s), map(strip, split(args["models"], ","))) + problems = if isempty(models_from_args) + dirnames + else + models_from_args + end + problems = setdiff(problems, args["skip"]) + else + flag = populate_benchmarks(args, kwargs) + problems = run_benchmarks(args, kwargs) + printstyled( + """ + Benchmarking had finished in $(round((time_ns() - timestamp) / 1e9, digits=2)) seconds. + Results are written to /$BENCHMARK_RESULTS + """, + color = :light_green, + ) + end + collect_timings(args, kwargs, problems) printstyled( - "Benchmarking finished in $(round((time_ns() - timestamp) / 1e9, digits=2)) s\n", + """ + Table with results is written to /$BENCHMARK_TABLE + """, color = :light_green, ) end diff --git a/benchmarking/IdentifiableFunctions/run_single_benchmark.jl b/benchmarking/IdentifiableFunctions/run_single_benchmark.jl index 264f061b4..fdc22001e 100644 --- a/benchmarking/IdentifiableFunctions/run_single_benchmark.jl +++ b/benchmarking/IdentifiableFunctions/run_single_benchmark.jl @@ -5,109 +5,112 @@ using StructuralIdentifiability using StructuralIdentifiability: _runtime_logger, ODE using StructuralIdentifiability.ParamPunPam -logger = Logging.SimpleLogger(stdout, Logging.Warn) +logger = Logging.ConsoleLogger(stdout, Logging.Info) global_logger(logger) include("utils.jl") -runtimes = Dict() -data = Dict() -results = Dict() +const data = Dict() -NUM_RUNS = 1 -NAME = ARGS[1] -KWARGS = parse_keywords(ARGS[2])[1] -ID = keywords_to_id(KWARGS) +const NUM_RUNS = 1 +const FUNCTION_NAME = ARGS[1] +const PROBLEM_NAME = ARGS[2] +const KWARGS = parse_keywords(ARGS[3])[1] +const GLOBAL_ID = keywords_to_global_id(KWARGS) + +@info "" FUNCTION_NAME +@info "" PROBLEM_NAME +@info "" KWARGS +@info "" GLOBAL_ID +flush(stdout) +flush(stderr) # Load the system -path = (@__DIR__) * "/systems/$NAME/$NAME.jl" +path = (@__DIR__) * "/$BENCHMARK_RESULTS/$PROBLEM_NAME/$PROBLEM_NAME.jl" include(path) # Compile -ode = @ODEmodel( - x1'(t) = (-b * c * x1(t) - b * x1(t) * x4(t) + 1) // (c + x4(t)), - x2'(t) = alpha * x1(t) - beta * x2(t), - x3'(t) = gama * x2(t) - delta * x3(t), - x4'(t) = (gama * sigma * x2(t) * x4(t) - delta * sigma * x3(t) * x4(t)) // x3(t), - y(t) = x1(t) -) -find_identifiable_functions(ode; KWARGS...) - -logger = Logging.SimpleLogger(stdout, Logging.Info) -global_logger(logger) +const FUNC_SYM = Symbol(FUNCTION_NAME) +ode = @ODEmodel(x1'(t) = a * x1(t) + x2, x2'(t) = b * x2(t) + c * d, y(t) = x1(t)) +eval(:($FUNC_SYM($system; ($KWARGS...)))) function process_system() - @info "Processing $NAME" + @info "Processing $PROBLEM_NAME" @info """ Averaging over $NUM_RUNS runs. Using keyword arguments: $(typeof(KWARGS)) $KWARGS - ID: $ID""" + ID: $GLOBAL_ID""" - runtimes[NAME] = Dict(c => 0.0 for c in ALL_CATEGORIES) - data[NAME] = Dict{Any, Any}(c => [] for c in ID_DATA_CATEGORIES) + data[PROBLEM_NAME] = Dict{Any, Any}(c => 0.0 for c in ALL_CATEGORIES) for _ in 1:NUM_RUNS - funcs = find_identifiable_functions(system; KWARGS...) - results[NAME] = funcs - @info "Identifiable functions are" funcs + timing = @timed result = eval(:($FUNC_SYM($system; ($KWARGS...)))) + data[PROBLEM_NAME][:return_value] = result + @info "Result is" result for cat in ID_TIME_CATEGORIES - runtimes[NAME][cat] += StructuralIdentifiability._runtime_logger[cat] + if haskey(StructuralIdentifiability._runtime_logger, cat) + data[PROBLEM_NAME][cat] = StructuralIdentifiability._runtime_logger[cat] + end end for cat in ID_DATA_CATEGORIES - data[NAME][cat] = deepcopy(StructuralIdentifiability._runtime_logger[cat]) + if haskey(StructuralIdentifiability._runtime_logger, cat) + data[PROBLEM_NAME][cat] = + deepcopy(StructuralIdentifiability._runtime_logger[cat]) + end end + data[PROBLEM_NAME][:id_total] = timing.time end - for k in keys(runtimes[NAME]) - runtimes[NAME][k] = runtimes[NAME][k] / NUM_RUNS + for cat in ID_TIME_CATEGORIES + if haskey(data[PROBLEM_NAME], cat) + data[PROBLEM_NAME][cat] = data[PROBLEM_NAME][cat] / NUM_RUNS + end end end function dump_timings() timings = "" - timings *= "$NAME\n" - - for (name, times) in runtimes - for c in ALL_CATEGORIES + timings *= "$PROBLEM_NAME\n" + for (key, model_data) in data + for c in ID_TIME_CATEGORIES timings *= "$c, " - timings *= string(times[c]) * "\n" + timings *= string(model_data[c]) * "\n" end end - - open((@__DIR__) * "/systems/$NAME/timings_$ID", "w") do io + filename = timings_filename(GLOBAL_ID) + open((@__DIR__) * "/$BENCHMARK_RESULTS/$PROBLEM_NAME/$filename", "w") do io write(io, timings) end end function dump_results() - # dump identifiabile functions - open((@__DIR__) * "/systems/$NAME/id_funcs_$ID", "w") do io - if haskey(results, NAME) - funcs_str = "[" * join(map(repr, results[NAME]), ",\n") * "]" - println(io, funcs_str) + filename = result_filename(GLOBAL_ID) + open((@__DIR__) * "/$BENCHMARK_RESULTS/$PROBLEM_NAME/$filename", "w") do io + if haskey(data, PROBLEM_NAME) + println(io, data[PROBLEM_NAME][:return_value]) end end - # dump everything else + filename = data_filename(GLOBAL_ID) + open((@__DIR__) * "/$BENCHMARK_RESULTS/$PROBLEM_NAME/$filename", "w") do io + write(io, "$PROBLEM_NAME\n") + end for cat in ID_DATA_CATEGORIES - open((@__DIR__) * "/systems/$NAME/$(cat)", "w") do io - if haskey(data, NAME) - if cat === :id_certain_factors - factors = data[NAME][cat] - number = length(factors) - med = median(map(length, factors)) - R = parent(factors[1][1]) - factors_str = map(s -> map(repr, s), factors) - factors_str = map(f -> join(f, ", "), factors_str) - factors_str = join(factors_str, "\n") - println(io, "Factors in $R") - println(io, "Factored $number polynomials in total") - println(io, "The median number of factors is $med") - println(io, "\n============================\n") - println(io, factors_str) - else - @warn "Skipping printing data: $cat" - end + if !haskey(data[PROBLEM_NAME], cat) + continue + end + if cat === :something_important + # make a separate file for it + filename_cat = generic_filename(cat, GLOBAL_ID) + open((@__DIR__) * "/$BENCHMARK_RESULTS/$PROBLEM_NAME/$filename_cat", "w") do io + # print something end + continue + end + # otherwise, print in the data file + open((@__DIR__) * "/$BENCHMARK_RESULTS/$PROBLEM_NAME/$filename", "a+") do io + write(io, "$cat, ") + write(io, string(data[PROBLEM_NAME][cat])) + write(io, "\n") end end end diff --git a/benchmarking/IdentifiableFunctions/sugar.jl b/benchmarking/IdentifiableFunctions/sugar.jl index b2a7fbe7b..72d1162f2 100644 --- a/benchmarking/IdentifiableFunctions/sugar.jl +++ b/benchmarking/IdentifiableFunctions/sugar.jl @@ -70,9 +70,9 @@ function normalform(p, basis, sugar_cubes) r, sugar end -function gb(polys; use_sugar=true) +function gb(polys; use_sugar = true) # The classic Buchberger algorithm - sort!(polys, by=leading_monomial) + sort!(polys, by = leading_monomial) critical_pairs = Vector{NTuple{2, Int}}() basis = empty(polys) sugar_cubes = Int[] diff --git a/benchmarking/IdentifiableFunctions/systems/Akt pathway/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Akt pathway/id_funcs_(:gb,) deleted file mode 100644 index 0f6b6ca7b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Akt pathway/id_funcs_(:gb,) +++ /dev/null @@ -1,12 +0,0 @@ -[reaction_8_k1, -reaction_2_k2, -reaction_5_k2, -reaction_3_k1, -reaction_6_k1, -reaction_7_k1, -reaction_4_k1, -reaction_1_k1 - reaction_9_k1 - reaction_1_k2, -reaction_5_k1//reaction_2_k1, -a1//reaction_2_k1, -a3//reaction_2_k1, -a2//reaction_2_k1] diff --git a/benchmarking/IdentifiableFunctions/systems/Akt pathway/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Akt pathway/id_funcs_(:gb,)_with_states deleted file mode 100644 index ce6084c27..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Akt pathway/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,20 +0,0 @@ -[reaction_8_k1, -reaction_2_k2, -reaction_5_k2, -reaction_3_k1, -reaction_6_k1, -reaction_7_k1, -reaction_4_k1, -reaction_2_k1*pS6, -reaction_2_k1*pAkt_S6, -reaction_2_k1*Akt, -reaction_2_k1*pEGFR, -reaction_2_k1*S6, -reaction_2_k1*pAkt, -reaction_2_k1*pEGFR_Akt, -reaction_9_k1*reaction_2_k1*EGF_EGFR, -reaction_1_k1 - reaction_9_k1 - reaction_1_k2, -reaction_5_k1//reaction_2_k1, -a1//reaction_2_k1, -a3//reaction_2_k1, -a2//reaction_2_k1] diff --git a/benchmarking/IdentifiableFunctions/systems/Akt pathway/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Akt pathway/id_funcs_(:hybrid,) deleted file mode 100644 index eb0a62833..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Akt pathway/id_funcs_(:hybrid,) +++ /dev/null @@ -1,12 +0,0 @@ -[reaction_8_k1, -reaction_2_k2, -reaction_5_k2, -reaction_3_k1, -reaction_6_k1, -reaction_7_k1, -reaction_4_k1, -reaction_1_k1 - reaction_9_k1 - reaction_1_k2, -reaction_2_k1//reaction_5_k1, -reaction_2_k1//a3, -reaction_2_k1//a2, -a1//reaction_2_k1] diff --git a/benchmarking/IdentifiableFunctions/systems/Akt pathway/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Akt pathway/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index 11608c255..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Akt pathway/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,20 +0,0 @@ -[reaction_8_k1, -reaction_2_k2, -reaction_5_k2, -reaction_3_k1, -reaction_6_k1, -reaction_7_k1, -reaction_4_k1, -reaction_2_k1*pS6, -reaction_2_k1*pAkt_S6, -reaction_2_k1*Akt, -reaction_2_k1*pEGFR, -reaction_2_k1*S6, -reaction_2_k1*pAkt, -reaction_2_k1*pEGFR_Akt, -reaction_5_k1*pS6, -a1*pS6, -a3*pS6, -a2*pS6, -reaction_9_k1*reaction_2_k1*EGF_EGFR, -reaction_1_k1 - reaction_9_k1 - reaction_1_k2] diff --git a/benchmarking/IdentifiableFunctions/systems/Akt pathway/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Akt pathway/id_funcs_(:normalforms, 2) deleted file mode 100644 index 0f6b6ca7b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Akt pathway/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,12 +0,0 @@ -[reaction_8_k1, -reaction_2_k2, -reaction_5_k2, -reaction_3_k1, -reaction_6_k1, -reaction_7_k1, -reaction_4_k1, -reaction_1_k1 - reaction_9_k1 - reaction_1_k2, -reaction_5_k1//reaction_2_k1, -a1//reaction_2_k1, -a3//reaction_2_k1, -a2//reaction_2_k1] diff --git a/benchmarking/IdentifiableFunctions/systems/Akt pathway/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Akt pathway/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index 11608c255..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Akt pathway/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,20 +0,0 @@ -[reaction_8_k1, -reaction_2_k2, -reaction_5_k2, -reaction_3_k1, -reaction_6_k1, -reaction_7_k1, -reaction_4_k1, -reaction_2_k1*pS6, -reaction_2_k1*pAkt_S6, -reaction_2_k1*Akt, -reaction_2_k1*pEGFR, -reaction_2_k1*S6, -reaction_2_k1*pAkt, -reaction_2_k1*pEGFR_Akt, -reaction_5_k1*pS6, -a1*pS6, -a3*pS6, -a2*pS6, -reaction_9_k1*reaction_2_k1*EGF_EGFR, -reaction_1_k1 - reaction_9_k1 - reaction_1_k2] diff --git a/benchmarking/IdentifiableFunctions/systems/Akt pathway/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Akt pathway/id_funcs_(:normalforms, 3) deleted file mode 100644 index 0f6b6ca7b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Akt pathway/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,12 +0,0 @@ -[reaction_8_k1, -reaction_2_k2, -reaction_5_k2, -reaction_3_k1, -reaction_6_k1, -reaction_7_k1, -reaction_4_k1, -reaction_1_k1 - reaction_9_k1 - reaction_1_k2, -reaction_5_k1//reaction_2_k1, -a1//reaction_2_k1, -a3//reaction_2_k1, -a2//reaction_2_k1] diff --git a/benchmarking/IdentifiableFunctions/systems/Akt pathway/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Akt pathway/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index 11608c255..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Akt pathway/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,20 +0,0 @@ -[reaction_8_k1, -reaction_2_k2, -reaction_5_k2, -reaction_3_k1, -reaction_6_k1, -reaction_7_k1, -reaction_4_k1, -reaction_2_k1*pS6, -reaction_2_k1*pAkt_S6, -reaction_2_k1*Akt, -reaction_2_k1*pEGFR, -reaction_2_k1*S6, -reaction_2_k1*pAkt, -reaction_2_k1*pEGFR_Akt, -reaction_5_k1*pS6, -a1*pS6, -a3*pS6, -a2*pS6, -reaction_9_k1*reaction_2_k1*EGF_EGFR, -reaction_1_k1 - reaction_9_k1 - reaction_1_k2] diff --git a/benchmarking/IdentifiableFunctions/systems/Akt pathway/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Akt pathway/logs_(:gb,) deleted file mode 100644 index f819e3ba2..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Akt pathway/logs_(:gb,) +++ /dev/null @@ -1,84 +0,0 @@ -┌ Info: Processing Akt pathway -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.419786723 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.419786723 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.332596828 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.332596828 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [18, 9, 145] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.001380274 seconds -│ :rank_time = rank_time -│ rank_times = 0.001380274 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 218 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (7, 11)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.797005469 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.087050879 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.875648955 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 217 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 368 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.680994209 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[reaction_8_k1, reaction_2_k2, reaction_5_k2, reaction_3_k1, reaction_6_k1, reaction_7_k1, reaction_4_k1, reaction_1_k1 - reaction_9_k1 - reaction_1_k2, reaction_5_k1//reaction_2_k1, a1//reaction_2_k1, a3//reaction_2_k1, a2//reaction_2_k1] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Akt pathway/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Akt pathway/logs_(:gb,)_with_states deleted file mode 100644 index 9c2ca2155..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Akt pathway/logs_(:gb,)_with_states +++ /dev/null @@ -1,174 +0,0 @@ -┌ Info: Processing Akt pathway -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.850051912 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.850051912 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.292832003 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.292832003 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [18, 9, 145] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.001494051 seconds -│ :rank_time = rank_time -│ rank_times = 0.001494051 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 218 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (7, 11)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 5.220075956 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.295918543 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.154068127 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 217 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 368 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 24 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (0, 0)], [(0, 0), (3, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.183139704 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005865806 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 24 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (0, 0)], [(0, 0), (3, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 3 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.187753906 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.088087989 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 22 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.014114909 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 23 initial generators there are 20 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 582 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 12.607718628 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[reaction_8_k1, reaction_2_k2, reaction_5_k2, reaction_3_k1, reaction_6_k1, reaction_7_k1, reaction_4_k1, reaction_2_k1*pS6, reaction_2_k1*pAkt_S6, reaction_2_k1*Akt, reaction_2_k1*pEGFR, reaction_2_k1*S6, reaction_2_k1*pAkt, reaction_2_k1*pEGFR_Akt, reaction_9_k1*reaction_2_k1*EGF_EGFR, reaction_1_k1 - reaction_9_k1 - reaction_1_k2, reaction_5_k1//reaction_2_k1, a1//reaction_2_k1, a3//reaction_2_k1, a2//reaction_2_k1] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Akt pathway/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Akt pathway/logs_(:hybrid,) deleted file mode 100644 index 39af34e18..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Akt pathway/logs_(:hybrid,) +++ /dev/null @@ -1,549 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing Akt pathway -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.675330842 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.675330842 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.346975268 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.346975268 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [18, 9, 145] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.00135801 seconds -│ :rank_time = rank_time -│ rank_times = 0.00135801 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 218 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (7, 11)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.74111672 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.194557665 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (16 in total): Nemo.fmpq_mpoly[a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 849 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 815 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 849 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 815 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 849 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 815 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y15, y9, y6, t, y7, y8, y2, y12], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y10, y13, y5, y11, y4, y16, y14, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.078989483 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002865587 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y14, y3, y2, y4, y9, y1, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y16, y7, y12, y15, t, y13, y5, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.044987607 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002960533 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y15, y10, y6, y13, y1, y3, y4, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y2, y11, y14, y9, y12, y7, y16, y5], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.123451879 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002773569 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y9, y2, y15, y14, y10, t, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y13, y16, y1, y12, y4, y11, y8, y7, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.04554174 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.099088551 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y9, y4, y2, y1, y14, y12, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, t, y16, y11, y13, y8, y15, y7, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.048406943 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002579165 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y10, y8, y9, y3, t, y15, y11], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y13, y6, y2, y14, y12, y4, y16, y7, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.044315649 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.097624177 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y2, y3, y4, y5, y16, y6, y13], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y15, t, y11, y9, y1, y10, y12, y14, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.038127949 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002843338 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y4, y9, y1, y3, y13, y6, y15], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y2, y11, y7, y12, t, y14, y10, y16], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.117444076 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003108167 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y14, y5, y16, y13, t, y15, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y8, y12, y2, y10, y7, y1, y3, y11], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.050452427 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00254384 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y13, y1, y6, y10, y8, y15, y9, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y16, y14, t, y4, y12, y11, y2, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.114723467 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002235898 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.677377525 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 217 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 368 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 12.685722638 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[reaction_8_k1, reaction_2_k2, reaction_5_k2, reaction_3_k1, reaction_6_k1, reaction_7_k1, reaction_4_k1, reaction_1_k1 - reaction_9_k1 - reaction_1_k2, reaction_2_k1//reaction_5_k1, reaction_2_k1//a3, reaction_2_k1//a2, a1//reaction_2_k1] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Akt pathway/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Akt pathway/logs_(:hybrid,)_with_states deleted file mode 100644 index c54ee4d3f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Akt pathway/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,639 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing Akt pathway -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.617223033 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.617223033 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.347596743 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.347596743 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [18, 9, 145] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.001509525 seconds -│ :rank_time = rank_time -│ rank_times = 0.001509525 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 218 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (7, 11)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.529239227 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.24696368 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.895758518 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 217 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 368 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 24 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (0, 0)], [(0, 0), (3, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.196567189 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005550624 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 24 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (0, 0)], [(0, 0), (3, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 3 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.200899348 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.006032238 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 22 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (25 in total): Nemo.fmpq_mpoly[a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 3156 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 3053 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 3156 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 3053 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 285 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 3156 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 3053 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 285 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y18, y6, y25, y8, y10, y1, y13, y7, y9, y15, y5, y20, y11], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y24, y16, y4, y2, y19, y22, y14, y17, y12, y3, y21, t, y23], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 2), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.096862463 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.095184317 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 23 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y22, y2, y24, y4, y3, y23, y9, y21, t, y17, y19, y18, y12], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y14, y15, y6, y10, y16, y8, y25, y20, y1, y5, y7, y13, y11], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 1)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 2), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(1, 1), (0, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.184216223 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004156691 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 23 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y6, y1, y7, y17, y14, y3, y4, y23, y19, y25, y10, y20], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y24, t, y13, y15, y16, y22, y5, y12, y9, y18, y2, y8, y21], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 1)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(1, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.183699964 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004186011 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 23 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y16, y12, y15, y4, y1, y8, y7, y22, y10, y17, y13, y19, y18], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y23, y24, y2, y3, y21, y9, t, y6, y14, y25, y20, y5, y11], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 1)], [(1, 1), (0, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.158823869 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004169217 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 23 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y23, y5, y11, y25, y9, y22, y20, y6, y4, t, y1, y8, y18], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y21, y16, y13, y7, y15, y24, y2, y12, y10, y14, y19, y17], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 2), (0, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (0, 0), (2, 1), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.176743403 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00409148 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 23 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y3, y24, y6, y22, y1, t, y10, y9, y13, y21, y5, y4], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y18, y11, y19, y20, y23, y2, y16, y15, y25, y8, y14, y17, y12], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.174226896 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004185223 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 23 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y7, y22, y18, y14, y16, y17, y1, y4, y21, y12, y13, y10], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y15, t, y23, y11, y24, y25, y3, y6, y19, y9, y20, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.081054754 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.07885518 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 23 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y7, y5, y14, y12, y16, t, y18, y15, y25, y17, y9, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y2, y11, y4, y24, y8, y20, y21, y10, y23, y19, y13, y22], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(1, 1), (0, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 2), (0, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.177012463 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004129668 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 23 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y18, y10, y13, y19, y4, y8, y5, y6, y7, y20, y15, t, y16], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y21, y22, y14, y17, y23, y2, y24, y9, y11, y12, y3, y25], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0), (2, 1)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.172828122 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003979641 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 23 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y25, y8, y21, t, y14, y19, y2, y10, y7, y18, y3, y23, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y9, y15, y16, y5, y6, y24, y12, y13, y22, y17, y20, y11], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(1, 1), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 1)], [(1, 1), (0, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.167161618 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004040253 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 23 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.012092808 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 23 initial generators there are 20 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 306 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 16.000414208 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[reaction_8_k1, reaction_2_k2, reaction_5_k2, reaction_3_k1, reaction_6_k1, reaction_7_k1, reaction_4_k1, reaction_2_k1*pS6, reaction_2_k1*pAkt_S6, reaction_2_k1*Akt, reaction_2_k1*pEGFR, reaction_2_k1*S6, reaction_2_k1*pAkt, reaction_2_k1*pEGFR_Akt, reaction_5_k1*pS6, a1*pS6, a3*pS6, a2*pS6, reaction_9_k1*reaction_2_k1*EGF_EGFR, reaction_1_k1 - reaction_9_k1 - reaction_1_k2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Akt pathway/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Akt pathway/logs_(:normalforms, 2) deleted file mode 100644 index 62303a2ab..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Akt pathway/logs_(:normalforms, 2) +++ /dev/null @@ -1,113 +0,0 @@ -┌ Info: Processing Akt pathway -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.683449902 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.683449902 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.392639028 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.392639028 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [18, 9, 145] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.001513058 seconds -│ :rank_time = rank_time -│ rank_times = 0.001513058 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 218 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (7, 11)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 5.436274137 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.129669557 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (16 in total): Nemo.fmpq_mpoly[a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 117 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 103 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 117 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 103 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 117 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 103 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.764392695 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 217 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 368 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 12.144397871 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[reaction_8_k1, reaction_2_k2, reaction_5_k2, reaction_3_k1, reaction_6_k1, reaction_7_k1, reaction_4_k1, reaction_1_k1 - reaction_9_k1 - reaction_1_k2, reaction_5_k1//reaction_2_k1, a1//reaction_2_k1, a3//reaction_2_k1, a2//reaction_2_k1] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Akt pathway/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Akt pathway/logs_(:normalforms, 2)_with_states deleted file mode 100644 index 435ebd1fc..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Akt pathway/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,203 +0,0 @@ -┌ Info: Processing Akt pathway -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.557577426 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.557577426 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.291833551 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.291833551 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [18, 9, 145] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.001463531 seconds -│ :rank_time = rank_time -│ rank_times = 0.001463531 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 218 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (7, 11)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 5.09093916 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.198886594 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.931035378 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 217 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 368 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 24 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (0, 0)], [(0, 0), (3, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.109932511 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.090448036 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 24 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (0, 0)], [(0, 0), (3, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 3 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.180662401 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005674152 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 22 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (25 in total): Nemo.fmpq_mpoly[a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 315 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 282 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 315 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 282 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 35 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 315 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 282 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 35 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.012584773 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 23 initial generators there are 20 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 306 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 12.487301555 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[reaction_8_k1, reaction_2_k2, reaction_5_k2, reaction_3_k1, reaction_6_k1, reaction_7_k1, reaction_4_k1, reaction_2_k1*pS6, reaction_2_k1*pAkt_S6, reaction_2_k1*Akt, reaction_2_k1*pEGFR, reaction_2_k1*S6, reaction_2_k1*pAkt, reaction_2_k1*pEGFR_Akt, reaction_5_k1*pS6, a1*pS6, a3*pS6, a2*pS6, reaction_9_k1*reaction_2_k1*EGF_EGFR, reaction_1_k1 - reaction_9_k1 - reaction_1_k2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Akt pathway/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Akt pathway/logs_(:normalforms, 3) deleted file mode 100644 index 1b710ab66..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Akt pathway/logs_(:normalforms, 3) +++ /dev/null @@ -1,113 +0,0 @@ -┌ Info: Processing Akt pathway -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.529911598 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.529911598 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.363173736 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.363173736 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [18, 9, 145] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.001481361 seconds -│ :rank_time = rank_time -│ rank_times = 0.001481361 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 218 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (7, 11)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 5.052336302 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.112837584 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (16 in total): Nemo.fmpq_mpoly[a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 849 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 815 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 849 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 815 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 849 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 815 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.730289686 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 217 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 368 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 11.627900767 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[reaction_8_k1, reaction_2_k2, reaction_5_k2, reaction_3_k1, reaction_6_k1, reaction_7_k1, reaction_4_k1, reaction_1_k1 - reaction_9_k1 - reaction_1_k2, reaction_5_k1//reaction_2_k1, a1//reaction_2_k1, a3//reaction_2_k1, a2//reaction_2_k1] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Akt pathway/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Akt pathway/logs_(:normalforms, 3)_with_states deleted file mode 100644 index a06ffafdc..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Akt pathway/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,203 +0,0 @@ -┌ Info: Processing Akt pathway -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.612462519 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.612462519 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.297065322 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.297065322 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [18, 9, 145] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.001473749 seconds -│ :rank_time = rank_time -│ rank_times = 0.001473749 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 218 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (7, 11)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 5.059948116 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.210844138 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.94528683 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 217 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 368 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 24 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (0, 0)], [(0, 0), (3, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.158577829 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.084257608 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 24 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (0, 0)], [(0, 0), (3, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 3 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.184433378 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005365154 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 22 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (25 in total): Nemo.fmpq_mpoly[a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 3156 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 3053 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 3156 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 3053 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 285 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 3156 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 3053 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 285 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.014614653 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 23 initial generators there are 20 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 306 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 14.49360314 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[reaction_8_k1, reaction_2_k2, reaction_5_k2, reaction_3_k1, reaction_6_k1, reaction_7_k1, reaction_4_k1, reaction_2_k1*pS6, reaction_2_k1*pAkt_S6, reaction_2_k1*Akt, reaction_2_k1*pEGFR, reaction_2_k1*S6, reaction_2_k1*pAkt, reaction_2_k1*pEGFR_Akt, reaction_5_k1*pS6, a1*pS6, a3*pS6, a2*pS6, reaction_9_k1*reaction_2_k1*EGF_EGFR, reaction_1_k1 - reaction_9_k1 - reaction_1_k2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Akt pathway/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Akt pathway/timings_(:gb,) deleted file mode 100644 index 4cd90fa93..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Akt pathway/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -Akt pathway -id_total, 10.680994209 diff --git a/benchmarking/IdentifiableFunctions/systems/Akt pathway/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Akt pathway/timings_(:gb,)_with_states deleted file mode 100644 index 3414f164a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Akt pathway/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Akt pathway -id_total, 12.607718628 diff --git a/benchmarking/IdentifiableFunctions/systems/Akt pathway/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Akt pathway/timings_(:hybrid,) deleted file mode 100644 index d7860c71b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Akt pathway/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -Akt pathway -id_total, 12.685722638 diff --git a/benchmarking/IdentifiableFunctions/systems/Akt pathway/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Akt pathway/timings_(:hybrid,)_with_states deleted file mode 100644 index 48011072a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Akt pathway/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Akt pathway -id_total, 16.000414208 diff --git a/benchmarking/IdentifiableFunctions/systems/Akt pathway/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Akt pathway/timings_(:normalforms, 2) deleted file mode 100644 index a26c63897..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Akt pathway/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -Akt pathway -id_total, 12.144397871 diff --git a/benchmarking/IdentifiableFunctions/systems/Akt pathway/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Akt pathway/timings_(:normalforms, 2)_with_states deleted file mode 100644 index b82f005f6..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Akt pathway/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Akt pathway -id_total, 12.487301555 diff --git a/benchmarking/IdentifiableFunctions/systems/Akt pathway/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Akt pathway/timings_(:normalforms, 3) deleted file mode 100644 index b1fb08545..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Akt pathway/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -Akt pathway -id_total, 11.627900767 diff --git a/benchmarking/IdentifiableFunctions/systems/Akt pathway/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Akt pathway/timings_(:normalforms, 3)_with_states deleted file mode 100644 index 0d6174a85..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Akt pathway/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Akt pathway -id_total, 14.49360314 diff --git a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/id_funcs_(:gb,) deleted file mode 100644 index 0041ad37c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/id_funcs_(:gb,) +++ /dev/null @@ -1,7 +0,0 @@ -[k01, -k12 + k13 + k14, -k31 + k21 + k41, -(k12^2*k13 - k12^2*k14 - k12*k13^2 + k12*k14^2 + k13^2*k14 - k13*k14^2)//(k31*k12 - k31*k14 - k21*k13 + k21*k14 - k12*k41 + k13*k41), -(k31*k12*k13 - k31*k13*k14 - k21*k12*k13 + k21*k12*k14 - k12*k14*k41 + k13*k14*k41)//(k31*k12 - k31*k14 - k21*k13 + k21*k14 - k12*k41 + k13*k41), -(k31*k21*k12 - k31*k21*k13 + k31*k13*k41 - k31*k14*k41 - k21*k12*k41 + k21*k14*k41)//(k31*k12 - k31*k14 - k21*k13 + k21*k14 - k12*k41 + k13*k41), -(k31^2*k21 - k31^2*k41 - k31*k21^2 + k31*k41^2 + k21^2*k41 - k21*k41^2)//(k31*k12 - k31*k14 - k21*k13 + k21*k14 - k12*k41 + k13*k41)] diff --git a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/id_funcs_(:gb,)_with_states deleted file mode 100644 index d6802244b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,12 +0,0 @@ -[x1, -k01, -x2 + x3 + x4, -k12 + k13 + k14, -k31 + k21 + k41, -k31^2*k12^2 - 2*k31^2*k12*k14 + k31^2*k14^2 - 2*k31*k21*k12*k13 + 2*k31*k21*k12*k14 + 2*k31*k21*k13*k14 - 2*k31*k21*k14^2 - 2*k31*k12^2*k41 + 2*k31*k12*k13*k41 + 2*k31*k12*k14*k41 - 2*k31*k13*k14*k41 + k21^2*k13^2 - 2*k21^2*k13*k14 + k21^2*k14^2 + 2*k21*k12*k13*k41 - 2*k21*k12*k14*k41 - 2*k21*k13^2*k41 + 2*k21*k13*k14*k41 + k12^2*k41^2 - 2*k12*k13*k41^2 + k13^2*k41^2, -k31*k12^2*x3 - k31*k12^2*x4 - k31*k12*k13*x2 + k31*k12*k13*x4 + k31*k12*k14*x2 - 2*k31*k12*k14*x3 + k31*k12*k14*x4 + k31*k13*k14*x2 - k31*k13*k14*x4 - k31*k14^2*x2 + k31*k14^2*x3 - k21*k12*k13*x3 + k21*k12*k13*x4 + k21*k12*k14*x3 - k21*k12*k14*x4 + k21*k13^2*x2 - k21*k13^2*x4 - 2*k21*k13*k14*x2 + k21*k13*k14*x3 + k21*k13*k14*x4 + k21*k14^2*x2 - k21*k14^2*x3 - k12^2*k41*x3 + k12^2*k41*x4 + k12*k13*k41*x2 + k12*k13*k41*x3 - 2*k12*k13*k41*x4 - k12*k14*k41*x2 + k12*k14*k41*x3 - k13^2*k41*x2 + k13^2*k41*x4 + k13*k14*k41*x2 - k13*k14*k41*x3, -k31^2*k12*x2 - k31^2*k12*x4 - k31^2*k14*x2 + k31^2*k14*x4 - k31*k21*k12*x3 + k31*k21*k12*x4 - k31*k21*k13*x2 + k31*k21*k13*x4 + k31*k21*k14*x2 + k31*k21*k14*x3 - 2*k31*k21*k14*x4 - 2*k31*k12*k41*x2 + k31*k12*k41*x3 + k31*k12*k41*x4 + k31*k13*k41*x2 - k31*k13*k41*x4 + k31*k14*k41*x2 - k31*k14*k41*x3 + k21^2*k13*x3 - k21^2*k13*x4 - k21^2*k14*x3 + k21^2*k14*x4 + k21*k12*k41*x3 - k21*k12*k41*x4 + k21*k13*k41*x2 - 2*k21*k13*k41*x3 + k21*k13*k41*x4 - k21*k14*k41*x2 + k21*k14*k41*x3 + k12*k41^2*x2 - k12*k41^2*x3 - k13*k41^2*x2 + k13*k41^2*x3, -(x2^2*x3 - x2^2*x4 - x2*x3^2 + x2*x4^2 + x3^2*x4 - x3*x4^2)//(k12*x3 - k12*x4 - k13*x2 + k13*x4 + k14*x2 - k14*x3), -(k12*x3^2 - k12*x4^2 - k13*x2^2 + k13*x4^2 + k14*x2^2 - k14*x3^2)//(k12*x3 - k12*x4 - k13*x2 + k13*x4 + k14*x2 - k14*x3), -(k12*k13*x2 - k12*k13*x3 - k12*k14*x2 + k12*k14*x4 + k13*k14*x3 - k13*k14*x4)//(k12*x3 - k12*x4 - k13*x2 + k13*x4 + k14*x2 - k14*x3), -(k12^2*k13 - k12^2*k14 - k12*k13^2 + k12*k14^2 + k13^2*k14 - k13*k14^2)//(k12*x3 - k12*x4 - k13*x2 + k13*x4 + k14*x2 - k14*x3)] diff --git a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/id_funcs_(:hybrid,) deleted file mode 100644 index cfcaa6a6b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/id_funcs_(:hybrid,) +++ /dev/null @@ -1,8 +0,0 @@ -[k01, -k12*k13*k14, -k31*k21*k41, -k12 + k13 + k14, -k31 + k21 + k41, -k31*k21 + k31*k41 + k21*k41, -k31*k12 - 2*k31*k13 + k31*k14 - 2*k21*k12 + k21*k13 + k21*k14 + k12*k41 + k13*k41 - 2*k14*k41, -(k12^2*k13 - k12^2*k14 - k12*k13^2 + k12*k14^2 + k13^2*k14 - k13*k14^2)//(k31*k12 - k31*k14 - k21*k13 + k21*k14 - k12*k41 + k13*k41)] diff --git a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index 4dda2ad6c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,12 +0,0 @@ -[x1, -k01, -x2*x3*x4, -k12*k13*k14, -k31*k21*k41, -x2 + x3 + x4, -k12 + k13 + k14, -k31 + k21 + k41, -x2*x3 + x2*x4 + x3*x4, -k31^2*k12^2 - 2*k31^2*k12*k14 + k31^2*k14^2 - 2*k31*k21*k12*k13 + 2*k31*k21*k12*k14 + 2*k31*k21*k13*k14 - 2*k31*k21*k14^2 - 2*k31*k12^2*k41 + 2*k31*k12*k13*k41 + 2*k31*k12*k14*k41 - 2*k31*k13*k14*k41 + k21^2*k13^2 - 2*k21^2*k13*k14 + k21^2*k14^2 + 2*k21*k12*k13*k41 - 2*k21*k12*k14*k41 - 2*k21*k13^2*k41 + 2*k21*k13*k14*k41 + k12^2*k41^2 - 2*k12*k13*k41^2 + k13^2*k41^2, -k31*k12^2*x3 - k31*k12^2*x4 - k31*k12*k13*x2 + k31*k12*k13*x4 + k31*k12*k14*x2 - 2*k31*k12*k14*x3 + k31*k12*k14*x4 + k31*k13*k14*x2 - k31*k13*k14*x4 - k31*k14^2*x2 + k31*k14^2*x3 - k21*k12*k13*x3 + k21*k12*k13*x4 + k21*k12*k14*x3 - k21*k12*k14*x4 + k21*k13^2*x2 - k21*k13^2*x4 - 2*k21*k13*k14*x2 + k21*k13*k14*x3 + k21*k13*k14*x4 + k21*k14^2*x2 - k21*k14^2*x3 - k12^2*k41*x3 + k12^2*k41*x4 + k12*k13*k41*x2 + k12*k13*k41*x3 - 2*k12*k13*k41*x4 - k12*k14*k41*x2 + k12*k14*k41*x3 - k13^2*k41*x2 + k13^2*k41*x4 + k13*k14*k41*x2 - k13*k14*k41*x3, -k31^2*k12*x2 - k31^2*k12*x4 - k31^2*k14*x2 + k31^2*k14*x4 - k31*k21*k12*x3 + k31*k21*k12*x4 - k31*k21*k13*x2 + k31*k21*k13*x4 + k31*k21*k14*x2 + k31*k21*k14*x3 - 2*k31*k21*k14*x4 - 2*k31*k12*k41*x2 + k31*k12*k41*x3 + k31*k12*k41*x4 + k31*k13*k41*x2 - k31*k13*k41*x4 + k31*k14*k41*x2 - k31*k14*k41*x3 + k21^2*k13*x3 - k21^2*k13*x4 - k21^2*k14*x3 + k21^2*k14*x4 + k21*k12*k41*x3 - k21*k12*k41*x4 + k21*k13*k41*x2 - 2*k21*k13*k41*x3 + k21*k13*k41*x4 - k21*k14*k41*x2 + k21*k14*k41*x3 + k12*k41^2*x2 - k12*k41^2*x3 - k13*k41^2*x2 + k13*k41^2*x3] diff --git a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/id_funcs_(:normalforms, 2) deleted file mode 100644 index 0041ad37c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,7 +0,0 @@ -[k01, -k12 + k13 + k14, -k31 + k21 + k41, -(k12^2*k13 - k12^2*k14 - k12*k13^2 + k12*k14^2 + k13^2*k14 - k13*k14^2)//(k31*k12 - k31*k14 - k21*k13 + k21*k14 - k12*k41 + k13*k41), -(k31*k12*k13 - k31*k13*k14 - k21*k12*k13 + k21*k12*k14 - k12*k14*k41 + k13*k14*k41)//(k31*k12 - k31*k14 - k21*k13 + k21*k14 - k12*k41 + k13*k41), -(k31*k21*k12 - k31*k21*k13 + k31*k13*k41 - k31*k14*k41 - k21*k12*k41 + k21*k14*k41)//(k31*k12 - k31*k14 - k21*k13 + k21*k14 - k12*k41 + k13*k41), -(k31^2*k21 - k31^2*k41 - k31*k21^2 + k31*k41^2 + k21^2*k41 - k21*k41^2)//(k31*k12 - k31*k14 - k21*k13 + k21*k14 - k12*k41 + k13*k41)] diff --git a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index d6802244b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,12 +0,0 @@ -[x1, -k01, -x2 + x3 + x4, -k12 + k13 + k14, -k31 + k21 + k41, -k31^2*k12^2 - 2*k31^2*k12*k14 + k31^2*k14^2 - 2*k31*k21*k12*k13 + 2*k31*k21*k12*k14 + 2*k31*k21*k13*k14 - 2*k31*k21*k14^2 - 2*k31*k12^2*k41 + 2*k31*k12*k13*k41 + 2*k31*k12*k14*k41 - 2*k31*k13*k14*k41 + k21^2*k13^2 - 2*k21^2*k13*k14 + k21^2*k14^2 + 2*k21*k12*k13*k41 - 2*k21*k12*k14*k41 - 2*k21*k13^2*k41 + 2*k21*k13*k14*k41 + k12^2*k41^2 - 2*k12*k13*k41^2 + k13^2*k41^2, -k31*k12^2*x3 - k31*k12^2*x4 - k31*k12*k13*x2 + k31*k12*k13*x4 + k31*k12*k14*x2 - 2*k31*k12*k14*x3 + k31*k12*k14*x4 + k31*k13*k14*x2 - k31*k13*k14*x4 - k31*k14^2*x2 + k31*k14^2*x3 - k21*k12*k13*x3 + k21*k12*k13*x4 + k21*k12*k14*x3 - k21*k12*k14*x4 + k21*k13^2*x2 - k21*k13^2*x4 - 2*k21*k13*k14*x2 + k21*k13*k14*x3 + k21*k13*k14*x4 + k21*k14^2*x2 - k21*k14^2*x3 - k12^2*k41*x3 + k12^2*k41*x4 + k12*k13*k41*x2 + k12*k13*k41*x3 - 2*k12*k13*k41*x4 - k12*k14*k41*x2 + k12*k14*k41*x3 - k13^2*k41*x2 + k13^2*k41*x4 + k13*k14*k41*x2 - k13*k14*k41*x3, -k31^2*k12*x2 - k31^2*k12*x4 - k31^2*k14*x2 + k31^2*k14*x4 - k31*k21*k12*x3 + k31*k21*k12*x4 - k31*k21*k13*x2 + k31*k21*k13*x4 + k31*k21*k14*x2 + k31*k21*k14*x3 - 2*k31*k21*k14*x4 - 2*k31*k12*k41*x2 + k31*k12*k41*x3 + k31*k12*k41*x4 + k31*k13*k41*x2 - k31*k13*k41*x4 + k31*k14*k41*x2 - k31*k14*k41*x3 + k21^2*k13*x3 - k21^2*k13*x4 - k21^2*k14*x3 + k21^2*k14*x4 + k21*k12*k41*x3 - k21*k12*k41*x4 + k21*k13*k41*x2 - 2*k21*k13*k41*x3 + k21*k13*k41*x4 - k21*k14*k41*x2 + k21*k14*k41*x3 + k12*k41^2*x2 - k12*k41^2*x3 - k13*k41^2*x2 + k13*k41^2*x3, -(x2^2*x3 - x2^2*x4 - x2*x3^2 + x2*x4^2 + x3^2*x4 - x3*x4^2)//(k12*x3 - k12*x4 - k13*x2 + k13*x4 + k14*x2 - k14*x3), -(k12*x3^2 - k12*x4^2 - k13*x2^2 + k13*x4^2 + k14*x2^2 - k14*x3^2)//(k12*x3 - k12*x4 - k13*x2 + k13*x4 + k14*x2 - k14*x3), -(k12*k13*x2 - k12*k13*x3 - k12*k14*x2 + k12*k14*x4 + k13*k14*x3 - k13*k14*x4)//(k12*x3 - k12*x4 - k13*x2 + k13*x4 + k14*x2 - k14*x3), -(k12^2*k13 - k12^2*k14 - k12*k13^2 + k12*k14^2 + k13^2*k14 - k13*k14^2)//(k12*x3 - k12*x4 - k13*x2 + k13*x4 + k14*x2 - k14*x3)] diff --git a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/id_funcs_(:normalforms, 3) deleted file mode 100644 index 9a8aca5a7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,8 +0,0 @@ -[k01, -k12*k13*k14, -k31*k21*k41, -k12 + k13 + k14, -k31 + k21 + k41, -(k12^2*k13 - k12^2*k14 - k12*k13^2 + k12*k14^2 + k13^2*k14 - k13*k14^2)//(k31*k12 - k31*k14 - k21*k13 + k21*k14 - k12*k41 + k13*k41), -(k31*k12*k13 - k31*k13*k14 - k21*k12*k13 + k21*k12*k14 - k12*k14*k41 + k13*k14*k41)//(k31*k12 - k31*k14 - k21*k13 + k21*k14 - k12*k41 + k13*k41), -(k31*k21*k12 - k31*k21*k13 + k31*k13*k41 - k31*k14*k41 - k21*k12*k41 + k21*k14*k41)//(k31*k12 - k31*k14 - k21*k13 + k21*k14 - k12*k41 + k13*k41)] diff --git a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index 525d4e30c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,12 +0,0 @@ -[x1, -k01, -x2*x3*x4, -k12*k13*k14, -k31*k21*k41, -x2 + x3 + x4, -k12 + k13 + k14, -k31 + k21 + k41, -k31^2*k12^2 - 2*k31^2*k12*k14 + k31^2*k14^2 - 2*k31*k21*k12*k13 + 2*k31*k21*k12*k14 + 2*k31*k21*k13*k14 - 2*k31*k21*k14^2 - 2*k31*k12^2*k41 + 2*k31*k12*k13*k41 + 2*k31*k12*k14*k41 - 2*k31*k13*k14*k41 + k21^2*k13^2 - 2*k21^2*k13*k14 + k21^2*k14^2 + 2*k21*k12*k13*k41 - 2*k21*k12*k14*k41 - 2*k21*k13^2*k41 + 2*k21*k13*k14*k41 + k12^2*k41^2 - 2*k12*k13*k41^2 + k13^2*k41^2, -k31*k12^2*x3 - k31*k12^2*x4 - k31*k12*k13*x2 + k31*k12*k13*x4 + k31*k12*k14*x2 - 2*k31*k12*k14*x3 + k31*k12*k14*x4 + k31*k13*k14*x2 - k31*k13*k14*x4 - k31*k14^2*x2 + k31*k14^2*x3 - k21*k12*k13*x3 + k21*k12*k13*x4 + k21*k12*k14*x3 - k21*k12*k14*x4 + k21*k13^2*x2 - k21*k13^2*x4 - 2*k21*k13*k14*x2 + k21*k13*k14*x3 + k21*k13*k14*x4 + k21*k14^2*x2 - k21*k14^2*x3 - k12^2*k41*x3 + k12^2*k41*x4 + k12*k13*k41*x2 + k12*k13*k41*x3 - 2*k12*k13*k41*x4 - k12*k14*k41*x2 + k12*k14*k41*x3 - k13^2*k41*x2 + k13^2*k41*x4 + k13*k14*k41*x2 - k13*k14*k41*x3, -k31^2*k12*x2 - k31^2*k12*x4 - k31^2*k14*x2 + k31^2*k14*x4 - k31*k21*k12*x3 + k31*k21*k12*x4 - k31*k21*k13*x2 + k31*k21*k13*x4 + k31*k21*k14*x2 + k31*k21*k14*x3 - 2*k31*k21*k14*x4 - 2*k31*k12*k41*x2 + k31*k12*k41*x3 + k31*k12*k41*x4 + k31*k13*k41*x2 - k31*k13*k41*x4 + k31*k14*k41*x2 - k31*k14*k41*x3 + k21^2*k13*x3 - k21^2*k13*x4 - k21^2*k14*x3 + k21^2*k14*x4 + k21*k12*k41*x3 - k21*k12*k41*x4 + k21*k13*k41*x2 - 2*k21*k13*k41*x3 + k21*k13*k41*x4 - k21*k14*k41*x2 + k21*k14*k41*x3 + k12*k41^2*x2 - k12*k41^2*x3 - k13*k41^2*x2 + k13*k41^2*x3, -(x2^2*x3 - x2^2*x4 - x2*x3^2 + x2*x4^2 + x3^2*x4 - x3*x4^2)//(k12*x3 - k12*x4 - k13*x2 + k13*x4 + k14*x2 - k14*x3)] diff --git a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/logs_(:gb,) deleted file mode 100644 index dfcfac524..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/logs_(:gb,) +++ /dev/null @@ -1,121 +0,0 @@ -┌ Info: Processing Bilirubin2_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.01467006 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.01467006 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.005747054 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.005747054 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [8] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.1988e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.1988e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 56 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.464466102 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.073978302 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 256 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 2 for den. -│ Maximal number of interpolated terms are: 12 for num. and 6 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.368605312 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.007126391 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 25 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.028544199 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 8 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 466840 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 1.189748039 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k01, k12 + k13 + k14, k31 + k21 + k41, (k12^2*k13 - k12^2*k14 - k12*k13^2 + k12*k14^2 + k13^2*k14 - k13*k14^2)//(k31*k12 - k31*k14 - k21*k13 + k21*k14 - k12*k41 + k13*k41), (k31*k12*k13 - k31*k13*k14 - k21*k12*k13 + k21*k12*k14 - k12*k14*k41 + k13*k14*k41)//(k31*k12 - k31*k14 - k21*k13 + k21*k14 - k12*k41 + k13*k41), (k31*k21*k12 - k31*k21*k13 + k31*k13*k41 - k31*k14*k41 - k21*k12*k41 + k21*k14*k41)//(k31*k12 - k31*k14 - k21*k13 + k21*k14 - k12*k41 + k13*k41), (k31^2*k21 - k31^2*k41 - k31*k21^2 + k31*k41^2 + k21^2*k41 - k21*k41^2)//(k31*k12 - k31*k14 - k21*k13 + k21*k14 - k12*k41 + k13*k41)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/logs_(:gb,)_with_states deleted file mode 100644 index aa829295c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/logs_(:gb,)_with_states +++ /dev/null @@ -1,223 +0,0 @@ -┌ Info: Processing Bilirubin2_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.015874042 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.015874042 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.007382529 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.007382529 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [8] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.9598e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.9598e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 127  ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 113  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 263  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 412  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 583  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 748  ⌝ # Computing specializations.. Time: 0:00:02 - Points: 884  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 1052  ⌞ # Computing specializations.. Time: 0:00:02 - Points: 1220  ⌜ # Computing specializations.. Time: 0:00:03 - Points: 1386  ✓ # Computing specializations.. Time: 0:00:04 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 56 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.496794279 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002549095 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 256 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 2 for den. -│ Maximal number of interpolated terms are: 12 for num. and 6 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.387594069 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.094042787 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 25 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.025356042 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 8 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 466840 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 16 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (2, 2), (3, 2)], [(0, 0), (0, 0), (2, 2), (2, 2), (3, 2)], [(0, 0), (2, 2), (0, 0), (2, 2), (3, 2)], [(0, 0), (2, 2), (2, 2), (3, 2)], [(0, 0), (1, 0)], [(0, 0), (0, 4)], [(0, 0), (2, 4), (2, 4), (2, 4), (2, 4), (1, 0), (5, 6)], [(0, 0), (2, 4), (2, 4), (2, 4), (2, 4), (1, 0), (5, 6)], [(0, 0), (2, 4), (2, 4), (2, 4), (2, 4), (1, 0), (5, 6)], [(0, 0), (2, 4), (2, 4), (2, 4), (2, 4), (1, 0), (5, 6)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (6, 4)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 0), (6, 4)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 0), (6, 4)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 0), (6, 4)], [(0, 0), (3, 2), (3, 2), (4, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 6 for num. and 6 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.526935394 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.01753447 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 16 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (2, 2), (3, 2)], [(0, 0), (0, 0), (2, 2), (2, 2), (3, 2)], [(0, 0), (2, 2), (0, 0), (2, 2), (3, 2)], [(0, 0), (2, 2), (2, 2), (3, 2)], [(0, 0), (1, 0)], [(0, 0), (0, 4)], [(0, 0), (2, 4), (2, 4), (2, 4), (2, 4), (1, 0), (5, 6)], [(0, 0), (2, 4), (2, 4), (2, 4), (2, 4), (1, 0), (5, 6)], [(0, 0), (2, 4), (2, 4), (2, 4), (2, 4), (1, 0), (5, 6)], [(0, 0), (2, 4), (2, 4), (2, 4), (2, 4), (1, 0), (5, 6)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (6, 4)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 0), (6, 4)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 0), (6, 4)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 0), (6, 4)], [(0, 0), (3, 2), (3, 2), (4, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 1536 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 33 for num. and 33 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 5.024956329 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.965612692 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 71 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.145673058 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 15 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 469214 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 8.504446235 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x1, k01, x2 + x3 + x4, k12 + k13 + k14, k31 + k21 + k41, k31^2*k12^2 - 2*k31^2*k12*k14 + k31^2*k14^2 - 2*k31*k21*k12*k13 + 2*k31*k21*k12*k14 + 2*k31*k21*k13*k14 - 2*k31*k21*k14^2 - 2*k31*k12^2*k41 + 2*k31*k12*k13*k41 + 2*k31*k12*k14*k41 - 2*k31*k13*k14*k41 + k21^2*k13^2 - 2*k21^2*k13*k14 + k21^2*k14^2 + 2*k21*k12*k13*k41 - 2*k21*k12*k14*k41 - 2*k21*k13^2*k41 + 2*k21*k13*k14*k41 + k12^2*k41^2 - 2*k12*k13*k41^2 + k13^2*k41^2, k31*k12^2*x3 - k31*k12^2*x4 - k31*k12*k13*x2 + k31*k12*k13*x4 + k31*k12*k14*x2 - 2*k31*k12*k14*x3 + k31*k12*k14*x4 + k31*k13*k14*x2 - k31*k13*k14*x4 - k31*k14^2*x2 + k31*k14^2*x3 - k21*k12*k13*x3 + k21*k12*k13*x4 + k21*k12*k14*x3 - k21*k12*k14*x4 + k21*k13^2*x2 - k21*k13^2*x4 - 2*k21*k13*k14*x2 + k21*k13*k14*x3 + k21*k13*k14*x4 + k21*k14^2*x2 - k21*k14^2*x3 - k12^2*k41*x3 + k12^2*k41*x4 + k12*k13*k41*x2 + k12*k13*k41*x3 - 2*k12*k13*k41*x4 - k12*k14*k41*x2 + k12*k14*k41*x3 - k13^2*k41*x2 + k13^2*k41*x4 + k13*k14*k41*x2 - k13*k14*k41*x3, k31^2*k12*x2 - k31^2*k12*x4 - k31^2*k14*x2 + k31^2*k14*x4 - k31*k21*k12*x3 + k31*k21*k12*x4 - k31*k21*k13*x2 + k31*k21*k13*x4 + k31*k21*k14*x2 + k31*k21*k14*x3 - 2*k31*k21*k14*x4 - 2*k31*k12*k41*x2 + k31*k12*k41*x3 + k31*k12*k41*x4 + k31*k13*k41*x2 - k31*k13*k41*x4 + k31*k14*k41*x2 - k31*k14*k41*x3 + k21^2*k13*x3 - k21^2*k13*x4 - k21^2*k14*x3 + k21^2*k14*x4 + k21*k12*k41*x3 - k21*k12*k41*x4 + k21*k13*k41*x2 - 2*k21*k13*k41*x3 + k21*k13*k41*x4 - k21*k14*k41*x2 + k21*k14*k41*x3 + k12*k41^2*x2 - k12*k41^2*x3 - k13*k41^2*x2 + k13*k41^2*x3, (x2^2*x3 - x2^2*x4 - x2*x3^2 + x2*x4^2 + x3^2*x4 - x3*x4^2)//(k12*x3 - k12*x4 - k13*x2 + k13*x4 + k14*x2 - k14*x3), (k12*x3^2 - k12*x4^2 - k13*x2^2 + k13*x4^2 + k14*x2^2 - k14*x3^2)//(k12*x3 - k12*x4 - k13*x2 + k13*x4 + k14*x2 - k14*x3), (k12*k13*x2 - k12*k13*x3 - k12*k14*x2 + k12*k14*x4 + k13*k14*x3 - k13*k14*x4)//(k12*x3 - k12*x4 - k13*x2 + k13*x4 + k14*x2 - k14*x3), (k12^2*k13 - k12^2*k14 - k12*k13^2 + k12*k14^2 + k13^2*k14 - k13*k14^2)//(k12*x3 - k12*x4 - k13*x2 + k13*x4 + k14*x2 - k14*x3)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/logs_(:hybrid,) deleted file mode 100644 index cec9f3d32..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/logs_(:hybrid,) +++ /dev/null @@ -1,890 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing Bilirubin2_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.017171246 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.017171246 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.008011419 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.008011419 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [8] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000100643 seconds -│ :rank_time = rank_time -│ rank_times = 0.000100643 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Warning: One of the Wronskians has corank greater than one, so the results of the algorithm will be valid only for multiexperiment identifiability. If you still would like to assess single-experiment identifiability, we recommend using SIAN (https://github.com/alexeyovchinnikov/SIAN-Julia) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:110 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 217  ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 164  ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:09 ⌝ # Computing specializations.. Time: 0:00:10 ✓ # Computing specializations.. Time: 0:00:10 - ⌜ # Computing specializations.. Time: 0:00:02 ⌝ # Computing specializations.. Time: 0:00:03 ⌟ # Computing specializations.. Time: 0:00:05 ⌞ # Computing specializations.. Time: 0:00:06 ⌜ # Computing specializations.. Time: 0:00:08 ⌝ # Computing specializations.. Time: 0:00:09 ⌟ # Computing specializations.. Time: 0:00:10 ⌞ # Computing specializations.. Time: 0:00:12 ⌜ # Computing specializations.. Time: 0:00:13 ⌝ # Computing specializations.. Time: 0:00:14 ⌟ # Computing specializations.. Time: 0:00:16 ⌞ # Computing specializations.. Time: 0:00:17 ⌜ # Computing specializations.. Time: 0:00:18 ⌝ # Computing specializations.. Time: 0:00:20 ⌟ # Computing specializations.. Time: 0:00:21 ⌞ # Computing specializations.. Time: 0:00:22 ⌜ # Computing specializations.. Time: 0:00:24 ⌝ # Computing specializations.. Time: 0:00:25 ⌟ # Computing specializations.. Time: 0:00:26 ⌞ # Computing specializations.. Time: 0:00:28 ⌜ # Computing specializations.. Time: 0:00:29 ⌝ # Computing specializations.. Time: 0:00:30 ⌟ # Computing specializations.. Time: 0:00:32 ⌞ # Computing specializations.. Time: 0:00:33 ⌜ # Computing specializations.. Time: 0:00:34 ⌝ # Computing specializations.. Time: 0:00:35 ⌟ # Computing specializations.. Time: 0:00:37 ⌞ # Computing specializations.. Time: 0:00:38 ⌜ # Computing specializations.. Time: 0:00:39 ⌝ # Computing specializations.. Time: 0:00:41 ⌟ # Computing specializations.. Time: 0:00:42 ⌞ # Computing specializations.. Time: 0:00:44 ⌜ # Computing specializations.. Time: 0:00:45 ✓ # Computing specializations.. Time: 0:00:45 - ⌜ # Computing specializations.. Time: 0:00:02 - Points: 2  ⌝ # Computing specializations.. Time: 0:00:04 - Points: 3  ⌟ # Computing specializations.. Time: 0:00:05 - Points: 4  ⌞ # Computing specializations.. Time: 0:00:06 - Points: 5  ⌜ # Computing specializations.. Time: 0:00:08 - Points: 6  ⌝ # Computing specializations.. Time: 0:00:09 - Points: 7  ⌟ # Computing specializations.. Time: 0:00:11 - Points: 8  ⌞ # Computing specializations.. Time: 0:00:12 - Points: 9  ⌜ # Computing specializations.. Time: 0:00:13 - Points: 10  ⌝ # Computing specializations.. Time: 0:00:15 - Points: 11  ⌟ # Computing specializations.. Time: 0:00:16 - Points: 12  ⌞ # Computing specializations.. Time: 0:00:18 - Points: 13  ⌜ # Computing specializations.. Time: 0:00:19 - Points: 14  ⌝ # Computing specializations.. Time: 0:00:21 - Points: 15  ⌟ # Computing specializations.. Time: 0:00:22 - Points: 16  ⌞ # Computing specializations.. Time: 0:00:23 - Points: 17  ⌜ # Computing specializations.. Time: 0:00:25 - Points: 18  ⌝ # Computing specializations.. Time: 0:00:26 - Points: 19  ⌟ # Computing specializations.. Time: 0:00:28 - Points: 20  ⌞ # Computing specializations.. Time: 0:00:29 - Points: 21  ⌜ # Computing specializations.. Time: 0:00:30 - Points: 22  ⌝ # Computing specializations.. Time: 0:00:32 - Points: 23  ⌟ # Computing specializations.. Time: 0:00:33 - Points: 24  ⌞ # Computing specializations.. Time: 0:00:35 - Points: 25  ⌜ # Computing specializations.. Time: 0:00:36 - Points: 26  ⌝ # Computing specializations.. Time: 0:00:37 - Points: 27  ⌟ # Computing specializations.. Time: 0:00:39 - Points: 28  ⌞ # Computing specializations.. Time: 0:00:40 - Points: 29  ⌜ # Computing specializations.. Time: 0:00:42 - Points: 30  ⌝ # Computing specializations.. Time: 0:00:43 - Points: 31  ⌟ # Computing specializations.. Time: 0:00:44 - Points: 32  ⌞ # Computing specializations.. Time: 0:00:46 - Points: 33  ⌜ # Computing specializations.. Time: 0:00:47 - Points: 34  ⌝ # Computing specializations.. Time: 0:00:48 - Points: 35  ⌟ # Computing specializations.. Time: 0:00:50 - Points: 36  ⌞ # Computing specializations.. Time: 0:00:51 - Points: 37  ⌜ # Computing specializations.. Time: 0:00:52 - Points: 38  ⌝ # Computing specializations.. Time: 0:00:54 - Points: 39  ⌟ # Computing specializations.. Time: 0:00:55 - Points: 40  ⌞ # Computing specializations.. Time: 0:00:56 - Points: 41  ⌜ # Computing specializations.. Time: 0:00:58 - Points: 42  ⌝ # Computing specializations.. Time: 0:00:59 - Points: 43  ⌟ # Computing specializations.. Time: 0:01:00 - Points: 44  ⌞ # Computing specializations.. Time: 0:01:01 - Points: 45  ⌜ # Computing specializations.. Time: 0:01:03 - Points: 46  ⌝ # Computing specializations.. Time: 0:01:04 - Points: 47  ⌟ # Computing specializations.. Time: 0:01:05 - Points: 48  ⌞ # Computing specializations.. Time: 0:01:07 - Points: 49  ⌜ # Computing specializations.. Time: 0:01:08 - Points: 50  ⌝ # Computing specializations.. Time: 0:01:10 - Points: 51  ⌟ # Computing specializations.. Time: 0:01:11 - Points: 52  ⌞ # Computing specializations.. Time: 0:01:12 - Points: 53  ⌜ # Computing specializations.. Time: 0:01:14 - Points: 54  ⌝ # Computing specializations.. Time: 0:01:15 - Points: 55  ⌟ # Computing specializations.. Time: 0:01:17 - Points: 56  ⌞ # Computing specializations.. Time: 0:01:18 - Points: 57  ⌜ # Computing specializations.. Time: 0:01:19 - Points: 58  ⌝ # Computing specializations.. Time: 0:01:21 - Points: 59  ⌟ # Computing specializations.. Time: 0:01:22 - Points: 60  ⌞ # Computing specializations.. Time: 0:01:23 - Points: 61  ⌜ # Computing specializations.. Time: 0:01:25 - Points: 62  ⌝ # Computing specializations.. Time: 0:01:26 - Points: 63  ⌟ # Computing specializations.. Time: 0:01:28 - Points: 64  ⌞ # Computing specializations.. Time: 0:01:29 - Points: 65  ⌜ # Computing specializations.. Time: 0:01:30 - Points: 66  ⌝ # Computing specializations.. Time: 0:01:32 - Points: 67  ⌟ # Computing specializations.. Time: 0:01:33 - Points: 68  ⌞ # Computing specializations.. Time: 0:01:34 - Points: 69  ⌜ # Computing specializations.. Time: 0:01:36 - Points: 70  ⌝ # Computing specializations.. Time: 0:01:37 - Points: 71  ⌟ # Computing specializations.. Time: 0:01:39 - Points: 72  ⌞ # Computing specializations.. Time: 0:01:40 - Points: 73  ⌜ # Computing specializations.. Time: 0:01:41 - Points: 74  ⌝ # Computing specializations.. Time: 0:01:43 - Points: 75  ⌟ # Computing specializations.. Time: 0:01:44 - Points: 76  ⌞ # Computing specializations.. Time: 0:01:45 - Points: 77  ⌜ # Computing specializations.. Time: 0:01:47 - Points: 78  ⌝ # Computing specializations.. Time: 0:01:48 - Points: 79  ⌟ # Computing specializations.. Time: 0:01:50 - Points: 80  ⌞ # Computing specializations.. Time: 0:01:51 - Points: 81  ⌜ # Computing specializations.. Time: 0:01:52 - Points: 82  ⌝ # Computing specializations.. Time: 0:01:54 - Points: 83  ⌟ # Computing specializations.. Time: 0:01:55 - Points: 84  ⌞ # Computing specializations.. Time: 0:01:56 - Points: 85  ⌜ # Computing specializations.. Time: 0:01:58 - Points: 86  ⌝ # Computing specializations.. Time: 0:01:59 - Points: 87  ⌟ # Computing specializations.. Time: 0:02:00 - Points: 88  ⌞ # Computing specializations.. Time: 0:02:02 - Points: 89  ⌜ # Computing specializations.. Time: 0:02:03 - Points: 90  ⌝ # Computing specializations.. Time: 0:02:05 - Points: 91  ⌟ # Computing specializations.. Time: 0:02:06 - Points: 92  ⌞ # Computing specializations.. Time: 0:02:07 - Points: 93  ⌜ # Computing specializations.. Time: 0:02:09 - Points: 94  ⌝ # Computing specializations.. Time: 0:02:10 - Points: 95  ⌟ # Computing specializations.. Time: 0:02:11 - Points: 96  ⌞ # Computing specializations.. Time: 0:02:13 - Points: 97  ⌜ # Computing specializations.. Time: 0:02:14 - Points: 98  ⌝ # Computing specializations.. Time: 0:02:15 - Points: 99  ⌟ # Computing specializations.. Time: 0:02:17 - Points: 100  ⌞ # Computing specializations.. Time: 0:02:18 - Points: 101  ⌜ # Computing specializations.. Time: 0:02:20 - Points: 102  ⌝ # Computing specializations.. Time: 0:02:21 - Points: 103  ⌟ # Computing specializations.. Time: 0:02:22 - Points: 104  ⌞ # Computing specializations.. Time: 0:02:24 - Points: 105  ⌜ # Computing specializations.. Time: 0:02:25 - Points: 106  ⌝ # Computing specializations.. Time: 0:02:27 - Points: 107  ⌟ # Computing specializations.. Time: 0:02:28 - Points: 108  ⌞ # Computing specializations.. Time: 0:02:29 - Points: 109  ⌜ # Computing specializations.. Time: 0:02:31 - Points: 110  ⌝ # Computing specializations.. Time: 0:02:32 - Points: 111  ⌟ # Computing specializations.. Time: 0:02:33 - Points: 112  ⌞ # Computing specializations.. Time: 0:02:35 - Points: 113  ⌜ # Computing specializations.. Time: 0:02:36 - Points: 114  ⌝ # Computing specializations.. Time: 0:02:37 - Points: 115  ⌟ # Computing specializations.. Time: 0:02:39 - Points: 116  ⌞ # Computing specializations.. Time: 0:02:40 - Points: 117  ⌜ # Computing specializations.. Time: 0:02:41 - Points: 118  ⌝ # Computing specializations.. Time: 0:02:43 - Points: 119  ⌟ # Computing specializations.. Time: 0:02:44 - Points: 120  ⌞ # Computing specializations.. Time: 0:02:45 - Points: 121  ⌜ # Computing specializations.. Time: 0:02:47 - Points: 122  ⌝ # Computing specializations.. Time: 0:02:48 - Points: 123  ⌟ # Computing specializations.. Time: 0:02:50 - Points: 124  ⌞ # Computing specializations.. Time: 0:02:51 - Points: 125  ⌜ # Computing specializations.. Time: 0:02:52 - Points: 126  ⌝ # Computing specializations.. Time: 0:02:54 - Points: 127  ⌟ # Computing specializations.. Time: 0:02:55 - Points: 128  ⌞ # Computing specializations.. Time: 0:02:57 - Points: 129  ⌜ # Computing specializations.. Time: 0:02:58 - Points: 130  ⌝ # Computing specializations.. Time: 0:02:59 - Points: 131  ⌟ # Computing specializations.. Time: 0:03:01 - Points: 132  ⌞ # Computing specializations.. Time: 0:03:02 - Points: 133  ⌜ # Computing specializations.. Time: 0:03:03 - Points: 134  ⌝ # Computing specializations.. Time: 0:03:05 - Points: 135  ⌟ # Computing specializations.. Time: 0:03:06 - Points: 136  ⌞ # Computing specializations.. Time: 0:03:07 - Points: 137  ⌜ # Computing specializations.. Time: 0:03:09 - Points: 138  ⌝ # Computing specializations.. Time: 0:03:10 - Points: 139  ⌟ # Computing specializations.. Time: 0:03:11 - Points: 140  ⌞ # Computing specializations.. Time: 0:03:13 - Points: 141  ⌜ # Computing specializations.. Time: 0:03:15 - Points: 142  ⌝ # Computing specializations.. Time: 0:03:16 - Points: 143  ⌟ # Computing specializations.. Time: 0:03:17 - Points: 144  ⌞ # Computing specializations.. Time: 0:03:19 - Points: 145  ⌜ # Computing specializations.. Time: 0:03:20 - Points: 146  ⌝ # Computing specializations.. Time: 0:03:21 - Points: 147  ⌟ # Computing specializations.. Time: 0:03:23 - Points: 148  ⌞ # Computing specializations.. Time: 0:03:24 - Points: 149  ⌜ # Computing specializations.. Time: 0:03:26 - Points: 150  ⌝ # Computing specializations.. Time: 0:03:27 - Points: 151  ⌟ # Computing specializations.. Time: 0:03:29 - Points: 152  ⌞ # Computing specializations.. Time: 0:03:30 - Points: 153  ⌜ # Computing specializations.. Time: 0:03:32 - Points: 154  ⌝ # Computing specializations.. Time: 0:03:33 - Points: 155  ⌟ # Computing specializations.. Time: 0:03:35 - Points: 156  ⌞ # Computing specializations.. Time: 0:03:36 - Points: 157  ⌜ # Computing specializations.. Time: 0:03:38 - Points: 158  ⌝ # Computing specializations.. Time: 0:03:39 - Points: 159  ⌟ # Computing specializations.. Time: 0:03:40 - Points: 160  ⌞ # Computing specializations.. Time: 0:03:42 - Points: 161  ⌜ # Computing specializations.. Time: 0:03:43 - Points: 162  ⌝ # Computing specializations.. Time: 0:03:45 - Points: 163  ⌟ # Computing specializations.. Time: 0:03:46 - Points: 164  ⌞ # Computing specializations.. Time: 0:03:48 - Points: 165  ⌜ # Computing specializations.. Time: 0:03:49 - Points: 166  ⌝ # Computing specializations.. Time: 0:03:50 - Points: 167  ⌟ # Computing specializations.. Time: 0:03:52 - Points: 168  ⌞ # Computing specializations.. Time: 0:03:53 - Points: 169  ⌜ # Computing specializations.. Time: 0:03:54 - Points: 170  ⌝ # Computing specializations.. Time: 0:03:56 - Points: 171  ⌟ # Computing specializations.. Time: 0:03:57 - Points: 172  ⌞ # Computing specializations.. Time: 0:03:59 - Points: 173  ⌜ # Computing specializations.. Time: 0:04:00 - Points: 174  ⌝ # Computing specializations.. Time: 0:04:02 - Points: 175  ⌟ # Computing specializations.. Time: 0:04:03 - Points: 176  ⌞ # Computing specializations.. Time: 0:04:05 - Points: 177  ⌜ # Computing specializations.. Time: 0:04:06 - Points: 178  ⌝ # Computing specializations.. Time: 0:04:08 - Points: 179  ⌟ # Computing specializations.. Time: 0:04:09 - Points: 180  ⌞ # Computing specializations.. Time: 0:04:11 - Points: 181  ⌜ # Computing specializations.. Time: 0:04:12 - Points: 182  ⌝ # Computing specializations.. Time: 0:04:13 - Points: 183  ⌟ # Computing specializations.. Time: 0:04:15 - Points: 184  ⌞ # Computing specializations.. Time: 0:04:16 - Points: 185  ⌜ # Computing specializations.. Time: 0:04:18 - Points: 186  ⌝ # Computing specializations.. Time: 0:04:19 - Points: 187  ⌟ # Computing specializations.. Time: 0:04:20 - Points: 188  ⌞ # Computing specializations.. Time: 0:04:22 - Points: 189  ⌜ # Computing specializations.. Time: 0:04:23 - Points: 190  ⌝ # Computing specializations.. Time: 0:04:24 - Points: 191  ⌟ # Computing specializations.. Time: 0:04:26 - Points: 192  ⌞ # Computing specializations.. Time: 0:04:27 - Points: 193  ⌜ # Computing specializations.. Time: 0:04:28 - Points: 194  ⌝ # Computing specializations.. Time: 0:04:30 - Points: 195  ⌟ # Computing specializations.. Time: 0:04:31 - Points: 196  ⌞ # Computing specializations.. Time: 0:04:32 - Points: 197  ⌜ # Computing specializations.. Time: 0:04:34 - Points: 198  ⌝ # Computing specializations.. Time: 0:04:35 - Points: 199  ⌟ # Computing specializations.. Time: 0:04:37 - Points: 200  ⌞ # Computing specializations.. Time: 0:04:38 - Points: 201  ⌜ # Computing specializations.. Time: 0:04:39 - Points: 202  ⌝ # Computing specializations.. Time: 0:04:41 - Points: 203  ⌟ # Computing specializations.. Time: 0:04:42 - Points: 204  ⌞ # Computing specializations.. Time: 0:04:44 - Points: 205  ⌜ # Computing specializations.. Time: 0:04:45 - Points: 206  ⌝ # Computing specializations.. Time: 0:04:46 - Points: 207  ⌟ # Computing specializations.. Time: 0:04:48 - Points: 208  ⌞ # Computing specializations.. Time: 0:04:49 - Points: 209  ⌜ # Computing specializations.. Time: 0:04:50 - Points: 210  ⌝ # Computing specializations.. Time: 0:04:52 - Points: 211  ⌟ # Computing specializations.. Time: 0:04:53 - Points: 212  ⌞ # Computing specializations.. Time: 0:04:54 - Points: 213  ⌜ # Computing specializations.. Time: 0:04:56 - Points: 214  ⌝ # Computing specializations.. Time: 0:04:57 - Points: 215  ⌟ # Computing specializations.. Time: 0:04:58 - Points: 216  ⌞ # Computing specializations.. Time: 0:05:00 - Points: 217  ⌜ # Computing specializations.. Time: 0:05:01 - Points: 218  ⌝ # Computing specializations.. Time: 0:05:03 - Points: 219  ⌟ # Computing specializations.. Time: 0:05:04 - Points: 220  ⌞ # Computing specializations.. Time: 0:05:06 - Points: 221  ⌜ # Computing specializations.. Time: 0:05:07 - Points: 222  ⌝ # Computing specializations.. Time: 0:05:09 - Points: 223  ⌟ # Computing specializations.. Time: 0:05:10 - Points: 224  ⌞ # Computing specializations.. Time: 0:05:12 - Points: 225  ⌜ # Computing specializations.. Time: 0:05:13 - Points: 226  ⌝ # Computing specializations.. Time: 0:05:14 - Points: 227  ⌟ # Computing specializations.. Time: 0:05:16 - Points: 228  ⌞ # Computing specializations.. Time: 0:05:17 - Points: 229  ⌜ # Computing specializations.. Time: 0:05:19 - Points: 230  ⌝ # Computing specializations.. Time: 0:05:20 - Points: 231  ⌟ # Computing specializations.. Time: 0:05:22 - Points: 232  ⌞ # Computing specializations.. Time: 0:05:23 - Points: 233  ⌜ # Computing specializations.. Time: 0:05:25 - Points: 234  ⌝ # Computing specializations.. Time: 0:05:26 - Points: 235  ⌟ # Computing specializations.. Time: 0:05:28 - Points: 236  ⌞ # Computing specializations.. Time: 0:05:29 - Points: 237  ⌜ # Computing specializations.. Time: 0:05:31 - Points: 238  ⌝ # Computing specializations.. Time: 0:05:32 - Points: 239  ⌟ # Computing specializations.. Time: 0:05:34 - Points: 240  ⌞ # Computing specializations.. Time: 0:05:35 - Points: 241  ⌜ # Computing specializations.. Time: 0:05:36 - Points: 242  ⌝ # Computing specializations.. Time: 0:05:38 - Points: 243  ⌟ # Computing specializations.. Time: 0:05:39 - Points: 244  ⌞ # Computing specializations.. Time: 0:05:40 - Points: 245  ⌜ # Computing specializations.. Time: 0:05:42 - Points: 246  ⌝ # Computing specializations.. Time: 0:05:43 - Points: 247  ⌟ # Computing specializations.. Time: 0:05:44 - Points: 248  ⌞ # Computing specializations.. Time: 0:05:46 - Points: 249  ⌜ # Computing specializations.. Time: 0:05:47 - Points: 250  ⌝ # Computing specializations.. Time: 0:05:49 - Points: 251  ⌟ # Computing specializations.. Time: 0:05:51 - Points: 252  ⌞ # Computing specializations.. Time: 0:05:52 - Points: 253  ⌜ # Computing specializations.. Time: 0:05:53 - Points: 254  ⌝ # Computing specializations.. Time: 0:05:55 - Points: 255  ⌟ # Computing specializations.. Time: 0:05:56 - Points: 256  ✓ # Computing specializations.. Time: 0:05:56 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 159  ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:02 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ⌞ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:03 ⌝ # Computing specializations.. Time: 0:00:04 ⌟ # Computing specializations.. Time: 0:00:04 ⌞ # Computing specializations.. Time: 0:00:04 ⌜ # Computing specializations.. Time: 0:00:05 ⌝ # Computing specializations.. Time: 0:00:05 ⌟ # Computing specializations.. Time: 0:00:06 ✓ # Computing specializations.. Time: 0:00:06 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 2  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 5  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 7  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 10  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 12  ⌝ # Computing specializations.. Time: 0:00:02 - Points: 14  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 17  ⌞ # Computing specializations.. Time: 0:00:03 - Points: 19  ⌜ # Computing specializations.. Time: 0:00:03 - Points: 21  ⌝ # Computing specializations.. Time: 0:00:03 - Points: 23  ⌟ # Computing specializations.. Time: 0:00:04 - Points: 25  ⌞ # Computing specializations.. Time: 0:00:06 - Points: 27  ⌜ # Computing specializations.. Time: 0:00:07 - Points: 29  ⌝ # Computing specializations.. Time: 0:00:07 - Points: 31  ⌟ # Computing specializations.. Time: 0:00:07 - Points: 33  ⌞ # Computing specializations.. Time: 0:00:08 - Points: 35  ⌜ # Computing specializations.. Time: 0:00:08 - Points: 37  ⌝ # Computing specializations.. Time: 0:00:08 - Points: 39  ⌟ # Computing specializations.. Time: 0:00:09 - Points: 41  ⌞ # Computing specializations.. Time: 0:00:09 - Points: 43  ⌜ # Computing specializations.. Time: 0:00:09 - Points: 45  ⌝ # Computing specializations.. Time: 0:00:10 - Points: 47  ⌟ # Computing specializations.. Time: 0:00:10 - Points: 49  ⌞ # Computing specializations.. Time: 0:00:10 - Points: 51  ⌜ # Computing specializations.. Time: 0:00:11 - Points: 53  ⌝ # Computing specializations.. Time: 0:00:11 - Points: 55  ⌟ # Computing specializations.. Time: 0:00:11 - Points: 57  ⌞ # Computing specializations.. Time: 0:00:12 - Points: 59  ⌜ # Computing specializations.. Time: 0:00:12 - Points: 61  ⌝ # Computing specializations.. Time: 0:00:12 - Points: 63  ✓ # Computing specializations.. Time: 0:00:13 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 56 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.451425212 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002976232 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 256 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 2 for den. -│ Maximal number of interpolated terms are: 12 for num. and 6 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.587113797 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.006404626 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 25 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (7 in total): Nemo.fmpq_mpoly[k01, k31, k21, k12, k13, k14, k41] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 116 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 49 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 116 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 49 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 116 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 49 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y6, y1, y3], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y7, y2, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(2, 5), (0, 0), (5, 7), (5, 7), (3, 5), (4, 3), (6, 7)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 3), (4, 3), (4, 3), (4, 3), (7, 3), (5, 3)], [(2, 5), (0, 0), (5, 7), (5, 7), (3, 5), (4, 3), (6, 7)], [(3, 3), (0, 0), (6, 5), (6, 5), (4, 3), (7, 3), (7, 5)], [(2, 5), (0, 0), (5, 7), (5, 7), (3, 5), (4, 3), (6, 7)], [(0, 0), (0, 4)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(2, 3), (3, 3), (3, 3), (0, 0), (3, 3), (6, 3), (4, 3)], [(2, 3), (3, 3), (0, 0), (3, 3), (3, 3), (6, 3), (4, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.359165222 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003662734 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 3 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y4, y6, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y7, y2, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (1, 0), (4, 2)], [(3, 7), (0, 4), (4, 7), (1, 4), (4, 7), (0, 0), (5, 7)], [(2, 3), (3, 3), (0, 0), (0, 0), (3, 3), (4, 3)], [(2, 3), (3, 3), (0, 0), (3, 3), (4, 3)], [(0, 0), (0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.280399712 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.034054998 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 3 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y4, y1, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y2, t, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0), (5, 2), (3, 2), (3, 2), (6, 2), (4, 2)], [(0, 0), (0, 4)], [(2, 5), (0, 0), (0, 0), (3, 5), (1, 0), (4, 5)], [(0, 0), (0, 0), (5, 2), (3, 2), (3, 2), (6, 2), (4, 2)], [(0, 0), (1, 0), (2, 0), (3, 0)], [(0, 0), (3, 2), (3, 4), (3, 4), (4, 2), (4, 4)], [(2, 3), (4, 2), (2, 2), (5, 5), (0, 0), (5, 2), (6, 5)], [(0, 0), (1, 0)], [(2, 3), (3, 3), (0, 0), (4, 3)], [(2, 3), (4, 2), (2, 2), (5, 5), (0, 0), (5, 2), (6, 5)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 256 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 9 for num. and 6 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.641117237 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.066289169 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y6, y2, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, t, y1, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 2), (5, 2), (3, 2), (3, 2), (6, 2), (4, 2)], [(0, 0), (0, 4)], [(4, 7), (0, 0), (2, 2), (0, 2), (5, 7), (3, 2), (6, 7)], [(0, 0), (5, 5), (5, 2), (3, 2), (6, 5), (6, 2), (7, 5)], [(0, 0), (1, 0), (2, 0), (3, 0)], [(0, 0), (0, 2), (3, 2), (3, 4), (3, 4), (4, 2), (4, 4)], [(4, 5), (4, 2), (0, 0), (2, 2), (5, 5), (5, 2), (6, 5)], [(4, 5), (4, 2), (0, 0), (2, 2), (5, 5), (5, 2), (6, 5)], [(2, 3), (0, 0), (3, 3), (4, 3)], [(2, 3), (0, 0), (0, 0), (3, 3), (4, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 256 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 6 for num. and 9 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 412.655311255 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005751344 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y3, y1, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y4, y5, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (0, 4)], [(0, 0), (5, 2), (5, 2), (3, 2), (6, 2), (4, 2)], [(0, 0), (5, 2), (5, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (5, 2), (5, 2), (3, 2), (6, 2), (4, 2)], [(4, 2), (4, 2), (0, 0), (2, 2), (5, 2), (3, 2)], [(0, 0), (1, 0)], [(4, 2), (4, 2), (0, 0), (2, 2), (5, 2), (3, 2)], [(4, 2), (4, 2), (2, 2), (2, 2), (0, 0), (3, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 256 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 9 for num. and 6 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.636479537 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004813266 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y4, y7, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y6, y2, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(2, 5), (2, 5), (0, 0), (3, 5), (3, 5), (4, 3), (4, 5)], [(6, 6), (3, 3), (0, 0), (7, 6), (4, 3), (7, 3), (8, 6)], [(5, 8), (2, 5), (0, 0), (6, 8), (3, 5), (4, 3), (7, 8)], [(0, 0), (0, 4)], [(0, 0), (1, 0), (2, 0), (3, 0)], [(0, 0), (4, 3), (4, 3), (5, 3), (5, 3), (8, 3), (6, 3)], [(2, 3), (3, 3), (0, 0), (4, 3)], [(5, 6), (2, 3), (6, 6), (3, 3), (0, 0), (6, 3), (7, 6)], [(2, 3), (3, 3), (0, 0), (0, 0), (4, 3)], [(5, 6), (2, 3), (6, 6), (0, 0), (3, 3), (6, 3), (7, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 21.571247489 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004302611 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y6, y4, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t, y1, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 125  ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 101  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 209  ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0), (5, 2), (3, 2), (3, 2), (6, 2), (4, 2)], [(0, 0), (0, 4)], [(2, 5), (0, 0), (0, 0), (3, 5), (1, 0), (4, 5)], [(0, 0), (0, 0), (5, 2), (3, 2), (3, 2), (6, 2), (4, 2)], [(0, 0), (1, 0), (2, 0), (3, 0)], [(0, 0), (3, 2), (3, 4), (3, 4), (4, 2), (4, 4)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(2, 3), (4, 2), (5, 5), (2, 2), (0, 0), (5, 2), (6, 5)], [(2, 3), (4, 2), (5, 5), (2, 2), (0, 0), (5, 2), (6, 5)], [(2, 3), (3, 3), (0, 0), (4, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 256 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 9 for num. and 6 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.780498892 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00484948 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y6, y4, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y3, t, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (5, 2), (5, 4), (3, 2), (3, 2), (6, 2), (6, 4)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 4)], [(0, 0), (2, 2), (4, 6), (0, 2), (2, 4), (3, 2), (5, 6)], [(0, 0), (2, 2), (0, 2), (0, 2), (3, 2), (1, 2)], [(0, 0), (5, 2), (5, 4), (3, 2), (3, 2), (6, 2), (6, 4)], [(0, 0), (5, 2), (5, 4), (3, 2), (3, 2), (6, 2), (6, 4)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (1, 0)], [(4, 2), (2, 2), (2, 2), (0, 0), (0, 0), (5, 2), (3, 2)], [(4, 2), (2, 2), (2, 2), (0, 0), (0, 0), (5, 2), (3, 2)], [(0, 0), (0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 256 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 6 for num. and 9 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.078488297 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005719807 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y6, t, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y4, y1, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (1, 0), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(2, 3), (0, 0), (0, 0), (3, 3), (3, 3), (4, 3)], [(0, 4), (3, 7), (1, 4), (4, 7), (4, 7), (0, 0), (5, 7)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(2, 3), (3, 3), (3, 3), (0, 0), (4, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.3409013 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.007255829 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 3 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y3, y1, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, t, y4, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (3, 3), (3, 2), (3, 2), (6, 5), (4, 0), (7, 5)], [(2, 5), (0, 0), (2, 4), (2, 4), (5, 7), (1, 0), (6, 7)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(2, 5), (0, 0), (2, 4), (2, 4), (5, 7), (1, 0), (6, 7)], [(0, 0), (3, 3), (1, 0), (1, 0), (4, 3), (4, 0), (5, 3)], [(0, 0), (0, 4)], [(2, 5), (0, 0), (2, 4), (2, 4), (5, 7), (1, 0), (6, 7)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (1, 0), (2, 0), (3, 0)], [(2, 3), (0, 0), (0, 0), (3, 3), (4, 3)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(2, 3), (0, 0), (3, 3), (4, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.366681586 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.007253163 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.039357905 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 8 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 46814 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 440.794587636 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k01, k12*k13*k14, k31*k21*k41, k12 + k13 + k14, k31 + k21 + k41, k31*k21 + k31*k41 + k21*k41, k31*k12 - 2*k31*k13 + k31*k14 - 2*k21*k12 + k21*k13 + k21*k14 + k12*k41 + k13*k41 - 2*k14*k41, (k12^2*k13 - k12^2*k14 - k12*k13^2 + k12*k14^2 + k13^2*k14 - k13*k14^2)//(k31*k12 - k31*k14 - k21*k13 + k21*k14 - k12*k41 + k13*k41)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/logs_(:hybrid,)_with_states deleted file mode 100644 index 1c34e2d87..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,710 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing Bilirubin2_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.016952206 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.016952206 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.006810527 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.006810527 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [8] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.7314e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.7314e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 134  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 300  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 459  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 626  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 791  ⌝ # Computing specializations.. Time: 0:00:02 - Points: 948  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 1105  ⌞ # Computing specializations.. Time: 0:00:02 - Points: 1282  ⌜ # Computing specializations.. Time: 0:00:03 - Points: 1458  ✓ # Computing specializations.. Time: 0:00:04 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 85  ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 65  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 124  ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 56 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.439887746 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002399669 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 256 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 2 for den. -│ Maximal number of interpolated terms are: 12 for num. and 6 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.486657155 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.006851645 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 25 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.033218991 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 8 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 466840 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 16 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (2, 2), (3, 2)], [(0, 0), (0, 0), (2, 2), (2, 2), (3, 2)], [(0, 0), (2, 2), (0, 0), (2, 2), (3, 2)], [(0, 0), (2, 2), (2, 2), (3, 2)], [(0, 0), (1, 0)], [(0, 0), (0, 4)], [(0, 0), (2, 4), (2, 4), (2, 4), (2, 4), (1, 0), (5, 6)], [(0, 0), (2, 4), (2, 4), (2, 4), (2, 4), (1, 0), (5, 6)], [(0, 0), (2, 4), (2, 4), (2, 4), (2, 4), (1, 0), (5, 6)], [(0, 0), (2, 4), (2, 4), (2, 4), (2, 4), (1, 0), (5, 6)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (6, 4)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 0), (6, 4)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 0), (6, 4)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 0), (6, 4)], [(0, 0), (3, 2), (3, 2), (4, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 6 for num. and 6 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.469770363 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.068653246 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 16 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (2, 2), (3, 2)], [(0, 0), (0, 0), (2, 2), (2, 2), (3, 2)], [(0, 0), (2, 2), (0, 0), (2, 2), (3, 2)], [(0, 0), (2, 2), (2, 2), (3, 2)], [(0, 0), (1, 0)], [(0, 0), (0, 4)], [(0, 0), (2, 4), (2, 4), (2, 4), (2, 4), (1, 0), (5, 6)], [(0, 0), (2, 4), (2, 4), (2, 4), (2, 4), (1, 0), (5, 6)], [(0, 0), (2, 4), (2, 4), (2, 4), (2, 4), (1, 0), (5, 6)], [(0, 0), (2, 4), (2, 4), (2, 4), (2, 4), (1, 0), (5, 6)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (6, 4)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 0), (6, 4)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 0), (6, 4)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 0), (6, 4)], [(0, 0), (3, 2), (3, 2), (4, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 1536 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 33 for num. and 33 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.756738216 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.875266884 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 71 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[k01, k31, k21, k12, k13, k14, k41, x1, x2, x3, x4] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 354 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 137 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 354 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 137 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 4 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 354 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 137 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 4 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y10, y8, y11, y2, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y7, y3, y5, y4, y9], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 2), (2, 2), (3, 2)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(2, 2), (0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (2, 2), (3, 2), (5, 4), (5, 4), (3, 2), (6, 4)], [(0, 0), (5, 4), (3, 2), (3, 2), (3, 2), (6, 4)], [(0, 0), (2, 2), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (0, 0), (2, 2), (3, 2)], [(2, 2), (2, 2), (2, 2), (0, 0), (3, 2)], [(0, 0), (1, 0)], [(2, 2), (2, 2), (2, 2), (0, 0), (0, 0), (3, 2)], [(0, 4), (3, 6), (3, 6), (3, 6), (1, 4), (0, 0), (4, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 6 for num. and 6 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.837730085 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.010055265 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y10, y8, t, y3, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y6, y5, y9, y11, y7], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 2), (2, 2), (3, 2)], [(0, 0), (2, 2), (2, 2), (2, 2), (3, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (2, 2), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(2, 2), (0, 0), (5, 4), (3, 2), (5, 4), (3, 2), (6, 4)], [(0, 0), (3, 2), (3, 2), (3, 2), (5, 4), (6, 4)], [(0, 0), (2, 2), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (0, 0), (2, 2), (2, 2), (3, 2)], [(0, 4), (3, 6), (1, 4), (3, 6), (3, 6), (0, 0), (4, 6)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0), (2, 2), (2, 2), (3, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 6 for num. and 6 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.434713832 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.009573922 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y9, t, y4, y8, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y2, y11, y5, y10, y1], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 2), (2, 2), (3, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(2, 2), (0, 0), (2, 2), (3, 2)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 4), (3, 6), (3, 6), (3, 6), (3, 6), (0, 0), (4, 6)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (2, 2), (2, 2), (2, 2), (2, 2), (3, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 6 for num. and 6 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.373596209 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.008373976 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y3, y5, y9, y6, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y7, y10, y11, y8, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 4)], [(0, 0), (2, 4), (2, 4), (2, 4), (4, 6), (1, 0), (5, 6)], [(0, 0), (2, 4), (2, 4), (2, 4), (4, 6), (1, 0), (5, 6)], [(0, 0), (2, 4), (2, 4), (2, 4), (4, 6), (1, 0), (5, 6)], [(0, 0), (2, 4), (2, 4), (2, 4), (4, 6), (1, 0), (5, 6)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (5, 4), (4, 0), (6, 4)], [(0, 0), (3, 2), (3, 2), (3, 2), (5, 4), (6, 4)], [(0, 0), (3, 2), (1, 0), (3, 2), (3, 2), (4, 0), (4, 2)], [(0, 0), (1, 0), (3, 2), (1, 0), (3, 2), (4, 0), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (5, 4), (4, 0), (6, 4)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (2, 2), (0, 0), (2, 2), (2, 2), (3, 2)], [(0, 0), (2, 2), (2, 2), (3, 2)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0), (2, 2), (2, 2), (3, 2)], [(0, 0), (2, 2), (2, 2), (2, 2), (3, 2)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 6 for num. and 6 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 69  ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 60  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 124  ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 64  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 120  ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 20  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 47  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 74  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 97  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 125  ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 74  ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Groebner basis computed in 1.454760207 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.011387444 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y10, y7, y9, y2, y11], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y6, y4, y8, y5, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(2, 5), (0, 0), (5, 7), (5, 7), (3, 5), (4, 3), (6, 7)], [(3, 3), (0, 0), (6, 5), (6, 5), (4, 3), (7, 3), (7, 5)], [(3, 3), (0, 0), (4, 3), (4, 3), (4, 3), (7, 3), (5, 3)], [(2, 5), (0, 0), (5, 7), (5, 7), (3, 5), (4, 3), (6, 7)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(2, 5), (0, 0), (5, 7), (5, 7), (3, 5), (4, 3), (6, 7)], [(0, 0), (0, 4)], [(2, 3), (3, 3), (3, 3), (3, 3), (0, 0), (6, 3), (4, 3)], [(2, 3), (0, 0), (3, 3), (3, 3), (3, 3), (6, 3), (4, 3)], [(2, 2), (2, 2), (0, 0), (3, 2)], [(2, 3), (3, 3), (3, 3), (3, 3), (0, 0), (6, 3), (4, 3)], [(2, 3), (5, 5), (5, 5), (3, 3), (0, 0), (6, 3), (6, 5)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 6 for num. and 6 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.036950169 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.078673785 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y10, y6, y8, y4, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y2, y7, y3, y1, y11], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(2, 2), (0, 0), (2, 2), (2, 2), (2, 2), (3, 2)], [(2, 2), (0, 0), (2, 2), (3, 2)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (2, 2), (3, 2)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 4), (3, 6), (3, 6), (3, 6), (3, 6), (0, 0), (4, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 6 for num. and 6 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.185492326 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.008055266 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y2, t, y10, y3, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y4, y7, y11, y9, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(2, 2), (0, 0), (2, 2), (3, 2)], [(0, 0), (1, 0)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (2, 2), (2, 2), (3, 2)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 4), (3, 6), (3, 6), (3, 6), (3, 6), (0, 0), (4, 6)], [(0, 0), (2, 2), (2, 2), (2, 2), (2, 2), (3, 2)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 6 for num. and 6 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.391656441 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00786993 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y2, y5, y6, y11, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y1, y4, y9, y7, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 4)], [(0, 0), (2, 4), (2, 4), (4, 6), (2, 4), (1, 0), (5, 6)], [(0, 0), (2, 4), (2, 4), (4, 6), (2, 4), (1, 0), (5, 6)], [(0, 0), (2, 4), (2, 4), (4, 6), (2, 4), (1, 0), (5, 6)], [(0, 0), (2, 4), (2, 4), (4, 6), (2, 4), (1, 0), (5, 6)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (5, 4), (3, 2), (4, 0), (6, 4)], [(0, 0), (3, 2), (3, 2), (5, 4), (3, 2), (4, 0), (6, 4)], [(0, 0), (3, 2), (1, 0), (3, 2), (1, 0), (4, 0), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (1, 0), (3, 2), (3, 2), (3, 2), (4, 0), (4, 2)], [(0, 0), (3, 2), (3, 2), (5, 4), (3, 2), (6, 4)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (2, 2), (2, 2), (2, 2), (3, 2)], [(0, 0), (0, 0), (2, 2), (2, 2), (2, 2), (3, 2)], [(0, 0), (2, 2), (0, 0), (2, 2), (3, 2)], [(0, 0), (2, 2), (2, 2), (3, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 6 for num. and 6 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.10924401 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.010912164 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y6, y5, y4, y2, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y10, y1, y8, y3, y11], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (1, 0), (2, 0), (3, 0)], [(0, 0), (3, 2), (3, 2), (6, 4), (6, 4), (6, 4), (7, 4)], [(0, 4), (3, 7), (3, 6), (3, 6), (6, 9), (0, 0), (7, 9)], [(2, 3), (0, 0), (0, 0), (3, 3), (4, 3)], [(2, 2), (0, 0), (2, 2), (2, 2), (3, 2)], [(2, 3), (2, 2), (0, 0), (2, 2), (5, 5), (6, 5)], [(2, 3), (0, 0), (3, 3), (4, 3)], [(2, 3), (0, 0), (3, 3), (4, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 6 for num. and 6 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 2.812581151 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.009890278 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y8, t, y3, y4, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y11, y10, y9, y2, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(2, 2), (0, 0), (2, 2), (3, 2)], [(2, 2), (0, 0), (2, 2), (2, 2), (3, 2)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 4), (3, 6), (1, 4), (1, 4), (3, 6), (0, 0), (4, 6)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (2, 2), (2, 2), (3, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 6 for num. and 6 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.981890711 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.008673859 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.136011204 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 15 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 920 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 20.834140757 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x1, k01, x2*x3*x4, k12*k13*k14, k31*k21*k41, x2 + x3 + x4, k12 + k13 + k14, k31 + k21 + k41, x2*x3 + x2*x4 + x3*x4, k31^2*k12^2 - 2*k31^2*k12*k14 + k31^2*k14^2 - 2*k31*k21*k12*k13 + 2*k31*k21*k12*k14 + 2*k31*k21*k13*k14 - 2*k31*k21*k14^2 - 2*k31*k12^2*k41 + 2*k31*k12*k13*k41 + 2*k31*k12*k14*k41 - 2*k31*k13*k14*k41 + k21^2*k13^2 - 2*k21^2*k13*k14 + k21^2*k14^2 + 2*k21*k12*k13*k41 - 2*k21*k12*k14*k41 - 2*k21*k13^2*k41 + 2*k21*k13*k14*k41 + k12^2*k41^2 - 2*k12*k13*k41^2 + k13^2*k41^2, k31*k12^2*x3 - k31*k12^2*x4 - k31*k12*k13*x2 + k31*k12*k13*x4 + k31*k12*k14*x2 - 2*k31*k12*k14*x3 + k31*k12*k14*x4 + k31*k13*k14*x2 - k31*k13*k14*x4 - k31*k14^2*x2 + k31*k14^2*x3 - k21*k12*k13*x3 + k21*k12*k13*x4 + k21*k12*k14*x3 - k21*k12*k14*x4 + k21*k13^2*x2 - k21*k13^2*x4 - 2*k21*k13*k14*x2 + k21*k13*k14*x3 + k21*k13*k14*x4 + k21*k14^2*x2 - k21*k14^2*x3 - k12^2*k41*x3 + k12^2*k41*x4 + k12*k13*k41*x2 + k12*k13*k41*x3 - 2*k12*k13*k41*x4 - k12*k14*k41*x2 + k12*k14*k41*x3 - k13^2*k41*x2 + k13^2*k41*x4 + k13*k14*k41*x2 - k13*k14*k41*x3, k31^2*k12*x2 - k31^2*k12*x4 - k31^2*k14*x2 + k31^2*k14*x4 - k31*k21*k12*x3 + k31*k21*k12*x4 - k31*k21*k13*x2 + k31*k21*k13*x4 + k31*k21*k14*x2 + k31*k21*k14*x3 - 2*k31*k21*k14*x4 - 2*k31*k12*k41*x2 + k31*k12*k41*x3 + k31*k12*k41*x4 + k31*k13*k41*x2 - k31*k13*k41*x4 + k31*k14*k41*x2 - k31*k14*k41*x3 + k21^2*k13*x3 - k21^2*k13*x4 - k21^2*k14*x3 + k21^2*k14*x4 + k21*k12*k41*x3 - k21*k12*k41*x4 + k21*k13*k41*x2 - 2*k21*k13*k41*x3 + k21*k13*k41*x4 - k21*k14*k41*x2 + k21*k14*k41*x3 + k12*k41^2*x2 - k12*k41^2*x3 - k13*k41^2*x2 + k13*k41^2*x3] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/logs_(:normalforms, 2) deleted file mode 100644 index c8e818117..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/logs_(:normalforms, 2) +++ /dev/null @@ -1,150 +0,0 @@ -┌ Info: Processing Bilirubin2_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.022881576 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.022881576 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.007956277 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.007956277 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [8] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.1899e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.1899e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 56 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.494919406 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003185041 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 256 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 2 for den. -│ Maximal number of interpolated terms are: 12 for num. and 6 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.477120318 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.007486609 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 25 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (7 in total): Nemo.fmpq_mpoly[k01, k31, k21, k12, k13, k14, k41] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 33 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 19 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 33 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 19 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 1 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 33 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 19 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 1 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.042365434 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 8 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 466840 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 1.513538411 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k01, k12 + k13 + k14, k31 + k21 + k41, (k12^2*k13 - k12^2*k14 - k12*k13^2 + k12*k14^2 + k13^2*k14 - k13*k14^2)//(k31*k12 - k31*k14 - k21*k13 + k21*k14 - k12*k41 + k13*k41), (k31*k12*k13 - k31*k13*k14 - k21*k12*k13 + k21*k12*k14 - k12*k14*k41 + k13*k14*k41)//(k31*k12 - k31*k14 - k21*k13 + k21*k14 - k12*k41 + k13*k41), (k31*k21*k12 - k31*k21*k13 + k31*k13*k41 - k31*k14*k41 - k21*k12*k41 + k21*k14*k41)//(k31*k12 - k31*k14 - k21*k13 + k21*k14 - k12*k41 + k13*k41), (k31^2*k21 - k31^2*k41 - k31*k21^2 + k31*k41^2 + k21^2*k41 - k21*k41^2)//(k31*k12 - k31*k14 - k21*k13 + k21*k14 - k12*k41 + k13*k41)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/logs_(:normalforms, 2)_with_states deleted file mode 100644 index 2aafc6ccd..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,252 +0,0 @@ -┌ Info: Processing Bilirubin2_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.014944767 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.014944767 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.006559318 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.006559318 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [8] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.0501e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.0501e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 128  ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 143  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 289  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 434  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 604  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 774  ⌝ # Computing specializations.. Time: 0:00:02 - Points: 957  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 1127  ⌞ # Computing specializations.. Time: 0:00:02 - Points: 1310  ⌜ # Computing specializations.. Time: 0:00:03 - Points: 1491  ✓ # Computing specializations.. Time: 0:00:04 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 56 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.479843847 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00260668 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 256 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 2 for den. -│ Maximal number of interpolated terms are: 12 for num. and 6 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.479056344 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.007367291 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 25 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.02373592 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 8 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 466840 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 16 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (2, 2), (3, 2)], [(0, 0), (0, 0), (2, 2), (2, 2), (3, 2)], [(0, 0), (2, 2), (0, 0), (2, 2), (3, 2)], [(0, 0), (2, 2), (2, 2), (3, 2)], [(0, 0), (1, 0)], [(0, 0), (0, 4)], [(0, 0), (2, 4), (2, 4), (2, 4), (2, 4), (1, 0), (5, 6)], [(0, 0), (2, 4), (2, 4), (2, 4), (2, 4), (1, 0), (5, 6)], [(0, 0), (2, 4), (2, 4), (2, 4), (2, 4), (1, 0), (5, 6)], [(0, 0), (2, 4), (2, 4), (2, 4), (2, 4), (1, 0), (5, 6)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (6, 4)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 0), (6, 4)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 0), (6, 4)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 0), (6, 4)], [(0, 0), (3, 2), (3, 2), (4, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 6 for num. and 6 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.503205169 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.068456941 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 16 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (2, 2), (3, 2)], [(0, 0), (0, 0), (2, 2), (2, 2), (3, 2)], [(0, 0), (2, 2), (0, 0), (2, 2), (3, 2)], [(0, 0), (2, 2), (2, 2), (3, 2)], [(0, 0), (1, 0)], [(0, 0), (0, 4)], [(0, 0), (2, 4), (2, 4), (2, 4), (2, 4), (1, 0), (5, 6)], [(0, 0), (2, 4), (2, 4), (2, 4), (2, 4), (1, 0), (5, 6)], [(0, 0), (2, 4), (2, 4), (2, 4), (2, 4), (1, 0), (5, 6)], [(0, 0), (2, 4), (2, 4), (2, 4), (2, 4), (1, 0), (5, 6)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (6, 4)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 0), (6, 4)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 0), (6, 4)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 0), (6, 4)], [(0, 0), (3, 2), (3, 2), (4, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 1536 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 33 for num. and 33 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.671244513 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.811156389 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 71 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[k01, k31, k21, k12, k13, k14, k41, x1, x2, x3, x4] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 72 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 41 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 72 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 41 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 1 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 72 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 41 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 1 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.124246909 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 15 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 469214 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 8.462637158 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x1, k01, x2 + x3 + x4, k12 + k13 + k14, k31 + k21 + k41, k31^2*k12^2 - 2*k31^2*k12*k14 + k31^2*k14^2 - 2*k31*k21*k12*k13 + 2*k31*k21*k12*k14 + 2*k31*k21*k13*k14 - 2*k31*k21*k14^2 - 2*k31*k12^2*k41 + 2*k31*k12*k13*k41 + 2*k31*k12*k14*k41 - 2*k31*k13*k14*k41 + k21^2*k13^2 - 2*k21^2*k13*k14 + k21^2*k14^2 + 2*k21*k12*k13*k41 - 2*k21*k12*k14*k41 - 2*k21*k13^2*k41 + 2*k21*k13*k14*k41 + k12^2*k41^2 - 2*k12*k13*k41^2 + k13^2*k41^2, k31*k12^2*x3 - k31*k12^2*x4 - k31*k12*k13*x2 + k31*k12*k13*x4 + k31*k12*k14*x2 - 2*k31*k12*k14*x3 + k31*k12*k14*x4 + k31*k13*k14*x2 - k31*k13*k14*x4 - k31*k14^2*x2 + k31*k14^2*x3 - k21*k12*k13*x3 + k21*k12*k13*x4 + k21*k12*k14*x3 - k21*k12*k14*x4 + k21*k13^2*x2 - k21*k13^2*x4 - 2*k21*k13*k14*x2 + k21*k13*k14*x3 + k21*k13*k14*x4 + k21*k14^2*x2 - k21*k14^2*x3 - k12^2*k41*x3 + k12^2*k41*x4 + k12*k13*k41*x2 + k12*k13*k41*x3 - 2*k12*k13*k41*x4 - k12*k14*k41*x2 + k12*k14*k41*x3 - k13^2*k41*x2 + k13^2*k41*x4 + k13*k14*k41*x2 - k13*k14*k41*x3, k31^2*k12*x2 - k31^2*k12*x4 - k31^2*k14*x2 + k31^2*k14*x4 - k31*k21*k12*x3 + k31*k21*k12*x4 - k31*k21*k13*x2 + k31*k21*k13*x4 + k31*k21*k14*x2 + k31*k21*k14*x3 - 2*k31*k21*k14*x4 - 2*k31*k12*k41*x2 + k31*k12*k41*x3 + k31*k12*k41*x4 + k31*k13*k41*x2 - k31*k13*k41*x4 + k31*k14*k41*x2 - k31*k14*k41*x3 + k21^2*k13*x3 - k21^2*k13*x4 - k21^2*k14*x3 + k21^2*k14*x4 + k21*k12*k41*x3 - k21*k12*k41*x4 + k21*k13*k41*x2 - 2*k21*k13*k41*x3 + k21*k13*k41*x4 - k21*k14*k41*x2 + k21*k14*k41*x3 + k12*k41^2*x2 - k12*k41^2*x3 - k13*k41^2*x2 + k13*k41^2*x3, (x2^2*x3 - x2^2*x4 - x2*x3^2 + x2*x4^2 + x3^2*x4 - x3*x4^2)//(k12*x3 - k12*x4 - k13*x2 + k13*x4 + k14*x2 - k14*x3), (k12*x3^2 - k12*x4^2 - k13*x2^2 + k13*x4^2 + k14*x2^2 - k14*x3^2)//(k12*x3 - k12*x4 - k13*x2 + k13*x4 + k14*x2 - k14*x3), (k12*k13*x2 - k12*k13*x3 - k12*k14*x2 + k12*k14*x4 + k13*k14*x3 - k13*k14*x4)//(k12*x3 - k12*x4 - k13*x2 + k13*x4 + k14*x2 - k14*x3), (k12^2*k13 - k12^2*k14 - k12*k13^2 + k12*k14^2 + k13^2*k14 - k13*k14^2)//(k12*x3 - k12*x4 - k13*x2 + k13*x4 + k14*x2 - k14*x3)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/logs_(:normalforms, 3) deleted file mode 100644 index 29e133515..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/logs_(:normalforms, 3) +++ /dev/null @@ -1,150 +0,0 @@ -┌ Info: Processing Bilirubin2_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.0147222 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.0147222 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.007423454 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.007423454 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [8] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.3356e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.3356e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 56 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.480008429 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002897423 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 256 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 2 for den. -│ Maximal number of interpolated terms are: 12 for num. and 6 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.470804339 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.006530871 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 25 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (7 in total): Nemo.fmpq_mpoly[k01, k31, k21, k12, k13, k14, k41] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 116 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 49 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 116 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 49 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 116 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 49 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.03868637 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 8 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 280154 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 1.458040432 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k01, k12*k13*k14, k31*k21*k41, k12 + k13 + k14, k31 + k21 + k41, (k12^2*k13 - k12^2*k14 - k12*k13^2 + k12*k14^2 + k13^2*k14 - k13*k14^2)//(k31*k12 - k31*k14 - k21*k13 + k21*k14 - k12*k41 + k13*k41), (k31*k12*k13 - k31*k13*k14 - k21*k12*k13 + k21*k12*k14 - k12*k14*k41 + k13*k14*k41)//(k31*k12 - k31*k14 - k21*k13 + k21*k14 - k12*k41 + k13*k41), (k31*k21*k12 - k31*k21*k13 + k31*k13*k41 - k31*k14*k41 - k21*k12*k41 + k21*k14*k41)//(k31*k12 - k31*k14 - k21*k13 + k21*k14 - k12*k41 + k13*k41)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/logs_(:normalforms, 3)_with_states deleted file mode 100644 index 5a2454ffe..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,252 +0,0 @@ -┌ Info: Processing Bilirubin2_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.014995505 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.014995505 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.007085725 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.007085725 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [8] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.101e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.101e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 123  ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 117  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 241  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 409  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 572  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 741  ⌝ # Computing specializations.. Time: 0:00:02 - Points: 908  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 1076  ⌞ # Computing specializations.. Time: 0:00:02 - Points: 1244  ⌜ # Computing specializations.. Time: 0:00:03 - Points: 1412  ✓ # Computing specializations.. Time: 0:00:04 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 56 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.492516812 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002499021 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (4, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 256 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 2 for den. -│ Maximal number of interpolated terms are: 12 for num. and 6 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.396655583 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.095986034 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 25 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.026780645 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 8 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 466840 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 16 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (2, 2), (3, 2)], [(0, 0), (0, 0), (2, 2), (2, 2), (3, 2)], [(0, 0), (2, 2), (0, 0), (2, 2), (3, 2)], [(0, 0), (2, 2), (2, 2), (3, 2)], [(0, 0), (1, 0)], [(0, 0), (0, 4)], [(0, 0), (2, 4), (2, 4), (2, 4), (2, 4), (1, 0), (5, 6)], [(0, 0), (2, 4), (2, 4), (2, 4), (2, 4), (1, 0), (5, 6)], [(0, 0), (2, 4), (2, 4), (2, 4), (2, 4), (1, 0), (5, 6)], [(0, 0), (2, 4), (2, 4), (2, 4), (2, 4), (1, 0), (5, 6)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (6, 4)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 0), (6, 4)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 0), (6, 4)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 0), (6, 4)], [(0, 0), (3, 2), (3, 2), (4, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 6 for num. and 6 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.539279272 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.017415326 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 16 functions in Rational Field(k01, k31, k21, k12, k13, k14, k41, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (2, 2), (3, 2)], [(0, 0), (0, 0), (2, 2), (2, 2), (3, 2)], [(0, 0), (2, 2), (0, 0), (2, 2), (3, 2)], [(0, 0), (2, 2), (2, 2), (3, 2)], [(0, 0), (1, 0)], [(0, 0), (0, 4)], [(0, 0), (2, 4), (2, 4), (2, 4), (2, 4), (1, 0), (5, 6)], [(0, 0), (2, 4), (2, 4), (2, 4), (2, 4), (1, 0), (5, 6)], [(0, 0), (2, 4), (2, 4), (2, 4), (2, 4), (1, 0), (5, 6)], [(0, 0), (2, 4), (2, 4), (2, 4), (2, 4), (1, 0), (5, 6)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (6, 4)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 0), (6, 4)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 0), (6, 4)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (4, 2)], [(0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 0), (6, 4)], [(0, 0), (3, 2), (3, 2), (4, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 1536 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 33 for num. and 33 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.906223338 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.952377069 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 71 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[k01, k31, k21, k12, k13, k14, k41, x1, x2, x3, x4] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 354 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 137 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 354 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 137 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 4 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 354 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 137 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 4 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.206344255 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 15 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 47969 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 9.208378702 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x1, k01, x2*x3*x4, k12*k13*k14, k31*k21*k41, x2 + x3 + x4, k12 + k13 + k14, k31 + k21 + k41, k31^2*k12^2 - 2*k31^2*k12*k14 + k31^2*k14^2 - 2*k31*k21*k12*k13 + 2*k31*k21*k12*k14 + 2*k31*k21*k13*k14 - 2*k31*k21*k14^2 - 2*k31*k12^2*k41 + 2*k31*k12*k13*k41 + 2*k31*k12*k14*k41 - 2*k31*k13*k14*k41 + k21^2*k13^2 - 2*k21^2*k13*k14 + k21^2*k14^2 + 2*k21*k12*k13*k41 - 2*k21*k12*k14*k41 - 2*k21*k13^2*k41 + 2*k21*k13*k14*k41 + k12^2*k41^2 - 2*k12*k13*k41^2 + k13^2*k41^2, k31*k12^2*x3 - k31*k12^2*x4 - k31*k12*k13*x2 + k31*k12*k13*x4 + k31*k12*k14*x2 - 2*k31*k12*k14*x3 + k31*k12*k14*x4 + k31*k13*k14*x2 - k31*k13*k14*x4 - k31*k14^2*x2 + k31*k14^2*x3 - k21*k12*k13*x3 + k21*k12*k13*x4 + k21*k12*k14*x3 - k21*k12*k14*x4 + k21*k13^2*x2 - k21*k13^2*x4 - 2*k21*k13*k14*x2 + k21*k13*k14*x3 + k21*k13*k14*x4 + k21*k14^2*x2 - k21*k14^2*x3 - k12^2*k41*x3 + k12^2*k41*x4 + k12*k13*k41*x2 + k12*k13*k41*x3 - 2*k12*k13*k41*x4 - k12*k14*k41*x2 + k12*k14*k41*x3 - k13^2*k41*x2 + k13^2*k41*x4 + k13*k14*k41*x2 - k13*k14*k41*x3, k31^2*k12*x2 - k31^2*k12*x4 - k31^2*k14*x2 + k31^2*k14*x4 - k31*k21*k12*x3 + k31*k21*k12*x4 - k31*k21*k13*x2 + k31*k21*k13*x4 + k31*k21*k14*x2 + k31*k21*k14*x3 - 2*k31*k21*k14*x4 - 2*k31*k12*k41*x2 + k31*k12*k41*x3 + k31*k12*k41*x4 + k31*k13*k41*x2 - k31*k13*k41*x4 + k31*k14*k41*x2 - k31*k14*k41*x3 + k21^2*k13*x3 - k21^2*k13*x4 - k21^2*k14*x3 + k21^2*k14*x4 + k21*k12*k41*x3 - k21*k12*k41*x4 + k21*k13*k41*x2 - 2*k21*k13*k41*x3 + k21*k13*k41*x4 - k21*k14*k41*x2 + k21*k14*k41*x3 + k12*k41^2*x2 - k12*k41^2*x3 - k13*k41^2*x2 + k13*k41^2*x3, (x2^2*x3 - x2^2*x4 - x2*x3^2 + x2*x4^2 + x3^2*x4 - x3*x4^2)//(k12*x3 - k12*x4 - k13*x2 + k13*x4 + k14*x2 - k14*x3)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/timings_(:gb,) deleted file mode 100644 index 5fcfe0f2d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -Bilirubin2_io -id_total, 1.189748039 diff --git a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/timings_(:gb,)_with_states deleted file mode 100644 index 45c6fcecc..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Bilirubin2_io -id_total, 8.504446235 diff --git a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/timings_(:hybrid,) deleted file mode 100644 index 4aee1c51c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -Bilirubin2_io -id_total, 440.794587636 diff --git a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/timings_(:hybrid,)_with_states deleted file mode 100644 index 39e55f92b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Bilirubin2_io -id_total, 20.834140757 diff --git a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/timings_(:normalforms, 2) deleted file mode 100644 index 7ec84ed67..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -Bilirubin2_io -id_total, 1.513538411 diff --git a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/timings_(:normalforms, 2)_with_states deleted file mode 100644 index 923756444..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Bilirubin2_io -id_total, 8.462637158 diff --git a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/timings_(:normalforms, 3) deleted file mode 100644 index f354273a1..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -Bilirubin2_io -id_total, 1.458040432 diff --git a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/timings_(:normalforms, 3)_with_states deleted file mode 100644 index 65a87ae76..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bilirubin2_io/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Bilirubin2_io -id_total, 9.208378702 diff --git a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/id_funcs_(:gb,) deleted file mode 100644 index a5296e07f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/id_funcs_(:gb,) +++ /dev/null @@ -1,6 +0,0 @@ -[k7, -k6, -k5, -k9*k10, -k9^2, -k8 + 1//2*k10] diff --git a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/id_funcs_(:gb,)_with_states deleted file mode 100644 index f340ba4d6..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,9 +0,0 @@ -[x4, -x5, -k7, -k6, -k5, -k10 - 2*x6, -k8 + 1//2*k10, -k8^2*k6^3*k10^2 + 3*k8^2*k6^2*k10^2*x4 + 3*k8^2*k6*k10^2*x4^2 + k8^2*k10^2*x4^3 + 2*k8*k6^3*k10^2*x5 + 2*k8*k6^3*k10^2*x6 + 6*k8*k6^2*k10^2*x5*x4 + 6*k8*k6^2*k10^2*x4*x6 + 6*k8*k6*k10^2*x5*x4^2 + 6*k8*k6*k10^2*x4^2*x6 + 2*k8*k10^2*x5*x4^3 + 2*k8*k10^2*x4^3*x6 + k6^3*k10^2*x5^2 + 2*k6^3*k10^2*x5*x6 + k6^3*k10^2*x6^2 + 3*k6^2*k10^2*x5^2*x4 + 6*k6^2*k10^2*x5*x4*x6 + 3*k6^2*k10^2*x4*x6^2 + 3*k6*k10^2*x5^2*x4^2 + 6*k6*k10^2*x5*x4^2*x6 + 3*k6*k10^2*x4^2*x6^2 + k10^2*x5^2*x4^3 + 2*k10^2*x5*x4^3*x6 + k10^2*x4^3*x6^2, -k8^2*k9*k6^3*k10 + 3*k8^2*k9*k6^2*k10*x4 + 3*k8^2*k9*k6*k10*x4^2 + k8^2*k9*k10*x4^3 + 2*k8*k9*k6^3*k10*x5 + 2*k8*k9*k6^3*k10*x6 + 6*k8*k9*k6^2*k10*x5*x4 + 6*k8*k9*k6^2*k10*x4*x6 + 6*k8*k9*k6*k10*x5*x4^2 + 6*k8*k9*k6*k10*x4^2*x6 + 2*k8*k9*k10*x5*x4^3 + 2*k8*k9*k10*x4^3*x6 + k9*k6^3*k10*x5^2 + 2*k9*k6^3*k10*x5*x6 + k9*k6^3*k10*x6^2 + 3*k9*k6^2*k10*x5^2*x4 + 6*k9*k6^2*k10*x5*x4*x6 + 3*k9*k6^2*k10*x4*x6^2 + 3*k9*k6*k10*x5^2*x4^2 + 6*k9*k6*k10*x5*x4^2*x6 + 3*k9*k6*k10*x4^2*x6^2 + k9*k10*x5^2*x4^3 + 2*k9*k10*x5*x4^3*x6 + k9*k10*x4^3*x6^2] diff --git a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/id_funcs_(:hybrid,) deleted file mode 100644 index 302f7ab54..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/id_funcs_(:hybrid,) +++ /dev/null @@ -1,6 +0,0 @@ -[k7, -k6, -k5, -k10^2, -k9*k10, -k8 + 1//2*k10] diff --git a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index 5e2761e69..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,9 +0,0 @@ -[x4, -x5, -k7, -k6, -k5, -k10^2, -k9*k10, -k10 - 2*x6, -k8 + x6] diff --git a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/id_funcs_(:normalforms, 2) deleted file mode 100644 index 302f7ab54..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,6 +0,0 @@ -[k7, -k6, -k5, -k10^2, -k9*k10, -k8 + 1//2*k10] diff --git a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index 70a9f50c1..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,9 +0,0 @@ -[x4, -x5, -k7, -k6, -k5, -k10^2, -k9*k10, -k10 - 2*x6, -k8 + 1//2*k10] diff --git a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/id_funcs_(:normalforms, 3) deleted file mode 100644 index 302f7ab54..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,6 +0,0 @@ -[k7, -k6, -k5, -k10^2, -k9*k10, -k8 + 1//2*k10] diff --git a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index 70a9f50c1..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,9 +0,0 @@ -[x4, -x5, -k7, -k6, -k5, -k10^2, -k9*k10, -k10 - 2*x6, -k8 + 1//2*k10] diff --git a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/logs_(:gb,) deleted file mode 100644 index 47b559b89..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/logs_(:gb,) +++ /dev/null @@ -1,84 +0,0 @@ -┌ Info: Processing Biohydrogenation_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.304346899 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.304346899 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.013091294 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.013091294 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [3, 36] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000107496 seconds -│ :rank_time = rank_time -│ rank_times = 0.000107496 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 38 functions in Rational Field(k5, k8, k9, k6, k10, k7)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 3.857820905 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.082989627 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.890793754 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 37 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 9.215003784 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k7, k6, k5, k9*k10, k9^2, k8 + 1//2*k10] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/logs_(:gb,)_with_states deleted file mode 100644 index a69d5ad56..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/logs_(:gb,)_with_states +++ /dev/null @@ -1,213 +0,0 @@ -┌ Info: Processing Biohydrogenation_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.609446004 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.609446004 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.064665982 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.064665982 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [3, 36] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000111169 seconds -│ :rank_time = rank_time -│ rank_times = 0.000111169 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 1001  ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 38 functions in Rational Field(k5, k8, k9, k6, k10, k7, x5, x7, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.931161139 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003165713 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.004747998 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 37 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(k5, k8, k9, k6, k10, k7, x5, x7, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (7, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (7, 0)], [(0, 0), (1, 0)], [(0, 0), (7, 0)], [(0, 0), (7, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.049409885 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.060745574 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(k5, k8, k9, k6, k10, k7, x5, x7, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (7, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (7, 0)], [(0, 0), (1, 0)], [(0, 0), (7, 0)], [(0, 0), (7, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.058036005 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.007663928 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (8, 8) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(k5, k8, k9, k6, k10, k7, x5, x7, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (7, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (7, 0)], [(0, 0), (1, 0)], [(0, 0), (7, 0)], [(0, 0), (7, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 7, Denominator: 9 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 1152 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 7 for num. and 0 for den. -│ Maximal number of interpolated terms are: 24 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.007430217 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.006784657 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.017037252 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 11 initial generators there are 9 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 614 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 5.045256513 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x4, x5, k7, k6, k5, k10 - 2*x6, k8 + 1//2*k10, k8^2*k6^3*k10^2 + 3*k8^2*k6^2*k10^2*x4 + 3*k8^2*k6*k10^2*x4^2 + k8^2*k10^2*x4^3 + 2*k8*k6^3*k10^2*x5 + 2*k8*k6^3*k10^2*x6 + 6*k8*k6^2*k10^2*x5*x4 + 6*k8*k6^2*k10^2*x4*x6 + 6*k8*k6*k10^2*x5*x4^2 + 6*k8*k6*k10^2*x4^2*x6 + 2*k8*k10^2*x5*x4^3 + 2*k8*k10^2*x4^3*x6 + k6^3*k10^2*x5^2 + 2*k6^3*k10^2*x5*x6 + k6^3*k10^2*x6^2 + 3*k6^2*k10^2*x5^2*x4 + 6*k6^2*k10^2*x5*x4*x6 + 3*k6^2*k10^2*x4*x6^2 + 3*k6*k10^2*x5^2*x4^2 + 6*k6*k10^2*x5*x4^2*x6 + 3*k6*k10^2*x4^2*x6^2 + k10^2*x5^2*x4^3 + 2*k10^2*x5*x4^3*x6 + k10^2*x4^3*x6^2, k8^2*k9*k6^3*k10 + 3*k8^2*k9*k6^2*k10*x4 + 3*k8^2*k9*k6*k10*x4^2 + k8^2*k9*k10*x4^3 + 2*k8*k9*k6^3*k10*x5 + 2*k8*k9*k6^3*k10*x6 + 6*k8*k9*k6^2*k10*x5*x4 + 6*k8*k9*k6^2*k10*x4*x6 + 6*k8*k9*k6*k10*x5*x4^2 + 6*k8*k9*k6*k10*x4^2*x6 + 2*k8*k9*k10*x5*x4^3 + 2*k8*k9*k10*x4^3*x6 + k9*k6^3*k10*x5^2 + 2*k9*k6^3*k10*x5*x6 + k9*k6^3*k10*x6^2 + 3*k9*k6^2*k10*x5^2*x4 + 6*k9*k6^2*k10*x5*x4*x6 + 3*k9*k6^2*k10*x4*x6^2 + 3*k9*k6*k10*x5^2*x4^2 + 6*k9*k6*k10*x5*x4^2*x6 + 3*k9*k6*k10*x4^2*x6^2 + k9*k10*x5^2*x4^3 + 2*k9*k10*x5*x4^3*x6 + k9*k10*x4^3*x6^2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/logs_(:hybrid,) deleted file mode 100644 index dd6c133da..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/logs_(:hybrid,) +++ /dev/null @@ -1,549 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing Biohydrogenation_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.610539673 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.610539673 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.021216633 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.021216633 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [3, 36] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000111953 seconds -│ :rank_time = rank_time -│ rank_times = 0.000111953 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 38 functions in Rational Field(k5, k8, k9, k6, k10, k7)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.014231044 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.131013879 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (6 in total): Nemo.fmpq_mpoly[k5, k8, k9, k6, k10, k7] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 64 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 63 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 64 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 63 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 12 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 64 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 63 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 12 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y5, y2], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y1, y3, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(k5, k8, k9, k6, k10, k7)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 1), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.017029107 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001474292 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y1, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y5, y2, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(k5, k8, k9, k6, k10, k7)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(1, 1), (0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.01587066 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001289815 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y3, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y2, y6, y4], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(k5, k8, k9, k6, k10, k7)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0)], [(1, 1), (0, 0), (2, 1)], [(0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.016902259 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001314747 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y4, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y6, t, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(k5, k8, k9, k6, k10, k7)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015575619 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001337516 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y3, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y1, y6, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(k5, k8, k9, k6, k10, k7)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.01778819 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001610204 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y3, y2], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, t, y5, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(k5, k8, k9, k6, k10, k7)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.016192048 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001460988 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y1, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y6, y5, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(k5, k8, k9, k6, k10, k7)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0), (2, 0)], [(1, 1), (0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015929966 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001474818 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y1, y6], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y5, y4, t], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(k5, k8, k9, k6, k10, k7)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013754682 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001099482 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y4, y1, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(k5, k8, k9, k6, k10, k7)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (1, 0)], [(1, 1), (0, 0), (2, 1)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013656642 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.101367889 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y1, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t, y6, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(k5, k8, k9, k6, k10, k7)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (2, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.020526742 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00202052 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.734600238 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 37 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.621967943 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k7, k6, k5, k10^2, k9*k10, k8 + 1//2*k10] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/logs_(:hybrid,)_with_states deleted file mode 100644 index bfdfcfef6..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,678 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing Biohydrogenation_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.535048596 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.535048596 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.021303795 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.021303795 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [3, 36] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000109584 seconds -│ :rank_time = rank_time -│ rank_times = 0.000109584 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 671  ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 38 functions in Rational Field(k5, k8, k9, k6, k10, k7, x5, x7, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.819453324 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003595196 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.00515665 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 37 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(k5, k8, k9, k6, k10, k7, x5, x7, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (7, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (7, 0)], [(0, 0), (1, 0)], [(0, 0), (7, 0)], [(0, 0), (7, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.085546048 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003086394 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(k5, k8, k9, k6, k10, k7, x5, x7, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (7, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (7, 0)], [(0, 0), (1, 0)], [(0, 0), (7, 0)], [(0, 0), (7, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.125105277 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002588666 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (8, 8) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(k5, k8, k9, k6, k10, k7, x5, x7, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (7, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (7, 0)], [(0, 0), (1, 0)], [(0, 0), (7, 0)], [(0, 0), (7, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 7, Denominator: 9 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 1152 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 7 for num. and 0 for den. -│ Maximal number of interpolated terms are: 24 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.80900018 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003829989 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (10 in total): Nemo.fmpq_mpoly[k5, k8, k9, k6, k10, k7, x5, x7, x4, x6] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 230 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 224 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 230 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 224 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 27 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 230 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 224 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 27 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y10, y7, y2, y4], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y9, y6, t, y3, y8], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(k5, k8, k9, k6, k10, k7, x5, x7, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0), (1, 0)], [(1, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.029184153 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003076224 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y4, y2, y5, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y7, y1, y9, y8, y10], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(k5, k8, k9, k6, k10, k7, x5, x7, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 1), (2, 1)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.081433854 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003102523 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y1, y9, y10, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y8, y4, y5, y3, y2], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(k5, k8, k9, k6, k10, k7, x5, x7, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(1, 1), (0, 0), (2, 1)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.041420453 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.049973335 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y1, y2, y3, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y8, y4, y5, y10, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(k5, k8, k9, k6, k10, k7, x5, x7, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1), (2, 1)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.039816385 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003134467 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y2, y9, t, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y5, y3, y1, y6, y10], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(k5, k8, k9, k6, k10, k7, x5, x7, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1), (2, 1)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.078526821 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.0030941 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, t, y6, y8, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y5, y3, y2, y1, y4], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(k5, k8, k9, k6, k10, k7, x5, x7, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0), (2, 1)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.035853912 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.043776412 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, t, y3, y5, y10], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y8, y2, y6, y1, y9], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(k5, k8, k9, k6, k10, k7, x5, x7, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(1, 1), (0, 0), (2, 1)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.02971541 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003014925 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y1, y7, y9, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y8, y4, y3, t, y10], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(k5, k8, k9, k6, k10, k7, x5, x7, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 1), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.067905334 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003087509 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y3, y2, y4, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y8, y10, t, y6, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(k5, k8, k9, k6, k10, k7, x5, x7, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1), (2, 1)], [(0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.029468005 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003307256 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y4, y3, y10, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y9, t, y1, y2, y8], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(k5, k8, k9, k6, k10, k7, x5, x7, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(1, 1), (0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.076018933 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003266949 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.005087186 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 11 initial generators there are 9 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 57 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 5.874629224 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x4, x5, k7, k6, k5, k10^2, k9*k10, k10 - 2*x6, k8 + x6] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/logs_(:normalforms, 2) deleted file mode 100644 index 88db97ebd..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/logs_(:normalforms, 2) +++ /dev/null @@ -1,113 +0,0 @@ -┌ Info: Processing Biohydrogenation_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.5863297 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.5863297 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.022488497 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.022488497 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [3, 36] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000107141 seconds -│ :rank_time = rank_time -│ rank_times = 0.000107141 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 38 functions in Rational Field(k5, k8, k9, k6, k10, k7)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.372836663 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.118649078 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (6 in total): Nemo.fmpq_mpoly[k5, k8, k9, k6, k10, k7] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 18 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 17 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 18 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 17 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 18 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 17 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.781809623 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 37 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.485614969 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k7, k6, k5, k10^2, k9*k10, k8 + 1//2*k10] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/logs_(:normalforms, 2)_with_states deleted file mode 100644 index 87b0865c5..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,242 +0,0 @@ -┌ Info: Processing Biohydrogenation_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.411075243 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.411075243 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.021857509 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.021857509 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [3, 36] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000105442 seconds -│ :rank_time = rank_time -│ rank_times = 0.000105442 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 1001  ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 38 functions in Rational Field(k5, k8, k9, k6, k10, k7, x5, x7, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.848622464 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003091802 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.005158117 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 37 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(k5, k8, k9, k6, k10, k7, x5, x7, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (7, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (7, 0)], [(0, 0), (1, 0)], [(0, 0), (7, 0)], [(0, 0), (7, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.100161912 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002703866 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(k5, k8, k9, k6, k10, k7, x5, x7, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (7, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (7, 0)], [(0, 0), (1, 0)], [(0, 0), (7, 0)], [(0, 0), (7, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.120405335 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00262472 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (8, 8) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(k5, k8, k9, k6, k10, k7, x5, x7, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (7, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (7, 0)], [(0, 0), (1, 0)], [(0, 0), (7, 0)], [(0, 0), (7, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 7, Denominator: 9 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 1152 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 7 for num. and 0 for den. -│ Maximal number of interpolated terms are: 24 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.805348681 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00390928 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (10 in total): Nemo.fmpq_mpoly[k5, k8, k9, k6, k10, k7, x5, x7, x4, x6] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 45 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 41 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 45 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 41 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 6 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 45 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 41 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 6 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.005828453 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 11 initial generators there are 9 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 58 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.847251621 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x4, x5, k7, k6, k5, k10^2, k9*k10, k10 - 2*x6, k8 + 1//2*k10] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/logs_(:normalforms, 3) deleted file mode 100644 index a06d64d38..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/logs_(:normalforms, 3) +++ /dev/null @@ -1,113 +0,0 @@ -┌ Info: Processing Biohydrogenation_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.370846111 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.370846111 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.01988623 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.01988623 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [3, 36] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000108727 seconds -│ :rank_time = rank_time -│ rank_times = 0.000108727 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 38 functions in Rational Field(k5, k8, k9, k6, k10, k7)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.150190329 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.165213794 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (6 in total): Nemo.fmpq_mpoly[k5, k8, k9, k6, k10, k7] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 64 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 63 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 64 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 63 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 12 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 64 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 63 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 12 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.800560242 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 37 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.11723562 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k7, k6, k5, k10^2, k9*k10, k8 + 1//2*k10] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/logs_(:normalforms, 3)_with_states deleted file mode 100644 index d5ecc752f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,242 +0,0 @@ -┌ Info: Processing Biohydrogenation_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.511205966 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.511205966 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.02088026 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.02088026 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [3, 36] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000104379 seconds -│ :rank_time = rank_time -│ rank_times = 0.000104379 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 1001  ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 38 functions in Rational Field(k5, k8, k9, k6, k10, k7, x5, x7, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.944771643 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.006609177 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.008976891 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 37 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(k5, k8, k9, k6, k10, k7, x5, x7, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (7, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (7, 0)], [(0, 0), (1, 0)], [(0, 0), (7, 0)], [(0, 0), (7, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.097375081 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002937018 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(k5, k8, k9, k6, k10, k7, x5, x7, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (7, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (7, 0)], [(0, 0), (1, 0)], [(0, 0), (7, 0)], [(0, 0), (7, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.118053678 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002534607 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (8, 8) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(k5, k8, k9, k6, k10, k7, x5, x7, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (7, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (7, 0)], [(0, 0), (1, 0)], [(0, 0), (7, 0)], [(0, 0), (7, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 7, Denominator: 9 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 1152 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 7 for num. and 0 for den. -│ Maximal number of interpolated terms are: 24 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.868622364 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00378884 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (10 in total): Nemo.fmpq_mpoly[k5, k8, k9, k6, k10, k7, x5, x7, x4, x6] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 230 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 224 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 230 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 224 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 27 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 230 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 224 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 27 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.005394109 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 11 initial generators there are 9 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 58 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 5.22094222 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x4, x5, k7, k6, k5, k10^2, k9*k10, k10 - 2*x6, k8 + 1//2*k10] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/timings_(:gb,) deleted file mode 100644 index e3c002927..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -Biohydrogenation_io -id_total, 9.215003784 diff --git a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/timings_(:gb,)_with_states deleted file mode 100644 index 49093885c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Biohydrogenation_io -id_total, 5.045256513 diff --git a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/timings_(:hybrid,) deleted file mode 100644 index 949923bc8..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -Biohydrogenation_io -id_total, 10.621967943 diff --git a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/timings_(:hybrid,)_with_states deleted file mode 100644 index dd71bc94f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Biohydrogenation_io -id_total, 5.874629224 diff --git a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/timings_(:normalforms, 2) deleted file mode 100644 index 58537fa60..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -Biohydrogenation_io -id_total, 10.485614969 diff --git a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/timings_(:normalforms, 2)_with_states deleted file mode 100644 index f41a5567f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Biohydrogenation_io -id_total, 4.847251621 diff --git a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/timings_(:normalforms, 3) deleted file mode 100644 index 861f5ea20..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -Biohydrogenation_io -id_total, 10.11723562 diff --git a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/timings_(:normalforms, 3)_with_states deleted file mode 100644 index f676c5367..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Biohydrogenation_io/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Biohydrogenation_io -id_total, 5.22094222 diff --git a/benchmarking/IdentifiableFunctions/systems/Bruno2016/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Bruno2016/id_funcs_(:gb,) deleted file mode 100644 index 6c8747308..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bruno2016/id_funcs_(:gb,) +++ /dev/null @@ -1,3 +0,0 @@ -[kbeta, -kbeta10, -kcrybeta + kcryOH] diff --git a/benchmarking/IdentifiableFunctions/systems/Bruno2016/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Bruno2016/id_funcs_(:gb,)_with_states deleted file mode 100644 index cbe142130..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bruno2016/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,6 +0,0 @@ -[beta10, -beta, -kbeta, -kbeta10, -kcryOH*cry, -kcrybeta + kcryOH] diff --git a/benchmarking/IdentifiableFunctions/systems/Bruno2016/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Bruno2016/id_funcs_(:hybrid,) deleted file mode 100644 index 6c8747308..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bruno2016/id_funcs_(:hybrid,) +++ /dev/null @@ -1,3 +0,0 @@ -[kbeta, -kbeta10, -kcrybeta + kcryOH] diff --git a/benchmarking/IdentifiableFunctions/systems/Bruno2016/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Bruno2016/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index cbe142130..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bruno2016/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,6 +0,0 @@ -[beta10, -beta, -kbeta, -kbeta10, -kcryOH*cry, -kcrybeta + kcryOH] diff --git a/benchmarking/IdentifiableFunctions/systems/Bruno2016/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Bruno2016/id_funcs_(:normalforms, 2) deleted file mode 100644 index 6c8747308..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bruno2016/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,3 +0,0 @@ -[kbeta, -kbeta10, -kcrybeta + kcryOH] diff --git a/benchmarking/IdentifiableFunctions/systems/Bruno2016/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Bruno2016/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index cbe142130..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bruno2016/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,6 +0,0 @@ -[beta10, -beta, -kbeta, -kbeta10, -kcryOH*cry, -kcrybeta + kcryOH] diff --git a/benchmarking/IdentifiableFunctions/systems/Bruno2016/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Bruno2016/id_funcs_(:normalforms, 3) deleted file mode 100644 index 6c8747308..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bruno2016/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,3 +0,0 @@ -[kbeta, -kbeta10, -kcrybeta + kcryOH] diff --git a/benchmarking/IdentifiableFunctions/systems/Bruno2016/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Bruno2016/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index cbe142130..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bruno2016/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,6 +0,0 @@ -[beta10, -beta, -kbeta, -kbeta10, -kcryOH*cry, -kcrybeta + kcryOH] diff --git a/benchmarking/IdentifiableFunctions/systems/Bruno2016/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Bruno2016/logs_(:gb,) deleted file mode 100644 index c6e05ec13..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bruno2016/logs_(:gb,) +++ /dev/null @@ -1,84 +0,0 @@ -┌ Info: Processing Bruno2016 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.231784349 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.231784349 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.028632105 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.028632105 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 2] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.5313e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.5313e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 3.931982304 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.122981606 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.9487184 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 4 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 7 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 9.32536879 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[kbeta, kbeta10, kcrybeta + kcryOH] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Bruno2016/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Bruno2016/logs_(:gb,)_with_states deleted file mode 100644 index decc6ea04..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bruno2016/logs_(:gb,)_with_states +++ /dev/null @@ -1,135 +0,0 @@ -┌ Info: Processing Bruno2016 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.331374783 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.331374783 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.029441746 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.029441746 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 2] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.8238e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.8238e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10, OHbetaio, betaio, cry, beta, beta10, zea, OHbeta10)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.815997979 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.047606029 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.001965658 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 4 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 7 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10, OHbetaio, betaio, cry, beta, beta10, zea, OHbeta10)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015897983 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002649666 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002629 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 8 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 24 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.423591816 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[beta10, beta, kbeta, kbeta10, kcryOH*cry, kcrybeta + kcryOH] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Bruno2016/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Bruno2016/logs_(:hybrid,) deleted file mode 100644 index 11bf03b1f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bruno2016/logs_(:hybrid,) +++ /dev/null @@ -1,549 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing Bruno2016 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.573364701 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.573364701 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.029024268 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.029024268 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 2] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 7.0308e-5 seconds -│ :rank_time = rank_time -│ rank_times = 7.0308e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.103589903 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.230590384 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (6 in total): Nemo.fmpq_mpoly[kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 74 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 55 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 74 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 55 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 6 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 74 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 55 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 6 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y6, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y3, y1, y2], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.08260523 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001363169 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y2, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y1, y4, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009626353 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000917897 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, t, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y4, y1, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009178365 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000906003 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y6, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y5, y4, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010324503 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00149258 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y3, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y2, y1, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010756242 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001437624 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y1, y2], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t, y6, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010164743 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001408239 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y5, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y6, y3, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010907389 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001253591 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y1, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y6, y3, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.00829113 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001325883 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y4, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t, y1, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010261133 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001447399 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y3, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y1, y5, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.00867378 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.11655415 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.750704023 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 4 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 7 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.7183791 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[kbeta, kbeta10, kcrybeta + kcryOH] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Bruno2016/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Bruno2016/logs_(:hybrid,)_with_states deleted file mode 100644 index e23ae08d5..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bruno2016/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,600 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing Bruno2016 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.530691793 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.530691793 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.081172632 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.081172632 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 2] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.3383e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.3383e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10, OHbetaio, betaio, cry, beta, beta10, zea, OHbeta10)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.137479273 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.063821838 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.001888933 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 4 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 7 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10, OHbetaio, betaio, cry, beta, beta10, zea, OHbeta10)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015908651 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003656329 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (13 in total): Nemo.fmpq_mpoly[kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10, OHbetaio, betaio, cry, beta, beta10, zea, OHbeta10] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 525 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 370 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 525 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 370 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 8 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 525 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 370 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 8 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y5, y10, y12, y3, y11, y9], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y13, y6, y1, y7, y8, y2, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10, OHbetaio, betaio, cry, beta, beta10, zea, OHbeta10)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.038033586 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003382812 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y8, y4, y11, y6, y5, y1], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y12, y10, t, y13, y3, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10, OHbetaio, betaio, cry, beta, beta10, zea, OHbeta10)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.019660354 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002089811 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y9, y2, y6, y1, y4, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y10, y13, y3, y8, y12, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10, OHbetaio, betaio, cry, beta, beta10, zea, OHbeta10)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015177007 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.054873684 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y12, y7, y8, y11, y10, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y1, t, y6, y4, y2, y13], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10, OHbetaio, betaio, cry, beta, beta10, zea, OHbeta10)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.016354386 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002169155 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y13, y6, y8, t, y1, y4, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y2, y10, y12, y11, y9, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10, OHbetaio, betaio, cry, beta, beta10, zea, OHbeta10)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.016097146 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00163965 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y9, y8, t, y2, y5, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y12, y7, y11, y13, y10, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10, OHbetaio, betaio, cry, beta, beta10, zea, OHbeta10)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015203031 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.056191623 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y7, y11, y6, y1, y3, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y12, y10, y9, y13, y2, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10, OHbetaio, betaio, cry, beta, beta10, zea, OHbeta10)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015221046 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001744612 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y3, y7, y6, y2, y11, t], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y12, y13, y10, y8, y1, y5, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10, OHbetaio, betaio, cry, beta, beta10, zea, OHbeta10)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015697823 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001660236 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y5, y11, y4, y13, y1, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y8, y3, y7, y12, y9, y10], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10, OHbetaio, betaio, cry, beta, beta10, zea, OHbeta10)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015636429 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.052630168 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y13, y3, y2, t, y9, y12], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y4, y6, y1, y7, y8, y5], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10, OHbetaio, betaio, cry, beta, beta10, zea, OHbeta10)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015791039 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001745025 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002261374 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 8 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 24 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.907472771 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[beta10, beta, kbeta, kbeta10, kcryOH*cry, kcrybeta + kcryOH] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Bruno2016/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Bruno2016/logs_(:normalforms, 2) deleted file mode 100644 index 4cda5ed76..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bruno2016/logs_(:normalforms, 2) +++ /dev/null @@ -1,113 +0,0 @@ -┌ Info: Processing Bruno2016 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.500846625 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.500846625 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.028413344 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.028413344 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 2] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.1255e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.1255e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.358078764 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.168258554 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (6 in total): Nemo.fmpq_mpoly[kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 22 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 13 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 22 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 13 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 22 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 13 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.761036991 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 4 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 7 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.408527667 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[kbeta, kbeta10, kcrybeta + kcryOH] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Bruno2016/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Bruno2016/logs_(:normalforms, 2)_with_states deleted file mode 100644 index 700ea6b1a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bruno2016/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,164 +0,0 @@ -┌ Info: Processing Bruno2016 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.43885607 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.43885607 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.027611507 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.027611507 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 2] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.5355e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.5355e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10, OHbetaio, betaio, cry, beta, beta10, zea, OHbeta10)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.877227753 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002052719 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.001942165 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 4 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 7 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10, OHbetaio, betaio, cry, beta, beta10, zea, OHbeta10)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015443595 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.043258006 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (13 in total): Nemo.fmpq_mpoly[kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10, OHbetaio, betaio, cry, beta, beta10, zea, OHbeta10] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 90 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 47 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 90 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 47 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 90 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 47 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002077566 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 8 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 24 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.731795751 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[beta10, beta, kbeta, kbeta10, kcryOH*cry, kcrybeta + kcryOH] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Bruno2016/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Bruno2016/logs_(:normalforms, 3) deleted file mode 100644 index 52a381b18..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bruno2016/logs_(:normalforms, 3) +++ /dev/null @@ -1,113 +0,0 @@ -┌ Info: Processing Bruno2016 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.354319361 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.354319361 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.027867847 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.027867847 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 2] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.476e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.476e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.260829828 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.177962502 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (6 in total): Nemo.fmpq_mpoly[kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 74 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 55 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 74 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 55 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 6 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 74 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 55 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 6 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.810967622 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 4 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 7 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.19394912 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[kbeta, kbeta10, kcrybeta + kcryOH] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Bruno2016/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Bruno2016/logs_(:normalforms, 3)_with_states deleted file mode 100644 index 07a1061a3..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bruno2016/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,164 +0,0 @@ -┌ Info: Processing Bruno2016 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.399498066 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.399498066 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.031758154 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.031758154 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 2] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 6.477e-5 seconds -│ :rank_time = rank_time -│ rank_times = 6.477e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10, OHbetaio, betaio, cry, beta, beta10, zea, OHbeta10)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.881123718 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001837437 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002068642 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 4 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 7 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10, OHbetaio, betaio, cry, beta, beta10, zea, OHbeta10)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015411622 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002723939 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (13 in total): Nemo.fmpq_mpoly[kbeta10, kcrybeta, kbeta, kzea, kcryOH, kOHbeta10, OHbetaio, betaio, cry, beta, beta10, zea, OHbeta10] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 525 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 370 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 525 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 370 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 8 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 525 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 370 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 8 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002278126 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 8 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 24 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.904036147 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[beta10, beta, kbeta, kbeta10, kcryOH*cry, kcrybeta + kcryOH] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Bruno2016/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Bruno2016/timings_(:gb,) deleted file mode 100644 index 5389272e9..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bruno2016/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -Bruno2016 -id_total, 9.32536879 diff --git a/benchmarking/IdentifiableFunctions/systems/Bruno2016/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Bruno2016/timings_(:gb,)_with_states deleted file mode 100644 index 38270077e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bruno2016/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Bruno2016 -id_total, 3.423591816 diff --git a/benchmarking/IdentifiableFunctions/systems/Bruno2016/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Bruno2016/timings_(:hybrid,) deleted file mode 100644 index 9046da33e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bruno2016/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -Bruno2016 -id_total, 10.7183791 diff --git a/benchmarking/IdentifiableFunctions/systems/Bruno2016/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Bruno2016/timings_(:hybrid,)_with_states deleted file mode 100644 index 58dfb7fc0..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bruno2016/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Bruno2016 -id_total, 4.907472771 diff --git a/benchmarking/IdentifiableFunctions/systems/Bruno2016/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Bruno2016/timings_(:normalforms, 2) deleted file mode 100644 index 0b8e0a5a1..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bruno2016/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -Bruno2016 -id_total, 10.408527667 diff --git a/benchmarking/IdentifiableFunctions/systems/Bruno2016/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Bruno2016/timings_(:normalforms, 2)_with_states deleted file mode 100644 index d6c520007..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bruno2016/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Bruno2016 -id_total, 3.731795751 diff --git a/benchmarking/IdentifiableFunctions/systems/Bruno2016/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Bruno2016/timings_(:normalforms, 3) deleted file mode 100644 index b388e4469..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bruno2016/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -Bruno2016 -id_total, 10.19394912 diff --git a/benchmarking/IdentifiableFunctions/systems/Bruno2016/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Bruno2016/timings_(:normalforms, 3)_with_states deleted file mode 100644 index 235b08c8c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Bruno2016/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Bruno2016 -id_total, 3.904036147 diff --git a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/id_funcs_(:gb,) deleted file mode 100644 index 8f41db7c6..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/id_funcs_(:gb,) +++ /dev/null @@ -1,12 +0,0 @@ -[mu_P, -mu_LL, -mu_PL, -delta_LM, -mu_PE, -mu_M, -mu_N, -delta_EL, -mu_LE, -mu_EE, -delta_NE//rho_E, -rho_P//rho_E] diff --git a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/id_funcs_(:gb,)_with_states deleted file mode 100644 index 3432620e8..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,17 +0,0 @@ -[S, -N, -E, -M, -mu_P, -mu_LL, -mu_PL, -delta_LM, -mu_PE, -mu_M, -mu_N, -delta_EL, -mu_LE, -mu_EE, -rho_E*P, -delta_NE//rho_E, -rho_P//rho_E] diff --git a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/id_funcs_(:hybrid,) deleted file mode 100644 index 7180f811f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/id_funcs_(:hybrid,) +++ /dev/null @@ -1,12 +0,0 @@ -[mu_P, -mu_LL, -mu_PL, -delta_LM, -mu_PE, -mu_M, -mu_N, -delta_EL, -mu_LE, -mu_EE, -rho_E//delta_NE, -rho_E//rho_P] diff --git a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index 5bc6a168c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,17 +0,0 @@ -[S, -N, -E, -M, -mu_P, -mu_LL, -mu_PL, -delta_LM, -mu_PE, -mu_M, -mu_N, -delta_EL, -mu_LE, -mu_EE, -rho_E*P, -delta_NE*P, -rho_P*P] diff --git a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/id_funcs_(:normalforms, 2) deleted file mode 100644 index 8f41db7c6..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,12 +0,0 @@ -[mu_P, -mu_LL, -mu_PL, -delta_LM, -mu_PE, -mu_M, -mu_N, -delta_EL, -mu_LE, -mu_EE, -delta_NE//rho_E, -rho_P//rho_E] diff --git a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index 5bc6a168c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,17 +0,0 @@ -[S, -N, -E, -M, -mu_P, -mu_LL, -mu_PL, -delta_LM, -mu_PE, -mu_M, -mu_N, -delta_EL, -mu_LE, -mu_EE, -rho_E*P, -delta_NE*P, -rho_P*P] diff --git a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/id_funcs_(:normalforms, 3) deleted file mode 100644 index 8f41db7c6..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,12 +0,0 @@ -[mu_P, -mu_LL, -mu_PL, -delta_LM, -mu_PE, -mu_M, -mu_N, -delta_EL, -mu_LE, -mu_EE, -delta_NE//rho_E, -rho_P//rho_E] diff --git a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index 5bc6a168c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,17 +0,0 @@ -[S, -N, -E, -M, -mu_P, -mu_LL, -mu_PL, -delta_LM, -mu_PE, -mu_M, -mu_N, -delta_EL, -mu_LE, -mu_EE, -rho_E*P, -delta_NE*P, -rho_P*P] diff --git a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/logs_(:gb,) deleted file mode 100644 index bec09d482..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/logs_(:gb,) +++ /dev/null @@ -1,83 +0,0 @@ -┌ Info: Processing CD8 T cell differentiation -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.478529266 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.478529266 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.082384051 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.082384051 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [10, 8, 14] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 6.6258e-5 seconds -│ :rank_time = rank_time -│ rank_times = 6.6258e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 31 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.893942762 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.0038185 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.004473975 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 30 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 159 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.618316645 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[mu_P, mu_LL, mu_PL, delta_LM, mu_PE, mu_M, mu_N, delta_EL, mu_LE, mu_EE, delta_NE//rho_E, rho_P//rho_E] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/logs_(:gb,)_with_states deleted file mode 100644 index b418e1d8e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/logs_(:gb,)_with_states +++ /dev/null @@ -1,136 +0,0 @@ -┌ Info: Processing CD8 T cell differentiation -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.550240724 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.550240724 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.073106697 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.073106697 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [10, 8, 14] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 8.5985e-5 seconds -│ :rank_time = rank_time -│ rank_times = 8.5985e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 31 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.914832859 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.210191588 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.005877782 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 30 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 159 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.027997662 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004228109 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.005368568 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 20 initial generators there are 17 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 237 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 11.104352884 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[S, N, E, M, mu_P, mu_LL, mu_PL, delta_LM, mu_PE, mu_M, mu_N, delta_EL, mu_LE, mu_EE, rho_E*P, delta_NE//rho_E, rho_P//rho_E] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/logs_(:hybrid,) deleted file mode 100644 index e551643fc..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/logs_(:hybrid,) +++ /dev/null @@ -1,548 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing CD8 T cell differentiation -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.848741144 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.848741144 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.037211388 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.037211388 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [10, 8, 14] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 6.2353e-5 seconds -│ :rank_time = rank_time -│ rank_times = 6.2353e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 31 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.908951513 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003707902 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (13 in total): Nemo.fmpq_mpoly[rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 274 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 271 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 274 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 271 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 274 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 271 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y3, y13, y7, y10, y11, y12], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, t, y1, y9, y5, y8, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.023209049 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003798926 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y5, y7, y4, t, y10, y13], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y12, y2, y1, y11, y6, y3, y8], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.077878719 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00291267 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y13, t, y10, y9, y4, y6, y12], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y7, y5, y8, y1, y11, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(1, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.023304801 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003831473 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y1, y3, y5, y2, y12, y10], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y11, t, y6, y13, y8, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.022651774 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.07221899 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, t, y12, y3, y6, y2, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y13, y8, y1, y4, y11, y10, y9], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.022510741 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.0026341 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y4, y7, y12, y3, y10, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, t, y5, y13, y2, y1, y9], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.019296296 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002090626 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y8, y4, y3, y12, y11, y10], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y9, y1, y13, y2, t, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.020453901 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.083514421 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y12, y9, y3, y2, y6, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y13, y1, y11, y5, y10, t, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.021671161 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002294143 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y5, y11, y12, y9, y7, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y2, y10, y13, y4, y8, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.018854139 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002175906 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, t, y12, y4, y10, y11, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y3, y6, y2, y9, y13, y8], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.074387049 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002237055 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.006893896 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 30 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 159 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 5.025636425 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[mu_P, mu_LL, mu_PL, delta_LM, mu_PE, mu_M, mu_N, delta_EL, mu_LE, mu_EE, rho_E//delta_NE, rho_E//rho_P] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/logs_(:hybrid,)_with_states deleted file mode 100644 index 4b0c382fe..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,601 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing CD8 T cell differentiation -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.43545585 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.43545585 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.03183292 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.03183292 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [10, 8, 14] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.9403e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.9403e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 31 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.367914739 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.101573779 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.934924159 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 30 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 159 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.028822847 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003483392 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (18 in total): Nemo.fmpq_mpoly[rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 650 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 644 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 650 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 644 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 45 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 650 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 644 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 45 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y14, y18, t, y8, y9, y5, y6, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y12, y16, y15, y2, y10, y1, y11, y3, y13, y17], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 18 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.052612394 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002748974 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t, y13, y2, y11, y3, y17, y9, y12], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y16, y8, y15, y14, y7, y6, y10, y5, y4, y18], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 18 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.02790539 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002986397 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y3, y15, y12, y6, t, y11, y18, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y5, y17, y8, y13, y4, y16, y14, y2, y9], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 18 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.089346309 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002711063 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y9, y5, y14, y13, y11, y6, y8, y18], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y7, y12, y10, y15, y1, t, y16, y17, y4], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 18 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.02714031 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003369568 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y10, y5, y1, y12, y18, y7, y6, y14], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y15, y3, y11, y16, y8, t, y17, y13, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 18 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.089715103 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002920138 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y10, y6, y17, y13, y2, y8, y5, y11], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y15, y14, y7, y3, y4, y18, y12, y1, y16], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 18 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.028466801 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00274783 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y14, y7, y6, t, y1, y2, y17, y4, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y13, y10, y15, y18, y3, y11, y5, y9, y16, y12], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 18 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.08234501 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002778092 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y14, y2, y9, y11, y13, y7, y15, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y18, y6, y12, y16, y4, y1, y5, t, y17, y10], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 18 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(1, 1), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.027724326 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00339203 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y1, y5, y12, y6, y8, y16, y4, y2], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y18, y17, y14, y10, y13, y7, y11, y15, y3], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 18 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.081633649 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002759486 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y16, y11, t, y17, y8, y10, y3, y15], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y14, y13, y4, y18, y12, y6, y1, y5, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 18 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.027801641 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002748434 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.005622603 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 20 initial generators there are 17 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 159 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 11.640855427 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[S, N, E, M, mu_P, mu_LL, mu_PL, delta_LM, mu_PE, mu_M, mu_N, delta_EL, mu_LE, mu_EE, rho_E*P, delta_NE*P, rho_P*P] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/logs_(:normalforms, 2) deleted file mode 100644 index d00bec792..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/logs_(:normalforms, 2) +++ /dev/null @@ -1,112 +0,0 @@ -┌ Info: Processing CD8 T cell differentiation -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.588745342 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.588745342 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.036358892 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.036358892 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [10, 8, 14] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 6.4689e-5 seconds -│ :rank_time = rank_time -│ rank_times = 6.4689e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 31 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.846038151 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00483975 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (13 in total): Nemo.fmpq_mpoly[rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 39 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 37 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 39 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 37 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 39 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 37 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.004695635 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 30 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 159 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.015836524 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[mu_P, mu_LL, mu_PL, delta_LM, mu_PE, mu_M, mu_N, delta_EL, mu_LE, mu_EE, delta_NE//rho_E, rho_P//rho_E] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/logs_(:normalforms, 2)_with_states deleted file mode 100644 index ee3c95847..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,165 +0,0 @@ -┌ Info: Processing CD8 T cell differentiation -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.429674269 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.429674269 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.033387026 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.033387026 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [10, 8, 14] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 7.0087e-5 seconds -│ :rank_time = rank_time -│ rank_times = 7.0087e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 31 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.5328016 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.099831295 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.893089509 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 30 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 159 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.026889493 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.056148002 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (18 in total): Nemo.fmpq_mpoly[rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 70 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 66 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 70 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 66 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 70 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 66 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.034786641 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 20 initial generators there are 17 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 159 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.838276405 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[S, N, E, M, mu_P, mu_LL, mu_PL, delta_LM, mu_PE, mu_M, mu_N, delta_EL, mu_LE, mu_EE, rho_E*P, delta_NE*P, rho_P*P] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/logs_(:normalforms, 3) deleted file mode 100644 index ecd947c97..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/logs_(:normalforms, 3) +++ /dev/null @@ -1,112 +0,0 @@ -┌ Info: Processing CD8 T cell differentiation -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.407431005 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.407431005 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.03440288 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.03440288 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [10, 8, 14] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 6.5445e-5 seconds -│ :rank_time = rank_time -│ rank_times = 6.5445e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 31 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.872853557 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.052291373 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (13 in total): Nemo.fmpq_mpoly[rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 274 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 271 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 274 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 271 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 274 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 271 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.004314994 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 30 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 159 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.79441933 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[mu_P, mu_LL, mu_PL, delta_LM, mu_PE, mu_M, mu_N, delta_EL, mu_LE, mu_EE, delta_NE//rho_E, rho_P//rho_E] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/logs_(:normalforms, 3)_with_states deleted file mode 100644 index 6e1ee8a6e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,165 +0,0 @@ -┌ Info: Processing CD8 T cell differentiation -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.671229795 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.671229795 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.034541221 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.034541221 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [10, 8, 14] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 8.3802e-5 seconds -│ :rank_time = rank_time -│ rank_times = 8.3802e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:04 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 31 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.851915862 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.122335728 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.875823992 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 30 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 159 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.02839673 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.05785156 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (18 in total): Nemo.fmpq_mpoly[rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 650 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 644 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 650 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 644 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 45 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 650 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 644 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 45 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.015431123 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 20 initial generators there are 17 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 159 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 11.578491315 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[S, N, E, M, mu_P, mu_LL, mu_PL, delta_LM, mu_PE, mu_M, mu_N, delta_EL, mu_LE, mu_EE, rho_E*P, delta_NE*P, rho_P*P] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/timings_(:gb,) deleted file mode 100644 index 34e9f4891..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -CD8 T cell differentiation -id_total, 3.618316645 diff --git a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/timings_(:gb,)_with_states deleted file mode 100644 index b54e2ba4c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -CD8 T cell differentiation -id_total, 11.104352884 diff --git a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/timings_(:hybrid,) deleted file mode 100644 index cf7b68c91..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -CD8 T cell differentiation -id_total, 5.025636425 diff --git a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/timings_(:hybrid,)_with_states deleted file mode 100644 index 610264dec..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -CD8 T cell differentiation -id_total, 11.640855427 diff --git a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/timings_(:normalforms, 2) deleted file mode 100644 index 8c7890e53..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -CD8 T cell differentiation -id_total, 4.015836524 diff --git a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/timings_(:normalforms, 2)_with_states deleted file mode 100644 index 8f415279e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -CD8 T cell differentiation -id_total, 10.838276405 diff --git a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/timings_(:normalforms, 3) deleted file mode 100644 index 3d5a8b577..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -CD8 T cell differentiation -id_total, 3.79441933 diff --git a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/timings_(:normalforms, 3)_with_states deleted file mode 100644 index b1c7530ae..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CD8 T cell differentiation/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -CD8 T cell differentiation -id_total, 11.578491315 diff --git a/benchmarking/IdentifiableFunctions/systems/CGV1990/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/CGV1990/id_funcs_(:gb,) deleted file mode 100644 index 891cf18ff..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CGV1990/id_funcs_(:gb,) +++ /dev/null @@ -1,8 +0,0 @@ -[k7, -k6, -k4, -k3, -(k5^2*V36)//V3, -(k5*V36 + 1//5*k5*V3)//V3, -(S*V3^2 - 125*V36^2*R)//(V36 - 1//5*V3), -(S*V36*V3 - 5*V36*R*V3)//(V36 - 1//5*V3)] diff --git a/benchmarking/IdentifiableFunctions/systems/CGV1990/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/CGV1990/id_funcs_(:gb,)_with_states deleted file mode 100644 index e1bce3596..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CGV1990/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,15 +0,0 @@ -[q7, -q1, -q3, -k7, -k6, -k4, -k3, -q35*q36, -q35 + q36, -(V36^2 + 1//25*V3^2)//(V36*V3), -(S^2 + 25*R^2)//(S*R), -(S*V3 - 25*V36*R)//(q35 - q36), -(S*V36 - R*V3)//(q35 - q36), -(k5*V36 - 1//5*k5*V3)//(V3*q35 - V3*q36), -(S*V3*q36 - 25*V36*R*q35)//(q35 - q36)] diff --git a/benchmarking/IdentifiableFunctions/systems/CGV1990/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/CGV1990/id_funcs_(:hybrid,) deleted file mode 100644 index 0be7657af..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CGV1990/id_funcs_(:hybrid,) +++ /dev/null @@ -1,8 +0,0 @@ -[k7, -k6, -k4, -k3, -S*V3 + 25*V36*R, -S*V36 + R*V3, -(k5^2*V36)//V3, -(V36 + 1//5*V3)//(k5*V36)] diff --git a/benchmarking/IdentifiableFunctions/systems/CGV1990/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/CGV1990/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index 7a08b91bc..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CGV1990/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,14 +0,0 @@ -[q7, -q1, -q3, -k7, -k6, -k4, -k3, -q35*q36, -q35 + q36, -S*V3 + 25*V36*R, -S*V36 + R*V3, -(V36 + 1//5*V3)//(k5*V36), -(k5*V36 + 1//5*k5*V3)//V3, -(V36*q36 - 1//5*V3*q35)//(V36 - 1//5*V3)] diff --git a/benchmarking/IdentifiableFunctions/systems/CGV1990/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/CGV1990/id_funcs_(:normalforms, 2) deleted file mode 100644 index f4323d580..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CGV1990/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,8 +0,0 @@ -[k7, -k6, -k4, -k3, -S*V3 + 25*V36*R, -(k5^2*V36)//V3, -(k5*V36 + 1//5*k5*V3)//V3, -(S*V3^2 - 125*V36^2*R)//(V36 - 1//5*V3)] diff --git a/benchmarking/IdentifiableFunctions/systems/CGV1990/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/CGV1990/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index 98315a3bb..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CGV1990/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,14 +0,0 @@ -[q7, -q1, -q3, -k7, -k6, -k4, -k3, -q35*q36, -q35 + q36, -S*V3 + 25*V36*R, -(V36^2 + 1//25*V3^2)//(V36*V3), -(S^2 + 25*R^2)//(S*R), -(S*V3 - 25*V36*R)//(q35 - q36), -(k5*V36 - 1//5*k5*V3)//(V3*q35 - V3*q36)] diff --git a/benchmarking/IdentifiableFunctions/systems/CGV1990/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/CGV1990/id_funcs_(:normalforms, 3) deleted file mode 100644 index f4323d580..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CGV1990/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,8 +0,0 @@ -[k7, -k6, -k4, -k3, -S*V3 + 25*V36*R, -(k5^2*V36)//V3, -(k5*V36 + 1//5*k5*V3)//V3, -(S*V3^2 - 125*V36^2*R)//(V36 - 1//5*V3)] diff --git a/benchmarking/IdentifiableFunctions/systems/CGV1990/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/CGV1990/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index 98315a3bb..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CGV1990/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,14 +0,0 @@ -[q7, -q1, -q3, -k7, -k6, -k4, -k3, -q35*q36, -q35 + q36, -S*V3 + 25*V36*R, -(V36^2 + 1//25*V3^2)//(V36*V3), -(S^2 + 25*R^2)//(S*R), -(S*V3 - 25*V36*R)//(q35 - q36), -(k5*V36 - 1//5*k5*V3)//(V3*q35 - V3*q36)] diff --git a/benchmarking/IdentifiableFunctions/systems/CGV1990/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/CGV1990/logs_(:gb,) deleted file mode 100644 index 2d27e8d4a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CGV1990/logs_(:gb,) +++ /dev/null @@ -1,124 +0,0 @@ -┌ Info: Processing CGV1990 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.128705889 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.128705889 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.434168801 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.434168801 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [264] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.006324487 seconds -│ :rank_time = rank_time -│ rank_times = 0.006324487 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 94  ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 415 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 9), (3, 9)], [(0, 0), (4, 10), (4, 10)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (3, 2)], [(0, 0), (9, 2), (10, 2)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (8, 1), (9, 1)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (9, 2), (10, 2)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.440660512 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.03529479 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 415 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 9), (3, 9)], [(0, 0), (4, 10), (4, 10)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (3, 2)], [(0, 0), (9, 2), (10, 2)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (8, 1), (9, 1)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (9, 2), (10, 2)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 96 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.876205925 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.081944042 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 25 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.18845057 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 414 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 914 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.338504753 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k7, k6, k4, k3, (k5^2*V36)//V3, (k5*V36 + 1//5*k5*V3)//V3, (S*V3^2 - 125*V36^2*R)//(V36 - 1//5*V3), (S*V36*V3 - 5*V36*R*V3)//(V36 - 1//5*V3)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/CGV1990/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/CGV1990/logs_(:gb,)_with_states deleted file mode 100644 index a362f87a3..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CGV1990/logs_(:gb,)_with_states +++ /dev/null @@ -1,213 +0,0 @@ -┌ Info: Processing CGV1990 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.140135004 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.140135004 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.421849552 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.421849552 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [264] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.0068378 seconds -│ :rank_time = rank_time -│ rank_times = 0.0068378 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 79  ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 415 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3, q35, q3, q1, q7, q36)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 9), (3, 9)], [(0, 0), (4, 10), (4, 10)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (3, 2)], [(0, 0), (9, 2), (10, 2)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (8, 1), (9, 1)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (9, 2), (10, 2)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.505932333 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.084248794 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 415 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3, q35, q3, q1, q7, q36)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 9), (3, 9)], [(0, 0), (4, 10), (4, 10)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (3, 2)], [(0, 0), (9, 2), (10, 2)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (8, 1), (9, 1)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (9, 2), (10, 2)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 96 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.043045692 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.030883282 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 25 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.216404807 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 414 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 914 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 19 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3, q35, q3, q1, q7, q36)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (3, 2)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (3, 7), (1, 5)], [(0, 0), (5, 9), (3, 7)], [(0, 0), (7, 1), (7, 1)], [(0, 0), (7, 1), (7, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.232613921 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.012150801 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 19 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3, q35, q3, q1, q7, q36)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (3, 2)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (3, 7), (1, 5)], [(0, 0), (5, 9), (3, 7)], [(0, 0), (7, 1), (7, 1)], [(0, 0), (7, 1), (7, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 3 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.310890365 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.019629891 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 32 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.113310535 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 18 initial generators there are 15 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 7791 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.536041236 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[q7, q1, q3, k7, k6, k4, k3, q35*q36, q35 + q36, (V36^2 + 1//25*V3^2)//(V36*V3), (S^2 + 25*R^2)//(S*R), (S*V3 - 25*V36*R)//(q35 - q36), (S*V36 - R*V3)//(q35 - q36), (k5*V36 - 1//5*k5*V3)//(V3*q35 - V3*q36), (S*V3*q36 - 25*V36*R*q35)//(q35 - q36)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/CGV1990/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/CGV1990/logs_(:hybrid,) deleted file mode 100644 index 8016b20d3..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CGV1990/logs_(:hybrid,) +++ /dev/null @@ -1,589 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing CGV1990 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.06815587 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.06815587 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.473029642 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.473029642 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [264] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.006750913 seconds -│ :rank_time = rank_time -│ rank_times = 0.006750913 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 92  ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 415 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 9), (3, 9)], [(0, 0), (4, 10), (4, 10)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (3, 2)], [(0, 0), (9, 2), (10, 2)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (8, 1), (9, 1)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (9, 2), (10, 2)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.356270941 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.090415583 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 415 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 9), (3, 9)], [(0, 0), (4, 10), (4, 10)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (3, 2)], [(0, 0), (9, 2), (10, 2)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (8, 1), (9, 1)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (9, 2), (10, 2)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 96 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.009588031 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.033144385 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 25 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (9 in total): Nemo.fmpq_mpoly[k5, k3, S, V36, k4, k6, R, k7, V3] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 185 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 160 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 185 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 160 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 2 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 185 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 160 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 2 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y9, y7, y8, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y6, y1, y3, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (4, 1), (4, 0)], [(0, 0), (6, 3), (5, 4)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (4, 3), (2, 3)], [(0, 0), (3, 4), (4, 4)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(5, 3), (3, 3), (0, 0)], [(1, 2), (0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.087455267 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002553409 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y7, y5, y1, t], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y8, y3, y6, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0), (4, 0)], [(3, 9), (3, 7), (0, 0)], [(2, 3), (0, 0), (4, 3)], [(0, 0), (1, 0)], [(2, 4), (4, 4), (0, 0)], [(2, 4), (4, 4), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.387794386 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00231177 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y3, y4, y9, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y5, y8, t, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (1, 0)], [(1, 2), (0, 0), (2, 2)], [(2, 1), (2, 0), (0, 0)], [(2, 1), (2, 0), (0, 0)], [(0, 0), (2, 3), (2, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.082488397 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00318556 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y4, y3, y8, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y9, y1, y7, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (4, 1), (4, 0)], [(0, 0), (5, 2), (3, 2)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (3, 2), (1, 2)], [(0, 0), (2, 3), (2, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(2, 0), (0, 0), (0, 0)], [(1, 2), (0, 0), (2, 2)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 4 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.128295184 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003143618 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y4, y6, y2, y9], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t, y3, y5, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (3, 3), (7, 3)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (3, 3), (7, 3)], [(0, 0), (4, 3), (4, 3)], [(1, 4), (0, 0), (4, 3)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (6, 2), (6, 2)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (0, 2), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 2), (0, 0), (2, 2)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 4 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.134745199 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003081964 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y9, y4, y6, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y5, y2, y3, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 1), (4, 0)], [(0, 0), (2, 1), (3, 1)], [(3, 4), (3, 3), (0, 0)], [(0, 0), (1, 0)], [(3, 6), (0, 0), (4, 6)], [(0, 0), (3, 2), (3, 1)], [(1, 2), (0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.107951456 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002968939 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y2, y3, y9, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y8, y6, y7, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0), (4, 0)], [(3, 9), (3, 7), (0, 0)], [(2, 4), (4, 4), (0, 0)], [(2, 4), (0, 0), (4, 4)], [(0, 0), (1, 0)], [(2, 3), (0, 0), (4, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.156478495 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.049807191 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, t, y4, y5, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y7, y8, y9, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 2), (0, 0), (2, 2)], [(3, 7), (1, 5), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.072977612 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.055784622 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y9, y8, y1, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y5, y3, y7, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 3), (7, 3)], [(0, 0), (3, 3), (7, 3)], [(0, 0), (6, 2), (6, 2)], [(0, 0), (3, 5), (3, 5)], [(0, 0), (2, 2), (4, 2)], [(0, 0), (4, 2), (4, 2)], [(2, 3), (0, 0), (4, 3)], [(0, 0), (1, 0)], [(0, 0), (0, 2), (0, 2)], [(2, 2), (0, 0), (4, 2)], [(0, 0), (0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 2), (4, 2)], [(0, 0), (2, 2), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 4 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.085240808 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.066080199 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y5, y6, y1, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y3, t, y2, y7], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (3, 3), (7, 3)], [(0, 0), (0, 2), (0, 2)], [(0, 0), (3, 3), (7, 3)], [(0, 0), (2, 2), (4, 2)], [(0, 0), (6, 2), (6, 2)], [(0, 0), (4, 2), (4, 2)], [(2, 4), (0, 0), (4, 4)], [(2, 3), (0, 0), (3, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 4 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.126016026 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002516591 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.182326053 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 414 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 337 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 5.501626171 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k7, k6, k4, k3, S*V3 + 25*V36*R, S*V36 + R*V3, (k5^2*V36)//V3, (V36 + 1//5*V3)//(k5*V36)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/CGV1990/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/CGV1990/logs_(:hybrid,)_with_states deleted file mode 100644 index 169fcd712..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CGV1990/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,679 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing CGV1990 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.115174917 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.115174917 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.393589753 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.393589753 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [264] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.006064582 seconds -│ :rank_time = rank_time -│ rank_times = 0.006064582 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 87  ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 415 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3, q35, q3, q1, q7, q36)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 9), (3, 9)], [(0, 0), (4, 10), (4, 10)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (3, 2)], [(0, 0), (9, 2), (10, 2)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (8, 1), (9, 1)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (9, 2), (10, 2)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.398336101 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.066111063 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 415 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3, q35, q3, q1, q7, q36)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 9), (3, 9)], [(0, 0), (4, 10), (4, 10)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (3, 2)], [(0, 0), (9, 2), (10, 2)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (8, 1), (9, 1)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (9, 2), (10, 2)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 96 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.884312545 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.026872311 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 25 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.131595817 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 414 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 914 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 19 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3, q35, q3, q1, q7, q36)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (3, 2)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (3, 7), (1, 5)], [(0, 0), (5, 9), (3, 7)], [(0, 0), (7, 1), (7, 1)], [(0, 0), (7, 1), (7, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.273780076 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.008895784 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 19 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3, q35, q3, q1, q7, q36)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (3, 2)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (3, 7), (1, 5)], [(0, 0), (5, 9), (3, 7)], [(0, 0), (7, 1), (7, 1)], [(0, 0), (7, 1), (7, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 3 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.260490252 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.010173858 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 32 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (14 in total): Nemo.fmpq_mpoly[k5, k3, S, V36, k4, k6, R, k7, V3, q35, q3, q1, q7, q36] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 560 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 547 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 560 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 547 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 25 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 560 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 547 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 25 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y5, y6, y11, y3, y9, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y10, y7, y12, y14, y2, y1, y13], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 16 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3, q35, q3, q1, q7, q36)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(2, 2), (0, 0), (2, 1)], [(0, 0), (1, 0)], [(2, 2), (0, 0), (2, 1)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (1, 0)], [(1, 2), (0, 0), (0, 0)], [(3, 4), (0, 0), (3, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 6), (0, 0), (1, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.064014067 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.064031759 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y6, y1, y9, y3, y8, y14], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, t, y7, y2, y11, y5, y13, y12], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 16 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3, q35, q3, q1, q7, q36)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (7, 0), (2, 0)], [(0, 0), (0, 10)], [(0, 0), (6, 0), (1, 0)], [(0, 0), (1, 0)], [(5, 0), (0, 0), (2, 2)], [(5, 0), (2, 2), (0, 0)], [(0, 0), (6, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (6, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.168376813 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003571258 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y13, t, y12, y2, y8, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y9, y14, y5, y3, y11, y4, y1], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 16 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3, q35, q3, q1, q7, q36)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(2, 2), (0, 0), (2, 1)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (2, 1), (3, 2)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 6), (0, 0), (1, 6)], [(0, 0), (1, 0)], [(2, 2), (0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.123643759 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003744483 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 20 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y13, y5, y14, y11, y8, y10], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y12, y7, y3, y6, y1, y9, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 16 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3, q35, q3, q1, q7, q36)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (2, 1), (3, 2)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (2, 2), (0, 0)], [(2, 2), (0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(2, 2), (0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 6), (0, 0), (1, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.131865726 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00369597 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 20 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y11, y8, y14, t, y9, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y12, y1, y4, y6, y3, y13, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 16 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3, q35, q3, q1, q7, q36)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(2, 2), (0, 0), (2, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (3, 1)], [(3, 4), (3, 3), (0, 0)], [(1, 2), (0, 0), (0, 0)], [(0, 6), (0, 0), (1, 6)], [(2, 2), (0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.136939019 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.04908203 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y5, y7, t, y9, y3, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y10, y13, y4, y2, y14, y12, y8], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 16 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3, q35, q3, q1, q7, q36)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (2, 2), (3, 2)], [(0, 0), (2, 1), (3, 1)], [(2, 3), (3, 3), (0, 0)], [(0, 6), (0, 0), (1, 6)], [(2, 3), (3, 3), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.059767898 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.044985781 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y3, t, y8, y2, y7, y9], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y13, y4, y12, y1, y10, y14, y11, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 16 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3, q35, q3, q1, q7, q36)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 2), (3, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(2, 3), (3, 3), (0, 0)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 6), (0, 0), (1, 6)], [(2, 3), (0, 0), (3, 3)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.059140277 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003379212 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y3, y7, y5, y9, y6, y14], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y12, y8, y1, y2, t, y11, y13], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 16 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3, q35, q3, q1, q7, q36)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (6, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (6, 0), (1, 0)], [(0, 0), (0, 10)], [(0, 0), (6, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(5, 0), (0, 0), (2, 2)], [(5, 0), (0, 0), (2, 2)], [(0, 0), (7, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.134803859 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.061501519 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y4, y6, y8, y2, y7, y11], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y14, y1, t, y13, y9, y10, y12, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 16 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3, q35, q3, q1, q7, q36)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 6), (0, 0), (1, 6)], [(0, 0), (2, 2), (3, 2)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(2, 3), (3, 3), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(2, 3), (0, 0), (3, 3)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.057087863 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003600849 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y10, y14, y3, y1, y12, y13], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y5, y2, y4, y6, y7, t, y11], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 16 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3, q35, q3, q1, q7, q36)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 10)], [(0, 0), (2, 7), (0, 5)], [(0, 0), (0, 5), (2, 7)], [(0, 0), (7, 0), (2, 0)], [(0, 0), (7, 0), (2, 0)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (6, 0), (2, 1)], [(5, 0), (0, 0), (2, 2)], [(0, 0), (6, 0), (1, 0)], [(0, 0), (6, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.210519943 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00348422 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.047473046 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 18 initial generators there are 14 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 1087 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 6.159030342 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[q7, q1, q3, k7, k6, k4, k3, q35*q36, q35 + q36, S*V3 + 25*V36*R, S*V36 + R*V3, (V36 + 1//5*V3)//(k5*V36), (k5*V36 + 1//5*k5*V3)//V3, (V36*q36 - 1//5*V3*q35)//(V36 - 1//5*V3)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/CGV1990/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/CGV1990/logs_(:normalforms, 2) deleted file mode 100644 index 72511db93..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CGV1990/logs_(:normalforms, 2) +++ /dev/null @@ -1,153 +0,0 @@ -┌ Info: Processing CGV1990 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.124757613 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.124757613 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.398090935 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.398090935 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [264] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.006649865 seconds -│ :rank_time = rank_time -│ rank_times = 0.006649865 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 55  ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 415 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 9), (3, 9)], [(0, 0), (4, 10), (4, 10)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (3, 2)], [(0, 0), (9, 2), (10, 2)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (8, 1), (9, 1)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (9, 2), (10, 2)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.506170343 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.035487931 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 415 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 9), (3, 9)], [(0, 0), (4, 10), (4, 10)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (3, 2)], [(0, 0), (9, 2), (10, 2)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (8, 1), (9, 1)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (9, 2), (10, 2)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 96 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.932644146 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.08741116 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 25 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (9 in total): Nemo.fmpq_mpoly[k5, k3, S, V36, k4, k6, R, k7, V3] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 40 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 30 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 40 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 30 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 1 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 40 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 30 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 1 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.181481733 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 414 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 424 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.761698587 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k7, k6, k4, k3, S*V3 + 25*V36*R, (k5^2*V36)//V3, (k5*V36 + 1//5*k5*V3)//V3, (S*V3^2 - 125*V36^2*R)//(V36 - 1//5*V3)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/CGV1990/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/CGV1990/logs_(:normalforms, 2)_with_states deleted file mode 100644 index 613fc6117..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CGV1990/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,243 +0,0 @@ -┌ Info: Processing CGV1990 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.081920348 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.081920348 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.430339745 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.430339745 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [264] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.00673753 seconds -│ :rank_time = rank_time -│ rank_times = 0.00673753 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 50  ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 415 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3, q35, q3, q1, q7, q36)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 9), (3, 9)], [(0, 0), (4, 10), (4, 10)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (3, 2)], [(0, 0), (9, 2), (10, 2)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (8, 1), (9, 1)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (9, 2), (10, 2)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.406011756 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.08427101 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 415 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3, q35, q3, q1, q7, q36)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 9), (3, 9)], [(0, 0), (4, 10), (4, 10)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (3, 2)], [(0, 0), (9, 2), (10, 2)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (8, 1), (9, 1)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (9, 2), (10, 2)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 96 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.987551899 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.097795226 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 25 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.181691506 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 414 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 914 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 19 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3, q35, q3, q1, q7, q36)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (3, 2)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (3, 7), (1, 5)], [(0, 0), (5, 9), (3, 7)], [(0, 0), (7, 1), (7, 1)], [(0, 0), (7, 1), (7, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.20059529 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.067995187 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 19 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3, q35, q3, q1, q7, q36)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (3, 2)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (3, 7), (1, 5)], [(0, 0), (5, 9), (3, 7)], [(0, 0), (7, 1), (7, 1)], [(0, 0), (7, 1), (7, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 3 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.220673915 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.067921103 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 32 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (14 in total): Nemo.fmpq_mpoly[k5, k3, S, V36, k4, k6, R, k7, V3, q35, q3, q1, q7, q36] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 84 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 75 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 84 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 75 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 7 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 84 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 75 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 7 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.078809807 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 18 initial generators there are 14 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 3853 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.527587084 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[q7, q1, q3, k7, k6, k4, k3, q35*q36, q35 + q36, S*V3 + 25*V36*R, (V36^2 + 1//25*V3^2)//(V36*V3), (S^2 + 25*R^2)//(S*R), (S*V3 - 25*V36*R)//(q35 - q36), (k5*V36 - 1//5*k5*V3)//(V3*q35 - V3*q36)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/CGV1990/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/CGV1990/logs_(:normalforms, 3) deleted file mode 100644 index 6a41b9a86..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CGV1990/logs_(:normalforms, 3) +++ /dev/null @@ -1,153 +0,0 @@ -┌ Info: Processing CGV1990 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.067206219 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.067206219 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.436784976 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.436784976 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [264] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.006721154 seconds -│ :rank_time = rank_time -│ rank_times = 0.006721154 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 93  ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 415 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 9), (3, 9)], [(0, 0), (4, 10), (4, 10)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (3, 2)], [(0, 0), (9, 2), (10, 2)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (8, 1), (9, 1)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (9, 2), (10, 2)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.353315165 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.087385722 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 415 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 9), (3, 9)], [(0, 0), (4, 10), (4, 10)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (3, 2)], [(0, 0), (9, 2), (10, 2)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (8, 1), (9, 1)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (9, 2), (10, 2)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 96 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.97935637 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.034074253 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 25 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (9 in total): Nemo.fmpq_mpoly[k5, k3, S, V36, k4, k6, R, k7, V3] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 185 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 160 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 185 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 160 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 2 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 185 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 160 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 2 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.179829168 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 414 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 424 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.626926915 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k7, k6, k4, k3, S*V3 + 25*V36*R, (k5^2*V36)//V3, (k5*V36 + 1//5*k5*V3)//V3, (S*V3^2 - 125*V36^2*R)//(V36 - 1//5*V3)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/CGV1990/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/CGV1990/logs_(:normalforms, 3)_with_states deleted file mode 100644 index 0f883fc8d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CGV1990/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,243 +0,0 @@ -┌ Info: Processing CGV1990 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.067178295 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.067178295 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.437341116 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.437341116 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [264] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.006803055 seconds -│ :rank_time = rank_time -│ rank_times = 0.006803055 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 49  ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 415 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3, q35, q3, q1, q7, q36)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 9), (3, 9)], [(0, 0), (4, 10), (4, 10)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (3, 2)], [(0, 0), (9, 2), (10, 2)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (8, 1), (9, 1)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (9, 2), (10, 2)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.450065458 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.086570918 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 415 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3, q35, q3, q1, q7, q36)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 9), (3, 9)], [(0, 0), (4, 10), (4, 10)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (3, 2)], [(0, 0), (9, 2), (10, 2)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (8, 1), (9, 1)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (9, 2), (10, 2)], [(0, 0), (4, 3), (4, 3)], [(0, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 96 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.016877673 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.078976456 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 25 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.198675546 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 414 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 914 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 19 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3, q35, q3, q1, q7, q36)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (3, 2)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (3, 7), (1, 5)], [(0, 0), (5, 9), (3, 7)], [(0, 0), (7, 1), (7, 1)], [(0, 0), (7, 1), (7, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.203550303 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.009566447 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 19 functions in Rational Field(k5, k3, S, V36, k4, k6, R, k7, V3, q35, q3, q1, q7, q36)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (3, 2)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 2), (0, 0)], [(0, 0), (3, 7), (1, 5)], [(0, 0), (5, 9), (3, 7)], [(0, 0), (7, 1), (7, 1)], [(0, 0), (7, 1), (7, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 3 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.292354662 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.010655736 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 32 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (14 in total): Nemo.fmpq_mpoly[k5, k3, S, V36, k4, k6, R, k7, V3, q35, q3, q1, q7, q36] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 560 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 547 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 560 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 547 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 25 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 560 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 547 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 25 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.08350342 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 18 initial generators there are 14 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 3853 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.777497698 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[q7, q1, q3, k7, k6, k4, k3, q35*q36, q35 + q36, S*V3 + 25*V36*R, (V36^2 + 1//25*V3^2)//(V36*V3), (S^2 + 25*R^2)//(S*R), (S*V3 - 25*V36*R)//(q35 - q36), (k5*V36 - 1//5*k5*V3)//(V3*q35 - V3*q36)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/CGV1990/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/CGV1990/timings_(:gb,) deleted file mode 100644 index ca9355a79..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CGV1990/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -CGV1990 -id_total, 3.338504753 diff --git a/benchmarking/IdentifiableFunctions/systems/CGV1990/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/CGV1990/timings_(:gb,)_with_states deleted file mode 100644 index deb9b8f58..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CGV1990/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -CGV1990 -id_total, 4.536041236 diff --git a/benchmarking/IdentifiableFunctions/systems/CGV1990/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/CGV1990/timings_(:hybrid,) deleted file mode 100644 index 8519a2297..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CGV1990/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -CGV1990 -id_total, 5.501626171 diff --git a/benchmarking/IdentifiableFunctions/systems/CGV1990/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/CGV1990/timings_(:hybrid,)_with_states deleted file mode 100644 index 5a1a90e45..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CGV1990/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -CGV1990 -id_total, 6.159030342 diff --git a/benchmarking/IdentifiableFunctions/systems/CGV1990/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/CGV1990/timings_(:normalforms, 2) deleted file mode 100644 index 3c22d5fd0..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CGV1990/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -CGV1990 -id_total, 3.761698587 diff --git a/benchmarking/IdentifiableFunctions/systems/CGV1990/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/CGV1990/timings_(:normalforms, 2)_with_states deleted file mode 100644 index 4d8a0a334..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CGV1990/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -CGV1990 -id_total, 4.527587084 diff --git a/benchmarking/IdentifiableFunctions/systems/CGV1990/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/CGV1990/timings_(:normalforms, 3) deleted file mode 100644 index 36f33c617..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CGV1990/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -CGV1990 -id_total, 3.626926915 diff --git a/benchmarking/IdentifiableFunctions/systems/CGV1990/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/CGV1990/timings_(:normalforms, 3)_with_states deleted file mode 100644 index e6d592812..000000000 --- a/benchmarking/IdentifiableFunctions/systems/CGV1990/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -CGV1990 -id_total, 4.777497698 diff --git a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/id_funcs_(:gb,) deleted file mode 100644 index a2afb21d9..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/id_funcs_(:gb,) +++ /dev/null @@ -1,6 +0,0 @@ -[k1, -k6, -k2, -k4, -k3, -k5*k3 + k5*k2] diff --git a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/id_funcs_(:gb,)_with_states deleted file mode 100644 index 3377f58be..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,12 +0,0 @@ -[x6, -x5, -x3, -x2, -x1, -x4, -k1, -k6, -k2, -k4, -k3, -k5] diff --git a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/id_funcs_(:hybrid,) deleted file mode 100644 index 744a1da63..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/id_funcs_(:hybrid,) +++ /dev/null @@ -1,6 +0,0 @@ -[k1, -k6, -k2, -k4, -k3, -k5] diff --git a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index 3377f58be..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,12 +0,0 @@ -[x6, -x5, -x3, -x2, -x1, -x4, -k1, -k6, -k2, -k4, -k3, -k5] diff --git a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/id_funcs_(:normalforms, 2) deleted file mode 100644 index 744a1da63..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,6 +0,0 @@ -[k1, -k6, -k2, -k4, -k3, -k5] diff --git a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index 3377f58be..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,12 +0,0 @@ -[x6, -x5, -x3, -x2, -x1, -x4, -k1, -k6, -k2, -k4, -k3, -k5] diff --git a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/id_funcs_(:normalforms, 3) deleted file mode 100644 index 744a1da63..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,6 +0,0 @@ -[k1, -k6, -k2, -k4, -k3, -k5] diff --git a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index 3377f58be..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,12 +0,0 @@ -[x6, -x5, -x3, -x2, -x1, -x4, -k1, -k6, -k2, -k4, -k3, -k5] diff --git a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/logs_(:gb,) deleted file mode 100644 index 6f8638bd6..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/logs_(:gb,) +++ /dev/null @@ -1,84 +0,0 @@ -┌ Info: Processing Chemical reaction network -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.248979301 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.248979301 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.091202797 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.091202797 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [29, 17] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 8.621e-5 seconds -│ :rank_time = rank_time -│ rank_times = 8.621e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 73 functions in Rational Field(k5, k3, k4, k2, k6, k1)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 3.982435181 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.148514762 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.007833391 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 72 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 24 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 9.543711944 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k1, k6, k2, k4, k3, k5*k3 + k5*k2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/logs_(:gb,)_with_states deleted file mode 100644 index 6c2e2ad78..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/logs_(:gb,)_with_states +++ /dev/null @@ -1,135 +0,0 @@ -┌ Info: Processing Chemical reaction network -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.314038908 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.314038908 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.098949012 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.098949012 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [29, 17] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000100706 seconds -│ :rank_time = rank_time -│ rank_times = 0.000100706 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 73 functions in Rational Field(k5, k3, k4, k2, k6, k1, x4, x1, x2, x3, x5, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.899504786 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.006077915 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.006957189 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 72 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 24 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(k5, k3, k4, k2, k6, k1, x4, x1, x2, x3, x5, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.01928592 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.048469482 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.004421407 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 14 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 78 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.570549014 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x6, x5, x3, x2, x1, x4, k1, k6, k2, k4, k3, k5] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/logs_(:hybrid,) deleted file mode 100644 index 4c904f28e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/logs_(:hybrid,) +++ /dev/null @@ -1,531 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing Chemical reaction network -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.457264325 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.457264325 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.043546004 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.043546004 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [29, 17] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 9.2434e-5 seconds -│ :rank_time = rank_time -│ rank_times = 9.2434e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 73 functions in Rational Field(k5, k3, k4, k2, k6, k1)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.025829473 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.276322814 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (6 in total): Nemo.fmpq_mpoly[k5, k3, k4, k2, k6, k1] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, t, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y6, y4, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(k5, k3, k4, k2, k6, k1)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010084141 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003431889 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y5, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y1, y3, t], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(k5, k3, k4, k2, k6, k1)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009468779 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001839173 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y2, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y5, y1, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(k5, k3, k4, k2, k6, k1)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009943611 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00170176 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y2, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y5, y6, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(k5, k3, k4, k2, k6, k1)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.066273223 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001187942 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y6, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y2, y1, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(k5, k3, k4, k2, k6, k1)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.008924332 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001086275 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, t, y3], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y1, y2, y4], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(k5, k3, k4, k2, k6, k1)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.008630972 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001252175 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y2, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t, y4, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(k5, k3, k4, k2, k6, k1)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.008739454 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001244862 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y5, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y4, y6, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(k5, k3, k4, k2, k6, k1)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.008944835 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001295809 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y6, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y2, y3, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(k5, k3, k4, k2, k6, k1)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009806754 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001515367 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y1, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y5, y3, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(k5, k3, k4, k2, k6, k1)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010219517 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001362884 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.714229475 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 72 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 21 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.504442595 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k1, k6, k2, k4, k3, k5] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/logs_(:hybrid,)_with_states deleted file mode 100644 index bce83df61..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,582 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing Chemical reaction network -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.514515103 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.514515103 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.042519885 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.042519885 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [29, 17] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 8.4107e-5 seconds -│ :rank_time = rank_time -│ rank_times = 8.4107e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 73 functions in Rational Field(k5, k3, k4, k2, k6, k1, x4, x1, x2, x3, x5, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.894528958 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003978599 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.006725425 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 72 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 24 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(k5, k3, k4, k2, k6, k1, x4, x1, x2, x3, x5, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.018147724 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.045472541 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (12 in total): Nemo.fmpq_mpoly[k5, k3, k4, k2, k6, k1, x4, x1, x2, x3, x5, x6] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y8, y5, y9, y7, y12], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y3, y11, y2, y6, t, y10], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k5, k3, k4, k2, k6, k1, x4, x1, x2, x3, x5, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.019033932 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002296693 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y10, y12, y11, y8, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, t, y5, y2, y9, y3, y4], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k5, k3, k4, k2, k6, k1, x4, x1, x2, x3, x5, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.018261607 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002251614 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y4, y7, y11, y10, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y1, y6, y9, y8, y12, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k5, k3, k4, k2, k6, k1, x4, x1, x2, x3, x5, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.018039582 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002271368 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y7, t, y11, y1, y9], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y12, y8, y6, y3, y2, y4, y10], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k5, k3, k4, k2, k6, k1, x4, x1, x2, x3, x5, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.016895304 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001928681 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y6, y5, y4, y12, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y3, y2, t, y8, y11, y9], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k5, k3, k4, k2, k6, k1, x4, x1, x2, x3, x5, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.076824163 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002098137 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y9, y3, y7, t, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y12, y2, y8, y11, y5, y1, y10], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k5, k3, k4, k2, k6, k1, x4, x1, x2, x3, x5, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015775955 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002103667 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y9, y10, y1, y4, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y12, y5, y2, y7, y8, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k5, k3, k4, k2, k6, k1, x4, x1, x2, x3, x5, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015922635 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.0612221 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y7, y6, y11, y8, y10], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t, y2, y9, y1, y12, y5], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k5, k3, k4, k2, k6, k1, x4, x1, x2, x3, x5, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.016741289 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002256492 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y4, t, y11, y12, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y2, y8, y1, y7, y6, y10], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k5, k3, k4, k2, k6, k1, x4, x1, x2, x3, x5, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.016664914 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001953961 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y11, y6, y5, y9, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y12, y7, y8, y3, y1, y2], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k5, k3, k4, k2, k6, k1, x4, x1, x2, x3, x5, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.016852122 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.062717898 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.004596595 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 14 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 78 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.568833147 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x6, x5, x3, x2, x1, x4, k1, k6, k2, k4, k3, k5] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/logs_(:normalforms, 2) deleted file mode 100644 index b01ae0ff3..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/logs_(:normalforms, 2) +++ /dev/null @@ -1,95 +0,0 @@ -┌ Info: Processing Chemical reaction network -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.453194038 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.453194038 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.041435093 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.041435093 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [29, 17] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 9.2745e-5 seconds -│ :rank_time = rank_time -│ rank_times = 9.2745e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 73 functions in Rational Field(k5, k3, k4, k2, k6, k1)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.338423326 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.210199771 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (6 in total): Nemo.fmpq_mpoly[k5, k3, k4, k2, k6, k1] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.853804295 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 72 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 21 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.598267147 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k1, k6, k2, k4, k3, k5] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/logs_(:normalforms, 2)_with_states deleted file mode 100644 index de9f97efe..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,146 +0,0 @@ -┌ Info: Processing Chemical reaction network -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.242360175 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.242360175 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.042623263 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.042623263 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [29, 17] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 9.3762e-5 seconds -│ :rank_time = rank_time -│ rank_times = 9.3762e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 73 functions in Rational Field(k5, k3, k4, k2, k6, k1, x4, x1, x2, x3, x5, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.783639219 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004418286 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.006974898 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 72 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 24 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(k5, k3, k4, k2, k6, k1, x4, x1, x2, x3, x5, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.066985315 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003163982 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (12 in total): Nemo.fmpq_mpoly[k5, k3, k4, k2, k6, k1, x4, x1, x2, x3, x5, x6] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.004215455 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 14 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 78 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.642488241 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x6, x5, x3, x2, x1, x4, k1, k6, k2, k4, k3, k5] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/logs_(:normalforms, 3) deleted file mode 100644 index e429f39ba..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/logs_(:normalforms, 3) +++ /dev/null @@ -1,95 +0,0 @@ -┌ Info: Processing Chemical reaction network -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.406971469 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.406971469 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.04532054 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.04532054 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [29, 17] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 9.2137e-5 seconds -│ :rank_time = rank_time -│ rank_times = 9.2137e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 73 functions in Rational Field(k5, k3, k4, k2, k6, k1)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.637875362 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.217345205 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (6 in total): Nemo.fmpq_mpoly[k5, k3, k4, k2, k6, k1] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.794247596 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 72 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 21 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.714834252 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k1, k6, k2, k4, k3, k5] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/logs_(:normalforms, 3)_with_states deleted file mode 100644 index c565f9e5b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,146 +0,0 @@ -┌ Info: Processing Chemical reaction network -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.341843926 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.341843926 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.045846046 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.045846046 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [29, 17] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 9.1159e-5 seconds -│ :rank_time = rank_time -│ rank_times = 9.1159e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 73 functions in Rational Field(k5, k3, k4, k2, k6, k1, x4, x1, x2, x3, x5, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.889757573 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005199665 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.006763981 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 72 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 24 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(k5, k3, k4, k2, k6, k1, x4, x1, x2, x3, x5, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.063917321 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003255971 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (12 in total): Nemo.fmpq_mpoly[k5, k3, k4, k2, k6, k1, x4, x1, x2, x3, x5, x6] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.004398571 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 14 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 78 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.792331727 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x6, x5, x3, x2, x1, x4, k1, k6, k2, k4, k3, k5] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/timings_(:gb,) deleted file mode 100644 index 2d550ac7e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -Chemical reaction network -id_total, 9.543711944 diff --git a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/timings_(:gb,)_with_states deleted file mode 100644 index 53361923b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Chemical reaction network -id_total, 3.570549014 diff --git a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/timings_(:hybrid,) deleted file mode 100644 index 3f8504ee0..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -Chemical reaction network -id_total, 10.504442595 diff --git a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/timings_(:hybrid,)_with_states deleted file mode 100644 index 60cad3650..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Chemical reaction network -id_total, 4.568833147 diff --git a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/timings_(:normalforms, 2) deleted file mode 100644 index ae0b48bfa..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -Chemical reaction network -id_total, 10.598267147 diff --git a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/timings_(:normalforms, 2)_with_states deleted file mode 100644 index 759d1e540..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Chemical reaction network -id_total, 3.642488241 diff --git a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/timings_(:normalforms, 3) deleted file mode 100644 index d9a9f3d98..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -Chemical reaction network -id_total, 10.714834252 diff --git a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/timings_(:normalforms, 3)_with_states deleted file mode 100644 index fb8771df4..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Chemical reaction network/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Chemical reaction network -id_total, 3.792331727 diff --git a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Crauste_SI/id_funcs_(:gb,) deleted file mode 100644 index 8f41db7c6..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/id_funcs_(:gb,) +++ /dev/null @@ -1,12 +0,0 @@ -[mu_P, -mu_LL, -mu_PL, -delta_LM, -mu_PE, -mu_M, -mu_N, -delta_EL, -mu_LE, -mu_EE, -delta_NE//rho_E, -rho_P//rho_E] diff --git a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Crauste_SI/id_funcs_(:gb,)_with_states deleted file mode 100644 index 3432620e8..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,17 +0,0 @@ -[S, -N, -E, -M, -mu_P, -mu_LL, -mu_PL, -delta_LM, -mu_PE, -mu_M, -mu_N, -delta_EL, -mu_LE, -mu_EE, -rho_E*P, -delta_NE//rho_E, -rho_P//rho_E] diff --git a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Crauste_SI/id_funcs_(:hybrid,) deleted file mode 100644 index 7180f811f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/id_funcs_(:hybrid,) +++ /dev/null @@ -1,12 +0,0 @@ -[mu_P, -mu_LL, -mu_PL, -delta_LM, -mu_PE, -mu_M, -mu_N, -delta_EL, -mu_LE, -mu_EE, -rho_E//delta_NE, -rho_E//rho_P] diff --git a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Crauste_SI/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index 5bc6a168c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,17 +0,0 @@ -[S, -N, -E, -M, -mu_P, -mu_LL, -mu_PL, -delta_LM, -mu_PE, -mu_M, -mu_N, -delta_EL, -mu_LE, -mu_EE, -rho_E*P, -delta_NE*P, -rho_P*P] diff --git a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Crauste_SI/id_funcs_(:normalforms, 2) deleted file mode 100644 index 8f41db7c6..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,12 +0,0 @@ -[mu_P, -mu_LL, -mu_PL, -delta_LM, -mu_PE, -mu_M, -mu_N, -delta_EL, -mu_LE, -mu_EE, -delta_NE//rho_E, -rho_P//rho_E] diff --git a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Crauste_SI/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index 5bc6a168c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,17 +0,0 @@ -[S, -N, -E, -M, -mu_P, -mu_LL, -mu_PL, -delta_LM, -mu_PE, -mu_M, -mu_N, -delta_EL, -mu_LE, -mu_EE, -rho_E*P, -delta_NE*P, -rho_P*P] diff --git a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Crauste_SI/id_funcs_(:normalforms, 3) deleted file mode 100644 index 8f41db7c6..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,12 +0,0 @@ -[mu_P, -mu_LL, -mu_PL, -delta_LM, -mu_PE, -mu_M, -mu_N, -delta_EL, -mu_LE, -mu_EE, -delta_NE//rho_E, -rho_P//rho_E] diff --git a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Crauste_SI/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index 5bc6a168c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,17 +0,0 @@ -[S, -N, -E, -M, -mu_P, -mu_LL, -mu_PL, -delta_LM, -mu_PE, -mu_M, -mu_N, -delta_EL, -mu_LE, -mu_EE, -rho_E*P, -delta_NE*P, -rho_P*P] diff --git a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Crauste_SI/logs_(:gb,) deleted file mode 100644 index adcbecb4b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/logs_(:gb,) +++ /dev/null @@ -1,83 +0,0 @@ -┌ Info: Processing Crauste_SI -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.580519369 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.580519369 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.0853949 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.0853949 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [10, 8, 14] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 7.2268e-5 seconds -│ :rank_time = rank_time -│ rank_times = 7.2268e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 31 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.965909632 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004576681 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.004360587 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 30 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 159 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.797326813 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[mu_P, mu_LL, mu_PL, delta_LM, mu_PE, mu_M, mu_N, delta_EL, mu_LE, mu_EE, delta_NE//rho_E, rho_P//rho_E] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Crauste_SI/logs_(:gb,)_with_states deleted file mode 100644 index ee730c6b2..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/logs_(:gb,)_with_states +++ /dev/null @@ -1,136 +0,0 @@ -┌ Info: Processing Crauste_SI -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.571065478 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.571065478 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.034562265 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.034562265 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [10, 8, 14] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 6.4233e-5 seconds -│ :rank_time = rank_time -│ rank_times = 6.4233e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 31 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.678290472 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.117994511 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.979687968 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 30 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 159 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.027151846 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003560177 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.005737446 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 20 initial generators there are 17 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 237 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.712712251 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[S, N, E, M, mu_P, mu_LL, mu_PL, delta_LM, mu_PE, mu_M, mu_N, delta_EL, mu_LE, mu_EE, rho_E*P, delta_NE//rho_E, rho_P//rho_E] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Crauste_SI/logs_(:hybrid,) deleted file mode 100644 index c099e15aa..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/logs_(:hybrid,) +++ /dev/null @@ -1,548 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing Crauste_SI -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.552070074 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.552070074 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.035530724 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.035530724 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [10, 8, 14] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 6.1348e-5 seconds -│ :rank_time = rank_time -│ rank_times = 6.1348e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 31 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.8671928 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004652794 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (13 in total): Nemo.fmpq_mpoly[rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 274 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 271 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 274 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 271 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 274 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 271 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y12, y13, y10, y7, y5, y11, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y4, t, y6, y2, y9, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.019325933 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002917451 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y11, y8, y10, y6, y5, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y7, y2, y12, y3, y9, y13], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.065515333 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002116858 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y12, y1, y11, y4, y10, y6, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y8, y13, y9, y5, t, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.016948143 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002650437 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y13, y1, y3, y12, y7, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y4, t, y10, y5, y11, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(1, 1), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.017852111 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003505654 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y13, y9, y6, y8, y3, t, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y11, y5, y12, y1, y10, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.07394356 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002135051 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y2, y4, y10, y8, y13, y6], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y3, y5, y9, y11, t, y12], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.018098574 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002042682 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y3, y13, y12, y11, y6, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y7, y8, y10, y2, t, y9], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.01796136 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.064088255 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y6, y8, y10, y7, y1, y11], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y13, t, y4, y2, y12, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.0184338 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002480897 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y5, y4, y12, y9, y7, t], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y3, y1, y2, y11, y13, y8], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.016923024 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00254844 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y12, y10, y2, y4, t, y7, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y13, y8, y6, y9, y11, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.068287803 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002082808 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.005036833 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 30 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 159 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.559413955 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[mu_P, mu_LL, mu_PL, delta_LM, mu_PE, mu_M, mu_N, delta_EL, mu_LE, mu_EE, rho_E//delta_NE, rho_E//rho_P] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Crauste_SI/logs_(:hybrid,)_with_states deleted file mode 100644 index f0f4a326c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,601 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing Crauste_SI -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.508759618 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.508759618 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.099498317 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.099498317 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [10, 8, 14] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 9.2333e-5 seconds -│ :rank_time = rank_time -│ rank_times = 9.2333e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 31 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.571176359 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.233843535 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.933694651 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 30 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 159 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.03326186 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004257298 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (18 in total): Nemo.fmpq_mpoly[rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 650 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 644 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 650 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 644 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 45 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 650 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 644 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 45 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y13, y18, y5, y16, y9, y11, y3, y14, y12], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y7, y6, y4, t, y10, y1, y15, y2, y17], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 18 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.08417911 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003078602 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y6, y15, y1, y7, y14, y17, y10, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y9, y16, t, y13, y18, y12, y2, y3, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 18 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.031024855 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003474319 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y4, y3, y7, y10, y11, y1, t, y18], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y8, y16, y15, y14, y2, y13, y17, y5, y12], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 18 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.090348306 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002743835 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y12, t, y9, y4, y11, y2, y3, y14, y15], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y17, y18, y16, y6, y5, y13, y8, y10, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 18 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.029150681 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003375946 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y15, y4, y17, y9, t, y2, y13, y10, y12], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y16, y6, y8, y3, y18, y14, y1, y11, y5, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 18 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.105820478 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002734483 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y3, y10, y14, t, y2, y13, y16, y17], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y18, y15, y8, y11, y1, y6, y5, y4, y7, y12], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 18 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.026547497 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00309465 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y4, y7, y3, y5, y13, y12, y18, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y17, y9, y8, y16, y1, y2, y10, y14, y15, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 18 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.082668017 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003085387 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y16, y17, y18, y12, y1, y4, t, y15, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y14, y13, y5, y11, y7, y8, y10, y9, y2], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 18 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.028746397 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003021435 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y13, y14, y12, y2, y5, y18, y7, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y16, y1, y3, y9, y15, y10, y11, t, y17, y8], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 18 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.086720153 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003024165 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y13, y16, y10, y11, y1, y8, t, y18], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y17, y14, y9, y2, y12, y15, y4, y6, y3], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 18 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.030283289 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002840388 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.018587491 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 20 initial generators there are 17 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 159 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 12.256384168 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[S, N, E, M, mu_P, mu_LL, mu_PL, delta_LM, mu_PE, mu_M, mu_N, delta_EL, mu_LE, mu_EE, rho_E*P, delta_NE*P, rho_P*P] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Crauste_SI/logs_(:normalforms, 2) deleted file mode 100644 index ff950ce24..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/logs_(:normalforms, 2) +++ /dev/null @@ -1,112 +0,0 @@ -┌ Info: Processing Crauste_SI -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.471183929 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.471183929 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.035332581 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.035332581 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [10, 8, 14] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 7.8252e-5 seconds -│ :rank_time = rank_time -│ rank_times = 7.8252e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 31 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.820905355 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004972354 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (13 in total): Nemo.fmpq_mpoly[rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 39 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 37 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 39 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 37 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 39 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 37 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.004724568 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 30 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 159 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.859812508 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[mu_P, mu_LL, mu_PL, delta_LM, mu_PE, mu_M, mu_N, delta_EL, mu_LE, mu_EE, delta_NE//rho_E, rho_P//rho_E] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Crauste_SI/logs_(:normalforms, 2)_with_states deleted file mode 100644 index 889cef66c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,165 +0,0 @@ -┌ Info: Processing Crauste_SI -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.408128013 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.408128013 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.034238858 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.034238858 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [10, 8, 14] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 6.6487e-5 seconds -│ :rank_time = rank_time -│ rank_times = 6.6487e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 31 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.69149944 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.233247723 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.1467473 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 30 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 159 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.027642617 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.071134912 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (18 in total): Nemo.fmpq_mpoly[rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 70 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 66 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 70 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 66 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 70 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 66 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.027685234 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 20 initial generators there are 17 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 159 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 11.500789728 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[S, N, E, M, mu_P, mu_LL, mu_PL, delta_LM, mu_PE, mu_M, mu_N, delta_EL, mu_LE, mu_EE, rho_E*P, delta_NE*P, rho_P*P] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Crauste_SI/logs_(:normalforms, 3) deleted file mode 100644 index 09dedbc00..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/logs_(:normalforms, 3) +++ /dev/null @@ -1,112 +0,0 @@ -┌ Info: Processing Crauste_SI -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.422200966 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.422200966 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.031528676 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.031528676 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [10, 8, 14] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 7.0048e-5 seconds -│ :rank_time = rank_time -│ rank_times = 7.0048e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 31 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.877545291 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.056800845 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (13 in total): Nemo.fmpq_mpoly[rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 274 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 271 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 274 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 271 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 274 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 271 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.004239486 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 30 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 159 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.812581542 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[mu_P, mu_LL, mu_PL, delta_LM, mu_PE, mu_M, mu_N, delta_EL, mu_LE, mu_EE, delta_NE//rho_E, rho_P//rho_E] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Crauste_SI/logs_(:normalforms, 3)_with_states deleted file mode 100644 index b1589be1a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,165 +0,0 @@ -┌ Info: Processing Crauste_SI -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.520767084 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.520767084 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.03522417 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.03522417 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [10, 8, 14] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 6.9916e-5 seconds -│ :rank_time = rank_time -│ rank_times = 6.9916e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:04 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 31 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.876456848 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.24514774 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.009545097 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 30 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 159 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.028361228 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.057284246 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (18 in total): Nemo.fmpq_mpoly[rho_P, mu_EE, delta_NE, mu_LE, delta_EL, mu_N, mu_M, mu_PE, delta_LM, mu_PL, mu_LL, mu_P, rho_E, M, P, E, N, S] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 650 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 644 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 650 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 644 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 45 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 650 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 644 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 45 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.014353038 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 20 initial generators there are 17 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 159 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 11.706495598 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[S, N, E, M, mu_P, mu_LL, mu_PL, delta_LM, mu_PE, mu_M, mu_N, delta_EL, mu_LE, mu_EE, rho_E*P, delta_NE*P, rho_P*P] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Crauste_SI/timings_(:gb,) deleted file mode 100644 index dcb1dbf5e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -Crauste_SI -id_total, 3.797326813 diff --git a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Crauste_SI/timings_(:gb,)_with_states deleted file mode 100644 index b3e466494..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Crauste_SI -id_total, 10.712712251 diff --git a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Crauste_SI/timings_(:hybrid,) deleted file mode 100644 index 7b2217df3..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -Crauste_SI -id_total, 4.559413955 diff --git a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Crauste_SI/timings_(:hybrid,)_with_states deleted file mode 100644 index 810437518..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Crauste_SI -id_total, 12.256384168 diff --git a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Crauste_SI/timings_(:normalforms, 2) deleted file mode 100644 index 40813cba8..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -Crauste_SI -id_total, 3.859812508 diff --git a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Crauste_SI/timings_(:normalforms, 2)_with_states deleted file mode 100644 index b67a09372..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Crauste_SI -id_total, 11.500789728 diff --git a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Crauste_SI/timings_(:normalforms, 3) deleted file mode 100644 index 49410eacb..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -Crauste_SI -id_total, 3.812581542 diff --git a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Crauste_SI/timings_(:normalforms, 3)_with_states deleted file mode 100644 index ccf49ebd9..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Crauste_SI/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Crauste_SI -id_total, 11.706495598 diff --git a/benchmarking/IdentifiableFunctions/systems/Fujita/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Fujita/id_funcs_(:gb,) deleted file mode 100644 index 0f6b6ca7b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Fujita/id_funcs_(:gb,) +++ /dev/null @@ -1,12 +0,0 @@ -[reaction_8_k1, -reaction_2_k2, -reaction_5_k2, -reaction_3_k1, -reaction_6_k1, -reaction_7_k1, -reaction_4_k1, -reaction_1_k1 - reaction_9_k1 - reaction_1_k2, -reaction_5_k1//reaction_2_k1, -a1//reaction_2_k1, -a3//reaction_2_k1, -a2//reaction_2_k1] diff --git a/benchmarking/IdentifiableFunctions/systems/Fujita/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Fujita/id_funcs_(:gb,)_with_states deleted file mode 100644 index ce6084c27..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Fujita/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,20 +0,0 @@ -[reaction_8_k1, -reaction_2_k2, -reaction_5_k2, -reaction_3_k1, -reaction_6_k1, -reaction_7_k1, -reaction_4_k1, -reaction_2_k1*pS6, -reaction_2_k1*pAkt_S6, -reaction_2_k1*Akt, -reaction_2_k1*pEGFR, -reaction_2_k1*S6, -reaction_2_k1*pAkt, -reaction_2_k1*pEGFR_Akt, -reaction_9_k1*reaction_2_k1*EGF_EGFR, -reaction_1_k1 - reaction_9_k1 - reaction_1_k2, -reaction_5_k1//reaction_2_k1, -a1//reaction_2_k1, -a3//reaction_2_k1, -a2//reaction_2_k1] diff --git a/benchmarking/IdentifiableFunctions/systems/Fujita/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Fujita/id_funcs_(:hybrid,) deleted file mode 100644 index 0179d569b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Fujita/id_funcs_(:hybrid,) +++ /dev/null @@ -1,12 +0,0 @@ -[reaction_8_k1, -reaction_2_k2, -reaction_5_k2, -reaction_3_k1, -reaction_6_k1, -reaction_7_k1, -reaction_4_k1, -reaction_1_k1 - reaction_9_k1 - reaction_1_k2, -reaction_2_k1//reaction_5_k1, -reaction_2_k1//a1, -reaction_2_k1//a3, -reaction_2_k1//a2] diff --git a/benchmarking/IdentifiableFunctions/systems/Fujita/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Fujita/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index 11608c255..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Fujita/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,20 +0,0 @@ -[reaction_8_k1, -reaction_2_k2, -reaction_5_k2, -reaction_3_k1, -reaction_6_k1, -reaction_7_k1, -reaction_4_k1, -reaction_2_k1*pS6, -reaction_2_k1*pAkt_S6, -reaction_2_k1*Akt, -reaction_2_k1*pEGFR, -reaction_2_k1*S6, -reaction_2_k1*pAkt, -reaction_2_k1*pEGFR_Akt, -reaction_5_k1*pS6, -a1*pS6, -a3*pS6, -a2*pS6, -reaction_9_k1*reaction_2_k1*EGF_EGFR, -reaction_1_k1 - reaction_9_k1 - reaction_1_k2] diff --git a/benchmarking/IdentifiableFunctions/systems/Fujita/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Fujita/id_funcs_(:normalforms, 2) deleted file mode 100644 index 0f6b6ca7b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Fujita/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,12 +0,0 @@ -[reaction_8_k1, -reaction_2_k2, -reaction_5_k2, -reaction_3_k1, -reaction_6_k1, -reaction_7_k1, -reaction_4_k1, -reaction_1_k1 - reaction_9_k1 - reaction_1_k2, -reaction_5_k1//reaction_2_k1, -a1//reaction_2_k1, -a3//reaction_2_k1, -a2//reaction_2_k1] diff --git a/benchmarking/IdentifiableFunctions/systems/Fujita/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Fujita/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index 11608c255..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Fujita/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,20 +0,0 @@ -[reaction_8_k1, -reaction_2_k2, -reaction_5_k2, -reaction_3_k1, -reaction_6_k1, -reaction_7_k1, -reaction_4_k1, -reaction_2_k1*pS6, -reaction_2_k1*pAkt_S6, -reaction_2_k1*Akt, -reaction_2_k1*pEGFR, -reaction_2_k1*S6, -reaction_2_k1*pAkt, -reaction_2_k1*pEGFR_Akt, -reaction_5_k1*pS6, -a1*pS6, -a3*pS6, -a2*pS6, -reaction_9_k1*reaction_2_k1*EGF_EGFR, -reaction_1_k1 - reaction_9_k1 - reaction_1_k2] diff --git a/benchmarking/IdentifiableFunctions/systems/Fujita/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Fujita/id_funcs_(:normalforms, 3) deleted file mode 100644 index 0f6b6ca7b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Fujita/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,12 +0,0 @@ -[reaction_8_k1, -reaction_2_k2, -reaction_5_k2, -reaction_3_k1, -reaction_6_k1, -reaction_7_k1, -reaction_4_k1, -reaction_1_k1 - reaction_9_k1 - reaction_1_k2, -reaction_5_k1//reaction_2_k1, -a1//reaction_2_k1, -a3//reaction_2_k1, -a2//reaction_2_k1] diff --git a/benchmarking/IdentifiableFunctions/systems/Fujita/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Fujita/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index 11608c255..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Fujita/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,20 +0,0 @@ -[reaction_8_k1, -reaction_2_k2, -reaction_5_k2, -reaction_3_k1, -reaction_6_k1, -reaction_7_k1, -reaction_4_k1, -reaction_2_k1*pS6, -reaction_2_k1*pAkt_S6, -reaction_2_k1*Akt, -reaction_2_k1*pEGFR, -reaction_2_k1*S6, -reaction_2_k1*pAkt, -reaction_2_k1*pEGFR_Akt, -reaction_5_k1*pS6, -a1*pS6, -a3*pS6, -a2*pS6, -reaction_9_k1*reaction_2_k1*EGF_EGFR, -reaction_1_k1 - reaction_9_k1 - reaction_1_k2] diff --git a/benchmarking/IdentifiableFunctions/systems/Fujita/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Fujita/logs_(:gb,) deleted file mode 100644 index 830db6980..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Fujita/logs_(:gb,) +++ /dev/null @@ -1,84 +0,0 @@ -┌ Info: Processing Fujita -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.576167733 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.576167733 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.34682091 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.34682091 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [18, 9, 145] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.001515392 seconds -│ :rank_time = rank_time -│ rank_times = 0.001515392 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 218 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (7, 11)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 5.065618313 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.145726466 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.012670285 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 217 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 368 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 11.3194664 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[reaction_8_k1, reaction_2_k2, reaction_5_k2, reaction_3_k1, reaction_6_k1, reaction_7_k1, reaction_4_k1, reaction_1_k1 - reaction_9_k1 - reaction_1_k2, reaction_5_k1//reaction_2_k1, a1//reaction_2_k1, a3//reaction_2_k1, a2//reaction_2_k1] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Fujita/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Fujita/logs_(:gb,)_with_states deleted file mode 100644 index 168dbac91..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Fujita/logs_(:gb,)_with_states +++ /dev/null @@ -1,174 +0,0 @@ -┌ Info: Processing Fujita -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.707378716 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.707378716 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.301397524 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.301397524 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [18, 9, 145] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.001512961 seconds -│ :rank_time = rank_time -│ rank_times = 0.001512961 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 218 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (7, 11)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 5.102394788 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.141049069 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.043321925 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 217 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 368 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 24 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (0, 0)], [(0, 0), (3, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.173655518 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00604665 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 24 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (0, 0)], [(0, 0), (3, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 3 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.184835823 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.091695817 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 22 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.013706376 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 23 initial generators there are 20 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 582 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 12.087220143 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[reaction_8_k1, reaction_2_k2, reaction_5_k2, reaction_3_k1, reaction_6_k1, reaction_7_k1, reaction_4_k1, reaction_2_k1*pS6, reaction_2_k1*pAkt_S6, reaction_2_k1*Akt, reaction_2_k1*pEGFR, reaction_2_k1*S6, reaction_2_k1*pAkt, reaction_2_k1*pEGFR_Akt, reaction_9_k1*reaction_2_k1*EGF_EGFR, reaction_1_k1 - reaction_9_k1 - reaction_1_k2, reaction_5_k1//reaction_2_k1, a1//reaction_2_k1, a3//reaction_2_k1, a2//reaction_2_k1] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Fujita/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Fujita/logs_(:hybrid,) deleted file mode 100644 index 345dab58c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Fujita/logs_(:hybrid,) +++ /dev/null @@ -1,549 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing Fujita -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.735635939 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.735635939 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.389243162 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.389243162 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [18, 9, 145] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.001491796 seconds -│ :rank_time = rank_time -│ rank_times = 0.001491796 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 218 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (7, 11)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 5.17828157 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.290214733 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (16 in total): Nemo.fmpq_mpoly[a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 849 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 815 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 849 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 815 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 849 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 815 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y6, y11, y12, y7, t, y14, y13], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y1, y16, y5, y4, y15, y2, y8, y9], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.111535876 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00239564 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y4, y3, y10, y5, y6, y14, y11], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y16, y13, y9, y12, y2, y8, y15, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.043157643 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002786803 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y3, y7, y12, y1, y16, y14, y13], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, t, y2, y9, y5, y8, y15, y11, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.166624907 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003958594 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y13, y5, y15, y16, y14, y7, y11, y9], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y2, y3, y8, y12, y6, t, y4, y10], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.081854887 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.131208669 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y5, y9, y8, y16, y11, y7, y10], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y12, t, y14, y15, y4, y13, y2, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.083400965 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003983074 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y15, y7, y6, y1, y3, y11, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y13, y12, y9, y10, y2, y14, y16, t, y8], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.143601138 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002440795 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y9, t, y13, y6, y7, y14, y15], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y5, y10, y1, y12, y11, y8, y16, y2], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(1, 1), (0, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.043683534 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002547105 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y4, t, y6, y5, y9, y13, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y14, y7, y3, y8, y10, y12, y15, y16], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.099956298 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00217367 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y14, t, y11, y15, y10, y12, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y13, y8, y9, y3, y1, y16, y6, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.034008813 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002410536 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y7, y9, y13, y16, y10, t, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y14, y6, y15, y3, y2, y12, y1, y11], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.095776731 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002407755 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.945598592 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 217 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 368 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 13.822585583 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[reaction_8_k1, reaction_2_k2, reaction_5_k2, reaction_3_k1, reaction_6_k1, reaction_7_k1, reaction_4_k1, reaction_1_k1 - reaction_9_k1 - reaction_1_k2, reaction_2_k1//reaction_5_k1, reaction_2_k1//a1, reaction_2_k1//a3, reaction_2_k1//a2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Fujita/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Fujita/logs_(:hybrid,)_with_states deleted file mode 100644 index 273d42bc0..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Fujita/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,639 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing Fujita -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.591211282 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.591211282 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.196206131 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.196206131 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [18, 9, 145] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.001562918 seconds -│ :rank_time = rank_time -│ rank_times = 0.001562918 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 218 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (7, 11)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.463188457 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.119295909 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.04726424 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 217 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 368 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 24 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (0, 0)], [(0, 0), (3, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.28651932 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005377537 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 24 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (0, 0)], [(0, 0), (3, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 3 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.110473214 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.006586805 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 22 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (25 in total): Nemo.fmpq_mpoly[a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 3156 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 3053 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 3156 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 3053 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 285 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 3156 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 3053 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 285 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y18, y21, y17, y8, y24, y1, y12, y16, y13, y10, y20, y6, y14], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y23, t, y19, y2, y11, y15, y25, y22, y7, y4, y9, y5, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 2), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 1)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.161128811 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004099464 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 23 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y25, y24, y19, y10, y4, y11, y21, y18, y7, y9, y2, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y15, y22, y12, y6, y3, y16, y20, y14, y13, y5, y23, t, y17], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (3, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.079147284 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004101792 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 21 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y18, y4, y21, y25, y17, y16, t, y3, y6, y7, y1, y12, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y14, y5, y11, y24, y23, y10, y22, y8, y19, y15, y13, y20, y9], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 1)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.196392978 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003672422 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 23 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y17, y15, y23, y20, y3, y12, t, y2, y11, y8, y21, y18, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y19, y13, y9, y1, y16, y22, y14, y10, y4, y24, y5, y25], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(0, 2), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.08953517 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003689409 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 23 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y9, y12, y21, y3, y7, y18, y13, y6, y24, y22, y1, y4], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y20, y5, y25, y17, y19, y15, y23, y11, y8, t, y16, y10, y14], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (3, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.217470645 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005004693 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 22 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y11, y18, y24, t, y1, y23, y25, y2, y8, y17, y16, y22], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y14, y13, y7, y12, y10, y6, y4, y5, y20, y19, y21, y15, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(0, 2), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.072720494 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004591456 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 23 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y15, y1, y12, y8, y14, y10, y9, y19, y23, y3, y21, y18, y20], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y16, t, y24, y4, y25, y7, y6, y17, y5, y2, y11, y22, y13], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (2, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.21149263 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003952784 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 23 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y13, y5, y19, y14, y1, y8, y25, y21, y6, y3, y11, y23, y24], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y16, y20, y15, y2, y10, t, y18, y22, y17, y9, y7, y4, y12], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 0), (2, 1), (1, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.087964802 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00397577 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 23 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y14, y23, y2, y12, y7, y6, y16, y10, y18, t, y15, y20], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y17, y11, y25, y19, y1, y8, y24, y3, y22, y4, y13, y21], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.211563655 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004421431 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 23 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y6, y23, y19, y14, y10, y8, y16, y1, y2, y22, y15, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y21, y12, y24, y17, y3, y20, y25, t, y13, y18, y4, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.091042539 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003791267 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 23 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.01326408 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 23 initial generators there are 20 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 306 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 15.675541772 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[reaction_8_k1, reaction_2_k2, reaction_5_k2, reaction_3_k1, reaction_6_k1, reaction_7_k1, reaction_4_k1, reaction_2_k1*pS6, reaction_2_k1*pAkt_S6, reaction_2_k1*Akt, reaction_2_k1*pEGFR, reaction_2_k1*S6, reaction_2_k1*pAkt, reaction_2_k1*pEGFR_Akt, reaction_5_k1*pS6, a1*pS6, a3*pS6, a2*pS6, reaction_9_k1*reaction_2_k1*EGF_EGFR, reaction_1_k1 - reaction_9_k1 - reaction_1_k2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Fujita/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Fujita/logs_(:normalforms, 2) deleted file mode 100644 index 18c80b42c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Fujita/logs_(:normalforms, 2) +++ /dev/null @@ -1,113 +0,0 @@ -┌ Info: Processing Fujita -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.566781934 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.566781934 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.375034153 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.375034153 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [18, 9, 145] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.001494591 seconds -│ :rank_time = rank_time -│ rank_times = 0.001494591 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 218 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (7, 11)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 5.158745205 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.093982968 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (16 in total): Nemo.fmpq_mpoly[a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 117 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 103 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 117 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 103 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 117 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 103 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.736735626 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 217 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 368 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 11.656832986 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[reaction_8_k1, reaction_2_k2, reaction_5_k2, reaction_3_k1, reaction_6_k1, reaction_7_k1, reaction_4_k1, reaction_1_k1 - reaction_9_k1 - reaction_1_k2, reaction_5_k1//reaction_2_k1, a1//reaction_2_k1, a3//reaction_2_k1, a2//reaction_2_k1] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Fujita/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Fujita/logs_(:normalforms, 2)_with_states deleted file mode 100644 index 8367c5576..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Fujita/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,203 +0,0 @@ -┌ Info: Processing Fujita -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.576035746 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.576035746 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.289415933 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.289415933 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [18, 9, 145] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.001454686 seconds -│ :rank_time = rank_time -│ rank_times = 0.001454686 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 218 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (7, 11)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.927815745 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.178785267 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.991207676 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 217 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 368 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 24 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (0, 0)], [(0, 0), (3, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.181871929 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005385235 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 24 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (0, 0)], [(0, 0), (3, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 3 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.183470379 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005937843 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 22 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (25 in total): Nemo.fmpq_mpoly[a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 315 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 282 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 315 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 282 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 35 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 315 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 282 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 35 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.011200183 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 23 initial generators there are 20 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 306 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 12.309509916 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[reaction_8_k1, reaction_2_k2, reaction_5_k2, reaction_3_k1, reaction_6_k1, reaction_7_k1, reaction_4_k1, reaction_2_k1*pS6, reaction_2_k1*pAkt_S6, reaction_2_k1*Akt, reaction_2_k1*pEGFR, reaction_2_k1*S6, reaction_2_k1*pAkt, reaction_2_k1*pEGFR_Akt, reaction_5_k1*pS6, a1*pS6, a3*pS6, a2*pS6, reaction_9_k1*reaction_2_k1*EGF_EGFR, reaction_1_k1 - reaction_9_k1 - reaction_1_k2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Fujita/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Fujita/logs_(:normalforms, 3) deleted file mode 100644 index 7658daefe..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Fujita/logs_(:normalforms, 3) +++ /dev/null @@ -1,113 +0,0 @@ -┌ Info: Processing Fujita -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.563128669 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.563128669 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.376492181 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.376492181 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [18, 9, 145] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.001531759 seconds -│ :rank_time = rank_time -│ rank_times = 0.001531759 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 218 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (7, 11)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 5.173006064 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.134409323 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (16 in total): Nemo.fmpq_mpoly[a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 849 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 815 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 849 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 815 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 849 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 815 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.768730619 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 217 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 368 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 11.87675254 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[reaction_8_k1, reaction_2_k2, reaction_5_k2, reaction_3_k1, reaction_6_k1, reaction_7_k1, reaction_4_k1, reaction_1_k1 - reaction_9_k1 - reaction_1_k2, reaction_5_k1//reaction_2_k1, a1//reaction_2_k1, a3//reaction_2_k1, a2//reaction_2_k1] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Fujita/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Fujita/logs_(:normalforms, 3)_with_states deleted file mode 100644 index 59aa944ec..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Fujita/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,203 +0,0 @@ -┌ Info: Processing Fujita -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.819820555 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.819820555 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.299153247 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.299153247 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [18, 9, 145] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.001475723 seconds -│ :rank_time = rank_time -│ rank_times = 0.001475723 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 218 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (7, 11)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 5.389177219 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.373015257 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.012379678 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 217 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 368 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 24 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (0, 0)], [(0, 0), (3, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.155794179 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.086411089 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 24 functions in Rational Field(a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (0, 0)], [(0, 0), (3, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 3 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.188015918 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005297895 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 22 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (25 in total): Nemo.fmpq_mpoly[a2, a3, reaction_1_k1, reaction_4_k1, reaction_9_k1, reaction_1_k2, reaction_7_k1, reaction_6_k1, a1, reaction_3_k1, reaction_5_k1, reaction_2_k1, EGFR_turnover, reaction_5_k2, reaction_2_k2, reaction_8_k1, EGFR, pEGFR_Akt, pAkt, S6, pEGFR, EGF_EGFR, Akt, pAkt_S6, pS6] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 3156 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 3053 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 3156 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 3053 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 285 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 3156 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 3053 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 285 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.011929518 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 23 initial generators there are 20 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 306 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 15.19421522 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[reaction_8_k1, reaction_2_k2, reaction_5_k2, reaction_3_k1, reaction_6_k1, reaction_7_k1, reaction_4_k1, reaction_2_k1*pS6, reaction_2_k1*pAkt_S6, reaction_2_k1*Akt, reaction_2_k1*pEGFR, reaction_2_k1*S6, reaction_2_k1*pAkt, reaction_2_k1*pEGFR_Akt, reaction_5_k1*pS6, a1*pS6, a3*pS6, a2*pS6, reaction_9_k1*reaction_2_k1*EGF_EGFR, reaction_1_k1 - reaction_9_k1 - reaction_1_k2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Fujita/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Fujita/timings_(:gb,) deleted file mode 100644 index 939d698e8..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Fujita/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -Fujita -id_total, 11.3194664 diff --git a/benchmarking/IdentifiableFunctions/systems/Fujita/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Fujita/timings_(:gb,)_with_states deleted file mode 100644 index 04fe611b8..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Fujita/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Fujita -id_total, 12.087220143 diff --git a/benchmarking/IdentifiableFunctions/systems/Fujita/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Fujita/timings_(:hybrid,) deleted file mode 100644 index 78575bf8a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Fujita/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -Fujita -id_total, 13.822585583 diff --git a/benchmarking/IdentifiableFunctions/systems/Fujita/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Fujita/timings_(:hybrid,)_with_states deleted file mode 100644 index 6d8ff317c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Fujita/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Fujita -id_total, 15.675541772 diff --git a/benchmarking/IdentifiableFunctions/systems/Fujita/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Fujita/timings_(:normalforms, 2) deleted file mode 100644 index 5837e1daa..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Fujita/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -Fujita -id_total, 11.656832986 diff --git a/benchmarking/IdentifiableFunctions/systems/Fujita/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Fujita/timings_(:normalforms, 2)_with_states deleted file mode 100644 index 2a558c08a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Fujita/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Fujita -id_total, 12.309509916 diff --git a/benchmarking/IdentifiableFunctions/systems/Fujita/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Fujita/timings_(:normalforms, 3) deleted file mode 100644 index f88b52f6c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Fujita/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -Fujita -id_total, 11.87675254 diff --git a/benchmarking/IdentifiableFunctions/systems/Fujita/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Fujita/timings_(:normalforms, 3)_with_states deleted file mode 100644 index d236c2977..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Fujita/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Fujita -id_total, 15.19421522 diff --git a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/id_funcs_(:gb,) deleted file mode 100644 index 47635ef60..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/id_funcs_(:gb,) +++ /dev/null @@ -1,5 +0,0 @@ -[sigma, -c, -b, -delta*beta, -delta + beta] diff --git a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/id_funcs_(:gb,)_with_states deleted file mode 100644 index 9168386e0..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,9 +0,0 @@ -[x4, -x1, -sigma, -c, -b, -delta*beta, -delta + beta, -(alpha*gama)//x3, -(gama*x2 + beta*x3)//x3] diff --git a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/id_funcs_(:hybrid,) deleted file mode 100644 index 47635ef60..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/id_funcs_(:hybrid,) +++ /dev/null @@ -1,5 +0,0 @@ -[sigma, -c, -b, -delta*beta, -delta + beta] diff --git a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index 7ca23f51b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,9 +0,0 @@ -[x4, -x1, -sigma, -c, -b, -delta*beta, -delta + beta, -x3//(alpha*gama), -(gama*x2 + beta*x3)//x3] diff --git a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/id_funcs_(:normalforms, 2) deleted file mode 100644 index 47635ef60..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,5 +0,0 @@ -[sigma, -c, -b, -delta*beta, -delta + beta] diff --git a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index 9168386e0..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,9 +0,0 @@ -[x4, -x1, -sigma, -c, -b, -delta*beta, -delta + beta, -(alpha*gama)//x3, -(gama*x2 + beta*x3)//x3] diff --git a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/id_funcs_(:normalforms, 3) deleted file mode 100644 index 47635ef60..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,5 +0,0 @@ -[sigma, -c, -b, -delta*beta, -delta + beta] diff --git a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index 9168386e0..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,9 +0,0 @@ -[x4, -x1, -sigma, -c, -b, -delta*beta, -delta + beta, -(alpha*gama)//x3, -(gama*x2 + beta*x3)//x3] diff --git a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/logs_(:gb,) deleted file mode 100644 index 316024bca..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/logs_(:gb,) +++ /dev/null @@ -1,83 +0,0 @@ -┌ Info: Processing Goodwin oscillator -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.014774211 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.014774211 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.097762262 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.097762262 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [69] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000279877 seconds -│ :rank_time = rank_time -│ rank_times = 0.000279877 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 91 functions in Rational Field(b, alpha, c, gama, delta, sigma, beta)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.393307792 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00460985 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.010431098 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 90 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 18 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 0.644073481 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[sigma, c, b, delta*beta, delta + beta] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/logs_(:gb,)_with_states deleted file mode 100644 index 4a68c4aa3..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/logs_(:gb,)_with_states +++ /dev/null @@ -1,135 +0,0 @@ -┌ Info: Processing Goodwin oscillator -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.014938958 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.014938958 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.101576473 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.101576473 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [69] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000298602 seconds -│ :rank_time = rank_time -│ rank_times = 0.000298602 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 91 functions in Rational Field(b, alpha, c, gama, delta, sigma, beta, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.394402204 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.065009878 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.034987013 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 90 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 18 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(b, alpha, c, gama, delta, sigma, beta, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 2), (2, 1)], [(0, 0), (0, 0), (2, 1)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (2, 1)], [(0, 0), (3, 3), (3, 3)], [(0, 0), (0, 4)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.049634225 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004911401 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.012462184 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 10 initial generators there are 9 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 138 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 0.851834923 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x4, x1, sigma, c, b, delta*beta, delta + beta, (alpha*gama)//x3, (gama*x2 + beta*x3)//x3] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/logs_(:hybrid,) deleted file mode 100644 index 309e7f3b0..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/logs_(:hybrid,) +++ /dev/null @@ -1,548 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing Goodwin oscillator -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.015854821 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.015854821 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.032618348 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.032618348 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [69] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000276416 seconds -│ :rank_time = rank_time -│ rank_times = 0.000276416 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 91 functions in Rational Field(b, alpha, c, gama, delta, sigma, beta)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.451738528 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004762379 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (7 in total): Nemo.fmpq_mpoly[b, alpha, c, gama, delta, sigma, beta] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 100 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 85 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 100 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 85 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 13 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 100 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 85 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 13 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y1, y7, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y4, y2, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(b, alpha, c, gama, delta, sigma, beta)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015129326 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001582616 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y4, y5, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y2, y3, t], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(b, alpha, c, gama, delta, sigma, beta)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013598795 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002009576 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y5, y6, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y3, t, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(b, alpha, c, gama, delta, sigma, beta)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013872584 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.043545992 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y7, y3, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y6, y2, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(b, alpha, c, gama, delta, sigma, beta)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013694163 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001765044 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y3, t, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y2, y5, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(b, alpha, c, gama, delta, sigma, beta)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015053132 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001585063 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y2, y3, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y4, y5, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(b, alpha, c, gama, delta, sigma, beta)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.022007185 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003071269 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y5, y3, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y4, y2, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(b, alpha, c, gama, delta, sigma, beta)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.058425519 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002061318 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, t, y1, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y6, y4, y7], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(b, alpha, c, gama, delta, sigma, beta)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.021348797 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00183594 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y2, y1, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y7, y5, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(b, alpha, c, gama, delta, sigma, beta)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.012585702 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00242955 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y6, y2, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y4, y3, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(b, alpha, c, gama, delta, sigma, beta)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.056936584 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001621201 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.010552051 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 90 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 18 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 1.325399392 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[sigma, c, b, delta*beta, delta + beta] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/logs_(:hybrid,)_with_states deleted file mode 100644 index f4eb06ab3..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,600 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing Goodwin oscillator -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.018356624 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.018356624 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.032230996 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.032230996 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [69] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.00025385 seconds -│ :rank_time = rank_time -│ rank_times = 0.00025385 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 91 functions in Rational Field(b, alpha, c, gama, delta, sigma, beta, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.408428951 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004888587 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.009166413 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 90 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 18 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(b, alpha, c, gama, delta, sigma, beta, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 2), (2, 1)], [(0, 0), (0, 0), (2, 1)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (2, 1)], [(0, 0), (3, 3), (3, 3)], [(0, 0), (0, 4)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.102054834 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00493203 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[b, alpha, c, gama, delta, sigma, beta, x1, x2, x3, x4] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 308 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 281 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 308 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 281 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 12 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 308 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 281 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 12 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y8, y11, y10, y5, y9], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y4, t, y7, y1, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, alpha, c, gama, delta, sigma, beta, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (2, 1)], [(1, 2), (2, 2), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(1, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.023586292 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002788734 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y1, y7, y9, t, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y5, y3, y11, y2, y10], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, alpha, c, gama, delta, sigma, beta, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(1, 2), (2, 2), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.063893578 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002426099 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y7, y9, y8, y2, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y11, y10, t, y6, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, alpha, c, gama, delta, sigma, beta, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 0)], [(1, 2), (2, 2), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.023360313 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002355047 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t, y10, y2, y5, y9], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y4, y7, y1, y8, y6], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, alpha, c, gama, delta, sigma, beta, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (1, 0)], [(2, 3), (0, 0), (3, 3)], [(2, 4), (3, 4), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.09870056 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002117135 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y1, y6, t, y2, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y11, y9, y4, y7, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, alpha, c, gama, delta, sigma, beta, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (2, 1)], [(0, 0), (1, 0)], [(2, 3), (0, 0), (3, 3)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.033271294 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002040281 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y6, y4, y1, y8, y10], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, t, y7, y5, y3, y9], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, alpha, c, gama, delta, sigma, beta, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (3, 2), (2, 1)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (3, 3), (3, 3)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (2, 1)], [(0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.108274231 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002549546 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y4, y9, t, y3, y8], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y2, y5, y10, y1, y11], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, alpha, c, gama, delta, sigma, beta, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(1, 2), (2, 2), (0, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.023448723 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00245438 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y11, y2, y3, y9, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y8, y6, y7, y10, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, alpha, c, gama, delta, sigma, beta, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0)], [(0, 0), (0, 0), (2, 1)], [(0, 0), (1, 0)], [(2, 3), (0, 0), (3, 3)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.097295414 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002225176 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, t, y7, y11, y8, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y1, y6, y4, y3, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, alpha, c, gama, delta, sigma, beta, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(3, 3), (2, 2), (0, 0)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (3, 2), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (0, 0), (2, 1)], [(1, 2), (0, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.058894048 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.08356967 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y5, y2, y11, y9, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y8, t, y6, y1, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, alpha, c, gama, delta, sigma, beta, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (3, 2), (2, 1)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (0, 0), (2, 1)], [(0, 0), (3, 3), (3, 3)], [(0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.042132502 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002313122 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.023387053 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 10 initial generators there are 9 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 514 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 1.909689476 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x4, x1, sigma, c, b, delta*beta, delta + beta, x3//(alpha*gama), (gama*x2 + beta*x3)//x3] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/logs_(:normalforms, 2) deleted file mode 100644 index 29e82c6ea..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/logs_(:normalforms, 2) +++ /dev/null @@ -1,112 +0,0 @@ -┌ Info: Processing Goodwin oscillator -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.016112827 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.016112827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.033902677 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.033902677 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [69] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.00027634 seconds -│ :rank_time = rank_time -│ rank_times = 0.00027634 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 91 functions in Rational Field(b, alpha, c, gama, delta, sigma, beta)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.449942666 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005042604 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (7 in total): Nemo.fmpq_mpoly[b, alpha, c, gama, delta, sigma, beta] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 26 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 18 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 26 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 18 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 5 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 26 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 18 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 5 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.010000469 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 90 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 18 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 0.797252875 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[sigma, c, b, delta*beta, delta + beta] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/logs_(:normalforms, 2)_with_states deleted file mode 100644 index 49312523d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,164 +0,0 @@ -┌ Info: Processing Goodwin oscillator -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.014811563 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.014811563 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.030972739 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.030972739 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [69] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000279156 seconds -│ :rank_time = rank_time -│ rank_times = 0.000279156 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 91 functions in Rational Field(b, alpha, c, gama, delta, sigma, beta, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.442556842 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004807698 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.009246692 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 90 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 18 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(b, alpha, c, gama, delta, sigma, beta, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 2), (2, 1)], [(0, 0), (0, 0), (2, 1)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (2, 1)], [(0, 0), (3, 3), (3, 3)], [(0, 0), (0, 4)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.048440422 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.058162186 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[b, alpha, c, gama, delta, sigma, beta, x1, x2, x3, x4] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 57 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 43 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 57 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 43 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 4 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 57 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 43 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 4 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.012165615 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 10 initial generators there are 9 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 138 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 0.952243746 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x4, x1, sigma, c, b, delta*beta, delta + beta, (alpha*gama)//x3, (gama*x2 + beta*x3)//x3] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/logs_(:normalforms, 3) deleted file mode 100644 index e89e6c71e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/logs_(:normalforms, 3) +++ /dev/null @@ -1,112 +0,0 @@ -┌ Info: Processing Goodwin oscillator -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.015423292 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.015423292 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.04438572 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.04438572 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [69] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000270862 seconds -│ :rank_time = rank_time -│ rank_times = 0.000270862 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 91 functions in Rational Field(b, alpha, c, gama, delta, sigma, beta)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.502948508 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005968538 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (7 in total): Nemo.fmpq_mpoly[b, alpha, c, gama, delta, sigma, beta] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 100 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 85 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 100 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 85 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 13 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 100 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 85 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 13 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.00957425 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 90 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 18 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 0.911817472 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[sigma, c, b, delta*beta, delta + beta] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/logs_(:normalforms, 3)_with_states deleted file mode 100644 index c7fe0ae8d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,164 +0,0 @@ -┌ Info: Processing Goodwin oscillator -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.014998733 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.014998733 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.031980608 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.031980608 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [69] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000278091 seconds -│ :rank_time = rank_time -│ rank_times = 0.000278091 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 91 functions in Rational Field(b, alpha, c, gama, delta, sigma, beta, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.46184845 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004872919 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.009575613 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 90 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 18 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(b, alpha, c, gama, delta, sigma, beta, x1, x2, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 2), (2, 1)], [(0, 0), (0, 0), (2, 1)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (2, 1)], [(0, 0), (3, 3), (3, 3)], [(0, 0), (0, 4)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.049376872 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.064050492 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[b, alpha, c, gama, delta, sigma, beta, x1, x2, x3, x4] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 308 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 281 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 308 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 281 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 12 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 308 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 281 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 12 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.011396492 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 10 initial generators there are 9 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 138 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 1.058543915 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x4, x1, sigma, c, b, delta*beta, delta + beta, (alpha*gama)//x3, (gama*x2 + beta*x3)//x3] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/timings_(:gb,) deleted file mode 100644 index a38de525a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -Goodwin oscillator -id_total, 0.644073481 diff --git a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/timings_(:gb,)_with_states deleted file mode 100644 index 5780f2e5c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Goodwin oscillator -id_total, 0.851834923 diff --git a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/timings_(:hybrid,) deleted file mode 100644 index 38e37bbe3..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -Goodwin oscillator -id_total, 1.325399392 diff --git a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/timings_(:hybrid,)_with_states deleted file mode 100644 index 761c09fd1..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Goodwin oscillator -id_total, 1.909689476 diff --git a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/timings_(:normalforms, 2) deleted file mode 100644 index a51926f1c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -Goodwin oscillator -id_total, 0.797252875 diff --git a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/timings_(:normalforms, 2)_with_states deleted file mode 100644 index 0d074e929..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Goodwin oscillator -id_total, 0.952243746 diff --git a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/timings_(:normalforms, 3) deleted file mode 100644 index f6bf09efb..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -Goodwin oscillator -id_total, 0.911817472 diff --git a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/timings_(:normalforms, 3)_with_states deleted file mode 100644 index fdeb559eb..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Goodwin oscillator/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Goodwin oscillator -id_total, 1.058543915 diff --git a/benchmarking/IdentifiableFunctions/systems/HIV/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/HIV/id_funcs_(:gb,) deleted file mode 100644 index 92ba73905..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV/id_funcs_(:gb,) +++ /dev/null @@ -1,8 +0,0 @@ -[a, -u, -d, -h, -b, -k*q*beta, -lm//q, -(c*q)//(k*beta)] diff --git a/benchmarking/IdentifiableFunctions/systems/HIV/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/HIV/id_funcs_(:gb,)_with_states deleted file mode 100644 index 11a11b569..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,13 +0,0 @@ -[z, -w, -a, -u, -d, -h, -b, -beta*v, -x//y, -q//y, -lm//y, -(k*y)//v, -(k*beta)//(c*y)] diff --git a/benchmarking/IdentifiableFunctions/systems/HIV/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/HIV/id_funcs_(:hybrid,) deleted file mode 100644 index 3f26e19de..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV/id_funcs_(:hybrid,) +++ /dev/null @@ -1,8 +0,0 @@ -[a, -u, -d, -h, -b, -k*q*beta, -lm*k*beta, -c*q^2] diff --git a/benchmarking/IdentifiableFunctions/systems/HIV/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/HIV/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index bedff7f70..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,13 +0,0 @@ -[z, -w, -a, -u, -d, -h, -b, -beta*v, -k*beta*y, -k*beta*x, -k*q*beta, -lm*k*beta, -c*y^2] diff --git a/benchmarking/IdentifiableFunctions/systems/HIV/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/HIV/id_funcs_(:normalforms, 2) deleted file mode 100644 index 92ba73905..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,8 +0,0 @@ -[a, -u, -d, -h, -b, -k*q*beta, -lm//q, -(c*q)//(k*beta)] diff --git a/benchmarking/IdentifiableFunctions/systems/HIV/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/HIV/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index 11a11b569..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,13 +0,0 @@ -[z, -w, -a, -u, -d, -h, -b, -beta*v, -x//y, -q//y, -lm//y, -(k*y)//v, -(k*beta)//(c*y)] diff --git a/benchmarking/IdentifiableFunctions/systems/HIV/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/HIV/id_funcs_(:normalforms, 3) deleted file mode 100644 index 3f26e19de..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,8 +0,0 @@ -[a, -u, -d, -h, -b, -k*q*beta, -lm*k*beta, -c*q^2] diff --git a/benchmarking/IdentifiableFunctions/systems/HIV/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/HIV/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index bedff7f70..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,13 +0,0 @@ -[z, -w, -a, -u, -d, -h, -b, -beta*v, -k*beta*y, -k*beta*x, -k*q*beta, -lm*k*beta, -c*y^2] diff --git a/benchmarking/IdentifiableFunctions/systems/HIV/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/HIV/logs_(:gb,) deleted file mode 100644 index 3143eb754..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV/logs_(:gb,) +++ /dev/null @@ -1,121 +0,0 @@ -┌ Info: Processing HIV -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.59167589 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.59167589 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.090641483 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.090641483 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [40, 18] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000127932 seconds -│ :rank_time = rank_time -│ rank_times = 0.000127932 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 82 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2)], [(0, 0), (3, 0)], [(0, 0), (4, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 14 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.011764535 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005652044 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 82 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2)], [(0, 0), (3, 0)], [(0, 0), (4, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.04041794 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.070054331 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.009124504 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 81 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 313 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.937630586 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[a, u, d, h, b, k*q*beta, lm//q, (c*q)//(k*beta)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/HIV/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/HIV/logs_(:gb,)_with_states deleted file mode 100644 index 67de3fbaf..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV/logs_(:gb,)_with_states +++ /dev/null @@ -1,174 +0,0 @@ -┌ Info: Processing HIV -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.582530419 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.582530419 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.037754814 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.037754814 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [40, 18] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.00013403 seconds -│ :rank_time = rank_time -│ rank_times = 0.00013403 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 82 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta, w, v, x, z, y)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2)], [(0, 0), (3, 0)], [(0, 0), (4, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 14 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.772272901 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.088789675 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 82 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta, w, v, x, z, y)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2)], [(0, 0), (3, 0)], [(0, 0), (4, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.046593562 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005096237 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.013193466 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 81 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 313 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 16 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta, w, v, x, z, y)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (2, 0)], [(0, 0), (2, 2)], [(0, 0), (3, 0)], [(0, 0), (3, 1)], [(0, 0), (3, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.041089721 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.066837631 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.023387136 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 15 initial generators there are 13 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 694 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.93919654 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[z, w, a, u, d, h, b, beta*v, x//y, q//y, lm//y, (k*y)//v, (k*beta)//(c*y)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/HIV/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/HIV/logs_(:hybrid,) deleted file mode 100644 index 38321b3d8..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV/logs_(:hybrid,) +++ /dev/null @@ -1,586 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing HIV -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.655640539 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.655640539 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.04623103 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.04623103 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [40, 18] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000125979 seconds -│ :rank_time = rank_time -│ rank_times = 0.000125979 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 82 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2)], [(0, 0), (3, 0)], [(0, 0), (4, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 14 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.858828372 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.060737915 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 82 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2)], [(0, 0), (3, 0)], [(0, 0), (4, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.039981541 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004107169 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (10 in total): Nemo.fmpq_mpoly[b, c, h, lm, d, k, u, q, a, beta] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 230 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 202 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 230 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 202 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 5 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 230 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 202 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 5 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y9, t, y3, y4], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y2, y1, y10, y8, y5], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(2, 2), (0, 0)], [(0, 0), (3, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (0, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.021491096 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001926379 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y4, y7, y1, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y10, y2, y3, y6, y9], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 1)], [(0, 0), (2, 2)], [(0, 0), (3, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.022619548 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.059519569 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y2, y7, y1, y3], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y5, y4, y10, y8, y9], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (3, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 4), (0, 0)], [(0, 0), (0, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.032975665 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001858832 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y2, y5, y10, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y4, y8, y3, y1, y9], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 0)], [(0, 0), (0, 3)], [(2, 2), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.021256733 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002449067 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y8, y10, y2, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t, y1, y4, y9, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 0)], [(1, 1), (0, 0)], [(2, 2), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.086489144 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00195631 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y8, y10, t, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y1, y6, y5, y7, y9], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 0)], [(0, 0), (0, 3)], [(2, 2), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.0329688 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00302597 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y10, y9, y6, y8], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y5, y4, y3, y2, y1], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 3)], [(0, 0), (3, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(2, 2), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.021796019 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.067876429 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y10, y6, y3, y5], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y4, t, y9, y1, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 3)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 0)], [(2, 2), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.020936572 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001735633 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y5, y8, y6, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y2, y7, y3, y9, y10], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 3)], [(0, 0), (1, 0)], [(0, 0), (2, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (4, 1)], [(0, 0), (3, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.033797525 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002319577 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y8, y6, y5, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t, y7, y9, y10, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 0)], [(1, 1), (0, 0)], [(0, 0), (2, 2)], [(0, 0), (4, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.079462247 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00230487 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.014055508 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 81 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 48 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.842523683 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[a, u, d, h, b, k*q*beta, lm*k*beta, c*q^2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/HIV/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/HIV/logs_(:hybrid,)_with_states deleted file mode 100644 index 53864a75b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,639 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing HIV -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.305360767 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.305360767 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.044713704 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.044713704 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [40, 18] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000122988 seconds -│ :rank_time = rank_time -│ rank_times = 0.000122988 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 82 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta, w, v, x, z, y)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2)], [(0, 0), (3, 0)], [(0, 0), (4, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 14 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.277361337 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.065607799 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 82 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta, w, v, x, z, y)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2)], [(0, 0), (3, 0)], [(0, 0), (4, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.105078151 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00517053 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.792406741 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 81 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 313 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 16 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta, w, v, x, z, y)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (2, 0)], [(0, 0), (2, 2)], [(0, 0), (3, 0)], [(0, 0), (3, 1)], [(0, 0), (3, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.109658955 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003833724 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (15 in total): Nemo.fmpq_mpoly[b, c, h, lm, d, k, u, q, a, beta, w, v, x, z, y] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 696 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 660 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 696 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 660 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 22 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 696 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 660 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 22 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y15, y1, y6, y14, y7, t, y10], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y13, y4, y11, y12, y8, y5, y2, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 14 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta, w, v, x, z, y)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(1, 1), (0, 0)], [(0, 0), (3, 0)], [(0, 0), (2, 0)], [(0, 5), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 3), (0, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.035266003 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002477324 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y2, y4, y12, y15, y13, y3, y10], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y11, y5, y6, y8, y9, y14, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 14 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta, w, v, x, z, y)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 3)], [(0, 0), (5, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(1, 2), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 2)], [(0, 0), (1, 0)], [(7, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.116228096 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002741115 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, t, y15, y13, y10, y1, y4, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y7, y3, y14, y12, y11, y9, y5], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 14 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta, w, v, x, z, y)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(0, 5), (0, 0)], [(0, 0), (3, 1)], [(0, 0), (3, 0)], [(2, 3), (0, 0)], [(2, 2), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.039596693 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003773238 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y14, y8, t, y12, y15, y4, y6, y9], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y7, y10, y3, y11, y5, y1, y13], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 14 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta, w, v, x, z, y)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2)], [(0, 0), (1, 1)], [(1, 1), (0, 0)], [(1, 2), (0, 0)], [(0, 5), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.092843465 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002431575 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y7, y8, t, y1, y5, y11, y10], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y12, y6, y15, y2, y4, y13, y3, y14], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 14 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta, w, v, x, z, y)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(1, 1), (0, 0)], [(0, 0), (2, 1)], [(0, 0), (3, 0)], [(0, 0), (3, 1)], [(0, 0), (3, 2)], [(0, 0), (2, 2)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 5), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.038201712 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.066393472 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y14, y15, y3, y4, y5, y1, y8, y6], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y13, t, y7, y10, y11, y2, y9, y12], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 14 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta, w, v, x, z, y)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 3)], [(0, 0), (5, 0)], [(0, 0), (0, 7)], [(0, 0), (1, 3)], [(0, 0), (3, 0)], [(1, 3), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.036269825 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002747302 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3, y6, y2, y7, y10, y9, y5], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y13, y8, y1, y11, y12, y15, y14], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 14 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta, w, v, x, z, y)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 0)], [(1, 3), (0, 0)], [(0, 0), (1, 0)], [(0, 5), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.101020014 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002638039 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y12, y2, y11, y5, y1, y15, y8, y14], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y3, y13, y10, t, y4, y6, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 14 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta, w, v, x, z, y)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 3)], [(0, 0), (5, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 4), (0, 0)], [(1, 2), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.032649943 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002522675 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y1, y3, y15, y14, y9, y10, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y12, y4, t, y13, y6, y11, y2], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 14 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta, w, v, x, z, y)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 3)], [(0, 0), (0, 3)], [(0, 0), (3, 0)], [(0, 0), (3, 1)], [(0, 0), (3, 2)], [(0, 0), (1, 0)], [(3, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.088360414 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002343246 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y13, y6, y10, y12, y2, y5, y3, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, t, y7, y15, y4, y1, y9, y14], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 14 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta, w, v, x, z, y)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 0)], [(0, 0), (0, 3)], [(3, 1), (0, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 3)], [(1, 1), (0, 0)], [(0, 0), (3, 1)], [(0, 0), (3, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.037551329 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002645263 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.010399376 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 15 initial generators there are 13 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 127 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 11.508229892 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[z, w, a, u, d, h, b, beta*v, k*beta*y, k*beta*x, k*q*beta, lm*k*beta, c*y^2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/HIV/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/HIV/logs_(:normalforms, 2) deleted file mode 100644 index b613cbb77..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV/logs_(:normalforms, 2) +++ /dev/null @@ -1,150 +0,0 @@ -┌ Info: Processing HIV -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.426727233 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.426727233 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.103214072 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.103214072 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [40, 18] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000131107 seconds -│ :rank_time = rank_time -│ rank_times = 0.000131107 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 82 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2)], [(0, 0), (3, 0)], [(0, 0), (4, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 14 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.858032344 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00516568 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 82 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2)], [(0, 0), (3, 0)], [(0, 0), (4, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.038226397 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005847542 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (10 in total): Nemo.fmpq_mpoly[b, c, h, lm, d, k, u, q, a, beta] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 45 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 32 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 45 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 32 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 45 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 32 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.00765866 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 81 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 313 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.851599444 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[a, u, d, h, b, k*q*beta, lm//q, (c*q)//(k*beta)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/HIV/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/HIV/logs_(:normalforms, 2)_with_states deleted file mode 100644 index 9b4a4268f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,203 +0,0 @@ -┌ Info: Processing HIV -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.438812673 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.438812673 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.041704602 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.041704602 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [40, 18] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000126956 seconds -│ :rank_time = rank_time -│ rank_times = 0.000126956 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 82 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta, w, v, x, z, y)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2)], [(0, 0), (3, 0)], [(0, 0), (4, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 14 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.905960684 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.095346617 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 82 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta, w, v, x, z, y)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2)], [(0, 0), (3, 0)], [(0, 0), (4, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.101137867 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005396072 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.854831953 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 81 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 313 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 16 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta, w, v, x, z, y)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (2, 0)], [(0, 0), (2, 2)], [(0, 0), (3, 0)], [(0, 0), (3, 1)], [(0, 0), (3, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.106486442 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003707316 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (15 in total): Nemo.fmpq_mpoly[b, c, h, lm, d, k, u, q, a, beta, w, v, x, z, y] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 100 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 83 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 100 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 83 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 1 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 100 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 83 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 1 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.023169302 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 15 initial generators there are 13 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 694 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 11.184018196 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[z, w, a, u, d, h, b, beta*v, x//y, q//y, lm//y, (k*y)//v, (k*beta)//(c*y)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/HIV/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/HIV/logs_(:normalforms, 3) deleted file mode 100644 index 1d878a7ab..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV/logs_(:normalforms, 3) +++ /dev/null @@ -1,150 +0,0 @@ -┌ Info: Processing HIV -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.481923166 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.481923166 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.043521683 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.043521683 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [40, 18] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000125196 seconds -│ :rank_time = rank_time -│ rank_times = 0.000125196 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 82 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2)], [(0, 0), (3, 0)], [(0, 0), (4, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 14 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.868216188 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.061725276 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 82 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2)], [(0, 0), (3, 0)], [(0, 0), (4, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.037983922 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005601312 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (10 in total): Nemo.fmpq_mpoly[b, c, h, lm, d, k, u, q, a, beta] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 230 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 202 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 230 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 202 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 5 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 230 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 202 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 5 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.007627529 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 81 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 48 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.946577453 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[a, u, d, h, b, k*q*beta, lm*k*beta, c*q^2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/HIV/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/HIV/logs_(:normalforms, 3)_with_states deleted file mode 100644 index 6fcf1c8f9..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,203 +0,0 @@ -┌ Info: Processing HIV -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.442104603 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.442104603 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.041680471 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.041680471 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [40, 18] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000121746 seconds -│ :rank_time = rank_time -│ rank_times = 0.000121746 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 82 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta, w, v, x, z, y)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2)], [(0, 0), (3, 0)], [(0, 0), (4, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 14 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.889271192 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.259884995 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 82 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta, w, v, x, z, y)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2)], [(0, 0), (3, 0)], [(0, 0), (4, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.04397135 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.0638113 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.87276635 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 81 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 313 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 16 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta, w, v, x, z, y)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (2, 0)], [(0, 0), (2, 2)], [(0, 0), (3, 0)], [(0, 0), (3, 1)], [(0, 0), (3, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.098490417 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003655961 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (15 in total): Nemo.fmpq_mpoly[b, c, h, lm, d, k, u, q, a, beta, w, v, x, z, y] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 696 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 660 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 696 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 660 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 22 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 696 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 660 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 22 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.011196207 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 15 initial generators there are 13 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 127 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 11.517031326 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[z, w, a, u, d, h, b, beta*v, k*beta*y, k*beta*x, k*q*beta, lm*k*beta, c*y^2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/HIV/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/HIV/timings_(:gb,) deleted file mode 100644 index e14e5e02b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -HIV -id_total, 3.937630586 diff --git a/benchmarking/IdentifiableFunctions/systems/HIV/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/HIV/timings_(:gb,)_with_states deleted file mode 100644 index 3e004b3ad..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -HIV -id_total, 10.93919654 diff --git a/benchmarking/IdentifiableFunctions/systems/HIV/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/HIV/timings_(:hybrid,) deleted file mode 100644 index 9e53fdadd..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -HIV -id_total, 4.842523683 diff --git a/benchmarking/IdentifiableFunctions/systems/HIV/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/HIV/timings_(:hybrid,)_with_states deleted file mode 100644 index ccb5d5fc8..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -HIV -id_total, 11.508229892 diff --git a/benchmarking/IdentifiableFunctions/systems/HIV/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/HIV/timings_(:normalforms, 2) deleted file mode 100644 index fa76c6095..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -HIV -id_total, 3.851599444 diff --git a/benchmarking/IdentifiableFunctions/systems/HIV/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/HIV/timings_(:normalforms, 2)_with_states deleted file mode 100644 index ffb2ccc20..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -HIV -id_total, 11.184018196 diff --git a/benchmarking/IdentifiableFunctions/systems/HIV/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/HIV/timings_(:normalforms, 3) deleted file mode 100644 index 85c3be171..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -HIV -id_total, 3.946577453 diff --git a/benchmarking/IdentifiableFunctions/systems/HIV/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/HIV/timings_(:normalforms, 3)_with_states deleted file mode 100644 index 4df6cc798..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -HIV -id_total, 11.517031326 diff --git a/benchmarking/IdentifiableFunctions/systems/HIV2_io/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/HIV2_io/id_funcs_(:gb,) deleted file mode 100644 index ced09eba1..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV2_io/id_funcs_(:gb,) +++ /dev/null @@ -1,8 +0,0 @@ -[s, -d, -b, -k2*q2, -c*w1*w2 + c*k1*w2, -c + w1 + k1 + w2, -c*w1 + c*k1 + c*w2 + w1*w2 + k1*w2, -(q1*k1 + w1*q2 + k1*q2)//q2] diff --git a/benchmarking/IdentifiableFunctions/systems/HIV2_io/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/HIV2_io/id_funcs_(:gb,)_with_states deleted file mode 100644 index 264d9427e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV2_io/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,12 +0,0 @@ -[x4, -x1, -s, -d, -b, -k2*q2, -c*w1*w2 + c*k1*w2, -c + w1 + k1 + w2, -c*w1 + c*k1 + c*w2 + w1*w2 + k1*w2, -(c*x4 - k2*x3)//x4, -(q1*k1*x4 - k2*q2*x3 - w2*q2*x4)//(q2*x4), -(c*x3*x4 - k2*x3^2 + k1*x2*x4 - w2*x3*x4)//(q2*x4)] diff --git a/benchmarking/IdentifiableFunctions/systems/HIV2_io/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/HIV2_io/id_funcs_(:hybrid,) deleted file mode 100644 index ced09eba1..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV2_io/id_funcs_(:hybrid,) +++ /dev/null @@ -1,8 +0,0 @@ -[s, -d, -b, -k2*q2, -c*w1*w2 + c*k1*w2, -c + w1 + k1 + w2, -c*w1 + c*k1 + c*w2 + w1*w2 + k1*w2, -(q1*k1 + w1*q2 + k1*q2)//q2] diff --git a/benchmarking/IdentifiableFunctions/systems/HIV2_io/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/HIV2_io/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index 27c5634e3..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV2_io/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,12 +0,0 @@ -[x4, -x1, -s, -d, -b, -k2*q2, -c*x4 - k2*x3, -c*w1*w2 + c*k1*w2, -c + w1 + k1 + w2, -c*w1 + c*k1 + c*w2 + w1*w2 + k1*w2, -(q1*k1 + w1*q2 + k1*q2)//q2, -(c*x3*x4 - k2*x3^2 + k1*x2*x4 - w2*x3*x4)//(q2*x4)] diff --git a/benchmarking/IdentifiableFunctions/systems/HIV2_io/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/HIV2_io/id_funcs_(:normalforms, 2) deleted file mode 100644 index ced09eba1..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV2_io/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,8 +0,0 @@ -[s, -d, -b, -k2*q2, -c*w1*w2 + c*k1*w2, -c + w1 + k1 + w2, -c*w1 + c*k1 + c*w2 + w1*w2 + k1*w2, -(q1*k1 + w1*q2 + k1*q2)//q2] diff --git a/benchmarking/IdentifiableFunctions/systems/HIV2_io/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/HIV2_io/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index 042078373..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV2_io/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,12 +0,0 @@ -[x4, -x1, -s, -d, -b, -k2*q2, -c*w1*w2 + c*k1*w2, -c + w1 + k1 + w2, -w1*x4 + k2*x3 + k1*x4 + w2*x4, -c*w1 + c*k1 + c*w2 + w1*w2 + k1*w2, -(q1*k1*x4 - k2*q2*x3 - w2*q2*x4)//(q2*x4), -(c*x3*x4 - k2*x3^2 + k1*x2*x4 - w2*x3*x4)//(q2*x4)] diff --git a/benchmarking/IdentifiableFunctions/systems/HIV2_io/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/HIV2_io/id_funcs_(:normalforms, 3) deleted file mode 100644 index ced09eba1..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV2_io/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,8 +0,0 @@ -[s, -d, -b, -k2*q2, -c*w1*w2 + c*k1*w2, -c + w1 + k1 + w2, -c*w1 + c*k1 + c*w2 + w1*w2 + k1*w2, -(q1*k1 + w1*q2 + k1*q2)//q2] diff --git a/benchmarking/IdentifiableFunctions/systems/HIV2_io/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/HIV2_io/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index 264d9427e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV2_io/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,12 +0,0 @@ -[x4, -x1, -s, -d, -b, -k2*q2, -c*w1*w2 + c*k1*w2, -c + w1 + k1 + w2, -c*w1 + c*k1 + c*w2 + w1*w2 + k1*w2, -(c*x4 - k2*x3)//x4, -(q1*k1*x4 - k2*q2*x3 - w2*q2*x4)//(q2*x4), -(c*x3*x4 - k2*x3^2 + k1*x2*x4 - w2*x3*x4)//(q2*x4)] diff --git a/benchmarking/IdentifiableFunctions/systems/HIV2_io/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/HIV2_io/logs_(:gb,) deleted file mode 100644 index b1cb6d79e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV2_io/logs_(:gb,) +++ /dev/null @@ -1,121 +0,0 @@ -┌ Info: Processing HIV2_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.487026161 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.487026161 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.01136166 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.01136166 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 7] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 6.9869e-5 seconds -│ :rank_time = rank_time -│ rank_times = 6.9869e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (2, 1)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (1, 0), (2, 0), (3, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 96 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.974151399 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003020609 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (2, 1)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (1, 0), (2, 0), (3, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 96 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 3 for num. and 1 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.076463351 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.094646223 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.004888235 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 9 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 120 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.871448329 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[s, d, b, k2*q2, c*w1*w2 + c*k1*w2, c + w1 + k1 + w2, c*w1 + c*k1 + c*w2 + w1*w2 + k1*w2, (q1*k1 + w1*q2 + k1*q2)//q2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/HIV2_io/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/HIV2_io/logs_(:gb,)_with_states deleted file mode 100644 index 42fda3de6..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV2_io/logs_(:gb,)_with_states +++ /dev/null @@ -1,214 +0,0 @@ -┌ Info: Processing HIV2_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.488533005 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.488533005 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.0078072 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.0078072 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 7] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.5346e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.5346e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 168  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 360  ✓ # Computing specializations.. Time: 0:00:01 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2, x3, x1, x2, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (2, 1)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (1, 0), (2, 0), (3, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 96 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.10469595 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003487193 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2, x3, x1, x2, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (2, 1)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (1, 0), (2, 0), (3, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 96 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 3 for num. and 1 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.163317207 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002776459 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.004838259 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 9 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 120 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2, x3, x1, x2, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 2), (1, 2), (1, 2), (2, 2)], [(0, 0), (0, 0)], [(0, 0), (0, 0), (3, 2), (2, 1)], [(0, 0), (0, 0), (0, 0), (2, 1), (2, 1)], [(0, 0), (0, 0), (3, 2), (2, 1)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (4, 4), (4, 4), (5, 4), (3, 2), (2, 1), (5, 4)], [(0, 0), (1, 2), (1, 2), (1, 2), (2, 2), (2, 2), (2, 2), (3, 2)], [(0, 0), (0, 0), (10, 9), (10, 9), (10, 9)], [(0, 0), (6, 6), (7, 6), (8, 7), (2, 1)], [(0, 0), (0, 0), (0, 0), (5, 4), (5, 4), (1, 0), (6, 4), (6, 4)], [(0, 0), (0, 0), (3, 2), (2, 1), (5, 3), (4, 2)], [(0, 0), (0, 0), (0, 0), (5, 4), (4, 3), (2, 1)], [(0, 0), (5, 5), (5, 5), (5, 5)], [(0, 0), (2, 1), (2, 1), (2, 1), (4, 2), (4, 2)], [(0, 0), (6, 6), (8, 7), (2, 1), (7, 6)], [(0, 0), (1, 0), (2, 0), (3, 0)], [(0, 0), (4, 4), (5, 4), (9, 8), (9, 8), (5, 4), (10, 8), (10, 8)], [(0, 0), (6, 6), (6, 6), (6, 6)], [(0, 0), (12, 11), (12, 11), (12, 11)], [(0, 0), (15, 14), (14, 13), (12, 11), (15, 14), (14, 13), (12, 11)], [(0, 0), (13, 12), (12, 11), (12, 11), (13, 12), (12, 11), (12, 11)], [(0, 0), (10, 9), (10, 9), (10, 9), (11, 9), (11, 9), (11, 9)], [(0, 0), (6, 5), (6, 5), (8, 7), (9, 7), (6, 4), (9, 7), (7, 5)], [(0, 0), (5, 4), (4, 3), (7, 5), (5, 3)], [(0, 0), (2, 1), (4, 2), (4, 2), (4, 2), (5, 2)], [(0, 0), (11, 11), (10, 10), (8, 8), (9, 9), (9, 9), (8, 8)], [(0, 0), (9, 9), (8, 8), (8, 8), (9, 9), (8, 8), (8, 8)], [(0, 0), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.637680597 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005661141 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2, x3, x1, x2, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 2), (1, 2), (1, 2), (2, 2)], [(0, 0), (0, 0)], [(0, 0), (0, 0), (3, 2), (2, 1)], [(0, 0), (0, 0), (0, 0), (2, 1), (2, 1)], [(0, 0), (0, 0), (3, 2), (2, 1)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (4, 4), (4, 4), (5, 4), (3, 2), (2, 1), (5, 4)], [(0, 0), (1, 2), (1, 2), (1, 2), (2, 2), (2, 2), (2, 2), (3, 2)], [(0, 0), (0, 0), (10, 9), (10, 9), (10, 9)], [(0, 0), (6, 6), (7, 6), (8, 7), (2, 1)], [(0, 0), (0, 0), (0, 0), (5, 4), (5, 4), (1, 0), (6, 4), (6, 4)], [(0, 0), (0, 0), (3, 2), (2, 1), (5, 3), (4, 2)], [(0, 0), (0, 0), (0, 0), (5, 4), (4, 3), (2, 1)], [(0, 0), (5, 5), (5, 5), (5, 5)], [(0, 0), (2, 1), (2, 1), (2, 1), (4, 2), (4, 2)], [(0, 0), (6, 6), (8, 7), (2, 1), (7, 6)], [(0, 0), (1, 0), (2, 0), (3, 0)], [(0, 0), (4, 4), (5, 4), (9, 8), (9, 8), (5, 4), (10, 8), (10, 8)], [(0, 0), (6, 6), (6, 6), (6, 6)], [(0, 0), (12, 11), (12, 11), (12, 11)], [(0, 0), (15, 14), (14, 13), (12, 11), (15, 14), (14, 13), (12, 11)], [(0, 0), (13, 12), (12, 11), (12, 11), (13, 12), (12, 11), (12, 11)], [(0, 0), (10, 9), (10, 9), (10, 9), (11, 9), (11, 9), (11, 9)], [(0, 0), (6, 5), (6, 5), (8, 7), (9, 7), (6, 4), (9, 7), (7, 5)], [(0, 0), (5, 4), (4, 3), (7, 5), (5, 3)], [(0, 0), (2, 1), (4, 2), (4, 2), (4, 2), (5, 2)], [(0, 0), (11, 11), (10, 10), (8, 8), (9, 9), (9, 9), (8, 8)], [(0, 0), (9, 9), (8, 8), (8, 8), (9, 9), (8, 8), (8, 8)], [(0, 0), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 384 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 12 for num. and 8 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.470389887 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.012005453 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 31 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.375848728 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 14 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 940 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 6.616878249 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x4, x1, s, d, b, k2*q2, c*w1*w2 + c*k1*w2, c + w1 + k1 + w2, c*w1 + c*k1 + c*w2 + w1*w2 + k1*w2, (c*x4 - k2*x3)//x4, (q1*k1*x4 - k2*q2*x3 - w2*q2*x4)//(q2*x4), (c*x3*x4 - k2*x3^2 + k1*x2*x4 - w2*x3*x4)//(q2*x4)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/HIV2_io/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/HIV2_io/logs_(:hybrid,) deleted file mode 100644 index cb7658ada..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV2_io/logs_(:hybrid,) +++ /dev/null @@ -1,586 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing HIV2_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.471090266 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.471090266 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.007726148 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.007726148 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 7] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.7258e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.7258e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (2, 1)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (1, 0), (2, 0), (3, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 96 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.874377272 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003024153 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (2, 1)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (1, 0), (2, 0), (3, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 96 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 3 for num. and 1 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.146402825 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002505826 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (10 in total): Nemo.fmpq_mpoly[b, c, q1, w1, k2, d, s, k1, w2, q2] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 266 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 205 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 266 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 205 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 5 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 266 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 205 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 5 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, t, y2, y10, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y6, y4, y7, y9, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0), (3, 0)], [(0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (2, 0), (2, 0), (2, 0), (3, 0), (3, 0), (4, 0), (4, 0), (5, 0), (6, 0)], [(0, 0), (1, 0)], [(2, 7), (2, 7), (3, 7), (3, 7), (3, 7), (4, 7), (4, 7), (3, 6), (5, 7), (4, 6), (4, 6), (5, 6), (5, 6), (6, 6), (0, 0)], [(0, 2), (0, 2), (0, 2), (1, 2), (1, 2), (0, 0), (2, 2), (0, 0), (0, 0), (2, 1), (2, 1), (1, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (1, 0), (2, 0), (2, 0), (3, 0)], [(0, 2), (0, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.218798554 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002943254 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y6, y4, y5, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y10, y3, y9, t, y8], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0), (2, 0), (3, 0)], [(0, 0), (0, 0), (0, 0), (2, 1), (2, 1), (4, 2)], [(0, 0), (0, 0), (0, 0), (2, 1), (2, 1), (4, 2)], [(0, 0), (0, 0), (2, 1), (2, 1), (4, 2), (6, 3)], [(0, 0), (2, 1), (4, 2), (6, 3)], [(0, 0), (2, 1), (4, 2), (4, 2), (6, 3), (6, 3), (8, 4)], [(0, 0), (0, 0), (0, 0), (2, 1)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.193053434 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.080075563 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y9, y3, y6, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, t, y8, y7, y1, y10], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0), (2, 0), (3, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (2, 1)], [(0, 0), (0, 0), (0, 0), (2, 1)], [(0, 0), (0, 0), (0, 0), (2, 1), (2, 1), (4, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 112 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.075858773 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002458035 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y6, y10, y3, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y5, y9, y7, y1, y8], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (1, 0), (2, 0), (3, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0), (2, 0), (3, 0)], [(3, 6), (3, 6), (3, 6), (4, 6), (4, 6), (4, 6), (5, 6), (0, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.154471497 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.072009185 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y6, y7, y3, y10], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y8, y4, y2, t, y1], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (1, 0), (2, 0), (3, 0)], [(0, 0), (0, 0)], [(0, 0), (0, 0), (0, 0), (2, 1)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (2, 1), (2, 1), (2, 1), (2, 0), (3, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 96 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.088840944 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.078890832 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y7, y3, y8, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y2, y10, y6, t, y1], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (1, 0), (2, 0), (3, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 96 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.070942298 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002141027 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y7, y10, y1, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y3, y5, t, y9, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (1, 0), (2, 0), (3, 0)], [(0, 0), (0, 0), (0, 0), (2, 1)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(3, 6), (4, 6), (4, 6), (5, 6), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.152793935 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002178539 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y7, y2, t, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y6, y4, y1, y10, y9], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0), (2, 0), (3, 0)], [(0, 2), (0, 0)], [(0, 2), (0, 2), (0, 2), (1, 2), (1, 2), (0, 0), (2, 2), (0, 0), (0, 0), (2, 1), (2, 1), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (2, 1), (2, 1), (2, 1), (2, 0), (3, 1), (4, 2)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (2, 1)], [(0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 112 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.172976288 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.083054206 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 16 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y10, y8, y2, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y5, y4, y9, y6, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0), (3, 0)], [(0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (2, 0), (2, 0), (2, 0), (3, 0), (3, 0), (4, 0), (4, 0), (5, 0), (6, 0)], [(0, 2), (0, 0)], [(0, 2), (0, 2), (0, 2), (1, 2), (1, 2), (0, 0), (2, 2), (0, 0), (0, 0), (2, 1), (2, 1), (1, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (1, 0), (2, 0), (2, 0), (3, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(2, 7), (2, 7), (3, 7), (3, 7), (3, 7), (4, 7), (4, 7), (3, 6), (5, 7), (4, 6), (4, 6), (5, 6), (5, 6), (6, 6), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.19719386 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002387874 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y7, y1, y2, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y10, y5, y6, t, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0)], [(0, 0), (2, 1), (4, 2), (6, 3)], [(0, 0), (0, 0), (0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (2, 1)], [(0, 0), (0, 0), (2, 1), (0, 0), (2, 1), (4, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.15278436 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002136235 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.004445765 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 9 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 120 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 6.002615412 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[s, d, b, k2*q2, c*w1*w2 + c*k1*w2, c + w1 + k1 + w2, c*w1 + c*k1 + c*w2 + w1*w2 + k1*w2, (q1*k1 + w1*q2 + k1*q2)//q2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/HIV2_io/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/HIV2_io/logs_(:hybrid,)_with_states deleted file mode 100644 index 13d87bbe8..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV2_io/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,683 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing HIV2_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.169186924 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.169186924 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.007283352 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.007283352 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 7] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.7044e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.7044e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 193  ✓ # Computing specializations.. Time: 0:00:01 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2, x3, x1, x2, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (2, 1)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (1, 0), (2, 0), (3, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 96 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.861014653 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002519114 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2, x3, x1, x2, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (2, 1)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (1, 0), (2, 0), (3, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 96 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 3 for num. and 1 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.135861806 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00429668 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.004172991 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 9 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 120 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2, x3, x1, x2, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 2), (1, 2), (1, 2), (2, 2)], [(0, 0), (0, 0)], [(0, 0), (0, 0), (3, 2), (2, 1)], [(0, 0), (0, 0), (0, 0), (2, 1), (2, 1)], [(0, 0), (0, 0), (3, 2), (2, 1)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (4, 4), (4, 4), (5, 4), (3, 2), (2, 1), (5, 4)], [(0, 0), (1, 2), (1, 2), (1, 2), (2, 2), (2, 2), (2, 2), (3, 2)], [(0, 0), (0, 0), (10, 9), (10, 9), (10, 9)], [(0, 0), (6, 6), (7, 6), (8, 7), (2, 1)], [(0, 0), (0, 0), (0, 0), (5, 4), (5, 4), (1, 0), (6, 4), (6, 4)], [(0, 0), (0, 0), (3, 2), (2, 1), (5, 3), (4, 2)], [(0, 0), (0, 0), (0, 0), (5, 4), (4, 3), (2, 1)], [(0, 0), (5, 5), (5, 5), (5, 5)], [(0, 0), (2, 1), (2, 1), (2, 1), (4, 2), (4, 2)], [(0, 0), (6, 6), (8, 7), (2, 1), (7, 6)], [(0, 0), (1, 0), (2, 0), (3, 0)], [(0, 0), (4, 4), (5, 4), (9, 8), (9, 8), (5, 4), (10, 8), (10, 8)], [(0, 0), (6, 6), (6, 6), (6, 6)], [(0, 0), (12, 11), (12, 11), (12, 11)], [(0, 0), (15, 14), (14, 13), (12, 11), (15, 14), (14, 13), (12, 11)], [(0, 0), (13, 12), (12, 11), (12, 11), (13, 12), (12, 11), (12, 11)], [(0, 0), (10, 9), (10, 9), (10, 9), (11, 9), (11, 9), (11, 9)], [(0, 0), (6, 5), (6, 5), (8, 7), (9, 7), (6, 4), (9, 7), (7, 5)], [(0, 0), (5, 4), (4, 3), (7, 5), (5, 3)], [(0, 0), (2, 1), (4, 2), (4, 2), (4, 2), (5, 2)], [(0, 0), (11, 11), (10, 10), (8, 8), (9, 9), (9, 9), (8, 8)], [(0, 0), (9, 9), (8, 8), (8, 8), (9, 9), (8, 8), (8, 8)], [(0, 0), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.604638079 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.074698182 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2, x3, x1, x2, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 2), (1, 2), (1, 2), (2, 2)], [(0, 0), (0, 0)], [(0, 0), (0, 0), (3, 2), (2, 1)], [(0, 0), (0, 0), (0, 0), (2, 1), (2, 1)], [(0, 0), (0, 0), (3, 2), (2, 1)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (4, 4), (4, 4), (5, 4), (3, 2), (2, 1), (5, 4)], [(0, 0), (1, 2), (1, 2), (1, 2), (2, 2), (2, 2), (2, 2), (3, 2)], [(0, 0), (0, 0), (10, 9), (10, 9), (10, 9)], [(0, 0), (6, 6), (7, 6), (8, 7), (2, 1)], [(0, 0), (0, 0), (0, 0), (5, 4), (5, 4), (1, 0), (6, 4), (6, 4)], [(0, 0), (0, 0), (3, 2), (2, 1), (5, 3), (4, 2)], [(0, 0), (0, 0), (0, 0), (5, 4), (4, 3), (2, 1)], [(0, 0), (5, 5), (5, 5), (5, 5)], [(0, 0), (2, 1), (2, 1), (2, 1), (4, 2), (4, 2)], [(0, 0), (6, 6), (8, 7), (2, 1), (7, 6)], [(0, 0), (1, 0), (2, 0), (3, 0)], [(0, 0), (4, 4), (5, 4), (9, 8), (9, 8), (5, 4), (10, 8), (10, 8)], [(0, 0), (6, 6), (6, 6), (6, 6)], [(0, 0), (12, 11), (12, 11), (12, 11)], [(0, 0), (15, 14), (14, 13), (12, 11), (15, 14), (14, 13), (12, 11)], [(0, 0), (13, 12), (12, 11), (12, 11), (13, 12), (12, 11), (12, 11)], [(0, 0), (10, 9), (10, 9), (10, 9), (11, 9), (11, 9), (11, 9)], [(0, 0), (6, 5), (6, 5), (8, 7), (9, 7), (6, 4), (9, 7), (7, 5)], [(0, 0), (5, 4), (4, 3), (7, 5), (5, 3)], [(0, 0), (2, 1), (4, 2), (4, 2), (4, 2), (5, 2)], [(0, 0), (11, 11), (10, 10), (8, 8), (9, 9), (9, 9), (8, 8)], [(0, 0), (9, 9), (8, 8), (8, 8), (9, 9), (8, 8), (8, 8)], [(0, 0), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 384 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 12 for num. and 8 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.350675052 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.011320251 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 31 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (14 in total): Nemo.fmpq_mpoly[b, c, q1, w1, k2, d, s, k1, w2, q2, x3, x1, x2, x4] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 624 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 528 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 624 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 528 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 7 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 624 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 528 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 7 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y9, y6, y2, y14, y7, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y5, y3, y1, y12, y13, y8, y11], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2, x3, x1, x2, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 130 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 3), (0, 0)], [(0, 0), (6, 6), (6, 6), (6, 6)], [(0, 0), (4, 4), (6, 5), (6, 5), (6, 5), (6, 4), (6, 4)], [(0, 0), (15, 15), (15, 15), (15, 15), (16, 15), (17, 15)], [(0, 0), (6, 6), (9, 6), (9, 6)], [(0, 0), (6, 6), (9, 6), (9, 6)], [(0, 0), (6, 5), (5, 3), (6, 3), (8, 4)], [(0, 0), (16, 15), (16, 15), (16, 15), (17, 15), (2, 0), (18, 15)], [(0, 0), (11, 10), (11, 10), (11, 10), (11, 9), (11, 9), (11, 9)], [(0, 0), (6, 5), (16, 14), (17, 15), (17, 15), (7, 4), (8, 5)], [(0, 0), (2, 1), (2, 0), (4, 1), (6, 1)], [(10, 10), (0, 0), (20, 19), (21, 20), (21, 20), (6, 4), (12, 10)], [(10, 10), (0, 0), (20, 19), (21, 20), (21, 20), (11, 9), (12, 10)], [(0, 0), (7, 6), (7, 5), (5, 2), (8, 5), (10, 6)], [(0, 0), (12, 9), (12, 9), (12, 9)], [(0, 2), (0, 0), (0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 1), (0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 2), (0, 1), (0, 0), (3, 2)], [(1, 4), (1, 3), (2, 3), (0, 0), (3, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.70777168 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004566304 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y9, y7, y6, y3, y8, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y2, y10, y4, y13, y12, y14, y11], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2, x3, x1, x2, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 2), (2, 3)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (0, 1)], [(0, 0), (5, 4), (4, 3), (2, 1)], [(0, 0), (2, 1), (5, 3), (4, 2)], [(0, 0), (5, 5), (5, 5), (5, 5)], [(0, 0), (1, 0), (2, 0), (3, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (3, 2), (2, 1), (2, 1), (1, 0), (1, 0), (6, 4), (5, 3), (4, 2), (5, 3), (4, 2), (2, 0)], [(0, 0), (0, 0), (5, 4), (4, 3), (2, 1), (1, 0), (6, 4), (5, 3), (4, 2), (7, 5), (6, 4), (4, 2), (5, 3), (4, 2)], [(0, 0), (0, 0), (3, 2), (2, 1), (2, 1), (1, 0), (6, 4), (5, 3), (4, 2), (5, 3), (3, 1), (4, 2), (2, 0), (7, 4), (6, 3), (5, 2), (6, 3), (5, 2), (3, 0)], [(0, 0), (3, 2), (2, 1), (2, 1), (2, 1), (2, 1), (2, 1), (10, 8), (9, 7), (9, 7), (5, 3), (4, 2), (4, 2), (4, 2), (4, 2)], [(0, 0), (5, 4), (4, 3), (5, 4), (4, 3), (2, 1), (6, 4), (5, 3), (4, 2), (7, 5), (6, 4), (4, 2), (7, 5), (6, 4), (4, 2)], [(0, 0), (3, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (3, 2), (2, 1)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (3, 2), (3, 2), (2, 1), (2, 1), (2, 1), (1, 0), (1, 0), (5, 3), (4, 2), (2, 0)], [(4, 5), (8, 8), (5, 5), (9, 8), (9, 8), (6, 5), (4, 5), (10, 8), (10, 8), (10, 8), (5, 5), (5, 5), (0, 0), (0, 0), (11, 8), (11, 8), (6, 5), (9, 8), (9, 8), (9, 8), (9, 8), (12, 8), (10, 8), (10, 8), (10, 8), (11, 8)], [(3, 5), (4, 5), (4, 5), (0, 0), (0, 0), (5, 5), (5, 5), (5, 5), (5, 5), (5, 5), (6, 5), (6, 5), (6, 5), (6, 5), (6, 5), (6, 5), (7, 5), (7, 5), (7, 5)], [(3, 3), (4, 3), (4, 3), (5, 3), (5, 3), (5, 3), (0, 0), (0, 0), (6, 3), (6, 3), (4, 3), (4, 3), (4, 3), (4, 3), (7, 3), (5, 3), (5, 3), (5, 3), (6, 3)], [(3, 3), (4, 3), (4, 3), (5, 3), (5, 3), (5, 3), (0, 0), (0, 0), (6, 3), (6, 3), (2, 1), (4, 3), (5, 4), (4, 3), (5, 4), (7, 3), (6, 4), (6, 4), (6, 4), (7, 4)], [(0, 0), (0, 0), (0, 0), (0, 0), (5, 4), (5, 4), (4, 3), (4, 3), (2, 1), (2, 1), (2, 1), (1, 0), (7, 5), (6, 4), (4, 2), (5, 3), (4, 2)], [(4, 6), (4, 6), (4, 6), (4, 6), (7, 8), (7, 8), (6, 7), (6, 7), (6, 7), (5, 6), (0, 0), (9, 9), (8, 8), (6, 6)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.952263262 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005246643 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 25 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y14, y13, y12, y7, y3, y9, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y5, y4, y2, y10, y1, t, y11], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2, x3, x1, x2, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (3, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 2), (2, 3)], [(0, 0), (0, 1)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (5, 4), (4, 3), (2, 1)], [(0, 0), (2, 1), (5, 3), (4, 2)], [(0, 0), (5, 5), (5, 5), (5, 5)], [(0, 0), (1, 0), (2, 0), (3, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (2, 1), (2, 1), (2, 1), (2, 0), (5, 3), (4, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(4, 6), (4, 6), (5, 6), (5, 6), (5, 6), (5, 6), (5, 6), (5, 6), (6, 6), (6, 6), (6, 6), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.306032143 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005104399 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 20 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 111  ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 113  ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y11, y3, y2, y6, y8, y12], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y14, y5, y13, y10, t, y9, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2, x3, x1, x2, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (3, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 1)], [(0, 0), (1, 0), (2, 0), (3, 0)], [(0, 0), (3, 2), (2, 1), (2, 1), (2, 1), (2, 1), (2, 1), (4, 2), (3, 1), (3, 1), (3, 1), (3, 1), (5, 2), (4, 1), (4, 1)], [(0, 0), (0, 0), (5, 4), (4, 3), (4, 3), (2, 1), (2, 1), (2, 1), (6, 4), (5, 3), (5, 3), (3, 1), (3, 1), (7, 4), (6, 3), (4, 1)], [(0, 0), (0, 0), (0, 0), (0, 2), (1, 0), (1, 0), (3, 4), (2, 3), (2, 3), (2, 0), (4, 4), (3, 3), (3, 3), (5, 4), (4, 3)], [(0, 0), (5, 4), (4, 3), (2, 1), (1, 0), (6, 4), (7, 5), (5, 3), (6, 4), (5, 3), (4, 2), (4, 2), (4, 2), (7, 4), (8, 5), (7, 4), (7, 4), (5, 2), (5, 2), (9, 5), (8, 4), (6, 2)], [(0, 0), (0, 2), (1, 0), (3, 4), (2, 3), (2, 3), (2, 0), (4, 4), (4, 4), (3, 3), (3, 3), (3, 3), (3, 0), (5, 4), (5, 4), (4, 3), (4, 3), (6, 4), (5, 3)], [(0, 0), (3, 2), (1, 0), (5, 3), (4, 2), (2, 0), (7, 4), (6, 3), (5, 2), (3, 0)], [(0, 0), (5, 4), (4, 3), (4, 3), (2, 1), (2, 1), (2, 1), (2, 1), (2, 1), (2, 1), (6, 4), (5, 3), (5, 3), (3, 1), (3, 1), (3, 1), (3, 1), (7, 4), (6, 3), (4, 1), (4, 1)], [(0, 0), (1, 0)], [(4, 5), (5, 5), (8, 8), (6, 5), (9, 8), (9, 8), (4, 5), (10, 8), (10, 8), (10, 8), (0, 0), (0, 0), (5, 5), (5, 5), (11, 8), (11, 8), (9, 8), (9, 8), (9, 8), (9, 8), (6, 5), (12, 8), (10, 8), (10, 8), (10, 8), (11, 8)], [(3, 3), (4, 3), (4, 3), (5, 3), (5, 3), (5, 3), (0, 0), (0, 0), (6, 3), (6, 3), (4, 3), (4, 3), (4, 3), (4, 3), (7, 3), (5, 3), (5, 3), (5, 3), (6, 3)], [(2, 4), (1, 2), (3, 4), (3, 4), (5, 5), (5, 5), (5, 5), (5, 5), (4, 4), (0, 0), (4, 4), (4, 4), (6, 5), (6, 5), (6, 5), (5, 4), (4, 3), (5, 4), (7, 5), (6, 4)], [(3, 3), (4, 3), (4, 3), (5, 3), (5, 3), (5, 3), (0, 0), (0, 0), (6, 3), (6, 3), (5, 4), (5, 4), (4, 3), (4, 3), (2, 1), (7, 3), (6, 4), (6, 4), (6, 4), (7, 4)], [(0, 0), (0, 0), (0, 0), (2, 1), (2, 1), (1, 0), (2, 1), (3, 1)], [(2, 4), (1, 2), (3, 4), (3, 4), (5, 5), (5, 5), (5, 5), (5, 5), (4, 4), (4, 4), (0, 0), (4, 4), (7, 6), (7, 6), (6, 5), (5, 4), (5, 4), (5, 4), (8, 6), (6, 4)], [(0, 0), (0, 2), (0, 2), (0, 2), (2, 3), (2, 3), (1, 2), (3, 3)], [(4, 5), (0, 0), (0, 0), (5, 5), (5, 5), (7, 6), (7, 6), (7, 6), (7, 6), (6, 5), (7, 6), (8, 6), (8, 6), (7, 5)], [(1, 2), (5, 5), (5, 5), (3, 3), (4, 4), (2, 2), (2, 2), (0, 0), (6, 5), (4, 3), (3, 2)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(6, 10), (5, 8), (7, 10), (7, 10), (9, 11), (9, 11), (9, 11), (9, 11), (8, 10), (8, 10), (8, 10), (11, 12), (11, 12), (10, 11), (9, 10), (9, 10), (9, 10), (0, 0), (12, 12), (10, 10)], [(1, 2), (1, 2), (1, 2), (2, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.995122787 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.080445482 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 26 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y6, y4, y10, y8, y2, y14], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y1, y3, y12, y11, y9, y5, y13], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2, x3, x1, x2, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 3), (0, 0)], [(0, 0), (4, 4), (1, 0), (5, 4), (6, 4), (6, 4)], [(0, 0), (1, 0), (2, 0), (3, 0)], [(0, 0), (4, 4), (9, 9), (5, 4), (9, 8), (10, 8), (11, 9)], [(0, 0), (6, 6), (6, 6), (6, 6)], [(0, 0), (1, 0), (11, 9), (11, 9), (11, 9)], [(0, 0), (10, 9), (10, 9), (10, 9), (11, 9), (11, 9), (11, 9)], [(0, 0), (5, 4), (6, 4), (7, 4), (7, 4)], [(0, 0), (1, 0), (2, 0), (2, 0), (3, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 1), (0, 0), (2, 1)], [(3, 5), (4, 5), (5, 6), (5, 5), (0, 0), (7, 6)], [(2, 5), (3, 5), (4, 5), (5, 6), (0, 0), (5, 5), (7, 6)], [(2, 5), (3, 5), (3, 5), (4, 5), (0, 0), (5, 5)], [(0, 1), (0, 0), (0, 0), (0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.369397549 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004837671 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y8, y5, y4, y3, y7, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y2, y14, t, y13, y11, y12, y10], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2, x3, x1, x2, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 1)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (0, 2), (2, 3)], [(5, 5), (4, 4), (2, 2), (0, 0)], [(0, 0), (5, 4), (4, 3), (2, 1)], [(0, 0), (2, 1), (5, 3), (4, 2)], [(0, 0), (1, 0), (2, 0), (3, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(8, 9), (8, 9), (10, 10), (9, 9), (10, 10), (9, 9), (0, 0), (13, 12), (12, 11), (10, 9), (13, 12), (12, 11), (10, 9)], [(0, 0), (3, 0)], [(4, 5), (14, 14), (14, 14), (5, 5), (15, 14), (15, 14), (6, 5), (4, 5), (16, 14), (16, 14), (5, 5), (0, 0), (0, 0), (6, 5)], [(4, 5), (14, 14), (14, 14), (5, 5), (15, 14), (15, 14), (6, 5), (4, 5), (16, 14), (16, 14), (5, 5), (0, 0), (6, 5)], [(4, 6), (4, 6), (5, 6), (5, 6), (0, 0), (6, 6), (6, 6)], [(3, 5), (4, 5), (4, 5), (4, 5), (5, 5), (0, 0), (5, 5), (5, 5), (5, 5), (6, 5), (8, 7), (7, 6), (6, 5)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.670722115 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.044113567 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y7, y2, y8, y12, y4, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y10, y5, y1, y13, y14, y11, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2, x3, x1, x2, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (4, 4), (2, 1), (5, 4), (6, 5)], [(4, 4), (0, 0), (5, 4), (1, 0), (6, 4), (6, 4)], [(6, 6), (0, 0), (5, 4), (8, 7), (9, 8), (2, 1)], [(6, 6), (6, 6), (6, 6), (0, 0)], [(0, 0), (0, 0), (3, 2), (2, 1), (3, 2), (2, 1)], [(4, 4), (9, 9), (0, 0), (9, 8), (5, 4), (11, 9), (10, 8)], [(0, 0), (5, 5), (5, 5), (5, 5)], [(0, 0), (2, 2), (2, 1), (2, 1), (4, 2), (4, 2)], [(0, 0), (1, 0), (2, 0), (3, 0)], [(0, 0), (1, 0), (11, 9), (11, 9), (11, 9)], [(0, 0), (12, 11), (2, 1), (11, 10), (10, 9)], [(0, 0), (10, 9), (10, 9), (10, 9), (11, 9), (11, 9), (11, 9)], [(0, 0), (13, 12), (13, 12), (12, 11), (13, 12), (13, 12), (12, 11)], [(0, 0), (5, 4), (6, 4), (7, 4), (7, 4)], [(0, 0), (6, 6), (5, 4), (5, 3), (8, 6), (6, 4)], [(0, 0), (5, 3), (4, 2), (2, 0)], [(11, 11), (10, 10), (8, 8), (9, 9), (9, 9), (8, 8), (0, 0)], [(0, 0), (1, 0), (2, 0), (2, 0), (3, 0), (4, 0)], [(0, 0), (1, 0), (2, 1), (2, 0), (5, 2), (4, 1)], [(0, 0), (5, 4), (4, 3), (2, 1), (7, 5), (6, 4), (4, 2)], [(9, 9), (8, 8), (7, 7), (9, 9), (8, 8), (7, 7), (0, 0)], [(7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (7, 7), (0, 0)], [(0, 3), (0, 0)], [(0, 1), (0, 0), (0, 0), (0, 0), (2, 1), (3, 2), (2, 1)], [(4, 5), (4, 4), (0, 0), (0, 0), (6, 5), (3, 2), (2, 1), (5, 4)], [(0, 0), (1, 0)], [(0, 1), (0, 0), (0, 0), (0, 0), (2, 1)], [(0, 1), (0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.638193658 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005437572 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t, y2, y13, y6, y9, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y12, y5, y14, y11, y10, y4, y8, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2, x3, x1, x2, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (1, 0), (2, 0), (2, 0), (3, 0)], [(5, 5), (4, 4), (2, 2), (0, 0)], [(2, 2), (2, 2), (2, 2), (0, 0), (3, 2), (3, 2), (1, 0), (1, 0), (4, 2), (2, 0)], [(0, 0), (0, 0), (0, 0), (2, 1), (2, 1), (2, 1), (2, 1), (4, 2), (4, 2), (4, 2)], [(0, 0), (0, 0), (0, 0), (2, 1), (2, 1), (2, 1), (2, 1), (5, 3), (4, 2), (4, 2)], [(0, 0), (0, 0), (0, 0), (5, 4), (5, 4), (4, 3), (4, 3), (2, 1), (2, 1), (7, 5), (6, 4), (4, 2)], [(0, 0), (1, 0)], [(0, 1), (0, 0), (0, 0), (0, 0), (2, 1)], [(0, 0), (1, 0)], [(1, 2), (1, 2), (1, 2), (2, 2), (2, 2), (0, 0), (3, 2)], [(0, 1), (0, 0), (2, 1)], [(0, 3), (0, 0)], [(5, 8), (5, 8), (5, 8), (6, 8), (6, 8), (6, 8), (4, 6), (7, 8), (7, 8), (5, 6), (0, 0), (8, 8), (6, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.333758815 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.06935724 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 26 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y12, y8, y4, y3, y13, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y14, y2, y5, y1, t, y11, y7, y10], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2, x3, x1, x2, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 1)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (0, 2), (2, 3)], [(5, 5), (4, 4), (2, 2), (0, 0)], [(0, 0), (5, 4), (4, 3), (2, 1)], [(0, 0), (2, 1), (5, 3), (4, 2)], [(0, 0), (1, 0), (2, 0), (3, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(8, 9), (8, 9), (9, 9), (0, 0), (0, 0), (0, 0), (9, 9), (0, 0), (10, 9), (3, 2), (2, 1), (10, 9)], [(0, 0), (0, 0), (0, 0), (0, 0), (3, 2), (2, 1)], [(4, 6), (4, 6), (5, 6), (5, 6), (0, 0), (6, 6), (6, 6)], [(8, 9), (8, 9), (9, 9), (0, 0), (0, 0), (0, 0), (9, 9), (10, 9), (2, 1), (10, 9)], [(0, 0), (0, 0), (0, 0), (2, 1)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.448754031 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005219301 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 20 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y14, y1, y3, y12, y10, y11, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y4, y13, y6, y2, y9, y5, y8], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2, x3, x1, x2, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (1, 0), (2, 0), (2, 0), (3, 0)], [(0, 0), (1, 0), (2, 0), (3, 0)], [(0, 3), (0, 0)], [(4, 8), (5, 8), (5, 8), (6, 8), (6, 8), (7, 8), (0, 0)], [(4, 7), (5, 7), (5, 7), (6, 7), (0, 0)], [(0, 0), (1, 0)], [(4, 6), (5, 6), (5, 6), (0, 0), (6, 6)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.200503941 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.056881692 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.412246569 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 14 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 466 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 12.757833685 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x4, x1, s, d, b, k2*q2, c*x4 - k2*x3, c*w1*w2 + c*k1*w2, c + w1 + k1 + w2, c*w1 + c*k1 + c*w2 + w1*w2 + k1*w2, (q1*k1 + w1*q2 + k1*q2)//q2, (c*x3*x4 - k2*x3^2 + k1*x2*x4 - w2*x3*x4)//(q2*x4)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/HIV2_io/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/HIV2_io/logs_(:normalforms, 2) deleted file mode 100644 index 372a336d9..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV2_io/logs_(:normalforms, 2) +++ /dev/null @@ -1,150 +0,0 @@ -┌ Info: Processing HIV2_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.268311027 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.268311027 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.008014755 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.008014755 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 7] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.6363e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.6363e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (2, 1)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (1, 0), (2, 0), (3, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 96 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.887948538 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.076344518 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (2, 1)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (1, 0), (2, 0), (3, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 96 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 3 for num. and 1 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.078133076 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003225353 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (10 in total): Nemo.fmpq_mpoly[b, c, q1, w1, k2, d, s, k1, w2, q2] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 56 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 32 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 56 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 32 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 1 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 56 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 32 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 1 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.004167872 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 9 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 120 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.774829789 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[s, d, b, k2*q2, c*w1*w2 + c*k1*w2, c + w1 + k1 + w2, c*w1 + c*k1 + c*w2 + w1*w2 + k1*w2, (q1*k1 + w1*q2 + k1*q2)//q2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/HIV2_io/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/HIV2_io/logs_(:normalforms, 2)_with_states deleted file mode 100644 index 782810020..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV2_io/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,242 +0,0 @@ -┌ Info: Processing HIV2_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.175207174 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.175207174 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.060266589 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.060266589 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 7] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.7277e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.7277e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 195  ✓ # Computing specializations.. Time: 0:00:01 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2, x3, x1, x2, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (2, 1)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (1, 0), (2, 0), (3, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 96 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.954971485 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002713967 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2, x3, x1, x2, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (2, 1)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (1, 0), (2, 0), (3, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 96 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 3 for num. and 1 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.138126934 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002386364 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.005182881 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 9 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 120 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2, x3, x1, x2, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 2), (1, 2), (1, 2), (2, 2)], [(0, 0), (0, 0)], [(0, 0), (0, 0), (3, 2), (2, 1)], [(0, 0), (0, 0), (0, 0), (2, 1), (2, 1)], [(0, 0), (0, 0), (3, 2), (2, 1)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (4, 4), (4, 4), (5, 4), (3, 2), (2, 1), (5, 4)], [(0, 0), (1, 2), (1, 2), (1, 2), (2, 2), (2, 2), (2, 2), (3, 2)], [(0, 0), (0, 0), (10, 9), (10, 9), (10, 9)], [(0, 0), (6, 6), (7, 6), (8, 7), (2, 1)], [(0, 0), (0, 0), (0, 0), (5, 4), (5, 4), (1, 0), (6, 4), (6, 4)], [(0, 0), (0, 0), (3, 2), (2, 1), (5, 3), (4, 2)], [(0, 0), (0, 0), (0, 0), (5, 4), (4, 3), (2, 1)], [(0, 0), (5, 5), (5, 5), (5, 5)], [(0, 0), (2, 1), (2, 1), (2, 1), (4, 2), (4, 2)], [(0, 0), (6, 6), (8, 7), (2, 1), (7, 6)], [(0, 0), (1, 0), (2, 0), (3, 0)], [(0, 0), (4, 4), (5, 4), (9, 8), (9, 8), (5, 4), (10, 8), (10, 8)], [(0, 0), (6, 6), (6, 6), (6, 6)], [(0, 0), (12, 11), (12, 11), (12, 11)], [(0, 0), (15, 14), (14, 13), (12, 11), (15, 14), (14, 13), (12, 11)], [(0, 0), (13, 12), (12, 11), (12, 11), (13, 12), (12, 11), (12, 11)], [(0, 0), (10, 9), (10, 9), (10, 9), (11, 9), (11, 9), (11, 9)], [(0, 0), (6, 5), (6, 5), (8, 7), (9, 7), (6, 4), (9, 7), (7, 5)], [(0, 0), (5, 4), (4, 3), (7, 5), (5, 3)], [(0, 0), (2, 1), (4, 2), (4, 2), (4, 2), (5, 2)], [(0, 0), (11, 11), (10, 10), (8, 8), (9, 9), (9, 9), (8, 8)], [(0, 0), (9, 9), (8, 8), (8, 8), (9, 9), (8, 8), (8, 8)], [(0, 0), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.591751255 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.082553044 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2, x3, x1, x2, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 2), (1, 2), (1, 2), (2, 2)], [(0, 0), (0, 0)], [(0, 0), (0, 0), (3, 2), (2, 1)], [(0, 0), (0, 0), (0, 0), (2, 1), (2, 1)], [(0, 0), (0, 0), (3, 2), (2, 1)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (4, 4), (4, 4), (5, 4), (3, 2), (2, 1), (5, 4)], [(0, 0), (1, 2), (1, 2), (1, 2), (2, 2), (2, 2), (2, 2), (3, 2)], [(0, 0), (0, 0), (10, 9), (10, 9), (10, 9)], [(0, 0), (6, 6), (7, 6), (8, 7), (2, 1)], [(0, 0), (0, 0), (0, 0), (5, 4), (5, 4), (1, 0), (6, 4), (6, 4)], [(0, 0), (0, 0), (3, 2), (2, 1), (5, 3), (4, 2)], [(0, 0), (0, 0), (0, 0), (5, 4), (4, 3), (2, 1)], [(0, 0), (5, 5), (5, 5), (5, 5)], [(0, 0), (2, 1), (2, 1), (2, 1), (4, 2), (4, 2)], [(0, 0), (6, 6), (8, 7), (2, 1), (7, 6)], [(0, 0), (1, 0), (2, 0), (3, 0)], [(0, 0), (4, 4), (5, 4), (9, 8), (9, 8), (5, 4), (10, 8), (10, 8)], [(0, 0), (6, 6), (6, 6), (6, 6)], [(0, 0), (12, 11), (12, 11), (12, 11)], [(0, 0), (15, 14), (14, 13), (12, 11), (15, 14), (14, 13), (12, 11)], [(0, 0), (13, 12), (12, 11), (12, 11), (13, 12), (12, 11), (12, 11)], [(0, 0), (10, 9), (10, 9), (10, 9), (11, 9), (11, 9), (11, 9)], [(0, 0), (6, 5), (6, 5), (8, 7), (9, 7), (6, 4), (9, 7), (7, 5)], [(0, 0), (5, 4), (4, 3), (7, 5), (5, 3)], [(0, 0), (2, 1), (4, 2), (4, 2), (4, 2), (5, 2)], [(0, 0), (11, 11), (10, 10), (8, 8), (9, 9), (9, 9), (8, 8)], [(0, 0), (9, 9), (8, 8), (8, 8), (9, 9), (8, 8), (8, 8)], [(0, 0), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 384 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 12 for num. and 8 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.454758028 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.011716476 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 31 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (14 in total): Nemo.fmpq_mpoly[b, c, q1, w1, k2, d, s, k1, w2, q2, x3, x1, x2, x4] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 99 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 62 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 99 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 62 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 2 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 99 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 62 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 2 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.472850363 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 14 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 866 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 6.574304942 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x4, x1, s, d, b, k2*q2, c*w1*w2 + c*k1*w2, c + w1 + k1 + w2, w1*x4 + k2*x3 + k1*x4 + w2*x4, c*w1 + c*k1 + c*w2 + w1*w2 + k1*w2, (q1*k1*x4 - k2*q2*x3 - w2*q2*x4)//(q2*x4), (c*x3*x4 - k2*x3^2 + k1*x2*x4 - w2*x3*x4)//(q2*x4)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/HIV2_io/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/HIV2_io/logs_(:normalforms, 3) deleted file mode 100644 index 1cb266e05..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV2_io/logs_(:normalforms, 3) +++ /dev/null @@ -1,150 +0,0 @@ -┌ Info: Processing HIV2_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.449441852 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.449441852 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.007161766 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.007161766 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 7] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 8.2217e-5 seconds -│ :rank_time = rank_time -│ rank_times = 8.2217e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (2, 1)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (1, 0), (2, 0), (3, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 96 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.94583099 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002552916 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (2, 1)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (1, 0), (2, 0), (3, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 96 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 3 for num. and 1 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.142036621 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002859562 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (10 in total): Nemo.fmpq_mpoly[b, c, q1, w1, k2, d, s, k1, w2, q2] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 266 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 205 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 266 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 205 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 5 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 266 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 205 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 5 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.00400948 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 9 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 120 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.027834516 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[s, d, b, k2*q2, c*w1*w2 + c*k1*w2, c + w1 + k1 + w2, c*w1 + c*k1 + c*w2 + w1*w2 + k1*w2, (q1*k1 + w1*q2 + k1*q2)//q2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/HIV2_io/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/HIV2_io/logs_(:normalforms, 3)_with_states deleted file mode 100644 index 8f48851fa..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV2_io/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,243 +0,0 @@ -┌ Info: Processing HIV2_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.341982099 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.341982099 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.007480584 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.007480584 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 7] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.7918e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.7918e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 152  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 323  ✓ # Computing specializations.. Time: 0:00:01 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2, x3, x1, x2, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (2, 1)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (1, 0), (2, 0), (3, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 96 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.066730852 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002385328 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2, x3, x1, x2, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (2, 1)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (1, 0), (2, 0), (3, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 96 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 3 for num. and 1 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.160145794 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002822567 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.004941929 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 9 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 120 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2, x3, x1, x2, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 2), (1, 2), (1, 2), (2, 2)], [(0, 0), (0, 0)], [(0, 0), (0, 0), (3, 2), (2, 1)], [(0, 0), (0, 0), (0, 0), (2, 1), (2, 1)], [(0, 0), (0, 0), (3, 2), (2, 1)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (4, 4), (4, 4), (5, 4), (3, 2), (2, 1), (5, 4)], [(0, 0), (1, 2), (1, 2), (1, 2), (2, 2), (2, 2), (2, 2), (3, 2)], [(0, 0), (0, 0), (10, 9), (10, 9), (10, 9)], [(0, 0), (6, 6), (7, 6), (8, 7), (2, 1)], [(0, 0), (0, 0), (0, 0), (5, 4), (5, 4), (1, 0), (6, 4), (6, 4)], [(0, 0), (0, 0), (3, 2), (2, 1), (5, 3), (4, 2)], [(0, 0), (0, 0), (0, 0), (5, 4), (4, 3), (2, 1)], [(0, 0), (5, 5), (5, 5), (5, 5)], [(0, 0), (2, 1), (2, 1), (2, 1), (4, 2), (4, 2)], [(0, 0), (6, 6), (8, 7), (2, 1), (7, 6)], [(0, 0), (1, 0), (2, 0), (3, 0)], [(0, 0), (4, 4), (5, 4), (9, 8), (9, 8), (5, 4), (10, 8), (10, 8)], [(0, 0), (6, 6), (6, 6), (6, 6)], [(0, 0), (12, 11), (12, 11), (12, 11)], [(0, 0), (15, 14), (14, 13), (12, 11), (15, 14), (14, 13), (12, 11)], [(0, 0), (13, 12), (12, 11), (12, 11), (13, 12), (12, 11), (12, 11)], [(0, 0), (10, 9), (10, 9), (10, 9), (11, 9), (11, 9), (11, 9)], [(0, 0), (6, 5), (6, 5), (8, 7), (9, 7), (6, 4), (9, 7), (7, 5)], [(0, 0), (5, 4), (4, 3), (7, 5), (5, 3)], [(0, 0), (2, 1), (4, 2), (4, 2), (4, 2), (5, 2)], [(0, 0), (11, 11), (10, 10), (8, 8), (9, 9), (9, 9), (8, 8)], [(0, 0), (9, 9), (8, 8), (8, 8), (9, 9), (8, 8), (8, 8)], [(0, 0), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.643025238 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.102195051 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(b, c, q1, w1, k2, d, s, k1, w2, q2, x3, x1, x2, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 2), (1, 2), (1, 2), (2, 2)], [(0, 0), (0, 0)], [(0, 0), (0, 0), (3, 2), (2, 1)], [(0, 0), (0, 0), (0, 0), (2, 1), (2, 1)], [(0, 0), (0, 0), (3, 2), (2, 1)], [(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (4, 4), (4, 4), (5, 4), (3, 2), (2, 1), (5, 4)], [(0, 0), (1, 2), (1, 2), (1, 2), (2, 2), (2, 2), (2, 2), (3, 2)], [(0, 0), (0, 0), (10, 9), (10, 9), (10, 9)], [(0, 0), (6, 6), (7, 6), (8, 7), (2, 1)], [(0, 0), (0, 0), (0, 0), (5, 4), (5, 4), (1, 0), (6, 4), (6, 4)], [(0, 0), (0, 0), (3, 2), (2, 1), (5, 3), (4, 2)], [(0, 0), (0, 0), (0, 0), (5, 4), (4, 3), (2, 1)], [(0, 0), (5, 5), (5, 5), (5, 5)], [(0, 0), (2, 1), (2, 1), (2, 1), (4, 2), (4, 2)], [(0, 0), (6, 6), (8, 7), (2, 1), (7, 6)], [(0, 0), (1, 0), (2, 0), (3, 0)], [(0, 0), (4, 4), (5, 4), (9, 8), (9, 8), (5, 4), (10, 8), (10, 8)], [(0, 0), (6, 6), (6, 6), (6, 6)], [(0, 0), (12, 11), (12, 11), (12, 11)], [(0, 0), (15, 14), (14, 13), (12, 11), (15, 14), (14, 13), (12, 11)], [(0, 0), (13, 12), (12, 11), (12, 11), (13, 12), (12, 11), (12, 11)], [(0, 0), (10, 9), (10, 9), (10, 9), (11, 9), (11, 9), (11, 9)], [(0, 0), (6, 5), (6, 5), (8, 7), (9, 7), (6, 4), (9, 7), (7, 5)], [(0, 0), (5, 4), (4, 3), (7, 5), (5, 3)], [(0, 0), (2, 1), (4, 2), (4, 2), (4, 2), (5, 2)], [(0, 0), (11, 11), (10, 10), (8, 8), (9, 9), (9, 9), (8, 8)], [(0, 0), (9, 9), (8, 8), (8, 8), (9, 9), (8, 8), (8, 8)], [(0, 0), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8), (8, 8)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 384 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 12 for num. and 8 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.662383937 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.012239425 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 31 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (14 in total): Nemo.fmpq_mpoly[b, c, q1, w1, k2, d, s, k1, w2, q2, x3, x1, x2, x4] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 624 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 528 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 624 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 528 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 7 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 624 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 528 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 7 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.417047004 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 14 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 940 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 7.252969274 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x4, x1, s, d, b, k2*q2, c*w1*w2 + c*k1*w2, c + w1 + k1 + w2, c*w1 + c*k1 + c*w2 + w1*w2 + k1*w2, (c*x4 - k2*x3)//x4, (q1*k1*x4 - k2*q2*x3 - w2*q2*x4)//(q2*x4), (c*x3*x4 - k2*x3^2 + k1*x2*x4 - w2*x3*x4)//(q2*x4)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/HIV2_io/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/HIV2_io/timings_(:gb,) deleted file mode 100644 index cd805a684..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV2_io/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -HIV2_io -id_total, 3.871448329 diff --git a/benchmarking/IdentifiableFunctions/systems/HIV2_io/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/HIV2_io/timings_(:gb,)_with_states deleted file mode 100644 index 669633f0a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV2_io/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -HIV2_io -id_total, 6.616878249 diff --git a/benchmarking/IdentifiableFunctions/systems/HIV2_io/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/HIV2_io/timings_(:hybrid,) deleted file mode 100644 index bb239a2c7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV2_io/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -HIV2_io -id_total, 6.002615412 diff --git a/benchmarking/IdentifiableFunctions/systems/HIV2_io/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/HIV2_io/timings_(:hybrid,)_with_states deleted file mode 100644 index 0877b943a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV2_io/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -HIV2_io -id_total, 12.757833685 diff --git a/benchmarking/IdentifiableFunctions/systems/HIV2_io/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/HIV2_io/timings_(:normalforms, 2) deleted file mode 100644 index e40c34096..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV2_io/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -HIV2_io -id_total, 3.774829789 diff --git a/benchmarking/IdentifiableFunctions/systems/HIV2_io/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/HIV2_io/timings_(:normalforms, 2)_with_states deleted file mode 100644 index f437178ec..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV2_io/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -HIV2_io -id_total, 6.574304942 diff --git a/benchmarking/IdentifiableFunctions/systems/HIV2_io/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/HIV2_io/timings_(:normalforms, 3) deleted file mode 100644 index c45c7c9e1..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV2_io/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -HIV2_io -id_total, 4.027834516 diff --git a/benchmarking/IdentifiableFunctions/systems/HIV2_io/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/HIV2_io/timings_(:normalforms, 3)_with_states deleted file mode 100644 index f09a78a90..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HIV2_io/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -HIV2_io -id_total, 7.252969274 diff --git a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/id_funcs_(:gb,) deleted file mode 100644 index 1532c8f79..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/id_funcs_(:gb,) +++ /dev/null @@ -1,22 +0,0 @@ -[p19, -p11, -p16, -p3, -p12, -p17, -vm, -p10, -p8, -p4, -p13, -p14, -p5, -p15, -p6, -p9, -km, -p1, -p18, -p2, -p20, -p7] diff --git a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/id_funcs_(:gb,)_with_states deleted file mode 100644 index 250d65900..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,42 +0,0 @@ -[x12, -x3, -x1, -x7, -x16, -x10, -x19, -x15, -x14, -x4, -x6, -x5, -x20, -x8, -x18, -x13, -x9, -x2, -x11, -x17, -p19, -p11, -p16, -p3, -p12, -p17, -vm, -p10, -p8, -p4, -p13, -p14, -p5, -p15, -p6, -p9, -p1, -p18, -p2, -p20, -p7, -km + x1] diff --git a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/id_funcs_(:hybrid,) deleted file mode 100644 index 1532c8f79..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/id_funcs_(:hybrid,) +++ /dev/null @@ -1,22 +0,0 @@ -[p19, -p11, -p16, -p3, -p12, -p17, -vm, -p10, -p8, -p4, -p13, -p14, -p5, -p15, -p6, -p9, -km, -p1, -p18, -p2, -p20, -p7] diff --git a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index de3b9e681..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,42 +0,0 @@ -[x12, -x3, -x1, -x7, -x16, -x10, -x19, -x15, -x14, -x4, -x6, -x5, -x20, -x8, -x18, -x13, -x9, -x2, -x11, -x17, -p19, -p11, -p16, -p3, -p12, -p17, -vm, -p10, -p8, -p4, -p13, -p14, -p5, -p15, -p6, -p9, -km, -p1, -p18, -p2, -p20, -p7] diff --git a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/id_funcs_(:normalforms, 2) deleted file mode 100644 index 1532c8f79..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,22 +0,0 @@ -[p19, -p11, -p16, -p3, -p12, -p17, -vm, -p10, -p8, -p4, -p13, -p14, -p5, -p15, -p6, -p9, -km, -p1, -p18, -p2, -p20, -p7] diff --git a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index de3b9e681..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,42 +0,0 @@ -[x12, -x3, -x1, -x7, -x16, -x10, -x19, -x15, -x14, -x4, -x6, -x5, -x20, -x8, -x18, -x13, -x9, -x2, -x11, -x17, -p19, -p11, -p16, -p3, -p12, -p17, -vm, -p10, -p8, -p4, -p13, -p14, -p5, -p15, -p6, -p9, -km, -p1, -p18, -p2, -p20, -p7] diff --git a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/id_funcs_(:normalforms, 3) deleted file mode 100644 index 1532c8f79..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,22 +0,0 @@ -[p19, -p11, -p16, -p3, -p12, -p17, -vm, -p10, -p8, -p4, -p13, -p14, -p5, -p15, -p6, -p9, -km, -p1, -p18, -p2, -p20, -p7] diff --git a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index de3b9e681..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,42 +0,0 @@ -[x12, -x3, -x1, -x7, -x16, -x10, -x19, -x15, -x14, -x4, -x6, -x5, -x20, -x8, -x18, -x13, -x9, -x2, -x11, -x17, -p19, -p11, -p16, -p3, -p12, -p17, -vm, -p10, -p8, -p4, -p13, -p14, -p5, -p15, -p6, -p9, -km, -p1, -p18, -p2, -p20, -p7] diff --git a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/logs_(:gb,) deleted file mode 100644 index c6cc431ad..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/logs_(:gb,) +++ /dev/null @@ -1,84 +0,0 @@ -┌ Info: Processing HighDimNonLin -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 19.127065245 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 19.127065245 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 9.293543591 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 9.293543591 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000107135 seconds -│ :rank_time = rank_time -│ rank_times = 0.000107135 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 44 functions in Rational Field(p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.591211356 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.157337375 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.944684428 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 43 initial generators there are 22 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 253 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 37.397650501 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[p19, p11, p16, p3, p12, p17, vm, p10, p8, p4, p13, p14, p5, p15, p6, p9, km, p1, p18, p2, p20, p7] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/logs_(:gb,)_with_states deleted file mode 100644 index c26517571..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/logs_(:gb,)_with_states +++ /dev/null @@ -1,138 +0,0 @@ -┌ Warning: One of the Wronskians has corank greater than one, so the results of the algorithm will be valid only for multiexperiment identifiability. If you still would like to assess single-experiment identifiability, we recommend using SIAN (https://github.com/alexeyovchinnikov/SIAN-Julia) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:110 -┌ Info: Processing HighDimNonLin -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 18.591651034 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 18.591651034 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 9.44987732 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 9.44987732 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 7.7638e-5 seconds -│ :rank_time = rank_time -│ rank_times = 7.7638e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 44 functions in Rational Field(p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19, x17, x11, x2, x9, x13, x18, x8, x20, x5, x6, x4, x14, x15, x19, x10, x16, x7, x1, x3, x12)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, y41, y42, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 5.076043307 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.136561648 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.998939935 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 43 initial generators there are 22 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 253 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 63 functions in Rational Field(p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19, x17, x11, x2, x9, x13, x18, x8, x20, x5, x6, x4, x14, x15, x19, x10, x16, x7, x1, x3, x12)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, y41, y42, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.158832739 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.009116512 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 44 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.01305878 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 62 initial generators there are 42 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 904 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 38.276763876 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x12, x3, x1, x7, x16, x10, x19, x15, x14, x4, x6, x5, x20, x8, x18, x13, x9, x2, x11, x17, p19, p11, p16, p3, p12, p17, vm, p10, p8, p4, p13, p14, p5, p15, p6, p9, p1, p18, p2, p20, p7, km + x1] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/logs_(:hybrid,) deleted file mode 100644 index e50f886f5..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/logs_(:hybrid,) +++ /dev/null @@ -1,531 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing HighDimNonLin -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 19.756561184 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 19.756561184 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 9.29548469 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 9.29548469 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 8.1964e-5 seconds -│ :rank_time = rank_time -│ rank_times = 8.1964e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 44 functions in Rational Field(p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.365332726 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.331578001 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (22 in total): Nemo.fmpq_mpoly[p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y16, y5, y3, y15, y6, y20, y21, y22, y19, y7, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y18, y12, y14, t, y9, y13, y17, y8, y11, y10, y4, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 23 functions in Rational Field(p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.032285967 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00382417 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y22, y19, t, y8, y16, y9, y20, y5, y3, y14, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y13, y12, y18, y1, y17, y11, y6, y10, y7, y21, y15, y2], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 23 functions in Rational Field(p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.028039629 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004111384 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y21, y15, y22, y7, y8, y18, y5, y13, y11, y19, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y9, y17, y1, y3, y2, y4, y14, t, y12, y16, y20], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 23 functions in Rational Field(p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.027707077 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00393282 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y12, t, y17, y7, y1, y4, y15, y16, y20, y13, y19], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y22, y11, y3, y14, y21, y8, y9, y6, y10, y5, y18, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 23 functions in Rational Field(p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.11093267 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003500091 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y2, y8, y17, y10, y20, y18, y13, y6, y1, y12], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y16, y4, y9, y19, y7, y14, y15, t, y3, y22, y11, y21], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 23 functions in Rational Field(p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.029052333 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00353799 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y19, t, y8, y16, y18, y11, y15, y1, y14, y9, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y21, y13, y22, y7, y12, y10, y6, y2, y20, y17, y5, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 23 functions in Rational Field(p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.028883644 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004268377 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y16, y9, y13, y17, y5, y10, y2, y12, y19, y18, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y21, y8, y14, y6, y11, y1, y15, y22, y7, y20, t, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 23 functions in Rational Field(p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.028493311 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.100066849 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y19, y21, y3, y20, y1, y12, y4, y15, y8, y2, y14], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, t, y7, y9, y22, y6, y10, y16, y13, y5, y18, y17], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 23 functions in Rational Field(p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.032725551 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003603343 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y21, y7, y10, y15, y3, y22, y16, y9, y4, y13, y12], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y19, y20, y11, t, y17, y8, y5, y6, y2, y1, y18, y14], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 23 functions in Rational Field(p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.027382267 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003305718 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y4, y13, y7, y2, y17, y12, y8, y15, y22, y18], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y14, t, y9, y1, y11, y20, y16, y21, y3, y19, y5], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 23 functions in Rational Field(p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.028013754 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003452583 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.744196347 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 43 initial generators there are 22 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 253 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 39.029007527 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[p19, p11, p16, p3, p12, p17, vm, p10, p8, p4, p13, p14, p5, p15, p6, p9, km, p1, p18, p2, p20, p7] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/logs_(:hybrid,)_with_states deleted file mode 100644 index e368b44ff..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,583 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing HighDimNonLin -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 20.694591625 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 20.694591625 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 9.457111908 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 9.457111908 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 8.3218e-5 seconds -│ :rank_time = rank_time -│ rank_times = 8.3218e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 44 functions in Rational Field(p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19, x17, x11, x2, x9, x13, x18, x8, x20, x5, x6, x4, x14, x15, x19, x10, x16, x7, x1, x3, x12)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, y41, y42, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.308157915 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.094612764 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 3.206056306 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 43 initial generators there are 22 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 253 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 63 functions in Rational Field(p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19, x17, x11, x2, x9, x13, x18, x8, x20, x5, x6, x4, x14, x15, x19, x10, x16, x7, x1, x3, x12)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, y41, y42, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.148228998 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.097103409 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 44 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (42 in total): Nemo.fmpq_mpoly[p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19, x17, x11, x2, x9, x13, x18, x8, x20, x5, x6, x4, x14, x15, x19, x10, x16, x7, x1, x3, x12] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y24, y3, y5, y40, y42, y33, y7, y31, y28, y12, y25, y35, t, y39, y41, y1, y27, y9, y30, y6, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y15, y22, y10, y26, y36, y18, y19, y29, y17, y11, y21, y32, y14, y20, y38, y34, y13, y2, y16, y23, y8, y37], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 43 functions in Rational Field(p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19, x17, x11, x2, x9, x13, x18, x8, x20, x5, x6, x4, x14, x15, x19, x10, x16, x7, x1, x3, x12)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, y41, y42, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.15661411 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.006845589 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 44 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y2, y24, t, y28, y38, y37, y8, y15, y18, y26, y34, y10, y29, y30, y21, y32, y35, y27, y5, y40], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y36, y19, y11, y17, y20, y25, y6, y33, y1, y3, y42, y7, y23, y12, y41, y16, y39, y31, y22, y13, y4, y14], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 43 functions in Rational Field(p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19, x17, x11, x2, x9, x13, x18, x8, x20, x5, x6, x4, x14, x15, x19, x10, x16, x7, x1, x3, x12)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, y41, y42, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.081218562 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.007888479 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 44 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y33, y27, y12, y23, y14, y38, y20, y4, y6, y17, y37, y7, y9, y1, y35, y25, y8, y29, y11, y42, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y21, y5, y15, y39, y10, y19, y18, y26, y22, y30, y31, y2, y32, y16, t, y34, y28, y13, y36, y41, y24, y40], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 43 functions in Rational Field(p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19, x17, x11, x2, x9, x13, x18, x8, x20, x5, x6, x4, x14, x15, x19, x10, x16, x7, x1, x3, x12)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, y41, y42, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.171207131 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00649413 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 44 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y34, y17, y40, y6, y16, y36, y12, y13, y19, y8, y28, y24, y29, t, y1, y2, y26, y23, y35, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y31, y20, y18, y33, y25, y9, y38, y37, y3, y10, y30, y7, y39, y32, y21, y15, y42, y11, y27, y22, y14, y41], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 43 functions in Rational Field(p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19, x17, x11, x2, x9, x13, x18, x8, x20, x5, x6, x4, x14, x15, x19, x10, x16, x7, x1, x3, x12)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, y41, y42, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.074658141 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00796653 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 44 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y42, y7, y15, y22, y23, y21, y2, y36, y33, y4, y20, y14, y29, y19, t, y9, y41, y37, y40, y13], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y12, y30, y34, y8, y28, y31, y3, y32, y24, y16, y17, y38, y26, y35, y6, y10, y25, y27, y18, y1, y39], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 43 functions in Rational Field(p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19, x17, x11, x2, x9, x13, x18, x8, x20, x5, x6, x4, x14, x15, x19, x10, x16, x7, x1, x3, x12)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, y41, y42, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.17464104 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.006127488 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 44 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y24, y36, y32, y17, y14, y4, y25, y33, y1, y35, y38, y9, y31, y2, y37, y16, y13, y21, y30, y12, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y39, t, y41, y26, y7, y22, y40, y28, y6, y5, y42, y19, y34, y11, y23, y18, y15, y3, y29, y27, y10, y20], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 43 functions in Rational Field(p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19, x17, x11, x2, x9, x13, x18, x8, x20, x5, x6, x4, x14, x15, x19, x10, x16, x7, x1, x3, x12)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, y41, y42, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.075990912 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.007798544 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 44 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y32, y42, y24, y9, y37, y11, y21, y28, y13, y31, y6, y40, y29, y10, y14, y36, y8, y4, y12, y25, y23], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y39, y41, y26, y1, y35, t, y7, y3, y38, y16, y5, y20, y17, y15, y22, y2, y18, y19, y27, y30, y33, y34], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 43 functions in Rational Field(p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19, x17, x11, x2, x9, x13, x18, x8, x20, x5, x6, x4, x14, x15, x19, x10, x16, x7, x1, x3, x12)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, y41, y42, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.082886269 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00758251 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 44 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y12, y19, y28, y29, y20, t, y7, y2, y33, y1, y38, y31, y22, y10, y26, y42, y35, y9, y37, y15, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y16, y24, y18, y13, y4, y27, y36, y40, y3, y25, y21, y23, y34, y41, y5, y14, y30, y17, y6, y39, y32, y11], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 43 functions in Rational Field(p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19, x17, x11, x2, x9, x13, x18, x8, x20, x5, x6, x4, x14, x15, x19, x10, x16, x7, x1, x3, x12)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, y41, y42, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.07850716 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.095147181 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 44 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y13, y30, y26, y18, y28, y20, y4, y9, y12, y38, y32, y10, y27, y6, y33, y2, y29, y22, y7, y15, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y41, t, y11, y14, y19, y34, y17, y36, y31, y23, y21, y1, y16, y25, y40, y39, y5, y35, y42, y37, y24, y3], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 43 functions in Rational Field(p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19, x17, x11, x2, x9, x13, x18, x8, x20, x5, x6, x4, x14, x15, x19, x10, x16, x7, x1, x3, x12)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, y41, y42, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.080503703 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.007974717 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 44 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y42, y1, y13, y30, y32, y14, y15, y21, y25, y12, y33, y38, y4, y29, y10, y20, y40, y22, y6, y31, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y2, y3, y16, y11, y36, y34, y26, y5, y9, y35, y28, y7, y41, y18, y17, y19, y24, y37, y39, y23, y27], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 43 functions in Rational Field(p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19, x17, x11, x2, x9, x13, x18, x8, x20, x5, x6, x4, x14, x15, x19, x10, x16, x7, x1, x3, x12)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, y41, y42, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.165924053 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.006680058 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 44 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.012626851 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 62 initial generators there are 42 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 903 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 43.049746795 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x12, x3, x1, x7, x16, x10, x19, x15, x14, x4, x6, x5, x20, x8, x18, x13, x9, x2, x11, x17, p19, p11, p16, p3, p12, p17, vm, p10, p8, p4, p13, p14, p5, p15, p6, p9, km, p1, p18, p2, p20, p7] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/logs_(:normalforms, 2) deleted file mode 100644 index a9fbdd5dc..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/logs_(:normalforms, 2) +++ /dev/null @@ -1,95 +0,0 @@ -┌ Info: Processing HighDimNonLin -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 19.396603839 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 19.396603839 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 8.817808144 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 8.817808144 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 7.4373e-5 seconds -│ :rank_time = rank_time -│ rank_times = 7.4373e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 44 functions in Rational Field(p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.153022793 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.077587095 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (22 in total): Nemo.fmpq_mpoly[p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.679980998 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 43 initial generators there are 22 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 253 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 36.845577053 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[p19, p11, p16, p3, p12, p17, vm, p10, p8, p4, p13, p14, p5, p15, p6, p9, km, p1, p18, p2, p20, p7] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/logs_(:normalforms, 2)_with_states deleted file mode 100644 index 4e4360b66..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,147 +0,0 @@ -┌ Info: Processing HighDimNonLin -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 18.049291375 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 18.049291375 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 9.098546092 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 9.098546092 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 7.5193e-5 seconds -│ :rank_time = rank_time -│ rank_times = 7.5193e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 44 functions in Rational Field(p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19, x17, x11, x2, x9, x13, x18, x8, x20, x5, x6, x4, x14, x15, x19, x10, x16, x7, x1, x3, x12)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, y41, y42, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.6294644 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.09937934 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.882150573 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 43 initial generators there are 22 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 253 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 63 functions in Rational Field(p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19, x17, x11, x2, x9, x13, x18, x8, x20, x5, x6, x4, x14, x15, x19, x10, x16, x7, x1, x3, x12)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, y41, y42, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.169404159 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.008451366 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 44 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (42 in total): Nemo.fmpq_mpoly[p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19, x17, x11, x2, x9, x13, x18, x8, x20, x5, x6, x4, x14, x15, x19, x10, x16, x7, x1, x3, x12] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.012485656 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 62 initial generators there are 42 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 903 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 37.157881014 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x12, x3, x1, x7, x16, x10, x19, x15, x14, x4, x6, x5, x20, x8, x18, x13, x9, x2, x11, x17, p19, p11, p16, p3, p12, p17, vm, p10, p8, p4, p13, p14, p5, p15, p6, p9, km, p1, p18, p2, p20, p7] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/logs_(:normalforms, 3) deleted file mode 100644 index 8d4dc4b03..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/logs_(:normalforms, 3) +++ /dev/null @@ -1,95 +0,0 @@ -┌ Info: Processing HighDimNonLin -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 19.534537116 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 19.534537116 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 9.569776758 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 9.569776758 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 7.3472e-5 seconds -│ :rank_time = rank_time -│ rank_times = 7.3472e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 44 functions in Rational Field(p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.496918673 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.104689328 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (22 in total): Nemo.fmpq_mpoly[p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.746579906 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 43 initial generators there are 22 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 253 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 38.131429605 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[p19, p11, p16, p3, p12, p17, vm, p10, p8, p4, p13, p14, p5, p15, p6, p9, km, p1, p18, p2, p20, p7] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/logs_(:normalforms, 3)_with_states deleted file mode 100644 index 768f1eed5..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,147 +0,0 @@ -┌ Info: Processing HighDimNonLin -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 18.177518619 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 18.177518619 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 9.255978036 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 9.255978036 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 8.7643e-5 seconds -│ :rank_time = rank_time -│ rank_times = 8.7643e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 44 functions in Rational Field(p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19, x17, x11, x2, x9, x13, x18, x8, x20, x5, x6, x4, x14, x15, x19, x10, x16, x7, x1, x3, x12)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, y41, y42, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.770220705 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.109204418 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.005269624 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 43 initial generators there are 22 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 253 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 63 functions in Rational Field(p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19, x17, x11, x2, x9, x13, x18, x8, x20, x5, x6, x4, x14, x15, x19, x10, x16, x7, x1, x3, x12)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, y35, y36, y37, y38, y39, y40, y41, y42, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.189504462 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.009108797 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 44 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (42 in total): Nemo.fmpq_mpoly[p7, p20, p2, p18, p1, km, p9, p6, p15, p5, p14, p13, p4, p8, p10, vm, p17, p12, p3, p16, p11, p19, x17, x11, x2, x9, x13, x18, x8, x20, x5, x6, x4, x14, x15, x19, x10, x16, x7, x1, x3, x12] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.013205439 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 62 initial generators there are 42 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 903 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 37.919611689 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x12, x3, x1, x7, x16, x10, x19, x15, x14, x4, x6, x5, x20, x8, x18, x13, x9, x2, x11, x17, p19, p11, p16, p3, p12, p17, vm, p10, p8, p4, p13, p14, p5, p15, p6, p9, km, p1, p18, p2, p20, p7] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/timings_(:gb,) deleted file mode 100644 index 353cbfd46..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -HighDimNonLin -id_total, 37.397650501 diff --git a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/timings_(:gb,)_with_states deleted file mode 100644 index 36d2f6d01..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -HighDimNonLin -id_total, 38.276763876 diff --git a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/timings_(:hybrid,) deleted file mode 100644 index 1783ebea5..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -HighDimNonLin -id_total, 39.029007527 diff --git a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/timings_(:hybrid,)_with_states deleted file mode 100644 index 94b91be1e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -HighDimNonLin -id_total, 43.049746795 diff --git a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/timings_(:normalforms, 2) deleted file mode 100644 index 6973d84be..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -HighDimNonLin -id_total, 36.845577053 diff --git a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/timings_(:normalforms, 2)_with_states deleted file mode 100644 index 8017eae97..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -HighDimNonLin -id_total, 37.157881014 diff --git a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/timings_(:normalforms, 3) deleted file mode 100644 index b156e2b59..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -HighDimNonLin -id_total, 38.131429605 diff --git a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/timings_(:normalforms, 3)_with_states deleted file mode 100644 index ac94888ac..000000000 --- a/benchmarking/IdentifiableFunctions/systems/HighDimNonLin/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -HighDimNonLin -id_total, 37.919611689 diff --git a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/id_funcs_(:gb,) deleted file mode 100644 index 8262a42d1..000000000 --- a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/id_funcs_(:gb,) +++ /dev/null @@ -1,20 +0,0 @@ -[t1, -t8, -t13, -t7, -t2, -t9, -t12, -t4, -t18, -t10, -t14, -t19, -t20, -t16, -t5, -t6, -t3, -t22*t17, -t21*t15, -t11//t15] diff --git a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/id_funcs_(:gb,)_with_states deleted file mode 100644 index 7e25b8d0b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,30 +0,0 @@ -[x6, -x4, -x2, -x1, -x10, -x7, -x9, -x5, -x3, -t1, -t8, -t13, -t7, -t2, -t9, -t12, -t4, -t18, -t10, -t14, -t19, -t20, -t16, -t5, -t6, -t3, -t22*t17, -t21*x8, -t15//x8, -t11//x8] diff --git a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/id_funcs_(:hybrid,) deleted file mode 100644 index 3f344f4ed..000000000 --- a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/id_funcs_(:hybrid,) +++ /dev/null @@ -1,20 +0,0 @@ -[t1, -t8, -t13, -t7, -t2, -t9, -t12, -t4, -t18, -t10, -t14, -t19, -t20, -t16, -t5, -t6, -t3, -t22*t17, -t21*t15, -t21*t11] diff --git a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index c36b7f266..000000000 --- a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,30 +0,0 @@ -[x6, -x4, -x2, -x1, -x10, -x7, -x9, -x5, -x3, -t1, -t8, -t13, -t7, -t2, -t9, -t12, -t4, -t18, -t10, -t14, -t19, -t20, -t16, -t5, -t6, -t3, -t22*t17, -t21*x8, -t21*t15, -t21*t11] diff --git a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/id_funcs_(:normalforms, 2) deleted file mode 100644 index 3f344f4ed..000000000 --- a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,20 +0,0 @@ -[t1, -t8, -t13, -t7, -t2, -t9, -t12, -t4, -t18, -t10, -t14, -t19, -t20, -t16, -t5, -t6, -t3, -t22*t17, -t21*t15, -t21*t11] diff --git a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index c36b7f266..000000000 --- a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,30 +0,0 @@ -[x6, -x4, -x2, -x1, -x10, -x7, -x9, -x5, -x3, -t1, -t8, -t13, -t7, -t2, -t9, -t12, -t4, -t18, -t10, -t14, -t19, -t20, -t16, -t5, -t6, -t3, -t22*t17, -t21*x8, -t21*t15, -t21*t11] diff --git a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/id_funcs_(:normalforms, 3) deleted file mode 100644 index 3f344f4ed..000000000 --- a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,20 +0,0 @@ -[t1, -t8, -t13, -t7, -t2, -t9, -t12, -t4, -t18, -t10, -t14, -t19, -t20, -t16, -t5, -t6, -t3, -t22*t17, -t21*t15, -t21*t11] diff --git a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index c36b7f266..000000000 --- a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,30 +0,0 @@ -[x6, -x4, -x2, -x1, -x10, -x7, -x9, -x5, -x3, -t1, -t8, -t13, -t7, -t2, -t9, -t12, -t4, -t18, -t10, -t14, -t19, -t20, -t16, -t5, -t6, -t3, -t22*t17, -t21*x8, -t21*t15, -t21*t11] diff --git a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/logs_(:gb,) deleted file mode 100644 index 0aefd30fa..000000000 --- a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/logs_(:gb,) +++ /dev/null @@ -1,85 +0,0 @@ -┌ Info: Processing JAK-STAT 1 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 10.806054726 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 10.806054726 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 3.626232859 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 3.626232859 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [33, 974, 2, 232, 4, 24, 2, 5] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.339141649 seconds -│ :rank_time = rank_time -│ rank_times = 0.339141649 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 1303 functions in Rational Field(t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 14)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 14 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 6.350733864 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.54822935 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 21 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.29716127 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 1302 initial generators there are 20 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 242 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 25.307996898 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[t1, t8, t13, t7, t2, t9, t12, t4, t18, t10, t14, t19, t20, t16, t5, t6, t3, t22*t17, t21*t15, t11//t15] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/logs_(:gb,)_with_states deleted file mode 100644 index 421bbf9ae..000000000 --- a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/logs_(:gb,)_with_states +++ /dev/null @@ -1,137 +0,0 @@ -┌ Info: Processing JAK-STAT 1 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 11.864933862 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 11.864933862 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 3.641110365 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 3.641110365 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [33, 974, 2, 232, 4, 24, 2, 5] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.353034934 seconds -│ :rank_time = rank_time -│ rank_times = 0.353034934 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:01 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 1303 functions in Rational Field(t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1, x3, x5, x9, x7, x8, x10, x1, x2, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 14)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 14 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 6.57249507 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.652756466 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 21 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.406800019 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 1302 initial generators there are 20 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 242 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 44 functions in Rational Field(t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1, x3, x5, x9, x7, x8, x10, x1, x2, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (9, 1)], [(0, 0), (2, 8)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.217340455 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.007345703 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 31 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.016241268 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 43 initial generators there are 30 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 553 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 27.389448089 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x6, x4, x2, x1, x10, x7, x9, x5, x3, t1, t8, t13, t7, t2, t9, t12, t4, t18, t10, t14, t19, t20, t16, t5, t6, t3, t22*t17, t21*x8, t15//x8, t11//x8] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/logs_(:hybrid,) deleted file mode 100644 index baf6c12df..000000000 --- a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/logs_(:hybrid,) +++ /dev/null @@ -1,550 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing JAK-STAT 1 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 13.308124485 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 13.308124485 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 3.626763817 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 3.626763817 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [33, 974, 2, 232, 4, 24, 2, 5] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.350034928 seconds -│ :rank_time = rank_time -│ rank_times = 0.350034928 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 1303 functions in Rational Field(t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 14)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 14 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 6.604550345 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.562904649 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 21 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (22 in total): Nemo.fmpq_mpoly[t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 1160 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 1136 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 1160 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 1136 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 54 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 1160 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 1136 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 54 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y14, y2, y1, y15, y5, y19, y22, y21, y6, y17, y11], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y16, y3, y8, y20, t, y13, y7, y9, y12, y18, y4], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.034127051 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.051335724 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 22 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y22, y19, y5, y13, y6, y21, y10, y4, y16, t, y20], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y18, y9, y17, y3, y1, y14, y15, y8, y12, y2, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.03479764 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00486128 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 22 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y17, y18, y3, y9, y11, y14, y4, y6, y21, y5, t], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y12, y7, y15, y1, y10, y20, y16, y13, y8, y19, y22], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.094956968 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003390738 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 22 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y21, y18, y20, y13, y3, y11, y6, y7, y19, y22, y16], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y17, y14, y15, y10, y4, y2, y1, y12, y5, y8, y9, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.033991522 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004081113 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 22 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y17, y16, y3, y14, y11, y8, y6, y21, y20, y2, y15], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y7, y22, y9, y12, y18, y1, y10, y13, y4, t, y19], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.093149028 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003378517 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 22 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y3, y13, y11, y8, y9, y22, y20, y17, y16, y14], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y2, y1, y12, y10, y19, y5, y18, t, y15, y21, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.033791033 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.055585365 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 22 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y16, y8, y7, y4, y21, y13, y5, y17, y22, y6, y10], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y11, y14, y19, t, y15, y2, y18, y9, y20, y3, y12], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.034188613 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003647084 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 22 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y17, y14, y5, y7, y15, y12, y19, y22, y8, y9, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y1, y18, y20, y13, y2, y3, y16, y10, y21, t, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.034012189 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.06494282 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 22 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t, y9, y12, y5, y14, y18, y13, y20, y11, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y21, y16, y4, y2, y6, y8, y7, y17, y19, y15, y22], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.033426453 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003808253 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 22 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y18, y5, y3, y13, y12, y4, y20, y2, y1, y22, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y8, y7, y21, y19, y14, y6, y9, y16, y15, y11, y17], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 21 functions in Rational Field(t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.087072316 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003274103 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 22 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.210745749 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 1302 initial generators there are 20 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 216 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 30.03276239 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[t1, t8, t13, t7, t2, t9, t12, t4, t18, t10, t14, t19, t20, t16, t5, t6, t3, t22*t17, t21*t15, t21*t11] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/logs_(:hybrid,)_with_states deleted file mode 100644 index b9be05b37..000000000 --- a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,602 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing JAK-STAT 1 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 13.582920698 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 13.582920698 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 3.462712715 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 3.462712715 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [33, 974, 2, 232, 4, 24, 2, 5] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.352700293 seconds -│ :rank_time = rank_time -│ rank_times = 0.352700293 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:01 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 1303 functions in Rational Field(t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1, x3, x5, x9, x7, x8, x10, x1, x2, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 14)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 14 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 5.52978954 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.649513017 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 21 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.369474473 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 1302 initial generators there are 20 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 242 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 44 functions in Rational Field(t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1, x3, x5, x9, x7, x8, x10, x1, x2, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (9, 1)], [(0, 0), (2, 8)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.207634223 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.006802969 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 31 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (32 in total): Nemo.fmpq_mpoly[t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1, x3, x5, x9, x7, x8, x10, x1, x2, x4, x6] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 2891 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 2867 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 2891 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 2867 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 108 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 2891 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 2867 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 108 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y27, y31, y12, y7, y6, y29, y15, y18, y19, y32, y2, y14, y1, y4, y13, y17], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, t, y9, y20, y26, y11, y25, y3, y16, y5, y24, y23, y22, y28, y21, y8, y30], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 31 functions in Rational Field(t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1, x3, x5, x9, x7, x8, x10, x1, x2, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.081431412 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004721009 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 32 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y7, y15, y8, y17, y21, y3, y19, y9, y6, y18, y22, y23, y20, y25, y30], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y29, y14, y28, y10, y1, y4, y5, t, y31, y13, y27, y24, y26, y16, y2, y32, y12], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 31 functions in Rational Field(t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1, x3, x5, x9, x7, x8, x10, x1, x2, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.166391095 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004637952 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 32 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y22, y16, y2, y10, y13, y21, y32, y6, y23, y27, y19, y11, y18, y17, y26], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y7, y24, y8, y20, y25, y30, y14, y15, y12, y29, y5, t, y1, y31, y4, y28], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 31 functions in Rational Field(t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1, x3, x5, x9, x7, x8, x10, x1, x2, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.130055772 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004679984 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 32 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y17, y29, y23, y5, y31, y21, y10, y30, y2, y19, y32, y1, y18, y27, y26, y16], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y3, y6, y9, t, y22, y20, y11, y12, y14, y4, y7, y13, y15, y25, y28, y24], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 31 functions in Rational Field(t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1, x3, x5, x9, x7, x8, x10, x1, x2, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.053719016 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.060066566 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 32 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y29, y16, y12, y26, y31, y25, y32, y22, y21, y8, y27, y19, y3, y7, y20, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y10, y24, t, y30, y18, y11, y28, y13, y14, y5, y17, y2, y15, y23, y4, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 31 functions in Rational Field(t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1, x3, x5, x9, x7, x8, x10, x1, x2, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.055362629 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005098369 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 32 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y30, y24, y16, y25, y20, y11, y13, y14, y9, y32, y5, y15, y29, y22, y6, y23], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3, y27, y21, y18, y31, y2, y26, y4, y12, y7, y8, y19, y17, y10, y28, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 31 functions in Rational Field(t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1, x3, x5, x9, x7, x8, x10, x1, x2, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 2), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.112482062 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004721405 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 32 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y23, y3, y10, y22, y4, y6, y32, y20, y2, y18, y13, y21, y25, y15, y27, y12], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y31, y5, y30, y11, y1, y7, y26, y24, y17, y19, y29, y28, y8, y9, y16, t, y14], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 31 functions in Rational Field(t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1, x3, x5, x9, x7, x8, x10, x1, x2, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.124149926 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004659545 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 32 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y27, y10, y12, y20, y11, y8, y19, y15, y13, y16, y3, y6, y26, y21, y9, y32], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y18, y7, t, y4, y17, y28, y30, y1, y5, y14, y31, y24, y2, y25, y29, y23, y22], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 31 functions in Rational Field(t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1, x3, x5, x9, x7, x8, x10, x1, x2, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.118970965 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005335934 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 32 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y14, y5, y8, y31, y26, y4, y29, y24, y10, y28, y2, y32, t, y7, y16], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y20, y23, y1, y17, y3, y13, y12, y30, y18, y27, y9, y25, y22, y15, y21, y19, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 31 functions in Rational Field(t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1, x3, x5, x9, x7, x8, x10, x1, x2, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.055939296 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.055400948 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 32 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y14, y4, y17, y25, y11, y29, t, y27, y6, y2, y13, y26, y32, y15, y22], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y30, y21, y10, y16, y20, y24, y19, y7, y8, y23, y3, y9, y28, y12, y31, y18, y1], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 31 functions in Rational Field(t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1, x3, x5, x9, x7, x8, x10, x1, x2, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.056058701 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004725441 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 32 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.015207977 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 43 initial generators there are 30 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 475 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 30.755988572 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x6, x4, x2, x1, x10, x7, x9, x5, x3, t1, t8, t13, t7, t2, t9, t12, t4, t18, t10, t14, t19, t20, t16, t5, t6, t3, t22*t17, t21*x8, t21*t15, t21*t11] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/logs_(:normalforms, 2) deleted file mode 100644 index 8889dd600..000000000 --- a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/logs_(:normalforms, 2) +++ /dev/null @@ -1,114 +0,0 @@ -┌ Info: Processing JAK-STAT 1 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 13.381136813 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 13.381136813 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 3.727539295 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 3.727539295 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [33, 974, 2, 232, 4, 24, 2, 5] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.345481165 seconds -│ :rank_time = rank_time -│ rank_times = 0.345481165 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 1303 functions in Rational Field(t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 14)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 14 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 6.252911558 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.627632928 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 21 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (22 in total): Nemo.fmpq_mpoly[t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 105 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 93 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 105 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 93 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 105 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 93 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.153338099 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 1302 initial generators there are 20 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 216 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 28.447985899 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[t1, t8, t13, t7, t2, t9, t12, t4, t18, t10, t14, t19, t20, t16, t5, t6, t3, t22*t17, t21*t15, t21*t11] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/logs_(:normalforms, 2)_with_states deleted file mode 100644 index 4a4d5f2a2..000000000 --- a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,166 +0,0 @@ -┌ Info: Processing JAK-STAT 1 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 14.107377507 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 14.107377507 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 3.481017799 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 3.481017799 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [33, 974, 2, 232, 4, 24, 2, 5] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.333726774 seconds -│ :rank_time = rank_time -│ rank_times = 0.333726774 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 1303 functions in Rational Field(t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1, x3, x5, x9, x7, x8, x10, x1, x2, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 14)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 14 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 6.511107046 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.668349886 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 21 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.450991036 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 1302 initial generators there are 20 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 242 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 44 functions in Rational Field(t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1, x3, x5, x9, x7, x8, x10, x1, x2, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (9, 1)], [(0, 0), (2, 8)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.229126398 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.007106679 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 31 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (32 in total): Nemo.fmpq_mpoly[t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1, x3, x5, x9, x7, x8, x10, x1, x2, x4, x6] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 183 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 171 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 183 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 171 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 4 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 183 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 171 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 4 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.018681969 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 43 initial generators there are 30 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 475 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 30.106815506 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x6, x4, x2, x1, x10, x7, x9, x5, x3, t1, t8, t13, t7, t2, t9, t12, t4, t18, t10, t14, t19, t20, t16, t5, t6, t3, t22*t17, t21*x8, t21*t15, t21*t11] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/logs_(:normalforms, 3) deleted file mode 100644 index 43006142b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/logs_(:normalforms, 3) +++ /dev/null @@ -1,114 +0,0 @@ -┌ Info: Processing JAK-STAT 1 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 11.417783044 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 11.417783044 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 3.436753509 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 3.436753509 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [33, 974, 2, 232, 4, 24, 2, 5] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.344360233 seconds -│ :rank_time = rank_time -│ rank_times = 0.344360233 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 1303 functions in Rational Field(t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 14)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 14 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 6.118839839 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.617447816 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 21 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (22 in total): Nemo.fmpq_mpoly[t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 1160 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 1136 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 1160 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 1136 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 54 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 1160 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 1136 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 54 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.136089824 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 1302 initial generators there are 20 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 216 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 26.450655727 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[t1, t8, t13, t7, t2, t9, t12, t4, t18, t10, t14, t19, t20, t16, t5, t6, t3, t22*t17, t21*t15, t21*t11] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/logs_(:normalforms, 3)_with_states deleted file mode 100644 index c36b569b2..000000000 --- a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,166 +0,0 @@ -┌ Info: Processing JAK-STAT 1 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 11.963883074 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 11.963883074 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 3.620523706 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 3.620523706 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [33, 974, 2, 232, 4, 24, 2, 5] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.316646986 seconds -│ :rank_time = rank_time -│ rank_times = 0.316646986 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 1303 functions in Rational Field(t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1, x3, x5, x9, x7, x8, x10, x1, x2, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 14)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 14 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 6.938019465 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.661590482 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 21 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.466456745 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 1302 initial generators there are 20 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 242 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 44 functions in Rational Field(t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1, x3, x5, x9, x7, x8, x10, x1, x2, x4, x6)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (9, 1)], [(0, 0), (2, 8)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.232018467 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.007160313 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 31 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (32 in total): Nemo.fmpq_mpoly[t3, t6, t21, t22, t5, t17, t16, t20, t19, t14, t10, t18, t4, t12, t11, t9, t2, t7, t13, t8, t15, t1, x3, x5, x9, x7, x8, x10, x1, x2, x4, x6] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 2891 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 2867 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 2891 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 2867 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 108 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 2891 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 2867 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 108 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.017188558 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 43 initial generators there are 30 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 475 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 29.62729779 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x6, x4, x2, x1, x10, x7, x9, x5, x3, t1, t8, t13, t7, t2, t9, t12, t4, t18, t10, t14, t19, t20, t16, t5, t6, t3, t22*t17, t21*x8, t21*t15, t21*t11] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/timings_(:gb,) deleted file mode 100644 index 7ec177b73..000000000 --- a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -JAK-STAT 1 -id_total, 25.307996898 diff --git a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/timings_(:gb,)_with_states deleted file mode 100644 index 9f114b560..000000000 --- a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -JAK-STAT 1 -id_total, 27.389448089 diff --git a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/timings_(:hybrid,) deleted file mode 100644 index 9640329b0..000000000 --- a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -JAK-STAT 1 -id_total, 30.03276239 diff --git a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/timings_(:hybrid,)_with_states deleted file mode 100644 index aa1e4c5a2..000000000 --- a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -JAK-STAT 1 -id_total, 30.755988572 diff --git a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/timings_(:normalforms, 2) deleted file mode 100644 index 14ff20572..000000000 --- a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -JAK-STAT 1 -id_total, 28.447985899 diff --git a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/timings_(:normalforms, 2)_with_states deleted file mode 100644 index 1cd345b23..000000000 --- a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -JAK-STAT 1 -id_total, 30.106815506 diff --git a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/timings_(:normalforms, 3) deleted file mode 100644 index 74314a037..000000000 --- a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -JAK-STAT 1 -id_total, 26.450655727 diff --git a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/timings_(:normalforms, 3)_with_states deleted file mode 100644 index 80677b5ff..000000000 --- a/benchmarking/IdentifiableFunctions/systems/JAK-STAT 1/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -JAK-STAT 1 -id_total, 29.62729779 diff --git a/benchmarking/IdentifiableFunctions/systems/KD1999/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/KD1999/id_funcs_(:gb,) deleted file mode 100644 index 25a7ba8b3..000000000 --- a/benchmarking/IdentifiableFunctions/systems/KD1999/id_funcs_(:gb,) +++ /dev/null @@ -1,9 +0,0 @@ -[Ta, -Ca0, -Vh, -V, -Th, -E//R, -UA//DH, -(ro*cp)//DH, -(cph*roh)//DH] diff --git a/benchmarking/IdentifiableFunctions/systems/KD1999/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/KD1999/id_funcs_(:gb,)_with_states deleted file mode 100644 index 9e97d143c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/KD1999/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,14 +0,0 @@ -[Ca, -T, -Cb, -Tj, -Ta, -Ca0, -Vh, -V, -Th, -k0*Arr, -E//R, -UA//DH, -(ro*cp)//DH, -(cph*roh)//DH] diff --git a/benchmarking/IdentifiableFunctions/systems/KD1999/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/KD1999/id_funcs_(:hybrid,) deleted file mode 100644 index 87a85a723..000000000 --- a/benchmarking/IdentifiableFunctions/systems/KD1999/id_funcs_(:hybrid,) +++ /dev/null @@ -1,9 +0,0 @@ -[Ta, -Ca0, -Vh, -V, -Th, -DH//UA, -R//E, -DH//(cph*roh), -(ro*cp)//DH] diff --git a/benchmarking/IdentifiableFunctions/systems/KD1999/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/KD1999/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index 4d55f7fb7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/KD1999/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,14 +0,0 @@ -[Ca, -T, -Cb, -Tj, -Ta, -Ca0, -Vh, -V, -Th, -k0*Arr, -DH//UA, -R//E, -DH//(ro*cp), -(cph*roh)//DH] diff --git a/benchmarking/IdentifiableFunctions/systems/KD1999/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/KD1999/id_funcs_(:normalforms, 2) deleted file mode 100644 index 25a7ba8b3..000000000 --- a/benchmarking/IdentifiableFunctions/systems/KD1999/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,9 +0,0 @@ -[Ta, -Ca0, -Vh, -V, -Th, -E//R, -UA//DH, -(ro*cp)//DH, -(cph*roh)//DH] diff --git a/benchmarking/IdentifiableFunctions/systems/KD1999/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/KD1999/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index 9e97d143c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/KD1999/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,14 +0,0 @@ -[Ca, -T, -Cb, -Tj, -Ta, -Ca0, -Vh, -V, -Th, -k0*Arr, -E//R, -UA//DH, -(ro*cp)//DH, -(cph*roh)//DH] diff --git a/benchmarking/IdentifiableFunctions/systems/KD1999/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/KD1999/id_funcs_(:normalforms, 3) deleted file mode 100644 index 25a7ba8b3..000000000 --- a/benchmarking/IdentifiableFunctions/systems/KD1999/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,9 +0,0 @@ -[Ta, -Ca0, -Vh, -V, -Th, -E//R, -UA//DH, -(ro*cp)//DH, -(cph*roh)//DH] diff --git a/benchmarking/IdentifiableFunctions/systems/KD1999/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/KD1999/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index 9e97d143c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/KD1999/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,14 +0,0 @@ -[Ca, -T, -Cb, -Tj, -Ta, -Ca0, -Vh, -V, -Th, -k0*Arr, -E//R, -UA//DH, -(ro*cp)//DH, -(cph*roh)//DH] diff --git a/benchmarking/IdentifiableFunctions/systems/KD1999/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/KD1999/logs_(:gb,) deleted file mode 100644 index 8c8fba112..000000000 --- a/benchmarking/IdentifiableFunctions/systems/KD1999/logs_(:gb,) +++ /dev/null @@ -1,83 +0,0 @@ -┌ Info: Processing KD1999 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.328258839 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.328258839 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.11537466 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.11537466 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [17, 76] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000351629 seconds -│ :rank_time = rank_time -│ rank_times = 0.000351629 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 130 functions in Rational Field(Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (2, 1)], [(0, 0), (2, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.930781669 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.007924851 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.009680855 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 129 initial generators there are 9 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 318 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.555255316 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[Ta, Ca0, Vh, V, Th, E//R, UA//DH, (ro*cp)//DH, (cph*roh)//DH] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/KD1999/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/KD1999/logs_(:gb,)_with_states deleted file mode 100644 index d65f7bb59..000000000 --- a/benchmarking/IdentifiableFunctions/systems/KD1999/logs_(:gb,)_with_states +++ /dev/null @@ -1,136 +0,0 @@ -┌ Info: Processing KD1999 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.589166228 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.589166228 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.067609692 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.067609692 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [17, 76] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000343578 seconds -│ :rank_time = rank_time -│ rank_times = 0.000343578 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 130 functions in Rational Field(Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH, Tj, Cb, T, Ca, Arr)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (2, 1)], [(0, 0), (2, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.978605084 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.192940641 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.308766869 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 129 initial generators there are 9 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 318 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 34 functions in Rational Field(Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH, Tj, Cb, T, Ca, Arr)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 1)], [(0, 0), (2, 1)], [(0, 0), (4, 18)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.154154945 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005420751 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.011922931 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 33 initial generators there are 14 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 383 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 11.614452356 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[Ca, T, Cb, Tj, Ta, Ca0, Vh, V, Th, k0*Arr, E//R, UA//DH, (ro*cp)//DH, (cph*roh)//DH] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/KD1999/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/KD1999/logs_(:hybrid,) deleted file mode 100644 index 813a14b2d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/KD1999/logs_(:hybrid,) +++ /dev/null @@ -1,548 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing KD1999 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.67048882 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.67048882 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.068979948 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.068979948 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [17, 76] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000353273 seconds -│ :rank_time = rank_time -│ rank_times = 0.000353273 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 130 functions in Rational Field(Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (2, 1)], [(0, 0), (2, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.898149689 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.006655639 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (14 in total): Nemo.fmpq_mpoly[Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 624 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 521 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 624 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 521 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 624 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 521 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y13, y6, y12, y1, t, y8, y14], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y4, y10, y2, y3, y11, y7, y9], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(1, 2), (0, 0)], [(0, 0), (3, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 2), (0, 0)], [(2, 2), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 14 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.024405937 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.046057376 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y14, y5, y8, y6, t, y13, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y9, y10, y11, y7, y2, y12, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(1, 1), (0, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.016621065 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002666634 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y14, y11, y3, y2, y9, t, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y12, y8, y1, y7, y6, y10, y5, y13], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015751977 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003190869 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y1, y7, y4, y3, y14, y13], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y6, t, y5, y12, y10, y8, y11], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (2, 1)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.016434373 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.06015206 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y10, y14, y3, y13, y2, y8], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y1, y4, y11, y6, y7, y12, t], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (2, 1)], [(0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.017442784 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00202232 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y4, y11, y8, y2, y1, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y13, y7, y12, y5, y6, y10, y14], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015498752 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002795331 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y11, y4, y3, y2, y5, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, t, y12, y6, y13, y9, y14, y10], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.067052468 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001907483 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y13, y4, y7, y10, y14, y5, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y12, y9, y6, y3, y11, t, y8], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.01688693 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002651196 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y4, y14, y11, y2, y3, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y12, y1, y10, t, y13, y6, y9, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.017021057 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003321983 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y7, y13, y3, y5, t, y14], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y1, y12, y9, y8, y11, y10, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.054318587 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002622023 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.011098914 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 129 initial generators there are 9 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 694 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.863719649 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[Ta, Ca0, Vh, V, Th, DH//UA, R//E, DH//(cph*roh), (ro*cp)//DH] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/KD1999/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/KD1999/logs_(:hybrid,)_with_states deleted file mode 100644 index 3624e4eba..000000000 --- a/benchmarking/IdentifiableFunctions/systems/KD1999/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,601 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing KD1999 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.283400822 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.283400822 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.139333962 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.139333962 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [17, 76] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000321854 seconds -│ :rank_time = rank_time -│ rank_times = 0.000321854 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 130 functions in Rational Field(Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH, Tj, Cb, T, Ca, Arr)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (2, 1)], [(0, 0), (2, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.537909952 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.412882456 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 3.160648871 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 129 initial generators there are 9 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 318 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 34 functions in Rational Field(Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH, Tj, Cb, T, Ca, Arr)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 1)], [(0, 0), (2, 1)], [(0, 0), (4, 18)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.156890263 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005431052 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (19 in total): Nemo.fmpq_mpoly[Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH, Tj, Cb, T, Ca, Arr] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 1320 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 1183 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 1320 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 1183 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 10 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 1320 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 1183 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 10 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y18, t, y13, y2, y15, y6, y8, y4, y12, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y9, y16, y1, y7, y10, y14, y17, y11, y19], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH, Tj, Cb, T, Ca, Arr)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.030219591 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002318523 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 16 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y17, y19, t, y8, y16, y6, y10, y1, y12, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y11, y5, y18, y13, y15, y7, y14, y2, y9], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH, Tj, Cb, T, Ca, Arr)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 1)], [(0, 0), (2, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.069733678 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002315478 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 16 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y12, y15, y5, y16, y19, y8, t, y2, y13, y18], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y10, y14, y11, y7, y9, y1, y4, y17, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH, Tj, Cb, T, Ca, Arr)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.022660066 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002346893 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 16 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y4, y13, y7, y17, y6, t, y15, y10, y11], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y18, y3, y5, y19, y14, y12, y8, y16, y1, y9], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH, Tj, Cb, T, Ca, Arr)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.106171228 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002700492 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 16 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y18, y6, t, y14, y8, y4, y15, y7, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y16, y12, y1, y13, y11, y10, y19, y9, y5, y17], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH, Tj, Cb, T, Ca, Arr)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 2), (0, 0)], [(1, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2)], [(0, 0), (3, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 14 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.034178236 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002285104 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y17, y18, y13, y16, y15, y12, y11, y9, y2, y5], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y14, y8, y1, y6, y4, y19, y7, y10, t, y3], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH, Tj, Cb, T, Ca, Arr)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.081542021 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002370904 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 16 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y18, y8, y9, y4, y1, y17, y6, y2, y16, y13], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y15, y3, y19, t, y7, y14, y11, y5, y12, y10], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH, Tj, Cb, T, Ca, Arr)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.02098434 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002236452 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 16 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y17, t, y13, y15, y2, y14, y8, y19, y12, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y18, y10, y9, y16, y7, y1, y3, y5, y11, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH, Tj, Cb, T, Ca, Arr)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(1, 1), (0, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2)], [(0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.022641704 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.050999543 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 16 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y17, y4, y1, y7, y16, y9, y5, t, y10, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y19, y13, y14, y11, y12, y8, y18, y15, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH, Tj, Cb, T, Ca, Arr)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 1)], [(0, 0), (2, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.049114697 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.006207433 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 16 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y8, y2, y15, y19, y6, y10, y7, y3, y11], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y17, y16, y4, t, y12, y14, y13, y18, y1], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH, Tj, Cb, T, Ca, Arr)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (2, 0)], [(0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.067068407 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.051084972 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 16 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.012265284 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 33 initial generators there are 14 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 759 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 13.856551768 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[Ca, T, Cb, Tj, Ta, Ca0, Vh, V, Th, k0*Arr, DH//UA, R//E, DH//(ro*cp), (cph*roh)//DH] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/KD1999/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/KD1999/logs_(:normalforms, 2) deleted file mode 100644 index e98cca525..000000000 --- a/benchmarking/IdentifiableFunctions/systems/KD1999/logs_(:normalforms, 2) +++ /dev/null @@ -1,112 +0,0 @@ -┌ Info: Processing KD1999 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.490706116 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.490706116 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.138464349 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.138464349 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [17, 76] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000355682 seconds -│ :rank_time = rank_time -│ rank_times = 0.000355682 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 130 functions in Rational Field(Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (2, 1)], [(0, 0), (2, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.979242156 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.008077461 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (14 in total): Nemo.fmpq_mpoly[Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 99 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 66 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 99 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 66 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 99 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 66 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.00977429 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 129 initial generators there are 9 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 318 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.080947218 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[Ta, Ca0, Vh, V, Th, E//R, UA//DH, (ro*cp)//DH, (cph*roh)//DH] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/KD1999/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/KD1999/logs_(:normalforms, 2)_with_states deleted file mode 100644 index 09f1dbc5c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/KD1999/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,165 +0,0 @@ -┌ Info: Processing KD1999 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.439598988 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.439598988 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.068203992 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.068203992 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [17, 76] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000342316 seconds -│ :rank_time = rank_time -│ rank_times = 0.000342316 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 130 functions in Rational Field(Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH, Tj, Cb, T, Ca, Arr)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (2, 1)], [(0, 0), (2, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.663861564 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.099955902 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.877808621 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 129 initial generators there are 9 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 318 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 34 functions in Rational Field(Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH, Tj, Cb, T, Ca, Arr)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 1)], [(0, 0), (2, 1)], [(0, 0), (4, 18)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.119446405 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00693779 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (19 in total): Nemo.fmpq_mpoly[Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH, Tj, Cb, T, Ca, Arr] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 155 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 114 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 155 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 114 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 1 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 155 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 114 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 1 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.011775457 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 33 initial generators there are 14 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 383 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 11.073458524 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[Ca, T, Cb, Tj, Ta, Ca0, Vh, V, Th, k0*Arr, E//R, UA//DH, (ro*cp)//DH, (cph*roh)//DH] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/KD1999/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/KD1999/logs_(:normalforms, 3) deleted file mode 100644 index 0a2cbc966..000000000 --- a/benchmarking/IdentifiableFunctions/systems/KD1999/logs_(:normalforms, 3) +++ /dev/null @@ -1,112 +0,0 @@ -┌ Info: Processing KD1999 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.42380205 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.42380205 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.147670974 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.147670974 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [17, 76] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.0003568 seconds -│ :rank_time = rank_time -│ rank_times = 0.0003568 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 130 functions in Rational Field(Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (2, 1)], [(0, 0), (2, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.950021539 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.008053528 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (14 in total): Nemo.fmpq_mpoly[Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 624 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 521 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 624 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 521 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 624 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 521 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.009471561 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 129 initial generators there are 9 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 318 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.044668633 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[Ta, Ca0, Vh, V, Th, E//R, UA//DH, (ro*cp)//DH, (cph*roh)//DH] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/KD1999/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/KD1999/logs_(:normalforms, 3)_with_states deleted file mode 100644 index 6f40fb65f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/KD1999/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,165 +0,0 @@ -┌ Info: Processing KD1999 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.360689153 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.360689153 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.06670356 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.06670356 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [17, 76] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000359001 seconds -│ :rank_time = rank_time -│ rank_times = 0.000359001 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 130 functions in Rational Field(Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH, Tj, Cb, T, Ca, Arr)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (2, 1)], [(0, 0), (2, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.759765674 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.148460092 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.913379425 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 129 initial generators there are 9 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 318 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 34 functions in Rational Field(Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH, Tj, Cb, T, Ca, Arr)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 1)], [(0, 0), (2, 1)], [(0, 0), (4, 18)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.121168969 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005794522 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (19 in total): Nemo.fmpq_mpoly[Th, cph, V, Vh, roh, UA, k0, ro, E, R, Ca0, Ta, cp, DH, Tj, Cb, T, Ca, Arr] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 1320 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 1183 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 1320 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 1183 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 10 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 1320 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 1183 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 10 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.038379824 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 33 initial generators there are 14 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 383 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 11.549314119 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[Ca, T, Cb, Tj, Ta, Ca0, Vh, V, Th, k0*Arr, E//R, UA//DH, (ro*cp)//DH, (cph*roh)//DH] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/KD1999/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/KD1999/timings_(:gb,) deleted file mode 100644 index a05714734..000000000 --- a/benchmarking/IdentifiableFunctions/systems/KD1999/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -KD1999 -id_total, 3.555255316 diff --git a/benchmarking/IdentifiableFunctions/systems/KD1999/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/KD1999/timings_(:gb,)_with_states deleted file mode 100644 index 4e54223a0..000000000 --- a/benchmarking/IdentifiableFunctions/systems/KD1999/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -KD1999 -id_total, 11.614452356 diff --git a/benchmarking/IdentifiableFunctions/systems/KD1999/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/KD1999/timings_(:hybrid,) deleted file mode 100644 index 6f7d9ef35..000000000 --- a/benchmarking/IdentifiableFunctions/systems/KD1999/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -KD1999 -id_total, 4.863719649 diff --git a/benchmarking/IdentifiableFunctions/systems/KD1999/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/KD1999/timings_(:hybrid,)_with_states deleted file mode 100644 index 5cc52f4bd..000000000 --- a/benchmarking/IdentifiableFunctions/systems/KD1999/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -KD1999 -id_total, 13.856551768 diff --git a/benchmarking/IdentifiableFunctions/systems/KD1999/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/KD1999/timings_(:normalforms, 2) deleted file mode 100644 index 868366b30..000000000 --- a/benchmarking/IdentifiableFunctions/systems/KD1999/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -KD1999 -id_total, 4.080947218 diff --git a/benchmarking/IdentifiableFunctions/systems/KD1999/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/KD1999/timings_(:normalforms, 2)_with_states deleted file mode 100644 index bbfe1cb3f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/KD1999/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -KD1999 -id_total, 11.073458524 diff --git a/benchmarking/IdentifiableFunctions/systems/KD1999/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/KD1999/timings_(:normalforms, 3) deleted file mode 100644 index 0f4d6b520..000000000 --- a/benchmarking/IdentifiableFunctions/systems/KD1999/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -KD1999 -id_total, 4.044668633 diff --git a/benchmarking/IdentifiableFunctions/systems/KD1999/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/KD1999/timings_(:normalforms, 3)_with_states deleted file mode 100644 index 94b118a65..000000000 --- a/benchmarking/IdentifiableFunctions/systems/KD1999/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -KD1999 -id_total, 11.549314119 diff --git a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/LLW1987_io/id_funcs_(:gb,) deleted file mode 100644 index 4b15f7873..000000000 --- a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/id_funcs_(:gb,) +++ /dev/null @@ -1,3 +0,0 @@ -[p1*p3, -p2*p4, -p1 + p3] diff --git a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/LLW1987_io/id_funcs_(:gb,)_with_states deleted file mode 100644 index 1e576e660..000000000 --- a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,7 +0,0 @@ -[x3, -x2*x1, -p1*p3, -p2*p4, -p1 + p3, -(p2*x2 + p4*x1)//(x2*x1), -(p2*x2 - p4*x1)//(p1 - p3)] diff --git a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/LLW1987_io/id_funcs_(:hybrid,) deleted file mode 100644 index 4b15f7873..000000000 --- a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/id_funcs_(:hybrid,) +++ /dev/null @@ -1,3 +0,0 @@ -[p1*p3, -p2*p4, -p1 + p3] diff --git a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/LLW1987_io/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index ac54b2a69..000000000 --- a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,7 +0,0 @@ -[x3, -x2*x1, -p1*p3, -p2*p4, -p1 + p3, -p2*x2 + p4*x1, -(p1 - p3)//(p2*x2 - p4*x1)] diff --git a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/LLW1987_io/id_funcs_(:normalforms, 2) deleted file mode 100644 index 4b15f7873..000000000 --- a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,3 +0,0 @@ -[p1*p3, -p2*p4, -p1 + p3] diff --git a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/LLW1987_io/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index e3c8a0b14..000000000 --- a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,7 +0,0 @@ -[x3, -x2*x1, -p1*p3, -p2*p4, -p1 + p3, -p2*x2 + p4*x1, -(p2*x2 - p4*x1)//(p1 - p3)] diff --git a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/LLW1987_io/id_funcs_(:normalforms, 3) deleted file mode 100644 index 4b15f7873..000000000 --- a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,3 +0,0 @@ -[p1*p3, -p2*p4, -p1 + p3] diff --git a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/LLW1987_io/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index e3c8a0b14..000000000 --- a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,7 +0,0 @@ -[x3, -x2*x1, -p1*p3, -p2*p4, -p1 + p3, -p2*x2 + p4*x1, -(p2*x2 - p4*x1)//(p1 - p3)] diff --git a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/LLW1987_io/logs_(:gb,) deleted file mode 100644 index 2f20d5265..000000000 --- a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/logs_(:gb,) +++ /dev/null @@ -1,84 +0,0 @@ -┌ Info: Processing LLW1987_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.005893608 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.005893608 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.004763795 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.004763795 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [7] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.725e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.725e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(p2, p4, p1, p3)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.145175927 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.207741753 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.036642852 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 12 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 7.461237528 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[p1*p3, p2*p4, p1 + p3] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/LLW1987_io/logs_(:gb,)_with_states deleted file mode 100644 index 77325b8e5..000000000 --- a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/logs_(:gb,)_with_states +++ /dev/null @@ -1,135 +0,0 @@ -┌ Info: Processing LLW1987_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.005648805 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.005648805 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.005452747 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.005452747 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [7] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.1411e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.1411e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(p2, p4, p1, p3, x2, x1, x3)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.847290232 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002053272 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002145157 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 12 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 17 functions in Rational Field(p2, p4, p1, p3, x2, x1, x3)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (2, 2), (2, 2)], [(0, 0), (2, 0)], [(0, 0), (2, 2), (2, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.041068232 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003852411 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.010469717 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 16 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 705 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 1.131826615 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x3, x2*x1, p1*p3, p2*p4, p1 + p3, (p2*x2 + p4*x1)//(x2*x1), (p2*x2 - p4*x1)//(p1 - p3)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/LLW1987_io/logs_(:hybrid,) deleted file mode 100644 index 7cbaa752c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/logs_(:hybrid,) +++ /dev/null @@ -1,549 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing LLW1987_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.006011784 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.006011784 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.004967007 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.004967007 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [7] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.0782e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.0782e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(p2, p4, p1, p3)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 5.221817514 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.53014943 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (4 in total): Nemo.fmpq_mpoly[p2, p4, p1, p3] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 34 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 23 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 34 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 23 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 6 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 34 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 23 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 6 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y1, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(p2, p4, p1, p3)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.012066197 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.060574022 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y2, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(p2, p4, p1, p3)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010615242 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001106786 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y4], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(p2, p4, p1, p3)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010561716 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001090583 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t, y2], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(p2, p4, p1, p3)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010257727 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001049731 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y2, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(p2, p4, p1, p3)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009701141 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000995445 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y1, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(p2, p4, p1, p3)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009680644 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00123027 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y1], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t, y4], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(p2, p4, p1, p3)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011370807 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001347598 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y4, t], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(p2, p4, p1, p3)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010529443 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001649257 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, t, y3], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(p2, p4, p1, p3)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011255217 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001586591 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y3, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(p2, p4, p1, p3)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.099485883 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001122262 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.186272087 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 12 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.132542175 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[p1*p3, p2*p4, p1 + p3] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/LLW1987_io/logs_(:hybrid,)_with_states deleted file mode 100644 index 2e9c8db7a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,600 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing LLW1987_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.005355511 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.005355511 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.04961796 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.04961796 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [7] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.7787e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.7787e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(p2, p4, p1, p3, x2, x1, x3)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.64229457 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.04589166 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.001626951 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 12 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 17 functions in Rational Field(p2, p4, p1, p3, x2, x1, x3)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (2, 2), (2, 2)], [(0, 0), (2, 0)], [(0, 0), (2, 2), (2, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.037037644 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003125139 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (7 in total): Nemo.fmpq_mpoly[p2, p4, p1, p3, x2, x1, x3] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 116 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 103 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 116 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 103 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 9 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 116 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 103 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 9 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y4, y6, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3, y1, y5], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(p2, p4, p1, p3, x2, x1, x3)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 4), (0, 0), (1, 4)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (1, 0), (2, 0)], [(2, 3), (0, 0), (3, 3)], [(2, 3), (3, 3), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.026251791 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.041383776 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y2, t, y3], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y4, y7, y6], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(p2, p4, p1, p3, x2, x1, x3)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (2, 2), (2, 2)], [(0, 0), (0, 0), (1, 0)], [(0, 4), (0, 0), (1, 4)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 0)], [(2, 3), (3, 3), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.032344238 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002295164 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y7, y1, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y3, t, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(p2, p4, p1, p3, x2, x1, x3)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 6)], [(0, 0), (4, 0), (1, 0)], [(3, 0), (0, 0), (2, 2)], [(0, 0), (1, 0)], [(3, 0), (0, 0), (2, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.027009975 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.060658171 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y6, y7, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t, y2, y1], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(p2, p4, p1, p3, x2, x1, x3)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 6)], [(5, 2), (2, 2), (0, 0)], [(0, 0), (1, 0)], [(5, 2), (2, 2), (0, 0)], [(0, 0), (4, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.029888736 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002043476 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y2, y7, y4], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y1, y6, y3], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(p2, p4, p1, p3, x2, x1, x3)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0), (2, 0)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (2, 0)], [(0, 0), (2, 2), (2, 2)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(2, 3), (0, 0), (3, 3)], [(0, 4), (0, 0), (1, 4)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.033654559 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.057779863 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y4, y1, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y5, y2, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(p2, p4, p1, p3, x2, x1, x3)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(2, 2), (2, 2), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0), (2, 0)], [(1, 2), (0, 0), (3, 2)], [(0, 2), (0, 0), (2, 2)], [(1, 2), (0, 0), (3, 2)], [(0, 5), (0, 0), (2, 5)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.029901207 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002308652 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y4, y3, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y2, y5, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(p2, p4, p1, p3, x2, x1, x3)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 2), (2, 2)], [(0, 0), (2, 0)], [(0, 0), (2, 0), (2, 0)], [(0, 5), (0, 0), (2, 5)], [(1, 2), (0, 0), (3, 2)], [(1, 2), (0, 0), (3, 2)], [(0, 2), (2, 2), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.072270457 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002384324 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t, y2, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y6, y4, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(p2, p4, p1, p3, x2, x1, x3)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (1, 0)], [(2, 3), (0, 0), (3, 3)], [(0, 4), (0, 0), (1, 4)], [(2, 3), (0, 0), (3, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.026506641 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001790986 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y1, y2, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t, y6, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(p2, p4, p1, p3, x2, x1, x3)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (4, 0), (1, 0)], [(0, 0), (0, 6)], [(0, 0), (4, 0), (1, 0)], [(0, 0), (5, 0), (2, 0)], [(3, 0), (0, 0), (2, 2)], [(5, 2), (2, 2), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.026953443 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.042630919 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y4, t, y6], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y2, y7, y1], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(p2, p4, p1, p3, x2, x1, x3)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0), (2, 0)], [(2, 3), (3, 3), (0, 0)], [(0, 4), (0, 0), (1, 4)], [(0, 0), (0, 0), (1, 0)], [(2, 3), (3, 3), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.02748594 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001877704 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.005794626 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 16 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 1783 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 1.97854497 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x3, x2*x1, p1*p3, p2*p4, p1 + p3, p2*x2 + p4*x1, (p1 - p3)//(p2*x2 - p4*x1)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/LLW1987_io/logs_(:normalforms, 2) deleted file mode 100644 index 57e6d01d6..000000000 --- a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/logs_(:normalforms, 2) +++ /dev/null @@ -1,113 +0,0 @@ -┌ Info: Processing LLW1987_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.005974576 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.005974576 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.005103789 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.005103789 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [7] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.8094e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.8094e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(p2, p4, p1, p3)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.203737723 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.174050336 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (4 in total): Nemo.fmpq_mpoly[p2, p4, p1, p3] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 14 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 7 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 14 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 7 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 4 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 14 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 7 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 4 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.767473369 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 12 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 7.843543781 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[p1*p3, p2*p4, p1 + p3] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/LLW1987_io/logs_(:normalforms, 2)_with_states deleted file mode 100644 index 7f49b39fc..000000000 --- a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,164 +0,0 @@ -┌ Info: Processing LLW1987_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.005890263 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.005890263 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.005206377 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.005206377 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [7] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.8409e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.8409e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(p2, p4, p1, p3, x2, x1, x3)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.745848165 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.065788332 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.00205899 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 12 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 17 functions in Rational Field(p2, p4, p1, p3, x2, x1, x3)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (2, 2), (2, 2)], [(0, 0), (2, 0)], [(0, 0), (2, 2), (2, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.042239648 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.065348572 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (7 in total): Nemo.fmpq_mpoly[p2, p4, p1, p3, x2, x1, x3] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 33 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 24 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 33 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 24 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 5 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 33 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 24 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 5 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.00651966 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 16 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 273 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 1.285478892 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x3, x2*x1, p1*p3, p2*p4, p1 + p3, p2*x2 + p4*x1, (p2*x2 - p4*x1)//(p1 - p3)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/LLW1987_io/logs_(:normalforms, 3) deleted file mode 100644 index 10403c094..000000000 --- a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/logs_(:normalforms, 3) +++ /dev/null @@ -1,113 +0,0 @@ -┌ Info: Processing LLW1987_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.005634397 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.005634397 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.004613079 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.004613079 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [7] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.3038e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.3038e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(p2, p4, p1, p3)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.188277682 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.193718556 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (4 in total): Nemo.fmpq_mpoly[p2, p4, p1, p3] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 34 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 23 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 34 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 23 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 6 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 34 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 23 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 6 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.831547577 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 12 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 7.885633887 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[p1*p3, p2*p4, p1 + p3] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/LLW1987_io/logs_(:normalforms, 3)_with_states deleted file mode 100644 index 9cdeb4e59..000000000 --- a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,164 +0,0 @@ -┌ Info: Processing LLW1987_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.056533315 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.056533315 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.00522652 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.00522652 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [7] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.9122e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.9122e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(p2, p4, p1, p3, x2, x1, x3)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.83701338 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.063653892 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.001934566 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 12 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 17 functions in Rational Field(p2, p4, p1, p3, x2, x1, x3)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (2, 2), (2, 2)], [(0, 0), (2, 0)], [(0, 0), (2, 2), (2, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.043777615 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.067281758 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (7 in total): Nemo.fmpq_mpoly[p2, p4, p1, p3, x2, x1, x3] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 116 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 103 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 116 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 103 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 9 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 116 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 103 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 9 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.00662193 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 16 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 273 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 1.46035728 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x3, x2*x1, p1*p3, p2*p4, p1 + p3, p2*x2 + p4*x1, (p2*x2 - p4*x1)//(p1 - p3)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/LLW1987_io/timings_(:gb,) deleted file mode 100644 index bb8909f58..000000000 --- a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -LLW1987_io -id_total, 7.461237528 diff --git a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/LLW1987_io/timings_(:gb,)_with_states deleted file mode 100644 index b0f314e49..000000000 --- a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -LLW1987_io -id_total, 1.131826615 diff --git a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/LLW1987_io/timings_(:hybrid,) deleted file mode 100644 index d946f1d66..000000000 --- a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -LLW1987_io -id_total, 10.132542175 diff --git a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/LLW1987_io/timings_(:hybrid,)_with_states deleted file mode 100644 index 8c3e89354..000000000 --- a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -LLW1987_io -id_total, 1.97854497 diff --git a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/LLW1987_io/timings_(:normalforms, 2) deleted file mode 100644 index 696d4cfc8..000000000 --- a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -LLW1987_io -id_total, 7.843543781 diff --git a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/LLW1987_io/timings_(:normalforms, 2)_with_states deleted file mode 100644 index eca4aa31b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -LLW1987_io -id_total, 1.285478892 diff --git a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/LLW1987_io/timings_(:normalforms, 3) deleted file mode 100644 index 6c660d625..000000000 --- a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -LLW1987_io -id_total, 7.885633887 diff --git a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/LLW1987_io/timings_(:normalforms, 3)_with_states deleted file mode 100644 index e8fbcb65e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/LLW1987_io/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -LLW1987_io -id_total, 1.46035728 diff --git a/benchmarking/IdentifiableFunctions/systems/LeukaemiaLeon2021/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/LeukaemiaLeon2021/logs_(:gb,) deleted file mode 100644 index 999b91957..000000000 --- a/benchmarking/IdentifiableFunctions/systems/LeukaemiaLeon2021/logs_(:gb,) +++ /dev/null @@ -1,92 +0,0 @@ -┌ Info: Processing LeukaemiaLeon2021 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2604473] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -mpoly_monomial_gt at /workspace/srcdir/flint2/mpoly.h:840 [inlined] -_mpoly_heap_pop at /workspace/srcdir/flint2/mpoly/heap_pop.c:26 -_fmpz_mpoly_mul_johnson at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:320 -_fmpz_mpoly_mul_johnson_maxfields at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:551 -fmpz_mpoly_mul at /workspace/srcdir/flint2/fmpz_mpoly/mul.c:354 -* at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:356 -* at ./operators.jl:578 [inlined] -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -det_minor_expansion at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:43 -eliminate_var at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:400 -unknown function (ip: 0x7f51d1144c62) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -find_ioprojections at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:315 -unknown function (ip: 0x7f51d113ee1f) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -#find_ioequations#383 at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:388 -find_ioequations at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:358 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:89 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7f5407d88226) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7f51d110debf) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7f541eda81c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 100640711 (Pool: 100578802; Big: 61909); GC: 518 - -[2604473] signal (11.1): Segmentation fault -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_demote at /workspace/srcdir/flint2/fmpz.h:98 [inlined] -fmpz_mpoly_clear at /workspace/srcdir/flint2/fmpz_mpoly/clear.c:23 -fmpq_mpoly_clear at /workspace/srcdir/flint2/fmpq_mpoly.h:176 -_fmpq_mpoly_clear_fn at /home/demin/.julia/packages/Nemo/g02iz/src/flint/FlintTypes.jl:1523 -unknown function (ip: 0x7f5407d17fe2) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -run_finalizer at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:417 -jl_gc_run_finalizers_in_list at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:507 -run_finalizers at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:553 -ijl_atexit_hook at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/init.c:299 -jl_exit_thread0_cb at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/signals-unix.c:470 -Allocations: 100640711 (Pool: 100578802; Big: 61909); GC: 519 diff --git a/benchmarking/IdentifiableFunctions/systems/LeukaemiaLeon2021/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/LeukaemiaLeon2021/logs_(:gb,)_with_states deleted file mode 100644 index 59f0210d7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/LeukaemiaLeon2021/logs_(:gb,)_with_states +++ /dev/null @@ -1,92 +0,0 @@ -┌ Info: Processing LeukaemiaLeon2021 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2596065] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -mpoly_monomial_gt at /workspace/srcdir/flint2/mpoly.h:842 [inlined] -_mpoly_heap_pop at /workspace/srcdir/flint2/mpoly/heap_pop.c:26 -_fmpz_mpoly_mul_johnson at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:320 -_fmpz_mpoly_mul_johnson_maxfields at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:551 -fmpz_mpoly_mul at /workspace/srcdir/flint2/fmpz_mpoly/mul.c:354 -* at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:356 -* at ./operators.jl:578 [inlined] -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -det_minor_expansion at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:43 -eliminate_var at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:400 -unknown function (ip: 0x7f3b4eb48712) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -find_ioprojections at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:315 -unknown function (ip: 0x7f3b4eb428cf) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -#find_ioequations#383 at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:388 -find_ioequations at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:358 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:89 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7f3d85788646) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7f3b4eb10cdf) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7f3d9c7b41c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 101180700 (Pool: 101118088; Big: 62612); GC: 524 - -[2596065] signal (11.1): Segmentation fault -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_demote at /workspace/srcdir/flint2/fmpz.h:98 [inlined] -fmpz_mpoly_clear at /workspace/srcdir/flint2/fmpz_mpoly/clear.c:23 -fmpq_mpoly_clear at /workspace/srcdir/flint2/fmpq_mpoly.h:176 -_fmpq_mpoly_clear_fn at /home/demin/.julia/packages/Nemo/g02iz/src/flint/FlintTypes.jl:1523 -unknown function (ip: 0x7f3d85718372) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -run_finalizer at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:417 -jl_gc_run_finalizers_in_list at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:507 -run_finalizers at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:553 -ijl_atexit_hook at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/init.c:299 -jl_exit_thread0_cb at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/signals-unix.c:470 -Allocations: 101180700 (Pool: 101118088; Big: 62612); GC: 525 diff --git a/benchmarking/IdentifiableFunctions/systems/LeukaemiaLeon2021/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/LeukaemiaLeon2021/logs_(:hybrid,) deleted file mode 100644 index 6bf7c86ca..000000000 --- a/benchmarking/IdentifiableFunctions/systems/LeukaemiaLeon2021/logs_(:hybrid,) +++ /dev/null @@ -1,93 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing LeukaemiaLeon2021 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2554873] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -mpoly_monomial_add at /workspace/srcdir/flint2/mpoly.h:298 [inlined] -_fmpz_mpoly_mul_johnson at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:435 -_fmpz_mpoly_mul_johnson_maxfields at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:551 -fmpz_mpoly_mul at /workspace/srcdir/flint2/fmpz_mpoly/mul.c:354 -* at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:356 -* at ./operators.jl:578 [inlined] -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -det_minor_expansion at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:43 -eliminate_var at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:400 -unknown function (ip: 0x7fdb6599c6d2) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -find_ioprojections at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:315 -unknown function (ip: 0x7fdb6599689f) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -#find_ioequations#383 at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:388 -find_ioequations at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:358 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:89 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7fddad38b256) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7fdb659680cf) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7fddb36711c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 108999918 (Pool: 108933090; Big: 66828); GC: 539 - -[2554873] signal (11.1): Segmentation fault -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_demote at /workspace/srcdir/flint2/fmpz.h:98 [inlined] -fmpz_mpoly_clear at /workspace/srcdir/flint2/fmpz_mpoly/clear.c:23 -fmpq_mpoly_clear at /workspace/srcdir/flint2/fmpq_mpoly.h:176 -_fmpq_mpoly_clear_fn at /home/demin/.julia/packages/Nemo/g02iz/src/flint/FlintTypes.jl:1523 -unknown function (ip: 0x7fddad31afd2) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -run_finalizer at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:417 -jl_gc_run_finalizers_in_list at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:507 -run_finalizers at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:553 -ijl_atexit_hook at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/init.c:299 -jl_exit_thread0_cb at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/signals-unix.c:470 -Allocations: 108999918 (Pool: 108933090; Big: 66828); GC: 540 diff --git a/benchmarking/IdentifiableFunctions/systems/LeukaemiaLeon2021/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/LeukaemiaLeon2021/logs_(:hybrid,)_with_states deleted file mode 100644 index aa747eb48..000000000 --- a/benchmarking/IdentifiableFunctions/systems/LeukaemiaLeon2021/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,93 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing LeukaemiaLeon2021 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2546525] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_mpoly_mul_johnson at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:356 -_fmpz_mpoly_mul_johnson_maxfields at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:551 -fmpz_mpoly_mul at /workspace/srcdir/flint2/fmpz_mpoly/mul.c:354 -* at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:356 -* at ./operators.jl:578 [inlined] -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -det_minor_expansion at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:43 -eliminate_var at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:400 -unknown function (ip: 0x7efa4f3a0c12) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -find_ioprojections at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:315 -unknown function (ip: 0x7efa4f39adcf) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -#find_ioequations#383 at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:388 -find_ioequations at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:358 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:89 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7efc85f88636) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7efa4f36b99f) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7efc9cfcc1c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 110770385 (Pool: 110702727; Big: 67658); GC: 543 - -[2546525] signal (11.128): Segmentation fault -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_clear_mpz at /workspace/srcdir/flint2/fmpz/fmpz.c:133 -_fmpz_demote at /workspace/srcdir/flint2/fmpz.h:100 [inlined] -fmpz_mpoly_clear at /workspace/srcdir/flint2/fmpz_mpoly/clear.c:23 -fmpq_mpoly_clear at /workspace/srcdir/flint2/fmpq_mpoly.h:176 -_fmpq_mpoly_clear_fn at /home/demin/.julia/packages/Nemo/g02iz/src/flint/FlintTypes.jl:1523 -unknown function (ip: 0x7efc85f18372) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -run_finalizer at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:417 -jl_gc_run_finalizers_in_list at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:507 -run_finalizers at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:553 -ijl_atexit_hook at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/init.c:299 -jl_exit_thread0_cb at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/signals-unix.c:470 -Allocations: 110770385 (Pool: 110702727; Big: 67658); GC: 544 diff --git a/benchmarking/IdentifiableFunctions/systems/LeukaemiaLeon2021/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/LeukaemiaLeon2021/logs_(:normalforms, 2) deleted file mode 100644 index 07d5fbe07..000000000 --- a/benchmarking/IdentifiableFunctions/systems/LeukaemiaLeon2021/logs_(:normalforms, 2) +++ /dev/null @@ -1,92 +0,0 @@ -┌ Info: Processing LeukaemiaLeon2021 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2587674] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -mpoly_monomial_equal at /workspace/srcdir/flint2/mpoly.h:770 [inlined] -_mpoly_heap_insert at /workspace/srcdir/flint2/mpoly/heap_insert.c:29 -_fmpz_mpoly_mul_johnson at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:439 -_fmpz_mpoly_mul_johnson_maxfields at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:551 -fmpz_mpoly_mul at /workspace/srcdir/flint2/fmpz_mpoly/mul.c:354 -* at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:356 -* at ./operators.jl:578 [inlined] -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -det_minor_expansion at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:43 -eliminate_var at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:400 -unknown function (ip: 0x7f09ec9673c2) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -find_ioprojections at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:315 -unknown function (ip: 0x7f09ec96157f) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -#find_ioequations#383 at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:388 -find_ioequations at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:358 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:89 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7f0c235882a6) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7f09ec92fbaf) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7f0c3a51b1c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 104214194 (Pool: 104150344; Big: 63850); GC: 528 - -[2587674] signal (11.1): Segmentation fault -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_demote at /workspace/srcdir/flint2/fmpz.h:98 [inlined] -fmpz_mpoly_clear at /workspace/srcdir/flint2/fmpz_mpoly/clear.c:23 -fmpq_mpoly_clear at /workspace/srcdir/flint2/fmpq_mpoly.h:176 -_fmpq_mpoly_clear_fn at /home/demin/.julia/packages/Nemo/g02iz/src/flint/FlintTypes.jl:1523 -unknown function (ip: 0x7f0c23518012) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -run_finalizer at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:417 -jl_gc_run_finalizers_in_list at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:507 -run_finalizers at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:553 -ijl_atexit_hook at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/init.c:299 -jl_exit_thread0_cb at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/signals-unix.c:470 -Allocations: 104214194 (Pool: 104150344; Big: 63850); GC: 529 diff --git a/benchmarking/IdentifiableFunctions/systems/LeukaemiaLeon2021/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/LeukaemiaLeon2021/logs_(:normalforms, 2)_with_states deleted file mode 100644 index e79676174..000000000 --- a/benchmarking/IdentifiableFunctions/systems/LeukaemiaLeon2021/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,92 +0,0 @@ -┌ Info: Processing LeukaemiaLeon2021 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2579179] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -mpoly_monomial_add at /workspace/srcdir/flint2/mpoly.h:298 [inlined] -_fmpz_mpoly_mul_johnson at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:409 -_fmpz_mpoly_mul_johnson_maxfields at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:551 -fmpz_mpoly_mul at /workspace/srcdir/flint2/fmpz_mpoly/mul.c:354 -* at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:356 -* at ./operators.jl:578 [inlined] -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -det_minor_expansion at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:43 -eliminate_var at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:400 -unknown function (ip: 0x7ff14dd6b522) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -find_ioprojections at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:315 -unknown function (ip: 0x7ff14dd656df) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -#find_ioequations#383 at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:388 -find_ioequations at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:358 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:89 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7ff39578bcc6) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7ff14dd3352f) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7ff39ba841c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 104787403 (Pool: 104722843; Big: 64560); GC: 530 - -[2579179] signal (11.128): Segmentation fault -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_clear_mpz at /workspace/srcdir/flint2/fmpz/fmpz.c:133 -_fmpz_demote at /workspace/srcdir/flint2/fmpz.h:100 [inlined] -fmpz_mpoly_clear at /workspace/srcdir/flint2/fmpz_mpoly/clear.c:23 -fmpq_mpoly_clear at /workspace/srcdir/flint2/fmpq_mpoly.h:176 -_fmpq_mpoly_clear_fn at /home/demin/.julia/packages/Nemo/g02iz/src/flint/FlintTypes.jl:1523 -unknown function (ip: 0x7ff39571bab2) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -run_finalizer at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:417 -jl_gc_run_finalizers_in_list at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:507 -run_finalizers at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:553 -ijl_atexit_hook at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/init.c:299 -jl_exit_thread0_cb at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/signals-unix.c:470 -Allocations: 104787403 (Pool: 104722843; Big: 64560); GC: 531 diff --git a/benchmarking/IdentifiableFunctions/systems/LeukaemiaLeon2021/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/LeukaemiaLeon2021/logs_(:normalforms, 3) deleted file mode 100644 index bfa85a76f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/LeukaemiaLeon2021/logs_(:normalforms, 3) +++ /dev/null @@ -1,91 +0,0 @@ -┌ Info: Processing LeukaemiaLeon2021 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2570633] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_mpoly_mul_johnson at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:439 -_fmpz_mpoly_mul_johnson_maxfields at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:551 -fmpz_mpoly_mul at /workspace/srcdir/flint2/fmpz_mpoly/mul.c:354 -* at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:356 -* at ./operators.jl:578 [inlined] -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -det_minor_expansion at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:43 -eliminate_var at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:400 -unknown function (ip: 0x7f6970f673d2) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -find_ioprojections at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:315 -unknown function (ip: 0x7f6970f6158f) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -#find_ioequations#383 at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:388 -find_ioequations at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:358 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:89 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7f6ba7b88296) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7f6970f2fbaf) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7f6bbebd41c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 104253077 (Pool: 104189216; Big: 63861); GC: 535 - -[2570633] signal (11.128): Segmentation fault -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_clear_mpz at /workspace/srcdir/flint2/fmpz/fmpz.c:133 -_fmpz_demote at /workspace/srcdir/flint2/fmpz.h:100 [inlined] -fmpz_mpoly_clear at /workspace/srcdir/flint2/fmpz_mpoly/clear.c:23 -fmpq_mpoly_clear at /workspace/srcdir/flint2/fmpq_mpoly.h:176 -_fmpq_mpoly_clear_fn at /home/demin/.julia/packages/Nemo/g02iz/src/flint/FlintTypes.jl:1523 -unknown function (ip: 0x7f6ba7b18012) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -run_finalizer at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:417 -jl_gc_run_finalizers_in_list at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:507 -run_finalizers at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:553 -ijl_atexit_hook at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/init.c:299 -jl_exit_thread0_cb at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/signals-unix.c:470 -Allocations: 104253077 (Pool: 104189216; Big: 63861); GC: 536 diff --git a/benchmarking/IdentifiableFunctions/systems/LeukaemiaLeon2021/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/LeukaemiaLeon2021/logs_(:normalforms, 3)_with_states deleted file mode 100644 index d15508966..000000000 --- a/benchmarking/IdentifiableFunctions/systems/LeukaemiaLeon2021/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,92 +0,0 @@ -┌ Info: Processing LeukaemiaLeon2021 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2562843] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -mpoly_monomial_add at /workspace/srcdir/flint2/mpoly.h:298 [inlined] -_fmpz_mpoly_mul_johnson at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:409 -_fmpz_mpoly_mul_johnson_maxfields at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:551 -fmpz_mpoly_mul at /workspace/srcdir/flint2/fmpz_mpoly/mul.c:354 -* at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:356 -* at ./operators.jl:578 [inlined] -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -det_minor_expansion at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:43 -eliminate_var at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:400 -unknown function (ip: 0x7fc7bbb6b532) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -find_ioprojections at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:315 -unknown function (ip: 0x7fc7bbb656ff) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -#find_ioequations#383 at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:388 -find_ioequations at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:358 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:89 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7fc9f275bd46) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7fc7bbb3352f) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7fca097961c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 104946987 (Pool: 104882378; Big: 64609); GC: 529 - -[2562843] signal (11.128): Segmentation fault -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_clear_mpz at /workspace/srcdir/flint2/fmpz/fmpz.c:133 -_fmpz_demote at /workspace/srcdir/flint2/fmpz.h:100 [inlined] -fmpz_mpoly_clear at /workspace/srcdir/flint2/fmpz_mpoly/clear.c:23 -fmpq_mpoly_clear at /workspace/srcdir/flint2/fmpq_mpoly.h:176 -_fmpq_mpoly_clear_fn at /home/demin/.julia/packages/Nemo/g02iz/src/flint/FlintTypes.jl:1523 -unknown function (ip: 0x7fc9f26ebac2) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -run_finalizer at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:417 -jl_gc_run_finalizers_in_list at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:507 -run_finalizers at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:553 -ijl_atexit_hook at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/init.c:299 -jl_exit_thread0_cb at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/signals-unix.c:470 -Allocations: 104946987 (Pool: 104882378; Big: 64609); GC: 530 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs bis)/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs bis)/logs_(:gb,) deleted file mode 100644 index e7ac4f218..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs bis)/logs_(:gb,) +++ /dev/null @@ -1,79 +0,0 @@ -┌ Info: Processing MAPK model (5 outputs bis) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2604234] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -unknown function (ip: 0x7f50ef42f610) -_growend! at ./array.jl:1014 [inlined] -push! at ./array.jl:1061 [inlined] -extract_coefficients at /home/demin/StructuralIdentifiability.jl/src/util.jl:346 -monomial_compress at /home/demin/StructuralIdentifiability.jl/src/wronskian.jl:29 -monomial_compress at /home/demin/StructuralIdentifiability.jl/src/wronskian.jl:20 [inlined] -#283 at ./none:0 [inlined] -iterate at ./generator.jl:47 [inlined] -collect_to! at ./array.jl:840 -collect_to_with_first! at ./array.jl:818 -unknown function (ip: 0x7f50d91cb0a5) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -collect at ./array.jl:792 -unknown function (ip: 0x7f50d91c9852) -wronskian at /home/demin/StructuralIdentifiability.jl/src/wronskian.jl:202 -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:96 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7f50d9187726) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7f4ea250cc1f) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7f50f011a1c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 111192248 (Pool: 111130377; Big: 61871); GC: 1089 -┌ Info: Computed in 502.497223621 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 502.497223621 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs bis)/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs bis)/logs_(:gb,)_with_states deleted file mode 100644 index f406f08b7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs bis)/logs_(:gb,)_with_states +++ /dev/null @@ -1,74 +0,0 @@ -┌ Info: Processing MAPK model (5 outputs bis) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2595890] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_mpoly_radix_sort at /workspace/srcdir/flint2/fmpz_mpoly/sort_terms.c:113 -fmpz_mpoly_sort_terms at /workspace/srcdir/flint2/fmpz_mpoly/sort_terms.c:168 -_fmpz_mpoly_compose_mat at /workspace/srcdir/flint2/fmpz_mpoly/compose_mat.c:63 -fmpz_mpoly_compose_fmpz_mpoly at /workspace/srcdir/flint2/fmpz_mpoly/compose_fmpz_mpoly.c:53 -fmpq_mpoly_compose_fmpq_mpoly at /workspace/srcdir/flint2/fmpq_mpoly/compose_fmpq_mpoly.c:56 -evaluate at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:812 -#332 at /home/demin/StructuralIdentifiability.jl/src/primality_check.jl:52 [inlined] -iterate at ./generator.jl:47 [inlined] -collect_to! at ./array.jl:840 [inlined] -collect_to_with_first! at ./array.jl:818 -_collect at ./array.jl:812 -collect_similar at ./array.jl:711 [inlined] -map at ./abstractarray.jl:3261 [inlined] -check_primality at /home/demin/StructuralIdentifiability.jl/src/primality_check.jl:51 -check_primality at /home/demin/StructuralIdentifiability.jl/src/primality_check.jl:66 [inlined] -#find_ioequations#383 at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:378 -find_ioequations at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:358 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:89 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7faabdd87a56) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7fa88711009f) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7faad4da91c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 106845358 (Pool: 106785644; Big: 59714); GC: 1073 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs bis)/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs bis)/logs_(:hybrid,) deleted file mode 100644 index 677f93a6c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs bis)/logs_(:hybrid,) +++ /dev/null @@ -1,76 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing MAPK model (5 outputs bis) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2554750] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_vec_dot at /workspace/srcdir/flint2/fmpz_vec/dot.c:23 -fmpz_mat_mul_vec at /workspace/srcdir/flint2/mpoly/compose_mat.c:22 -_fmpz_mpoly_compose_mat at /workspace/srcdir/flint2/fmpz_mpoly/compose_mat.c:45 -fmpz_mpoly_compose_fmpz_mpoly at /workspace/srcdir/flint2/fmpz_mpoly/compose_fmpz_mpoly.c:53 -fmpq_mpoly_compose_fmpq_mpoly at /workspace/srcdir/flint2/fmpq_mpoly/compose_fmpq_mpoly.c:56 -evaluate at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:812 -#332 at /home/demin/StructuralIdentifiability.jl/src/primality_check.jl:52 [inlined] -iterate at ./generator.jl:47 [inlined] -collect_to! at ./array.jl:840 [inlined] -collect_to_with_first! at ./array.jl:818 -_collect at ./array.jl:812 -collect_similar at ./array.jl:711 [inlined] -map at ./abstractarray.jl:3261 [inlined] -check_primality at /home/demin/StructuralIdentifiability.jl/src/primality_check.jl:51 -check_primality at /home/demin/StructuralIdentifiability.jl/src/primality_check.jl:66 [inlined] -#find_ioequations#383 at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:378 -find_ioequations at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:358 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:89 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7fc23818a806) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7fc00196774f) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7fc24f4b71c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 114649719 (Pool: 114585791; Big: 63928); GC: 1984 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs bis)/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs bis)/logs_(:hybrid,)_with_states deleted file mode 100644 index dbcc649b5..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs bis)/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,76 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing MAPK model (5 outputs bis) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2545998] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_mpoly_radix_sort at /workspace/srcdir/flint2/fmpz_mpoly/sort_terms.c:113 -fmpz_mpoly_sort_terms at /workspace/srcdir/flint2/fmpz_mpoly/sort_terms.c:168 -_fmpz_mpoly_compose_mat at /workspace/srcdir/flint2/fmpz_mpoly/compose_mat.c:63 -fmpz_mpoly_compose_fmpz_mpoly at /workspace/srcdir/flint2/fmpz_mpoly/compose_fmpz_mpoly.c:53 -fmpq_mpoly_compose_fmpq_mpoly at /workspace/srcdir/flint2/fmpq_mpoly/compose_fmpq_mpoly.c:56 -evaluate at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:812 -#332 at /home/demin/StructuralIdentifiability.jl/src/primality_check.jl:52 [inlined] -iterate at ./generator.jl:47 [inlined] -collect_to! at ./array.jl:840 [inlined] -collect_to_with_first! at ./array.jl:818 -_collect at ./array.jl:812 -collect_similar at ./array.jl:711 [inlined] -map at ./abstractarray.jl:3261 [inlined] -check_primality at /home/demin/StructuralIdentifiability.jl/src/primality_check.jl:51 -check_primality at /home/demin/StructuralIdentifiability.jl/src/primality_check.jl:66 [inlined] -#find_ioequations#383 at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:378 -find_ioequations at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:358 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:89 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7fbd0eb87b96) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7fbad7f6adff) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7fbd25b6d1c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 116492208 (Pool: 116427439; Big: 64769); GC: 1987 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs bis)/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs bis)/logs_(:normalforms, 2) deleted file mode 100644 index a0e0689d2..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs bis)/logs_(:normalforms, 2) +++ /dev/null @@ -1,74 +0,0 @@ -┌ Info: Processing MAPK model (5 outputs bis) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2587593] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_mpoly_radix_sort at /workspace/srcdir/flint2/fmpz_mpoly/sort_terms.c:113 -fmpz_mpoly_sort_terms at /workspace/srcdir/flint2/fmpz_mpoly/sort_terms.c:168 -_fmpz_mpoly_compose_mat at /workspace/srcdir/flint2/fmpz_mpoly/compose_mat.c:63 -fmpz_mpoly_compose_fmpz_mpoly at /workspace/srcdir/flint2/fmpz_mpoly/compose_fmpz_mpoly.c:53 -fmpq_mpoly_compose_fmpq_mpoly at /workspace/srcdir/flint2/fmpq_mpoly/compose_fmpq_mpoly.c:56 -evaluate at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:812 -#332 at /home/demin/StructuralIdentifiability.jl/src/primality_check.jl:52 [inlined] -iterate at ./generator.jl:47 [inlined] -collect_to! at ./array.jl:840 [inlined] -collect_to_with_first! at ./array.jl:818 -_collect at ./array.jl:812 -collect_similar at ./array.jl:711 [inlined] -map at ./abstractarray.jl:3261 [inlined] -check_primality at /home/demin/StructuralIdentifiability.jl/src/primality_check.jl:51 -check_primality at /home/demin/StructuralIdentifiability.jl/src/primality_check.jl:66 [inlined] -#find_ioequations#383 at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:378 -find_ioequations at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:358 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:89 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7feb4b15a7e6) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7fe91452f13f) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7feb6210d1c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 109876553 (Pool: 109815602; Big: 60951); GC: 1974 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs bis)/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs bis)/logs_(:normalforms, 2)_with_states deleted file mode 100644 index afac89709..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs bis)/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,74 +0,0 @@ -┌ Info: Processing MAPK model (5 outputs bis) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2579000] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_mpoly_radix_sort at /workspace/srcdir/flint2/fmpz_mpoly/sort_terms.c:113 -fmpz_mpoly_sort_terms at /workspace/srcdir/flint2/fmpz_mpoly/sort_terms.c:168 -_fmpz_mpoly_compose_mat at /workspace/srcdir/flint2/fmpz_mpoly/compose_mat.c:63 -fmpz_mpoly_compose_fmpz_mpoly at /workspace/srcdir/flint2/fmpz_mpoly/compose_fmpz_mpoly.c:53 -fmpq_mpoly_compose_fmpq_mpoly at /workspace/srcdir/flint2/fmpq_mpoly/compose_fmpq_mpoly.c:56 -evaluate at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:812 -#332 at /home/demin/StructuralIdentifiability.jl/src/primality_check.jl:52 [inlined] -iterate at ./generator.jl:47 [inlined] -collect_to! at ./array.jl:840 [inlined] -collect_to_with_first! at ./array.jl:818 -_collect at ./array.jl:812 -collect_similar at ./array.jl:711 [inlined] -map at ./abstractarray.jl:3261 [inlined] -check_primality at /home/demin/StructuralIdentifiability.jl/src/primality_check.jl:51 -check_primality at /home/demin/StructuralIdentifiability.jl/src/primality_check.jl:66 [inlined] -#find_ioequations#383 at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:378 -find_ioequations at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:358 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:89 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7ff611588326) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7ff3da93376f) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7ff6285b41c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 110451231 (Pool: 110389569; Big: 61662); GC: 1081 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs bis)/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs bis)/logs_(:normalforms, 3) deleted file mode 100644 index 271ab3963..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs bis)/logs_(:normalforms, 3) +++ /dev/null @@ -1,74 +0,0 @@ -┌ Info: Processing MAPK model (5 outputs bis) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2570446] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_mpoly_radix_sort at /workspace/srcdir/flint2/fmpz_mpoly/sort_terms.c:113 -fmpz_mpoly_sort_terms at /workspace/srcdir/flint2/fmpz_mpoly/sort_terms.c:168 -_fmpz_mpoly_compose_mat at /workspace/srcdir/flint2/fmpz_mpoly/compose_mat.c:63 -fmpz_mpoly_compose_fmpz_mpoly at /workspace/srcdir/flint2/fmpz_mpoly/compose_fmpz_mpoly.c:53 -fmpq_mpoly_compose_fmpq_mpoly at /workspace/srcdir/flint2/fmpq_mpoly/compose_fmpq_mpoly.c:56 -evaluate at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:812 -#332 at /home/demin/StructuralIdentifiability.jl/src/primality_check.jl:52 [inlined] -iterate at ./generator.jl:47 [inlined] -collect_to! at ./array.jl:840 [inlined] -collect_to_with_first! at ./array.jl:818 -_collect at ./array.jl:812 -collect_similar at ./array.jl:711 [inlined] -map at ./abstractarray.jl:3261 [inlined] -check_primality at /home/demin/StructuralIdentifiability.jl/src/primality_check.jl:51 -check_primality at /home/demin/StructuralIdentifiability.jl/src/primality_check.jl:66 [inlined] -#find_ioequations#383 at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:378 -find_ioequations at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:358 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:89 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7f0dd1987886) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7f0b9ad2f12f) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7f0de89601c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 109910792 (Pool: 109849833; Big: 60959); GC: 1974 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs bis)/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs bis)/logs_(:normalforms, 3)_with_states deleted file mode 100644 index c31b33493..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs bis)/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,74 +0,0 @@ -┌ Info: Processing MAPK model (5 outputs bis) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2562462] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_mpoly_radix_sort at /workspace/srcdir/flint2/fmpz_mpoly/sort_terms.c:113 -fmpz_mpoly_sort_terms at /workspace/srcdir/flint2/fmpz_mpoly/sort_terms.c:168 -_fmpz_mpoly_compose_mat at /workspace/srcdir/flint2/fmpz_mpoly/compose_mat.c:63 -fmpz_mpoly_compose_fmpz_mpoly at /workspace/srcdir/flint2/fmpz_mpoly/compose_fmpz_mpoly.c:53 -fmpq_mpoly_compose_fmpq_mpoly at /workspace/srcdir/flint2/fmpq_mpoly/compose_fmpq_mpoly.c:56 -evaluate at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:812 -#332 at /home/demin/StructuralIdentifiability.jl/src/primality_check.jl:52 [inlined] -iterate at ./generator.jl:47 [inlined] -collect_to! at ./array.jl:840 [inlined] -collect_to_with_first! at ./array.jl:818 -_collect at ./array.jl:812 -collect_similar at ./array.jl:711 [inlined] -map at ./abstractarray.jl:3261 [inlined] -check_primality at /home/demin/StructuralIdentifiability.jl/src/primality_check.jl:51 -check_primality at /home/demin/StructuralIdentifiability.jl/src/primality_check.jl:66 [inlined] -#find_ioequations#383 at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:378 -find_ioequations at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:358 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:89 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7f0d0eb8b326) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7f0ac7132bcf) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7f0d14e901c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 110613281 (Pool: 110551570; Big: 61711); GC: 1079 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/id_funcs_(:gb,) deleted file mode 100644 index b2f884b23..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/id_funcs_(:gb,) +++ /dev/null @@ -1,22 +0,0 @@ -[a10, -gamma1110, -a01, -c1011, -b01, -a00, -gamma1101, -b10, -c0010, -c0011, -gamma1100, -alpha01, -beta01, -alpha11, -beta10, -c0111, -alpha10, -b00, -beta11, -gamma1000, -gamma0100, -c0001] diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/id_funcs_(:gb,)_with_states deleted file mode 100644 index 6d60e3e4b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,34 +0,0 @@ -[F, -S11, -KS00, -S00, -FS01, -KS10, -K, -FS11, -FS10, -S10, -S01, -KS01, -a10, -gamma1110, -a01, -c1011, -b01, -a00, -gamma1101, -b10, -c0010, -c0011, -gamma1100, -alpha01, -beta01, -alpha11, -beta10, -c0111, -alpha10, -b00, -beta11, -gamma1000, -gamma0100, -c0001] diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/id_funcs_(:hybrid,) deleted file mode 100644 index b2f884b23..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/id_funcs_(:hybrid,) +++ /dev/null @@ -1,22 +0,0 @@ -[a10, -gamma1110, -a01, -c1011, -b01, -a00, -gamma1101, -b10, -c0010, -c0011, -gamma1100, -alpha01, -beta01, -alpha11, -beta10, -c0111, -alpha10, -b00, -beta11, -gamma1000, -gamma0100, -c0001] diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index 6d60e3e4b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,34 +0,0 @@ -[F, -S11, -KS00, -S00, -FS01, -KS10, -K, -FS11, -FS10, -S10, -S01, -KS01, -a10, -gamma1110, -a01, -c1011, -b01, -a00, -gamma1101, -b10, -c0010, -c0011, -gamma1100, -alpha01, -beta01, -alpha11, -beta10, -c0111, -alpha10, -b00, -beta11, -gamma1000, -gamma0100, -c0001] diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/id_funcs_(:normalforms, 2) deleted file mode 100644 index b2f884b23..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,22 +0,0 @@ -[a10, -gamma1110, -a01, -c1011, -b01, -a00, -gamma1101, -b10, -c0010, -c0011, -gamma1100, -alpha01, -beta01, -alpha11, -beta10, -c0111, -alpha10, -b00, -beta11, -gamma1000, -gamma0100, -c0001] diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index 6d60e3e4b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,34 +0,0 @@ -[F, -S11, -KS00, -S00, -FS01, -KS10, -K, -FS11, -FS10, -S10, -S01, -KS01, -a10, -gamma1110, -a01, -c1011, -b01, -a00, -gamma1101, -b10, -c0010, -c0011, -gamma1100, -alpha01, -beta01, -alpha11, -beta10, -c0111, -alpha10, -b00, -beta11, -gamma1000, -gamma0100, -c0001] diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/id_funcs_(:normalforms, 3) deleted file mode 100644 index b2f884b23..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,22 +0,0 @@ -[a10, -gamma1110, -a01, -c1011, -b01, -a00, -gamma1101, -b10, -c0010, -c0011, -gamma1100, -alpha01, -beta01, -alpha11, -beta10, -c0111, -alpha10, -b00, -beta11, -gamma1000, -gamma0100, -c0001] diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index 6d60e3e4b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,34 +0,0 @@ -[F, -S11, -KS00, -S00, -FS01, -KS10, -K, -FS11, -FS10, -S10, -S01, -KS01, -a10, -gamma1110, -a01, -c1011, -b01, -a00, -gamma1101, -b10, -c0010, -c0011, -gamma1100, -alpha01, -beta01, -alpha11, -beta10, -c0111, -alpha10, -b00, -beta11, -gamma1000, -gamma0100, -c0001] diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/logs_(:gb,) deleted file mode 100644 index 87e1bba3c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/logs_(:gb,) +++ /dev/null @@ -1,89 +0,0 @@ -┌ Info: Processing MAPK model (5 outputs) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 31.916476795 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 31.916476795 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 1.480959902 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 1.480959902 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [149, 44, 96, 1, 60] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.002391379 seconds -│ :rank_time = rank_time -│ rank_times = 0.002391379 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:08 ✓ # Computing specializations.. Time: 0:00:08 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ⌞ # Computing specializations.. Time: 0:00:02 ⌜ # Computing specializations.. Time: 0:00:03 ⌝ # Computing specializations.. Time: 0:00:03 ⌟ # Computing specializations.. Time: 0:00:03 ⌞ # Computing specializations.. Time: 0:00:04 ⌜ # Computing specializations.. Time: 0:00:04 ⌝ # Computing specializations.. Time: 0:00:04 ⌟ # Computing specializations.. Time: 0:00:05 ⌞ # Computing specializations.. Time: 0:00:05 ✓ # Computing specializations.. Time: 0:00:05 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 4  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 8  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 12  ✓ # Computing specializations.. Time: 0:00:01 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 514 functions in Rational Field(c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 13)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 16.462016686 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 6.143246597 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 23 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 4.187926688 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 513 initial generators there are 22 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 253 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 60.909640258 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[a10, gamma1110, a01, c1011, b01, a00, gamma1101, b10, c0010, c0011, gamma1100, alpha01, beta01, alpha11, beta10, c0111, alpha10, b00, beta11, gamma1000, gamma0100, c0001] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/logs_(:gb,)_with_states deleted file mode 100644 index a46a050b3..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/logs_(:gb,)_with_states +++ /dev/null @@ -1,142 +0,0 @@ -┌ Info: Processing MAPK model (5 outputs) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 32.78951743 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 32.78951743 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 1.480707157 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 1.480707157 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [149, 44, 96, 1, 60] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.002404018 seconds -│ :rank_time = rank_time -│ rank_times = 0.002404018 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:09 ✓ # Computing specializations.. Time: 0:00:09 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:02 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ⌞ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:03 ⌝ # Computing specializations.. Time: 0:00:04 ⌟ # Computing specializations.. Time: 0:00:04 ⌞ # Computing specializations.. Time: 0:00:04 ⌜ # Computing specializations.. Time: 0:00:05 ⌝ # Computing specializations.. Time: 0:00:05 ⌟ # Computing specializations.. Time: 0:00:06 ⌞ # Computing specializations.. Time: 0:00:06 ⌜ # Computing specializations.. Time: 0:00:07 ⌝ # Computing specializations.. Time: 0:00:07 ⌟ # Computing specializations.. Time: 0:00:07 ⌞ # Computing specializations.. Time: 0:00:08 ⌜ # Computing specializations.. Time: 0:00:08 ⌝ # Computing specializations.. Time: 0:00:09 ⌟ # Computing specializations.. Time: 0:00:09 ✓ # Computing specializations.. Time: 0:00:09 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 2  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 5  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 8  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 11  ✓ # Computing specializations.. Time: 0:00:01 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 514 functions in Rational Field(c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10, KS01, S01, S10, FS10, FS11, K, KS10, FS01, S00, KS00, S11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 13)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 21.386813956 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 6.675808893 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 23 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 4.444748919 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 513 initial generators there are 22 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 253 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 40 functions in Rational Field(c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10, KS01, S01, S10, FS10, FS11, K, KS10, FS01, S00, KS00, S11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.0609015 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.091788981 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 36 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.016823153 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 39 initial generators there are 34 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 595 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 68.049260104 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[F, S11, KS00, S00, FS01, KS10, K, FS11, FS10, S10, S01, KS01, a10, gamma1110, a01, c1011, b01, a00, gamma1101, b10, c0010, c0011, gamma1100, alpha01, beta01, alpha11, beta10, c0111, alpha10, b00, beta11, gamma1000, gamma0100, c0001] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/logs_(:hybrid,) deleted file mode 100644 index c4a64a5ce..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/logs_(:hybrid,) +++ /dev/null @@ -1,536 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing MAPK model (5 outputs) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 34.677689487 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 34.677689487 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 1.61232646 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 1.61232646 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [149, 44, 96, 1, 60] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.002456551 seconds -│ :rank_time = rank_time -│ rank_times = 0.002456551 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:09 ✓ # Computing specializations.. Time: 0:00:09 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ⌞ # Computing specializations.. Time: 0:00:02 ⌜ # Computing specializations.. Time: 0:00:03 ⌝ # Computing specializations.. Time: 0:00:03 ⌟ # Computing specializations.. Time: 0:00:04 ⌞ # Computing specializations.. Time: 0:00:04 ⌜ # Computing specializations.. Time: 0:00:04 ⌝ # Computing specializations.. Time: 0:00:05 ⌟ # Computing specializations.. Time: 0:00:05 ⌞ # Computing specializations.. Time: 0:00:05 ✓ # Computing specializations.. Time: 0:00:06 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 3  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 7  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 11  ✓ # Computing specializations.. Time: 0:00:01 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 514 functions in Rational Field(c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 13)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 17.770712357 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 6.004386556 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 23 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (22 in total): Nemo.fmpq_mpoly[c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y21, y2, y4, y12, y20, y5, y13, y1, y18, y6, y11], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y14, y10, y17, y8, t, y7, y15, y3, y9, y19, y16, y22], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 23 functions in Rational Field(c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.032498102 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003271301 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y21, y7, y1, y14, y11, y22, y5, y10, y15, y13], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3, y17, y6, y2, y18, y16, y20, y12, y9, y8, y19], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 23 functions in Rational Field(c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.084816014 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003492725 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y17, y4, y19, y1, y22, y10, y18, y5, y3, y11, t], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y14, y12, y21, y6, y16, y20, y8, y9, y2, y7, y15, y13], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 23 functions in Rational Field(c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.033080991 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003205148 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y13, y2, y6, y22, y11, y10, y21, y17, y19, y12, y1], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y18, y4, y20, y8, t, y5, y3, y15, y16, y7, y14, y9], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 23 functions in Rational Field(c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.090045336 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003180847 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y19, y7, y14, y2, y18, y3, y22, t, y8, y17], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y16, y13, y10, y4, y15, y12, y11, y20, y21, y9, y5, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 23 functions in Rational Field(c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.027923807 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003084765 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y15, y21, y4, y13, y7, y17, y11, y20, y19, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y22, y18, y12, y16, y1, y8, y6, y9, y10, y3, y14], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 23 functions in Rational Field(c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.087504793 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003279778 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y19, y3, y8, y5, y13, y18, y4, y17, y11, y2, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y14, y16, y12, y15, y22, y7, y6, y9, y21, y10, y20, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 23 functions in Rational Field(c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.027151577 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.053664303 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y16, y22, y19, y21, y5, y12, y20, y17, t, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y15, y13, y4, y14, y8, y1, y11, y18, y9, y10, y3, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 23 functions in Rational Field(c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.032131165 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003049452 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y21, y19, y11, y4, y3, y16, y9, y17, y12, y13, y14], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, t, y1, y2, y15, y6, y7, y18, y22, y5, y8, y20], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 23 functions in Rational Field(c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.026316757 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.054428609 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y1, y6, y21, y2, y18, y19, y5, y8, y15, y16], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y12, y7, y14, y4, y22, y11, y3, y17, y20, y13, y10], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 23 functions in Rational Field(c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.031419522 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003053889 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 4.518369538 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 513 initial generators there are 22 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 253 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 66.849762448 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[a10, gamma1110, a01, c1011, b01, a00, gamma1101, b10, c0010, c0011, gamma1100, alpha01, beta01, alpha11, beta10, c0111, alpha10, b00, beta11, gamma1000, gamma0100, c0001] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/logs_(:hybrid,)_with_states deleted file mode 100644 index e1dbbd18d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,589 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing MAPK model (5 outputs) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 29.420579279 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 29.420579279 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 1.403965584 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 1.403965584 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [149, 44, 96, 1, 60] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.00216712 seconds -│ :rank_time = rank_time -│ rank_times = 0.00216712 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:09 ✓ # Computing specializations.. Time: 0:00:09 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ⌞ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:03 ⌝ # Computing specializations.. Time: 0:00:04 ⌟ # Computing specializations.. Time: 0:00:04 ⌞ # Computing specializations.. Time: 0:00:04 ⌜ # Computing specializations.. Time: 0:00:05 ⌝ # Computing specializations.. Time: 0:00:05 ⌟ # Computing specializations.. Time: 0:00:06 ⌞ # Computing specializations.. Time: 0:00:06 ⌜ # Computing specializations.. Time: 0:00:07 ⌝ # Computing specializations.. Time: 0:00:07 ⌟ # Computing specializations.. Time: 0:00:07 ⌞ # Computing specializations.. Time: 0:00:08 ⌜ # Computing specializations.. Time: 0:00:08 ⌝ # Computing specializations.. Time: 0:00:09 ✓ # Computing specializations.. Time: 0:00:09 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 2  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 5  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 8  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 10  ✓ # Computing specializations.. Time: 0:00:01 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 514 functions in Rational Field(c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10, KS01, S01, S10, FS10, FS11, K, KS10, FS01, S00, KS00, S11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 13)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 21.129413053 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 6.362717577 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 23 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 4.244889006 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 513 initial generators there are 22 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 253 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 40 functions in Rational Field(c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10, KS01, S01, S10, FS10, FS11, K, KS10, FS01, S00, KS00, S11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.11265061 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.021673022 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 36 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (34 in total): Nemo.fmpq_mpoly[c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10, KS01, S01, S10, FS10, FS11, K, KS10, FS01, S00, KS00, S11, F] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y12, y24, y3, y1, y16, y21, y26, t, y30, y11, y19, y34, y28, y25, y29, y9, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y15, y33, y6, y4, y13, y18, y22, y2, y20, y27, y8, y32, y5, y10, y31, y23, y14, y17], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 35 functions in Rational Field(c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10, KS01, S01, S10, FS10, FS11, K, KS10, FS01, S00, KS00, S11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.045163346 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.051788912 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 36 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y34, y10, y31, y15, y24, y1, y21, y28, y5, y33, y2, y12, y3, y18, y32, y6, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y14, y29, y25, y9, y17, y30, y20, y11, y8, y27, y16, y19, y23, y13, y4, y7, y22, y26], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 35 functions in Rational Field(c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10, KS01, S01, S10, FS10, FS11, K, KS10, FS01, S00, KS00, S11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.046984056 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005175019 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 36 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y27, y2, y31, t, y9, y15, y13, y16, y1, y19, y30, y23, y5, y34, y8, y14, y3], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y29, y18, y33, y24, y11, y22, y28, y17, y10, y20, y12, y6, y26, y25, y7, y32, y4, y21], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 35 functions in Rational Field(c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10, KS01, S01, S10, FS10, FS11, K, KS10, FS01, S00, KS00, S11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.043356185 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00491179 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 36 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y33, y15, y23, y9, y27, y22, y20, y19, y2, y16, y24, y13, y4, y25, y12, y30, y17], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y29, y5, y26, y6, y8, y14, y28, y3, y1, y32, y34, y7, y10, y18, y31, y11, t, y21], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 35 functions in Rational Field(c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10, KS01, S01, S10, FS10, FS11, K, KS10, FS01, S00, KS00, S11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.097198627 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00444547 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 36 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y27, y20, y10, y19, y34, y8, y24, y5, y30, y22, y31, y3, y9, t, y17, y23], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y32, y7, y11, y21, y12, y4, y25, y33, y1, y16, y29, y13, y18, y28, y26, y15, y14], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 35 functions in Rational Field(c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10, KS01, S01, S10, FS10, FS11, K, KS10, FS01, S00, KS00, S11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.087067755 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004792824 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 36 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y18, y24, y19, y8, y28, y31, y7, y29, y11, y1, y26, y22, t, y3, y6, y10, y4], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y21, y30, y9, y16, y27, y34, y32, y2, y33, y17, y20, y23, y25, y5, y14, y13, y12, y15], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 35 functions in Rational Field(c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10, KS01, S01, S10, FS10, FS11, K, KS10, FS01, S00, KS00, S11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.082373813 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004754836 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 36 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y14, y33, y22, y26, y34, y5, t, y25, y12, y18, y28, y17, y19, y1, y24, y29, y4], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y27, y7, y2, y20, y3, y9, y10, y32, y13, y16, y30, y31, y8, y6, y23, y11, y21, y15], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 35 functions in Rational Field(c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10, KS01, S01, S10, FS10, FS11, K, KS10, FS01, S00, KS00, S11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.045723184 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.041950381 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 36 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y13, y14, y12, y7, y1, y26, y11, y28, t, y25, y23, y29, y10, y4, y9, y8, y20], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y16, y22, y31, y2, y24, y17, y19, y32, y34, y15, y21, y30, y5, y18, y3, y33, y27], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 35 functions in Rational Field(c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10, KS01, S01, S10, FS10, FS11, K, KS10, FS01, S00, KS00, S11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.045162486 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005036623 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 36 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y22, y18, y27, y15, y7, t, y8, y9, y28, y24, y33, y12, y29, y31, y10, y14, y20], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y34, y32, y19, y13, y23, y30, y16, y4, y17, y3, y11, y25, y6, y5, y21, y1, y26, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 35 functions in Rational Field(c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10, KS01, S01, S10, FS10, FS11, K, KS10, FS01, S00, KS00, S11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.087505677 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004761326 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 36 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y17, t, y20, y5, y26, y6, y16, y27, y3, y13, y30, y24, y15, y7, y1, y4, y10], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y23, y21, y2, y9, y32, y11, y18, y19, y28, y14, y22, y31, y29, y8, y34, y33, y25, y12], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 35 functions in Rational Field(c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10, KS01, S01, S10, FS10, FS11, K, KS10, FS01, S00, KS00, S11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.093656493 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004585758 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 36 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.032570429 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 39 initial generators there are 34 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 595 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 65.380585282 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[F, S11, KS00, S00, FS01, KS10, K, FS11, FS10, S10, S01, KS01, a10, gamma1110, a01, c1011, b01, a00, gamma1101, b10, c0010, c0011, gamma1100, alpha01, beta01, alpha11, beta10, c0111, alpha10, b00, beta11, gamma1000, gamma0100, c0001] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/logs_(:normalforms, 2) deleted file mode 100644 index b5ff5df2c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/logs_(:normalforms, 2) +++ /dev/null @@ -1,100 +0,0 @@ -┌ Info: Processing MAPK model (5 outputs) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 32.262039807 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 32.262039807 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 1.503539151 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 1.503539151 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [149, 44, 96, 1, 60] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.002362095 seconds -│ :rank_time = rank_time -│ rank_times = 0.002362095 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:08 ✓ # Computing specializations.. Time: 0:00:09 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ⌞ # Computing specializations.. Time: 0:00:02 ⌜ # Computing specializations.. Time: 0:00:03 ⌝ # Computing specializations.. Time: 0:00:03 ⌟ # Computing specializations.. Time: 0:00:03 ⌞ # Computing specializations.. Time: 0:00:04 ⌜ # Computing specializations.. Time: 0:00:04 ⌝ # Computing specializations.. Time: 0:00:04 ⌟ # Computing specializations.. Time: 0:00:05 ⌞ # Computing specializations.. Time: 0:00:05 ✓ # Computing specializations.. Time: 0:00:05 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 3  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 7  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 11  ✓ # Computing specializations.. Time: 0:00:01 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 514 functions in Rational Field(c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 13)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 16.834947655 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 6.418195783 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 23 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (22 in total): Nemo.fmpq_mpoly[c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 4.186375375 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 513 initial generators there are 22 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 253 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 62.549057461 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[a10, gamma1110, a01, c1011, b01, a00, gamma1101, b10, c0010, c0011, gamma1100, alpha01, beta01, alpha11, beta10, c0111, alpha10, b00, beta11, gamma1000, gamma0100, c0001] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/logs_(:normalforms, 2)_with_states deleted file mode 100644 index f801511cc..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,153 +0,0 @@ -┌ Info: Processing MAPK model (5 outputs) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 32.377957618 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 32.377957618 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 1.506002068 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 1.506002068 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [149, 44, 96, 1, 60] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.002406045 seconds -│ :rank_time = rank_time -│ rank_times = 0.002406045 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:09 ✓ # Computing specializations.. Time: 0:00:09 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:02 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ⌞ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:03 ⌝ # Computing specializations.. Time: 0:00:04 ⌟ # Computing specializations.. Time: 0:00:04 ⌞ # Computing specializations.. Time: 0:00:04 ⌜ # Computing specializations.. Time: 0:00:05 ⌝ # Computing specializations.. Time: 0:00:05 ⌟ # Computing specializations.. Time: 0:00:06 ⌞ # Computing specializations.. Time: 0:00:06 ⌜ # Computing specializations.. Time: 0:00:06 ⌝ # Computing specializations.. Time: 0:00:07 ⌟ # Computing specializations.. Time: 0:00:07 ⌞ # Computing specializations.. Time: 0:00:08 ⌜ # Computing specializations.. Time: 0:00:08 ⌝ # Computing specializations.. Time: 0:00:09 ⌟ # Computing specializations.. Time: 0:00:09 ✓ # Computing specializations.. Time: 0:00:09 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 2  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 5  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 8  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 11  ✓ # Computing specializations.. Time: 0:00:01 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 514 functions in Rational Field(c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10, KS01, S01, S10, FS10, FS11, K, KS10, FS01, S00, KS00, S11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 13)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 21.533030643 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 6.506584747 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 23 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 4.306636884 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 513 initial generators there are 22 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 253 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 40 functions in Rational Field(c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10, KS01, S01, S10, FS10, FS11, K, KS10, FS01, S00, KS00, S11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.063620982 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.088735332 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 36 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (34 in total): Nemo.fmpq_mpoly[c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10, KS01, S01, S10, FS10, FS11, K, KS10, FS01, S00, KS00, S11, F] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.018424828 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 39 initial generators there are 34 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 595 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 67.937611916 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[F, S11, KS00, S00, FS01, KS10, K, FS11, FS10, S10, S01, KS01, a10, gamma1110, a01, c1011, b01, a00, gamma1101, b10, c0010, c0011, gamma1100, alpha01, beta01, alpha11, beta10, c0111, alpha10, b00, beta11, gamma1000, gamma0100, c0001] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/logs_(:normalforms, 3) deleted file mode 100644 index 38b0e71a6..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/logs_(:normalforms, 3) +++ /dev/null @@ -1,100 +0,0 @@ -┌ Info: Processing MAPK model (5 outputs) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 31.860273556 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 31.860273556 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 1.526784283 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 1.526784283 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [149, 44, 96, 1, 60] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.002363839 seconds -│ :rank_time = rank_time -│ rank_times = 0.002363839 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:09 ✓ # Computing specializations.. Time: 0:00:09 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ⌞ # Computing specializations.. Time: 0:00:02 ⌜ # Computing specializations.. Time: 0:00:03 ⌝ # Computing specializations.. Time: 0:00:03 ⌟ # Computing specializations.. Time: 0:00:03 ⌞ # Computing specializations.. Time: 0:00:04 ⌜ # Computing specializations.. Time: 0:00:04 ⌝ # Computing specializations.. Time: 0:00:04 ⌟ # Computing specializations.. Time: 0:00:05 ⌞ # Computing specializations.. Time: 0:00:05 ✓ # Computing specializations.. Time: 0:00:05 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 3  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 7  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 11  ✓ # Computing specializations.. Time: 0:00:01 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 514 functions in Rational Field(c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 13)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 17.219215415 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 5.947709571 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 23 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (22 in total): Nemo.fmpq_mpoly[c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 4.463588586 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 513 initial generators there are 22 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 253 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 62.401335765 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[a10, gamma1110, a01, c1011, b01, a00, gamma1101, b10, c0010, c0011, gamma1100, alpha01, beta01, alpha11, beta10, c0111, alpha10, b00, beta11, gamma1000, gamma0100, c0001] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/logs_(:normalforms, 3)_with_states deleted file mode 100644 index 7ac7054bf..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,155 +0,0 @@ -┌ Info: Processing MAPK model (5 outputs) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 33.113315154 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 33.113315154 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 2.328462633 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 2.328462633 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [149, 44, 96, 1, 60] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.002383607 seconds -│ :rank_time = rank_time -│ rank_times = 0.002383607 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:09 ✓ # Computing specializations.. Time: 0:00:09 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ⌞ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:03 ⌝ # Computing specializations.. Time: 0:00:04 ⌟ # Computing specializations.. Time: 0:00:04 ⌞ # Computing specializations.. Time: 0:00:05 ⌜ # Computing specializations.. Time: 0:00:05 ⌝ # Computing specializations.. Time: 0:00:05 ⌟ # Computing specializations.. Time: 0:00:06 ⌞ # Computing specializations.. Time: 0:00:06 ⌜ # Computing specializations.. Time: 0:00:07 ⌝ # Computing specializations.. Time: 0:00:07 ⌟ # Computing specializations.. Time: 0:00:08 ⌞ # Computing specializations.. Time: 0:00:08 ⌜ # Computing specializations.. Time: 0:00:08 ⌝ # Computing specializations.. Time: 0:00:09 ⌟ # Computing specializations.. Time: 0:00:09 ⌞ # Computing specializations.. Time: 0:00:10 ⌜ # Computing specializations.. Time: 0:00:11 ⌝ # Computing specializations.. Time: 0:00:12 ⌟ # Computing specializations.. Time: 0:00:12 ⌞ # Computing specializations.. Time: 0:00:12 ✓ # Computing specializations.. Time: 0:00:13 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 2  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 4  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 6  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 8  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 10  ⌝ # Computing specializations.. Time: 0:00:01 - Points: 12  ✓ # Computing specializations.. Time: 0:00:01 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 514 functions in Rational Field(c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10, KS01, S01, S10, FS10, FS11, K, KS10, FS01, S00, KS00, S11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 13)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 25.355588643 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 7.347231328 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 23 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 4.571927854 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 513 initial generators there are 22 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 253 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 40 functions in Rational Field(c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10, KS01, S01, S10, FS10, FS11, K, KS10, FS01, S00, KS00, S11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.063772007 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.093589085 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 36 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (34 in total): Nemo.fmpq_mpoly[c0001, gamma0100, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, alpha01, gamma1100, c0011, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, a10, KS01, S01, S10, FS10, FS11, K, KS10, FS01, S00, KS00, S11, F] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.02005303 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 39 initial generators there are 34 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 595 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 74.712933454 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[F, S11, KS00, S00, FS01, KS10, K, FS11, FS10, S10, S01, KS01, a10, gamma1110, a01, c1011, b01, a00, gamma1101, b10, c0010, c0011, gamma1100, alpha01, beta01, alpha11, beta10, c0111, alpha10, b00, beta11, gamma1000, gamma0100, c0001] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/timings_(:gb,) deleted file mode 100644 index 3b2d6967c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -MAPK model (5 outputs) -id_total, 60.909640258 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/timings_(:gb,)_with_states deleted file mode 100644 index 31ed38adb..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -MAPK model (5 outputs) -id_total, 68.049260104 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/timings_(:hybrid,) deleted file mode 100644 index 6dab696b8..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -MAPK model (5 outputs) -id_total, 66.849762448 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/timings_(:hybrid,)_with_states deleted file mode 100644 index f4fde5a0b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -MAPK model (5 outputs) -id_total, 65.380585282 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/timings_(:normalforms, 2) deleted file mode 100644 index 8d9d5c1f4..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -MAPK model (5 outputs) -id_total, 62.549057461 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/timings_(:normalforms, 2)_with_states deleted file mode 100644 index 826adbcfc..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -MAPK model (5 outputs) -id_total, 67.937611916 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/timings_(:normalforms, 3) deleted file mode 100644 index e49cc352a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -MAPK model (5 outputs) -id_total, 62.401335765 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/timings_(:normalforms, 3)_with_states deleted file mode 100644 index 204fc89f7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (5 outputs)/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -MAPK model (5 outputs) -id_total, 74.712933454 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/id_funcs_(:gb,) deleted file mode 100644 index 23f85e1f7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/id_funcs_(:gb,) +++ /dev/null @@ -1,22 +0,0 @@ -[gamma0100, -gamma1110, -a01, -c1011, -b01, -a00, -gamma1101, -b10, -c0010, -alpha01, -gamma1100, -c0011, -beta01, -alpha11, -beta10, -c0111, -alpha10, -b00, -beta11, -gamma1000, -c0001, -a10] diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/id_funcs_(:gb,)_with_states deleted file mode 100644 index 276010e35..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,34 +0,0 @@ -[F, -FS11, -FS10, -K, -S10, -KS01, -S00, -S01, -S11, -KS10, -FS01, -KS00, -gamma0100, -gamma1110, -a01, -c1011, -b01, -a00, -gamma1101, -b10, -c0010, -alpha01, -gamma1100, -c0011, -beta01, -alpha11, -beta10, -c0111, -alpha10, -b00, -beta11, -gamma1000, -c0001, -a10] diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/id_funcs_(:hybrid,) deleted file mode 100644 index 23f85e1f7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/id_funcs_(:hybrid,) +++ /dev/null @@ -1,22 +0,0 @@ -[gamma0100, -gamma1110, -a01, -c1011, -b01, -a00, -gamma1101, -b10, -c0010, -alpha01, -gamma1100, -c0011, -beta01, -alpha11, -beta10, -c0111, -alpha10, -b00, -beta11, -gamma1000, -c0001, -a10] diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index 276010e35..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,34 +0,0 @@ -[F, -FS11, -FS10, -K, -S10, -KS01, -S00, -S01, -S11, -KS10, -FS01, -KS00, -gamma0100, -gamma1110, -a01, -c1011, -b01, -a00, -gamma1101, -b10, -c0010, -alpha01, -gamma1100, -c0011, -beta01, -alpha11, -beta10, -c0111, -alpha10, -b00, -beta11, -gamma1000, -c0001, -a10] diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/id_funcs_(:normalforms, 2) deleted file mode 100644 index 23f85e1f7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,22 +0,0 @@ -[gamma0100, -gamma1110, -a01, -c1011, -b01, -a00, -gamma1101, -b10, -c0010, -alpha01, -gamma1100, -c0011, -beta01, -alpha11, -beta10, -c0111, -alpha10, -b00, -beta11, -gamma1000, -c0001, -a10] diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index 276010e35..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,34 +0,0 @@ -[F, -FS11, -FS10, -K, -S10, -KS01, -S00, -S01, -S11, -KS10, -FS01, -KS00, -gamma0100, -gamma1110, -a01, -c1011, -b01, -a00, -gamma1101, -b10, -c0010, -alpha01, -gamma1100, -c0011, -beta01, -alpha11, -beta10, -c0111, -alpha10, -b00, -beta11, -gamma1000, -c0001, -a10] diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/id_funcs_(:normalforms, 3) deleted file mode 100644 index 23f85e1f7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,22 +0,0 @@ -[gamma0100, -gamma1110, -a01, -c1011, -b01, -a00, -gamma1101, -b10, -c0010, -alpha01, -gamma1100, -c0011, -beta01, -alpha11, -beta10, -c0111, -alpha10, -b00, -beta11, -gamma1000, -c0001, -a10] diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index 276010e35..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,34 +0,0 @@ -[F, -FS11, -FS10, -K, -S10, -KS01, -S00, -S01, -S11, -KS10, -FS01, -KS00, -gamma0100, -gamma1110, -a01, -c1011, -b01, -a00, -gamma1101, -b10, -c0010, -alpha01, -gamma1100, -c0011, -beta01, -alpha11, -beta10, -c0111, -alpha10, -b00, -beta11, -gamma1000, -c0001, -a10] diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/logs_(:gb,) deleted file mode 100644 index 5e0aebbe6..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/logs_(:gb,) +++ /dev/null @@ -1,85 +0,0 @@ -┌ Info: Processing MAPK model (6 outputs) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 6.013255956 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 6.013255956 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.570847071 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.570847071 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [5, 38, 11, 17, 1, 11] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000148763 seconds -│ :rank_time = rank_time -│ rank_times = 0.000148763 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:01 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 101 functions in Rational Field(a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 9)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 6.874712664 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.72691939 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 23 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.733520272 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 100 initial generators there are 22 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 253 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 18.412989401 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[gamma0100, gamma1110, a01, c1011, b01, a00, gamma1101, b10, c0010, alpha01, gamma1100, c0011, beta01, alpha11, beta10, c0111, alpha10, b00, beta11, gamma1000, c0001, a10] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/logs_(:gb,)_with_states deleted file mode 100644 index 125b34c36..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/logs_(:gb,)_with_states +++ /dev/null @@ -1,139 +0,0 @@ -┌ Info: Processing MAPK model (6 outputs) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 5.928506814 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 5.928506814 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.473428274 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.473428274 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [5, 38, 11, 17, 1, 11] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000144614 seconds -│ :rank_time = rank_time -│ rank_times = 0.000144614 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:05 ✓ # Computing specializations.. Time: 0:00:05 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:00 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 11  ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 101 functions in Rational Field(a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100, KS00, FS01, KS10, S11, S01, S00, KS01, S10, K, FS10, FS11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 9)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 8.264673526 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 2.127681203 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 23 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 3.120976534 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 100 initial generators there are 22 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 253 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 41 functions in Rational Field(a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100, KS00, FS01, KS10, S11, S01, S00, KS01, S10, K, FS10, FS11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.061111691 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.024997427 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 36 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.014299099 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 40 initial generators there are 34 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 595 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 20.960448204 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[F, FS11, FS10, K, S10, KS01, S00, S01, S11, KS10, FS01, KS00, gamma0100, gamma1110, a01, c1011, b01, a00, gamma1101, b10, c0010, alpha01, gamma1100, c0011, beta01, alpha11, beta10, c0111, alpha10, b00, beta11, gamma1000, c0001, a10] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/logs_(:hybrid,) deleted file mode 100644 index 69ffa55db..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/logs_(:hybrid,) +++ /dev/null @@ -1,532 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing MAPK model (6 outputs) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 5.981695263 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 5.981695263 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.56487938 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.56487938 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [5, 38, 11, 17, 1, 11] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000147271 seconds -│ :rank_time = rank_time -│ rank_times = 0.000147271 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:01 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 101 functions in Rational Field(a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 9)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 6.480392015 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.764792887 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 23 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (22 in total): Nemo.fmpq_mpoly[a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y9, y3, y10, y21, y13, y16, y15, y18, y5, y19], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y6, y12, y22, y14, y17, y11, y7, t, y4, y2, y20], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 23 functions in Rational Field(a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.033201161 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003540297 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y17, y20, t, y12, y19, y6, y11, y3, y2, y15, y22], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y18, y8, y21, y7, y13, y10, y4, y16, y9, y5, y1, y14], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 23 functions in Rational Field(a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.02683875 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.06146439 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y19, y6, t, y3, y11, y5, y22, y20, y9, y12, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y21, y15, y17, y16, y10, y1, y18, y14, y2, y8, y13, y7], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 23 functions in Rational Field(a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.032860175 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00344641 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y6, y21, y19, y12, y10, y4, y7, y17, y5, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y20, y18, y14, y13, y22, y9, t, y15, y8, y16, y2, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 23 functions in Rational Field(a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.088069359 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003616009 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y18, y14, y13, y5, y4, t, y20, y3, y21, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y19, y15, y11, y12, y22, y17, y16, y1, y6, y10, y8, y9], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 23 functions in Rational Field(a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.032575775 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003342153 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y13, y7, y10, y1, y20, y15, y4, y9, y11, y16, y18], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y21, y12, y6, y3, y5, y14, y22, y2, y17, y19, y8, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 23 functions in Rational Field(a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.085595218 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003179632 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y15, y6, y14, y7, y21, y2, y1, y22, y20, y9, y19], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y13, y8, t, y11, y10, y12, y4, y3, y18, y17, y5, y16], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 23 functions in Rational Field(a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.028919217 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003296138 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y17, y16, y19, y8, y18, y4, y14, y9, y2, y1, y20], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y21, y15, y6, y13, y3, y5, t, y10, y22, y11, y12, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 23 functions in Rational Field(a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.079239728 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003586698 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y9, y5, y1, y14, t, y3, y17, y4, y7, y15], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y22, y16, y11, y18, y19, y20, y12, y13, y21, y10, y8], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 23 functions in Rational Field(a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.027076297 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.051923528 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y22, y5, y10, y16, y2, y12, y17, y20, y13, y1, y9], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y14, y21, y18, y11, y15, t, y19, y7, y6, y3, y8, y4], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 23 functions in Rational Field(a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.03261549 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003415907 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.631605146 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 100 initial generators there are 22 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 253 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 19.396771158 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[gamma0100, gamma1110, a01, c1011, b01, a00, gamma1101, b10, c0010, alpha01, gamma1100, c0011, beta01, alpha11, beta10, c0111, alpha10, b00, beta11, gamma1000, c0001, a10] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/logs_(:hybrid,)_with_states deleted file mode 100644 index 60c76883c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,586 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing MAPK model (6 outputs) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 5.827020182 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 5.827020182 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.530664171 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.530664171 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [5, 38, 11, 17, 1, 11] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000169811 seconds -│ :rank_time = rank_time -│ rank_times = 0.000169811 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:00 ⌞ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 11  ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 101 functions in Rational Field(a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100, KS00, FS01, KS10, S11, S01, S00, KS01, S10, K, FS10, FS11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 9)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 6.397632071 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.874082208 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 23 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.56025011 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 100 initial generators there are 22 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 253 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 41 functions in Rational Field(a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100, KS00, FS01, KS10, S11, S01, S00, KS01, S10, K, FS10, FS11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.053728294 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.05444435 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 36 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (34 in total): Nemo.fmpq_mpoly[a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100, KS00, FS01, KS10, S11, S01, S00, KS01, S10, K, FS10, FS11, F] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y12, y9, y32, y7, y6, y29, y27, y31, y25, y14, y23, y34, y11, y1, y21, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y18, y30, y24, y16, y15, y26, y28, y20, y19, t, y17, y3, y5, y2, y13, y22, y8, y33], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 35 functions in Rational Field(a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100, KS00, FS01, KS10, S11, S01, S00, KS01, S10, K, FS10, FS11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.073816161 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005638346 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 36 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y15, y10, y9, y26, y30, y21, y12, y5, y16, y31, y18, y20, y13, y32, y3, y19, y33], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y28, y8, t, y23, y17, y25, y1, y14, y29, y27, y34, y22, y11, y4, y24, y2, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 35 functions in Rational Field(a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100, KS00, FS01, KS10, S11, S01, S00, KS01, S10, K, FS10, FS11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.098372338 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004932741 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 36 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y30, y6, y1, y2, y24, y5, y12, y16, y29, y28, y34, y21, y10, y20, y9, y15, y25], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y26, y13, y8, t, y22, y4, y11, y17, y14, y18, y3, y31, y7, y27, y23, y19, y33, y32], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 35 functions in Rational Field(a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100, KS00, FS01, KS10, S11, S01, S00, KS01, S10, K, FS10, FS11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.097791049 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004935318 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 36 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y17, y3, y16, y32, y27, y26, y34, y23, y10, y8, y5, y7, y31, y33, y6, y14, y4], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y20, y25, y28, y18, y19, y9, y30, y1, y11, y2, y24, y22, y15, y12, y13, y29, t, y21], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 35 functions in Rational Field(a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100, KS00, FS01, KS10, S11, S01, S00, KS01, S10, K, FS10, FS11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.045006342 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.039922248 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 36 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y19, y4, y23, y5, y29, y18, y6, t, y12, y15, y31, y14, y21, y10, y13, y32, y16], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y26, y11, y20, y33, y8, y3, y2, y1, y24, y22, y34, y30, y25, y27, y17, y7, y28], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 35 functions in Rational Field(a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100, KS00, FS01, KS10, S11, S01, S00, KS01, S10, K, FS10, FS11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.046686117 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005377386 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 36 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y9, y31, y3, y26, y21, y22, y4, y19, y16, y2, y18, y24, y30, y11, y27, y32], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y15, y17, y1, y34, y29, y13, t, y33, y7, y20, y5, y23, y28, y25, y14, y12, y10, y8], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 35 functions in Rational Field(a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100, KS00, FS01, KS10, S11, S01, S00, KS01, S10, K, FS10, FS11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.046669461 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.0052133 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 36 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y13, y23, y27, y19, y34, y25, y26, y5, y3, y10, y12, y11, y15, y16, y31, y28, y32], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y18, y7, y29, y4, y1, y6, y20, y22, y2, y24, y9, t, y17, y21, y8, y30, y14, y33], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 35 functions in Rational Field(a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100, KS00, FS01, KS10, S11, S01, S00, KS01, S10, K, FS10, FS11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.082023635 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005360267 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 36 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y29, y30, y31, y5, y6, y7, y2, y13, y8, y23, y34, y24, y4, y14, y3, t, y11], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y33, y9, y20, y21, y10, y22, y1, y15, y26, y25, y18, y19, y27, y12, y32, y17, y16, y28], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 35 functions in Rational Field(a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100, KS00, FS01, KS10, S11, S01, S00, KS01, S10, K, FS10, FS11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.090443782 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00482374 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 36 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y22, y11, y23, y19, y5, y15, y26, y10, y6, y34, y4, y17, y3, y28, y14, y18, y33], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y13, y20, y21, t, y27, y29, y7, y16, y32, y24, y9, y30, y8, y31, y2, y25, y12], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 35 functions in Rational Field(a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100, KS00, FS01, KS10, S11, S01, S00, KS01, S10, K, FS10, FS11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.085518277 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005001811 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 36 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y13, y30, y16, y19, y15, y4, y22, y9, t, y7, y32, y33, y8, y11, y17, y10, y29], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y26, y24, y31, y14, y5, y25, y21, y3, y20, y18, y2, y23, y27, y34, y12, y1, y28, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 35 functions in Rational Field(a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100, KS00, FS01, KS10, S11, S01, S00, KS01, S10, K, FS10, FS11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.046037308 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.0420711 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 36 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.014246999 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 40 initial generators there are 34 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 595 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 19.705376248 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[F, FS11, FS10, K, S10, KS01, S00, S01, S11, KS10, FS01, KS00, gamma0100, gamma1110, a01, c1011, b01, a00, gamma1101, b10, c0010, alpha01, gamma1100, c0011, beta01, alpha11, beta10, c0111, alpha10, b00, beta11, gamma1000, c0001, a10] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/logs_(:normalforms, 2) deleted file mode 100644 index 34fc5161e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/logs_(:normalforms, 2) +++ /dev/null @@ -1,96 +0,0 @@ -┌ Info: Processing MAPK model (6 outputs) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 5.755217552 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 5.755217552 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.698189695 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.698189695 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [5, 38, 11, 17, 1, 11] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000225585 seconds -│ :rank_time = rank_time -│ rank_times = 0.000225585 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:01 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 101 functions in Rational Field(a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 9)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 6.597861576 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.697672078 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 23 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (22 in total): Nemo.fmpq_mpoly[a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.536172586 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 100 initial generators there are 22 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 253 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 18.532293036 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[gamma0100, gamma1110, a01, c1011, b01, a00, gamma1101, b10, c0010, alpha01, gamma1100, c0011, beta01, alpha11, beta10, c0111, alpha10, b00, beta11, gamma1000, c0001, a10] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/logs_(:normalforms, 2)_with_states deleted file mode 100644 index 96aa5fce2..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,150 +0,0 @@ -┌ Info: Processing MAPK model (6 outputs) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 5.601967159 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 5.601967159 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.373069418 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.373069418 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [5, 38, 11, 17, 1, 11] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000139765 seconds -│ :rank_time = rank_time -│ rank_times = 0.000139765 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:00 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 12  ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 101 functions in Rational Field(a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100, KS00, FS01, KS10, S11, S01, S00, KS01, S10, K, FS10, FS11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 9)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 7.483621476 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.875813349 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 23 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.640896941 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 100 initial generators there are 22 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 253 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 41 functions in Rational Field(a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100, KS00, FS01, KS10, S11, S01, S00, KS01, S10, K, FS10, FS11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.058192689 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.01468814 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 36 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (34 in total): Nemo.fmpq_mpoly[a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100, KS00, FS01, KS10, S11, S01, S00, KS01, S10, K, FS10, FS11, F] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.014415312 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 40 initial generators there are 34 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 595 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 19.365296826 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[F, FS11, FS10, K, S10, KS01, S00, S01, S11, KS10, FS01, KS00, gamma0100, gamma1110, a01, c1011, b01, a00, gamma1101, b10, c0010, alpha01, gamma1100, c0011, beta01, alpha11, beta10, c0111, alpha10, b00, beta11, gamma1000, c0001, a10] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/logs_(:normalforms, 3) deleted file mode 100644 index fd83252f6..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/logs_(:normalforms, 3) +++ /dev/null @@ -1,96 +0,0 @@ -┌ Info: Processing MAPK model (6 outputs) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 5.587798463 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 5.587798463 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.482449984 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.482449984 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [5, 38, 11, 17, 1, 11] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000154089 seconds -│ :rank_time = rank_time -│ rank_times = 0.000154089 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:01 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 101 functions in Rational Field(a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 9)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 7.007565268 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.750006578 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 23 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (22 in total): Nemo.fmpq_mpoly[a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.450160313 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 100 initial generators there are 22 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 253 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 18.418076755 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[gamma0100, gamma1110, a01, c1011, b01, a00, gamma1101, b10, c0010, alpha01, gamma1100, c0011, beta01, alpha11, beta10, c0111, alpha10, b00, beta11, gamma1000, c0001, a10] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/logs_(:normalforms, 3)_with_states deleted file mode 100644 index ff1b64bd2..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,150 +0,0 @@ -┌ Info: Processing MAPK model (6 outputs) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 5.581562345 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 5.581562345 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.383840721 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.383840721 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [5, 38, 11, 17, 1, 11] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000146662 seconds -│ :rank_time = rank_time -│ rank_times = 0.000146662 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:00 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 12  ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 101 functions in Rational Field(a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100, KS00, FS01, KS10, S11, S01, S00, KS01, S10, K, FS10, FS11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 9)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 7.341869177 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.947360673 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 23 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.782005191 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 100 initial generators there are 22 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 253 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 41 functions in Rational Field(a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100, KS00, FS01, KS10, S11, S01, S00, KS01, S10, K, FS10, FS11, F)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, y28, y29, y30, y31, y32, y33, y34, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.057886894 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.015040888 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 36 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (34 in total): Nemo.fmpq_mpoly[a10, c0001, gamma1000, beta11, b00, alpha10, c0111, beta10, alpha11, beta01, c0011, gamma1100, alpha01, c0010, b10, gamma1101, a00, b01, c1011, a01, gamma1110, gamma0100, KS00, FS01, KS10, S11, S01, S00, KS01, S10, K, FS10, FS11, F] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.015469843 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 40 initial generators there are 34 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 595 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 19.531401826 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[F, FS11, FS10, K, S10, KS01, S00, S01, S11, KS10, FS01, KS00, gamma0100, gamma1110, a01, c1011, b01, a00, gamma1101, b10, c0010, alpha01, gamma1100, c0011, beta01, alpha11, beta10, c0111, alpha10, b00, beta11, gamma1000, c0001, a10] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/timings_(:gb,) deleted file mode 100644 index 065c6d06d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -MAPK model (6 outputs) -id_total, 18.412989401 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/timings_(:gb,)_with_states deleted file mode 100644 index 4e6872b0b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -MAPK model (6 outputs) -id_total, 20.960448204 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/timings_(:hybrid,) deleted file mode 100644 index a03f68fdd..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -MAPK model (6 outputs) -id_total, 19.396771158 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/timings_(:hybrid,)_with_states deleted file mode 100644 index 3d0e78713..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -MAPK model (6 outputs) -id_total, 19.705376248 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/timings_(:normalforms, 2) deleted file mode 100644 index 06853b33a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -MAPK model (6 outputs) -id_total, 18.532293036 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/timings_(:normalforms, 2)_with_states deleted file mode 100644 index ca079e326..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -MAPK model (6 outputs) -id_total, 19.365296826 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/timings_(:normalforms, 3) deleted file mode 100644 index ced6e82a1..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -MAPK model (6 outputs) -id_total, 18.418076755 diff --git a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/timings_(:normalforms, 3)_with_states deleted file mode 100644 index 73bc02b54..000000000 --- a/benchmarking/IdentifiableFunctions/systems/MAPK model (6 outputs)/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -MAPK model (6 outputs) -id_total, 19.531401826 diff --git a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/id_funcs_(:gb,) deleted file mode 100644 index bc3f49a9f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/id_funcs_(:gb,) +++ /dev/null @@ -1,3 +0,0 @@ -[d, -a*b, -a + b] diff --git a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/id_funcs_(:gb,)_with_states deleted file mode 100644 index 299256caf..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,5 +0,0 @@ -[x1, -d, -c*x2, -a*b, -a + b] diff --git a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/id_funcs_(:hybrid,) deleted file mode 100644 index bc3f49a9f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/id_funcs_(:hybrid,) +++ /dev/null @@ -1,3 +0,0 @@ -[d, -a*b, -a + b] diff --git a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index 299256caf..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,5 +0,0 @@ -[x1, -d, -c*x2, -a*b, -a + b] diff --git a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/id_funcs_(:normalforms, 2) deleted file mode 100644 index bc3f49a9f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,3 +0,0 @@ -[d, -a*b, -a + b] diff --git a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index 299256caf..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,5 +0,0 @@ -[x1, -d, -c*x2, -a*b, -a + b] diff --git a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/id_funcs_(:normalforms, 3) deleted file mode 100644 index bc3f49a9f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,3 +0,0 @@ -[d, -a*b, -a + b] diff --git a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index 299256caf..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,5 +0,0 @@ -[x1, -d, -c*x2, -a*b, -a + b] diff --git a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/logs_(:gb,) deleted file mode 100644 index d326e917c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/logs_(:gb,) +++ /dev/null @@ -1,84 +0,0 @@ -┌ Info: Processing Modified LV for testing -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.002736357 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.002736357 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.002149338 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.002149338 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [5] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.0115e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.0115e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(a, b, d, c)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.27666461 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.209944812 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.056713196 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 5 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 9 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 7.608153786 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[d, a*b, a + b] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/logs_(:gb,)_with_states deleted file mode 100644 index 1e516b4a3..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/logs_(:gb,)_with_states +++ /dev/null @@ -1,136 +0,0 @@ -┌ Info: Processing Modified LV for testing -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.002854364 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.002854364 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.002160817 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.002160817 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [5] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.7641e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.7641e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(a, b, d, c, x1, x2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.302255062 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.287546935 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.312124539 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 5 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 9 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(a, b, d, c, x1, x2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013130011 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001457153 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.003738862 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 21 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 8.096737157 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x1, d, c*x2, a*b, a + b] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/logs_(:hybrid,) deleted file mode 100644 index 75f9b1f0f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/logs_(:hybrid,) +++ /dev/null @@ -1,549 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing Modified LV for testing -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.00276797 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.00276797 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.002182046 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.002182046 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [5] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.9138e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.9138e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(a, b, d, c)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.39527237 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.196702132 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (4 in total): Nemo.fmpq_mpoly[a, b, d, c] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 31 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 25 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 31 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 25 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 31 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 25 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y2], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y1, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(a, b, d, c)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010962813 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001344985 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y4, y1], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(a, b, d, c)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010338849 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.055426731 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y1, t], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(a, b, d, c)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010417075 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00102066 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y4], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y2, y3], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(a, b, d, c)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009821298 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001028824 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y1, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(a, b, d, c)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009366565 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001227139 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y4, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(a, b, d, c)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010079783 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001097189 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y4, y3], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(a, b, d, c)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009827776 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000994386 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y2, y1], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(a, b, d, c)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010776519 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001073166 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y3], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(a, b, d, c)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011005655 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001231291 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(a, b, d, c)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010303282 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001510843 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.760329014 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 5 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 9 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 8.307942491 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[d, a*b, a + b] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/logs_(:hybrid,)_with_states deleted file mode 100644 index 60344b016..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,601 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing Modified LV for testing -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.002995206 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.002995206 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.003069555 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.003069555 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [5] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.642e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.642e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(a, b, d, c, x1, x2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.021926049 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.118741699 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.833448668 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 5 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 9 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(a, b, d, c, x1, x2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.055100051 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001315793 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (6 in total): Nemo.fmpq_mpoly[a, b, d, c, x1, x2] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 74 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 63 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 74 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 63 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 7 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 74 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 63 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 7 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y1, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y2, y4, y6], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(a, b, d, c, x1, x2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011637449 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001273988 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y5, y2, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(a, b, d, c, x1, x2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011201902 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001160331 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y4, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y2, y5, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(a, b, d, c, x1, x2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.066316247 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001326997 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y4, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y5, y2, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(a, b, d, c, x1, x2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011986093 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001101477 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y1, y4], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y2, y5, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(a, b, d, c, x1, x2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011897961 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001333746 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y3, y2], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, t, y5, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(a, b, d, c, x1, x2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013645424 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001273132 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y6, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y1, y4, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(a, b, d, c, x1, x2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.012767535 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001289156 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y4, y2], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y3, y1, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(a, b, d, c, x1, x2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.012012822 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001374635 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y5, y4, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(a, b, d, c, x1, x2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011966996 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001148726 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y2, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y4, y1, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(a, b, d, c, x1, x2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.098753377 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001082438 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.001738444 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 21 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 7.858008105 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x1, d, c*x2, a*b, a + b] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/logs_(:normalforms, 2) deleted file mode 100644 index af1a15c47..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/logs_(:normalforms, 2) +++ /dev/null @@ -1,113 +0,0 @@ -┌ Info: Processing Modified LV for testing -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.002812711 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.002812711 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.002314782 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.002314782 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [5] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.999e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.999e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(a, b, d, c)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.303077134 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.149548524 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (4 in total): Nemo.fmpq_mpoly[a, b, d, c] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 12 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 8 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 12 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 8 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 2 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 12 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 8 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 2 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.828157172 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 5 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 9 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 7.91770337 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[d, a*b, a + b] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/logs_(:normalforms, 2)_with_states deleted file mode 100644 index 9f19c84f1..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,165 +0,0 @@ -┌ Info: Processing Modified LV for testing -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.002703123 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.002703123 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.002173502 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.002173502 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [5] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.7773e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.7773e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(a, b, d, c, x1, x2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 3.996967884 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.250120244 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.924496442 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 5 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 9 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(a, b, d, c, x1, x2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.012987764 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001267743 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (6 in total): Nemo.fmpq_mpoly[a, b, d, c, x1, x2] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 22 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 15 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 22 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 15 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 22 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 15 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.001911348 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 21 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 7.586332968 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x1, d, c*x2, a*b, a + b] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/logs_(:normalforms, 3) deleted file mode 100644 index 92ee1ab9f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/logs_(:normalforms, 3) +++ /dev/null @@ -1,113 +0,0 @@ -┌ Info: Processing Modified LV for testing -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.002974106 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.002974106 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.002139573 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.002139573 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [5] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.5011e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.5011e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(a, b, d, c)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.334406581 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.233991202 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (4 in total): Nemo.fmpq_mpoly[a, b, d, c] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 31 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 25 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 31 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 25 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 31 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 25 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.871489415 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 5 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 9 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 8.116735623 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[d, a*b, a + b] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/logs_(:normalforms, 3)_with_states deleted file mode 100644 index d4de8312c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,165 +0,0 @@ -┌ Info: Processing Modified LV for testing -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.052399176 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.052399176 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.002171918 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.002171918 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [5] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.7906e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.7906e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(a, b, d, c, x1, x2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.21196421 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.264172859 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.867456832 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 5 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 9 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(a, b, d, c, x1, x2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.066369473 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001360986 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (6 in total): Nemo.fmpq_mpoly[a, b, d, c, x1, x2] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 74 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 63 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 74 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 63 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 7 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 74 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 63 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 7 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002257589 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 21 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 7.884632809 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x1, d, c*x2, a*b, a + b] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/timings_(:gb,) deleted file mode 100644 index ce1e14ea6..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -Modified LV for testing -id_total, 7.608153786 diff --git a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/timings_(:gb,)_with_states deleted file mode 100644 index 1d232e1e4..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Modified LV for testing -id_total, 8.096737157 diff --git a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/timings_(:hybrid,) deleted file mode 100644 index ac25c9f6c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -Modified LV for testing -id_total, 8.307942491 diff --git a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/timings_(:hybrid,)_with_states deleted file mode 100644 index 44f8dddcd..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Modified LV for testing -id_total, 7.858008105 diff --git a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/timings_(:normalforms, 2) deleted file mode 100644 index 7bb9ffaac..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -Modified LV for testing -id_total, 7.91770337 diff --git a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/timings_(:normalforms, 2)_with_states deleted file mode 100644 index ec8851f4a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Modified LV for testing -id_total, 7.586332968 diff --git a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/timings_(:normalforms, 3) deleted file mode 100644 index cec830cf6..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -Modified LV for testing -id_total, 8.116735623 diff --git a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/timings_(:normalforms, 3)_with_states deleted file mode 100644 index a47d83785..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Modified LV for testing/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Modified LV for testing -id_total, 7.884632809 diff --git a/benchmarking/IdentifiableFunctions/systems/PK1/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/PK1/id_funcs_(:gb,) deleted file mode 100644 index cf2ea26a0..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK1/id_funcs_(:gb,) +++ /dev/null @@ -1,8 +0,0 @@ -[k6, -k4, -k5, -s2*k1, -k2 + k1, -k3 + k7, -(s3*k2)//(k2 + k1), -(k2*s2)//(k3*k2 + k3*k1)] diff --git a/benchmarking/IdentifiableFunctions/systems/PK1/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/PK1/id_funcs_(:gb,)_with_states deleted file mode 100644 index c2adb38f7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK1/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,12 +0,0 @@ -[x1, -k6, -k4, -k5, -k2 + k1, -k3 + k7, -x2//x4, -k1//x4, -(k1*x3)//(k2*x4), -(s3*k2)//(k2 + k1), -(k2*s2)//(k3*k2 + k3*k1), -(k3*k2 + k3*k1 + k2*k7)//k2] diff --git a/benchmarking/IdentifiableFunctions/systems/PK1/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/PK1/id_funcs_(:hybrid,) deleted file mode 100644 index e3ffe91a6..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK1/id_funcs_(:hybrid,) +++ /dev/null @@ -1,8 +0,0 @@ -[k6, -k4, -k5, -s2*k1, -s3*k2, -k3*s3*k1, -k2 + k1, -k3 + k7] diff --git a/benchmarking/IdentifiableFunctions/systems/PK1/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/PK1/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index d779db3f8..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK1/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,12 +0,0 @@ -[x1, -k6, -k4, -k5, -s2*x4, -s2*x2, -s2*k1, -s3*x3, -s3*k2, -k3*s3*x4, -k2 + k1, -k3 + k7] diff --git a/benchmarking/IdentifiableFunctions/systems/PK1/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/PK1/id_funcs_(:normalforms, 2) deleted file mode 100644 index e13729efc..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK1/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,8 +0,0 @@ -[k6, -k4, -k5, -s2*k1, -s3*k2, -k2 + k1, -k3 + k7, -(k2*s2)//(k3*k2 + k3*k1)] diff --git a/benchmarking/IdentifiableFunctions/systems/PK1/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/PK1/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index c4ab224a7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK1/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,12 +0,0 @@ -[x1, -k6, -k4, -k5, -s2*x4, -s2*x2, -s2*k1, -s3*x3, -s3*k2, -k2 + k1, -k3 + k7, -(k2*s2)//(k3*k2 + k3*k1)] diff --git a/benchmarking/IdentifiableFunctions/systems/PK1/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/PK1/id_funcs_(:normalforms, 3) deleted file mode 100644 index e3ffe91a6..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK1/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,8 +0,0 @@ -[k6, -k4, -k5, -s2*k1, -s3*k2, -k3*s3*k1, -k2 + k1, -k3 + k7] diff --git a/benchmarking/IdentifiableFunctions/systems/PK1/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/PK1/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index d779db3f8..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK1/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,12 +0,0 @@ -[x1, -k6, -k4, -k5, -s2*x4, -s2*x2, -s2*k1, -s3*x3, -s3*k2, -k3*s3*x4, -k2 + k1, -k3 + k7] diff --git a/benchmarking/IdentifiableFunctions/systems/PK1/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/PK1/logs_(:gb,) deleted file mode 100644 index 30b92ffc4..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK1/logs_(:gb,) +++ /dev/null @@ -1,83 +0,0 @@ -┌ Info: Processing PK1 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.329527341 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.329527341 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.022352226 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.022352226 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [6, 6] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.3427e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.3427e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(k5, k3, s3, k4, k2, s2, k6, k1, k7)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (3, 2)], [(0, 0), (4, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (2, 4)], [(0, 0), (1, 4), (0, 2)], [(0, 0), (1, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.901664894 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003883012 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.00540294 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 10 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 2211 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.41073563 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k6, k4, k5, s2*k1, k2 + k1, k3 + k7, (s3*k2)//(k2 + k1), (k2*s2)//(k3*k2 + k3*k1)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/PK1/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/PK1/logs_(:gb,)_with_states deleted file mode 100644 index f6a7e5c7d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK1/logs_(:gb,)_with_states +++ /dev/null @@ -1,135 +0,0 @@ -┌ Info: Processing PK1 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.28514043 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.28514043 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.02432279 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.02432279 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [6, 6] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.4142e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.4142e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(k5, k3, s3, k4, k2, s2, k6, k1, k7, x2, x1, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (3, 2)], [(0, 0), (4, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (2, 4)], [(0, 0), (1, 4), (0, 2)], [(0, 0), (1, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.010008063 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004929211 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.006404548 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 10 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 2211 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 17 functions in Rational Field(k5, k3, s3, k4, k2, s2, k6, k1, k7, x2, x1, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 2), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (3, 2)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 0), (2, 1)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 3), (2, 1)], [(0, 0), (1, 0), (0, 1)], [(0, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.102399834 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00420425 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 17 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.017327302 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 16 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 5399 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.697950229 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x1, k6, k4, k5, k2 + k1, k3 + k7, x2//x4, k1//x4, (k1*x3)//(k2*x4), (s3*k2)//(k2 + k1), (k2*s2)//(k3*k2 + k3*k1), (k3*k2 + k3*k1 + k2*k7)//k2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/PK1/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/PK1/logs_(:hybrid,) deleted file mode 100644 index 4c44b08eb..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK1/logs_(:hybrid,) +++ /dev/null @@ -1,548 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing PK1 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.409159344 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.409159344 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.022221689 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.022221689 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [6, 6] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.9529e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.9529e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(k5, k3, s3, k4, k2, s2, k6, k1, k7)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (3, 2)], [(0, 0), (4, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (2, 4)], [(0, 0), (1, 4), (0, 2)], [(0, 0), (1, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.855025225 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003174409 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (9 in total): Nemo.fmpq_mpoly[k5, k3, s3, k4, k2, s2, k6, k1, k7] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 200 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 191 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 200 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 191 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 16 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 200 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 191 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 16 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y2, y6, y4, y5], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, t, y3, y1, y8], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k5, k3, s3, k4, k2, s2, k6, k1, k7)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 3), (0, 0), (1, 3)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (1, 0), (2, 1), (3, 1)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (3, 2)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.047664586 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.057646676 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, t, y5, y3, y9], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y1, y4, y7, y8], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k5, k3, s3, k4, k2, s2, k6, k1, k7)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (0, 0), (1, 0)], [(0, 3), (0, 0), (1, 3)], [(2, 2), (0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.034726606 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00309352 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3, y4, y1, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y7, y9, y6, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k5, k3, s3, k4, k2, s2, k6, k1, k7)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(2, 2), (0, 0), (2, 1)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 1)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 0)], [(0, 3), (0, 0), (1, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.032336482 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.073916758 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, t, y5, y1, y3], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y8, y6, y7, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k5, k3, s3, k4, k2, s2, k6, k1, k7)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (2, 1)], [(0, 0), (2, 0)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 3), (0, 0), (1, 3)], [(2, 2), (0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 56 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.049738874 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002361103 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y8, y1, y9, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, t, y5, y3, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k5, k3, s3, k4, k2, s2, k6, k1, k7)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 3), (0, 0), (1, 3)], [(0, 0), (2, 0)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(2, 2), (0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 2), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 56 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.119194657 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002344367 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y2, y9, t, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y3, y5, y8, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k5, k3, s3, k4, k2, s2, k6, k1, k7)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 3), (0, 0), (1, 3)], [(2, 2), (0, 0), (2, 1)], [(0, 0), (2, 2), (2, 1)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 56 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.047406783 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.070272406 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y6, y5, y4, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y7, t, y1, y8], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k5, k3, s3, k4, k2, s2, k6, k1, k7)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 0), (2, 1)], [(0, 0), (1, 3), (1, 0)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (0, 1)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(2, 2), (0, 0), (2, 1)], [(0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.033445631 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002348019 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, t, y8, y5, y9], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y4, y6, y1, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k5, k3, s3, k4, k2, s2, k6, k1, k7)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (2, 1)], [(2, 2), (0, 0), (2, 1)], [(0, 0), (2, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 3), (0, 0), (1, 3)], [(0, 0), (2, 2), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 56 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.115654972 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002363321 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y9, y4, y8, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y5, y3, y7, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k5, k3, s3, k4, k2, s2, k6, k1, k7)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (1, 0), (2, 1)], [(0, 0), (2, 0)], [(0, 3), (0, 0), (1, 3)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(2, 2), (0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.03409004 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002318531 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y4, y7, y1, y3], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y5, y6, t, y9], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k5, k3, s3, k4, k2, s2, k6, k1, k7)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 2), (3, 2)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (0, 1)], [(0, 0), (2, 1), (1, 0), (2, 0)], [(0, 0), (1, 3), (1, 2)], [(0, 0), (3, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 4 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.107467218 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002455266 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.014267613 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 10 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 54 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.805329801 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k6, k4, k5, s2*k1, s3*k2, k3*s3*k1, k2 + k1, k3 + k7] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/PK1/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/PK1/logs_(:hybrid,)_with_states deleted file mode 100644 index 08e9525bb..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK1/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,600 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing PK1 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.419183853 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.419183853 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.018284517 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.018284517 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [6, 6] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.5849e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.5849e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(k5, k3, s3, k4, k2, s2, k6, k1, k7, x2, x1, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (3, 2)], [(0, 0), (4, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (2, 4)], [(0, 0), (1, 4), (0, 2)], [(0, 0), (1, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.97215273 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003160465 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.00539885 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 10 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 2211 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 17 functions in Rational Field(k5, k3, s3, k4, k2, s2, k6, k1, k7, x2, x1, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 2), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (3, 2)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 0), (2, 1)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 3), (2, 1)], [(0, 0), (1, 0), (0, 1)], [(0, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.119115718 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003670698 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 17 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (13 in total): Nemo.fmpq_mpoly[k5, k3, s3, k4, k2, s2, k6, k1, k7, x2, x1, x3, x4] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 525 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 516 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 525 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 516 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 35 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 525 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 516 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 35 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t, y3, y2, y13, y10, y11], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y12, y9, y6, y8, y5, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k5, k3, s3, k4, k2, s2, k6, k1, k7, x2, x1, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(2, 2), (0, 0), (2, 1)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0), (2, 1)], [(1, 1), (0, 0), (2, 1)], [(0, 0), (2, 2), (2, 1)], [(0, 0), (2, 0)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (0, 4)], [(0, 0), (2, 6), (1, 5), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (6, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.095603724 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00320546 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y8, y11, y4, y9, y7, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y12, y1, y6, y3, y10, y13], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k5, k3, s3, k4, k2, s2, k6, k1, k7, x2, x1, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (2, 1)], [(0, 0), (2, 2), (2, 1)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 0)], [(0, 0), (2, 1), (2, 1)], [(0, 6), (0, 0)], [(0, 0), (1, 0)], [(2, 2), (0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.14860371 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003037779 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y4, y11, y13, y12, y7, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y1, y10, y5, y8, t, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k5, k3, s3, k4, k2, s2, k6, k1, k7, x2, x1, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 1), (3, 1)], [(2, 2), (0, 0), (2, 6), (1, 0), (1, 4)], [(0, 0), (1, 5), (1, 4), (3, 5)], [(2, 2), (0, 0), (2, 1)], [(0, 0), (1, 0)], [(1, 1), (0, 0), (2, 1)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(5, 1), (3, 3), (0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.12856412 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003484247 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 16 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y9, y4, y2, y12, y6, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y8, y1, t, y3, y13, y10], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k5, k3, s3, k4, k2, s2, k6, k1, k7, x2, x1, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (1, 5), (2, 1)], [(0, 0), (6, 0)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (2, 6), (1, 5), (2, 1)], [(2, 2), (0, 0), (2, 1)], [(0, 0), (2, 2), (2, 1)], [(0, 0), (1, 0)], [(2, 2), (0, 0), (2, 1)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.128839602 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003083014 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y12, y10, y1, y2, y7, y3, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y13, y11, y9, y5, y4, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k5, k3, s3, k4, k2, s2, k6, k1, k7, x2, x1, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(2, 2), (0, 0), (2, 1)], [(0, 0), (1, 0)], [(1, 1), (0, 0), (2, 1)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (2, 2), (1, 5), (1, 0)], [(0, 0), (1, 5), (2, 1), (4, 2)], [(0, 0), (0, 0), (1, 0)], [(6, 2), (0, 0), (2, 2), (5, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (2, 1)], [(0, 0), (1, 0)], [(1, 1), (0, 0), (2, 1)], [(1, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.122385752 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003065988 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 20 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y6, y10, y7, y8, y11, y2], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y12, t, y3, y4, y1, y9, y13], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k5, k3, s3, k4, k2, s2, k6, k1, k7, x2, x1, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (2, 1)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (0, 4), (2, 1)], [(0, 0), (1, 0), (2, 1), (3, 1)], [(0, 0), (1, 5), (1, 5), (1, 0), (2, 5)], [(0, 0), (6, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 2), (3, 2)], [(0, 0), (1, 1), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.123006706 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002973356 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 16 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y8, t, y3, y13, y7, y12], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y10, y2, y9, y1, y6, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k5, k3, s3, k4, k2, s2, k6, k1, k7, x2, x1, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(2, 2), (0, 0), (2, 1)], [(0, 0), (2, 2), (2, 1)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (2, 0)], [(2, 2), (0, 0), (2, 1)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 6), (1, 5), (2, 1)], [(0, 0), (1, 5), (2, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (6, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.123903186 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003061569 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y7, y3, y6, y9, y5, y13], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y4, y2, y12, y8, t, y11], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k5, k3, s3, k4, k2, s2, k6, k1, k7, x2, x1, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(1, 1), (0, 0), (2, 1)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (2, 2), (1, 5), (2, 1), (1, 4)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (1, 0), (2, 0), (1, 3)], [(1, 1), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(2, 2), (0, 0), (2, 1)], [(4, 0), (0, 0), (5, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.064413782 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.063182305 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 18 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, t, y3, y6, y1, y2, y12], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y13, y11, y8, y4, y10, y9], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k5, k3, s3, k4, k2, s2, k6, k1, k7, x2, x1, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (2, 1), (3, 1)], [(2, 2), (0, 0), (2, 1)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (3, 2)], [(0, 0), (1, 0), (2, 1), (3, 1)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (1, 5), (1, 5), (1, 0), (2, 5)], [(0, 0), (1, 5), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (6, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.07058351 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.059572489 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 16 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y12, y1, y9, y8, y6, t, y10], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y3, y2, y4, y13, y5, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k5, k3, s3, k4, k2, s2, k6, k1, k7, x2, x1, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(1, 1), (0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 1)], [(0, 0), (2, 0)], [(0, 0), (2, 1), (3, 1)], [(1, 1), (0, 0), (2, 1)], [(0, 6), (0, 0)], [(2, 2), (0, 0), (2, 1)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.044578635 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002935236 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 17 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.014701549 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 16 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 117 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 5.695433956 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x1, k6, k4, k5, s2*x4, s2*x2, s2*k1, s3*x3, s3*k2, k3*s3*x4, k2 + k1, k3 + k7] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/PK1/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/PK1/logs_(:normalforms, 2) deleted file mode 100644 index 57644713e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK1/logs_(:normalforms, 2) +++ /dev/null @@ -1,112 +0,0 @@ -┌ Info: Processing PK1 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.293318441 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.293318441 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.021471147 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.021471147 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [6, 6] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.4628e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.4628e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(k5, k3, s3, k4, k2, s2, k6, k1, k7)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (3, 2)], [(0, 0), (4, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (2, 4)], [(0, 0), (1, 4), (0, 2)], [(0, 0), (1, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.885906282 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.058630329 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (9 in total): Nemo.fmpq_mpoly[k5, k3, s3, k4, k2, s2, k6, k1, k7] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 45 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 39 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 45 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 39 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 5 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 45 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 39 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 5 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.005699134 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 10 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 1779 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.630984373 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k6, k4, k5, s2*k1, s3*k2, k2 + k1, k3 + k7, (k2*s2)//(k3*k2 + k3*k1)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/PK1/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/PK1/logs_(:normalforms, 2)_with_states deleted file mode 100644 index f9cc1042a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK1/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,164 +0,0 @@ -┌ Info: Processing PK1 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.17048165 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.17048165 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.069110046 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.069110046 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [6, 6] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.5875e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.5875e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(k5, k3, s3, k4, k2, s2, k6, k1, k7, x2, x1, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (3, 2)], [(0, 0), (4, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (2, 4)], [(0, 0), (1, 4), (0, 2)], [(0, 0), (1, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.90994263 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003209729 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.005440062 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 10 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 2211 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 17 functions in Rational Field(k5, k3, s3, k4, k2, s2, k6, k1, k7, x2, x1, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 2), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (3, 2)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 0), (2, 1)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 3), (2, 1)], [(0, 0), (1, 0), (0, 1)], [(0, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.072634979 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.082160485 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 17 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (13 in total): Nemo.fmpq_mpoly[k5, k3, s3, k4, k2, s2, k6, k1, k7, x2, x1, x3, x4] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 90 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 84 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 90 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 84 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 8 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 90 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 84 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 8 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.029132377 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 16 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 1842 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.832173222 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x1, k6, k4, k5, s2*x4, s2*x2, s2*k1, s3*x3, s3*k2, k2 + k1, k3 + k7, (k2*s2)//(k3*k2 + k3*k1)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/PK1/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/PK1/logs_(:normalforms, 3) deleted file mode 100644 index 8938a25f5..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK1/logs_(:normalforms, 3) +++ /dev/null @@ -1,112 +0,0 @@ -┌ Info: Processing PK1 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.28295329 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.28295329 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.021119356 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.021119356 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [6, 6] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.5715e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.5715e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(k5, k3, s3, k4, k2, s2, k6, k1, k7)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (3, 2)], [(0, 0), (4, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (2, 4)], [(0, 0), (1, 4), (0, 2)], [(0, 0), (1, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.881722929 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003817427 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (9 in total): Nemo.fmpq_mpoly[k5, k3, s3, k4, k2, s2, k6, k1, k7] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 200 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 191 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 200 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 191 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 16 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 200 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 191 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 16 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.005342802 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 10 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 54 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.677067016 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k6, k4, k5, s2*k1, s3*k2, k3*s3*k1, k2 + k1, k3 + k7] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/PK1/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/PK1/logs_(:normalforms, 3)_with_states deleted file mode 100644 index 509e6cf03..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK1/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,164 +0,0 @@ -┌ Info: Processing PK1 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.263592419 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.263592419 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.01553897 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.01553897 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [6, 6] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 6.197e-5 seconds -│ :rank_time = rank_time -│ rank_times = 6.197e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(k5, k3, s3, k4, k2, s2, k6, k1, k7, x2, x1, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (3, 2)], [(0, 0), (4, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (2, 4)], [(0, 0), (1, 4), (0, 2)], [(0, 0), (1, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.964653686 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003602388 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.005397064 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 10 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 2211 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 17 functions in Rational Field(k5, k3, s3, k4, k2, s2, k6, k1, k7, x2, x1, x3, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 2), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (3, 2)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 0), (2, 1)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 3), (2, 1)], [(0, 0), (1, 0), (0, 1)], [(0, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.074278736 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.081673267 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 17 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (13 in total): Nemo.fmpq_mpoly[k5, k3, s3, k4, k2, s2, k6, k1, k7, x2, x1, x3, x4] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 525 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 516 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 525 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 516 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 35 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 525 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 516 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 35 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.01640981 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 16 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 117 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.263919072 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x1, k6, k4, k5, s2*x4, s2*x2, s2*k1, s3*x3, s3*k2, k3*s3*x4, k2 + k1, k3 + k7] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/PK1/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/PK1/timings_(:gb,) deleted file mode 100644 index f8eb79df2..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK1/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -PK1 -id_total, 3.41073563 diff --git a/benchmarking/IdentifiableFunctions/systems/PK1/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/PK1/timings_(:gb,)_with_states deleted file mode 100644 index 1732357c2..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK1/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -PK1 -id_total, 3.697950229 diff --git a/benchmarking/IdentifiableFunctions/systems/PK1/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/PK1/timings_(:hybrid,) deleted file mode 100644 index 343c8448b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK1/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -PK1 -id_total, 4.805329801 diff --git a/benchmarking/IdentifiableFunctions/systems/PK1/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/PK1/timings_(:hybrid,)_with_states deleted file mode 100644 index cb9ae6826..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK1/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -PK1 -id_total, 5.695433956 diff --git a/benchmarking/IdentifiableFunctions/systems/PK1/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/PK1/timings_(:normalforms, 2) deleted file mode 100644 index ab1a74e8e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK1/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -PK1 -id_total, 3.630984373 diff --git a/benchmarking/IdentifiableFunctions/systems/PK1/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/PK1/timings_(:normalforms, 2)_with_states deleted file mode 100644 index d83895d7a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK1/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -PK1 -id_total, 3.832173222 diff --git a/benchmarking/IdentifiableFunctions/systems/PK1/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/PK1/timings_(:normalforms, 3) deleted file mode 100644 index 4e49a34dc..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK1/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -PK1 -id_total, 3.677067016 diff --git a/benchmarking/IdentifiableFunctions/systems/PK1/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/PK1/timings_(:normalforms, 3)_with_states deleted file mode 100644 index 214d752b6..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK1/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -PK1 -id_total, 4.263919072 diff --git a/benchmarking/IdentifiableFunctions/systems/PK2/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/PK2/id_funcs_(:gb,) deleted file mode 100644 index a742a20b7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK2/id_funcs_(:gb,) +++ /dev/null @@ -1,7 +0,0 @@ -[a1, -b1, -kc, -b2, -n, -ka, -a2] diff --git a/benchmarking/IdentifiableFunctions/systems/PK2/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/PK2/id_funcs_(:gb,)_with_states deleted file mode 100644 index 961a7173c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK2/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,11 +0,0 @@ -[x2, -x3, -x1, -x0, -a1, -b1, -kc, -b2, -n, -ka, -a2] diff --git a/benchmarking/IdentifiableFunctions/systems/PK2/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/PK2/id_funcs_(:hybrid,) deleted file mode 100644 index a742a20b7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK2/id_funcs_(:hybrid,) +++ /dev/null @@ -1,7 +0,0 @@ -[a1, -b1, -kc, -b2, -n, -ka, -a2] diff --git a/benchmarking/IdentifiableFunctions/systems/PK2/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/PK2/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index 961a7173c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK2/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,11 +0,0 @@ -[x2, -x3, -x1, -x0, -a1, -b1, -kc, -b2, -n, -ka, -a2] diff --git a/benchmarking/IdentifiableFunctions/systems/PK2/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/PK2/id_funcs_(:normalforms, 2) deleted file mode 100644 index a742a20b7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK2/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,7 +0,0 @@ -[a1, -b1, -kc, -b2, -n, -ka, -a2] diff --git a/benchmarking/IdentifiableFunctions/systems/PK2/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/PK2/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index 961a7173c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK2/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,11 +0,0 @@ -[x2, -x3, -x1, -x0, -a1, -b1, -kc, -b2, -n, -ka, -a2] diff --git a/benchmarking/IdentifiableFunctions/systems/PK2/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/PK2/id_funcs_(:normalforms, 3) deleted file mode 100644 index a742a20b7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK2/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,7 +0,0 @@ -[a1, -b1, -kc, -b2, -n, -ka, -a2] diff --git a/benchmarking/IdentifiableFunctions/systems/PK2/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/PK2/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index 961a7173c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK2/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,11 +0,0 @@ -[x2, -x3, -x1, -x0, -a1, -b1, -kc, -b2, -n, -ka, -a2] diff --git a/benchmarking/IdentifiableFunctions/systems/PK2/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/PK2/logs_(:gb,) deleted file mode 100644 index b80b046ab..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK2/logs_(:gb,) +++ /dev/null @@ -1,92 +0,0 @@ -┌ Info: Processing PK2 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 8.810187519 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 8.810187519 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 38.181365556 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 38.181365556 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [2936] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 3.703533593 seconds -│ :rank_time = rank_time -│ rank_times = 3.703533593 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:07 ✓ # Computing specializations.. Time: 0:00:07 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ⌞ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:03 ⌝ # Computing specializations.. Time: 0:00:03 ⌟ # Computing specializations.. Time: 0:00:04 ⌞ # Computing specializations.. Time: 0:00:04 ⌜ # Computing specializations.. Time: 0:00:05 ⌝ # Computing specializations.. Time: 0:00:05 ⌟ # Computing specializations.. Time: 0:00:06 ⌞ # Computing specializations.. Time: 0:00:06 ⌜ # Computing specializations.. Time: 0:00:06 ✓ # Computing specializations.. Time: 0:00:06 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 2  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 4  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 6  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 8  ⌜ # Computing specializations.. Time: 0:00:02 - Points: 10  ⌝ # Computing specializations.. Time: 0:00:02 - Points: 12  ✓ # Computing specializations.. Time: 0:00:02 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 3536 functions in Rational Field(a2, ka, n, b2, kc, b1, a1)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 6)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 17.99675754 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 8.132890488 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 33.640460577 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 3535 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 115.378408403 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[a1, b1, kc, b2, n, ka, a2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/PK2/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/PK2/logs_(:gb,)_with_states deleted file mode 100644 index a1b99fd72..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK2/logs_(:gb,)_with_states +++ /dev/null @@ -1,145 +0,0 @@ -┌ Info: Processing PK2 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 9.097970289 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 9.097970289 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 39.573773834 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 39.573773834 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [2936] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 3.911010175 seconds -│ :rank_time = rank_time -│ rank_times = 3.911010175 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:07 ✓ # Computing specializations.. Time: 0:00:07 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:02 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:03 ⌞ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:04 ⌝ # Computing specializations.. Time: 0:00:04 ⌟ # Computing specializations.. Time: 0:00:05 ⌞ # Computing specializations.. Time: 0:00:05 ⌜ # Computing specializations.. Time: 0:00:06 ⌝ # Computing specializations.. Time: 0:00:06 ⌟ # Computing specializations.. Time: 0:00:07 ⌞ # Computing specializations.. Time: 0:00:07 ⌜ # Computing specializations.. Time: 0:00:08 ✓ # Computing specializations.. Time: 0:00:08 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 2  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 4  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 6  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 8  ⌜ # Computing specializations.. Time: 0:00:02 - Points: 10  ⌝ # Computing specializations.. Time: 0:00:02 - Points: 12  ✓ # Computing specializations.. Time: 0:00:02 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 3536 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 6)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 20.202060718 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 7.975439664 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 34.920244799 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 3535 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 14)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.683331136 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.175290573 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.049771454 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 11 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 66 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 121.760527866 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x2, x3, x1, x0, a1, b1, kc, b2, n, ka, a2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/PK2/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/PK2/logs_(:hybrid,) deleted file mode 100644 index 94bba5e85..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK2/logs_(:hybrid,) +++ /dev/null @@ -1,539 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing PK2 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 8.176924252 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 8.176924252 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 40.317889222 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 40.317889222 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [2936] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.085305014 seconds -│ :rank_time = rank_time -│ rank_times = 4.085305014 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:08 ✓ # Computing specializations.. Time: 0:00:08 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:02 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ⌞ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:03 ⌝ # Computing specializations.. Time: 0:00:04 ⌟ # Computing specializations.. Time: 0:00:04 ⌞ # Computing specializations.. Time: 0:00:04 ⌜ # Computing specializations.. Time: 0:00:05 ⌝ # Computing specializations.. Time: 0:00:05 ⌟ # Computing specializations.. Time: 0:00:06 ⌞ # Computing specializations.. Time: 0:00:06 ⌜ # Computing specializations.. Time: 0:00:06 ✓ # Computing specializations.. Time: 0:00:06 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 2  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 4  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 6  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 8  ⌜ # Computing specializations.. Time: 0:00:02 - Points: 10  ⌝ # Computing specializations.. Time: 0:00:02 - Points: 12  ✓ # Computing specializations.. Time: 0:00:02 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 3536 functions in Rational Field(a2, ka, n, b2, kc, b1, a1)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 6)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 19.290534341 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 7.774287296 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (7 in total): Nemo.fmpq_mpoly[a2, ka, n, b2, kc, b1, a1] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y2, y6, y3], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y4, y7, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(a2, ka, n, b2, kc, b1, a1)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013781277 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001732249 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y3, y6, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, t, y4, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(a2, ka, n, b2, kc, b1, a1)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011422399 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001662329 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y7, y1, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, t, y3, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(a2, ka, n, b2, kc, b1, a1)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.012103989 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.054975327 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y3, y1, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y4, y2, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(a2, ka, n, b2, kc, b1, a1)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.019309464 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002032315 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y4, y5, y2], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y1, t, y3], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(a2, ka, n, b2, kc, b1, a1)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.012330671 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002241273 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, t, y2, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y3, y6, y7], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(a2, ka, n, b2, kc, b1, a1)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011765129 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002958545 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y3, y7, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, t, y4, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(a2, ka, n, b2, kc, b1, a1)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.100179936 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00340451 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, t, y7, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y3, y6, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(a2, ka, n, b2, kc, b1, a1)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.026063063 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003353093 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y7, y1, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y5, y3, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(a2, ka, n, b2, kc, b1, a1)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.023938901 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00252389 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, t, y4, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y5, y3, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(a2, ka, n, b2, kc, b1, a1)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011294638 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.060025581 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 34.585613808 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 3535 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 120.152297539 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[a1, b1, kc, b2, n, ka, a2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/PK2/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/PK2/logs_(:hybrid,)_with_states deleted file mode 100644 index 6ccc48db1..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK2/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,592 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing PK2 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 7.690995691 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 7.690995691 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 38.086109386 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 38.086109386 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [2936] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 3.881982159 seconds -│ :rank_time = rank_time -│ rank_times = 3.881982159 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:06 ✓ # Computing specializations.. Time: 0:00:07 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:02 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:03 ⌞ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:04 ⌝ # Computing specializations.. Time: 0:00:04 ⌟ # Computing specializations.. Time: 0:00:04 ⌞ # Computing specializations.. Time: 0:00:05 ⌜ # Computing specializations.. Time: 0:00:05 ⌝ # Computing specializations.. Time: 0:00:06 ⌟ # Computing specializations.. Time: 0:00:06 ⌞ # Computing specializations.. Time: 0:00:07 ⌜ # Computing specializations.. Time: 0:00:07 ✓ # Computing specializations.. Time: 0:00:07 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 2  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 4  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 6  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 8  ⌜ # Computing specializations.. Time: 0:00:02 - Points: 10  ⌝ # Computing specializations.. Time: 0:00:02 - Points: 12  ✓ # Computing specializations.. Time: 0:00:02 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 3536 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 6)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 18.902249919 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 8.353904313 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 34.030239285 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 3535 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 14)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.813726324 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.252173752 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y6, y3, y8, t, y9], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y7, y4, y1, y5, y11], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013926153 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001643138 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y1, y7, t, y3, y11], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y9, y2, y8, y6, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010546206 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001624502 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, t, y8, y10, y3, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y11, y6, y2, y5, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010344774 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.055838467 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y1, y7, y8, y11, y9], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y10, t, y3, y4, y5], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011242533 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001493806 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, t, y9, y6, y2, y4], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y7, y1, y8, y10, y3], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009149103 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001437419 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y8, y4, y10, y11, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y9, y1, t, y2, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.118799743 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.045173074 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y7, y8, y3, t, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y9, y10, y5, y11, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.012574685 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003289398 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y10, y8, y5, y11, y7], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y1, y3, y4, t, y9], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.021708331 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002673118 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y10, t, y2, y7, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y4, y5, y1, y11, y8], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.012321624 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.058607021 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y8, y10, y2, t, y3], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y1, y6, y7, y11, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.032488236 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00442664 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.153323065 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 11 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 66 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 118.881342787 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x2, x3, x1, x0, a1, b1, kc, b2, n, ka, a2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/PK2/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/PK2/logs_(:normalforms, 2) deleted file mode 100644 index a229785b5..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK2/logs_(:normalforms, 2) +++ /dev/null @@ -1,103 +0,0 @@ -┌ Info: Processing PK2 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 8.523120822 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 8.523120822 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 39.123377126 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 39.123377126 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [2936] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 3.75428825 seconds -│ :rank_time = rank_time -│ rank_times = 3.75428825 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:07 ✓ # Computing specializations.. Time: 0:00:07 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:02 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ⌞ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:03 ⌝ # Computing specializations.. Time: 0:00:03 ⌟ # Computing specializations.. Time: 0:00:04 ⌞ # Computing specializations.. Time: 0:00:04 ⌜ # Computing specializations.. Time: 0:00:05 ⌝ # Computing specializations.. Time: 0:00:05 ⌟ # Computing specializations.. Time: 0:00:05 ⌞ # Computing specializations.. Time: 0:00:06 ⌜ # Computing specializations.. Time: 0:00:06 ✓ # Computing specializations.. Time: 0:00:06 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 2  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 4  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 6  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 8  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 10  ⌝ # Computing specializations.. Time: 0:00:02 - Points: 12  ✓ # Computing specializations.. Time: 0:00:02 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 3536 functions in Rational Field(a2, ka, n, b2, kc, b1, a1)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 6)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 17.553280815 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 7.607152188 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (7 in total): Nemo.fmpq_mpoly[a2, ka, n, b2, kc, b1, a1] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 33.341520295 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 3535 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 114.400764136 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[a1, b1, kc, b2, n, ka, a2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/PK2/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/PK2/logs_(:normalforms, 2)_with_states deleted file mode 100644 index a0f6ef978..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK2/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,156 +0,0 @@ -┌ Info: Processing PK2 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 7.898783219 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 7.898783219 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 38.851921069 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 38.851921069 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [2936] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 3.727039798 seconds -│ :rank_time = rank_time -│ rank_times = 3.727039798 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:07 ✓ # Computing specializations.. Time: 0:00:07 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:02 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:03 ⌞ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:04 ⌝ # Computing specializations.. Time: 0:00:04 ⌟ # Computing specializations.. Time: 0:00:04 ⌞ # Computing specializations.. Time: 0:00:05 ⌜ # Computing specializations.. Time: 0:00:05 ⌝ # Computing specializations.. Time: 0:00:06 ⌟ # Computing specializations.. Time: 0:00:06 ⌞ # Computing specializations.. Time: 0:00:07 ⌜ # Computing specializations.. Time: 0:00:07 ⌝ # Computing specializations.. Time: 0:00:08 ✓ # Computing specializations.. Time: 0:00:08 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 2  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 4  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 6  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 8  ⌜ # Computing specializations.. Time: 0:00:02 - Points: 10  ⌝ # Computing specializations.. Time: 0:00:02 - Points: 12  ✓ # Computing specializations.. Time: 0:00:02 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 3536 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 6)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 19.942921621 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 8.337034566 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 35.199198709 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 3535 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 14)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.616501872 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.172692345 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.040418352 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 11 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 66 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 120.004062714 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x2, x3, x1, x0, a1, b1, kc, b2, n, ka, a2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/PK2/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/PK2/logs_(:normalforms, 3) deleted file mode 100644 index d0e8c6dbe..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK2/logs_(:normalforms, 3) +++ /dev/null @@ -1,103 +0,0 @@ -┌ Info: Processing PK2 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 30.354084727 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 30.354084727 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 39.741936718 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 39.741936718 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [2936] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 3.660294493 seconds -│ :rank_time = rank_time -│ rank_times = 3.660294493 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:07 ✓ # Computing specializations.. Time: 0:00:07 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:02 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ⌞ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:03 ⌝ # Computing specializations.. Time: 0:00:04 ⌟ # Computing specializations.. Time: 0:00:04 ⌞ # Computing specializations.. Time: 0:00:04 ⌜ # Computing specializations.. Time: 0:00:05 ⌝ # Computing specializations.. Time: 0:00:05 ⌟ # Computing specializations.. Time: 0:00:06 ⌞ # Computing specializations.. Time: 0:00:06 ⌜ # Computing specializations.. Time: 0:00:06 ✓ # Computing specializations.. Time: 0:00:06 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 2  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 4  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 6  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 8  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 10  ⌝ # Computing specializations.. Time: 0:00:02 - Points: 12  ✓ # Computing specializations.. Time: 0:00:02 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 3536 functions in Rational Field(a2, ka, n, b2, kc, b1, a1)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 6)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 17.954244005 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 7.571645552 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (7 in total): Nemo.fmpq_mpoly[a2, ka, n, b2, kc, b1, a1] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 34.202265559 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 3535 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 138.01340643 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[a1, b1, kc, b2, n, ka, a2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/PK2/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/PK2/logs_(:normalforms, 3)_with_states deleted file mode 100644 index 4d812697c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK2/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,156 +0,0 @@ -┌ Info: Processing PK2 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 8.361287555 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 8.361287555 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 40.687492017 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 40.687492017 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [2936] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.336041716 seconds -│ :rank_time = rank_time -│ rank_times = 4.336041716 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:08 ✓ # Computing specializations.. Time: 0:00:08 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:01 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:02 ⌜ # Computing specializations.. Time: 0:00:02 ⌝ # Computing specializations.. Time: 0:00:03 ⌟ # Computing specializations.. Time: 0:00:03 ⌞ # Computing specializations.. Time: 0:00:04 ⌜ # Computing specializations.. Time: 0:00:04 ⌝ # Computing specializations.. Time: 0:00:06 ⌟ # Computing specializations.. Time: 0:00:06 ⌞ # Computing specializations.. Time: 0:00:07 ⌜ # Computing specializations.. Time: 0:00:07 ⌝ # Computing specializations.. Time: 0:00:08 ⌟ # Computing specializations.. Time: 0:00:08 ⌞ # Computing specializations.. Time: 0:00:09 ⌜ # Computing specializations.. Time: 0:00:09 ✓ # Computing specializations.. Time: 0:00:09 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 2  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 4  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 6  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 8  ⌜ # Computing specializations.. Time: 0:00:02 - Points: 10  ⌝ # Computing specializations.. Time: 0:00:02 - Points: 12  ✓ # Computing specializations.. Time: 0:00:02 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 3536 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 6)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 22.788908526 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 8.66710461 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 36.009573798 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 3535 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 14)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.729459349 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.17525196 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.098243786 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 11 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 66 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 127.50200141 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x2, x3, x1, x0, a1, b1, kc, b2, n, ka, a2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/PK2/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/PK2/timings_(:gb,) deleted file mode 100644 index 1c8064fef..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK2/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -PK2 -id_total, 115.378408403 diff --git a/benchmarking/IdentifiableFunctions/systems/PK2/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/PK2/timings_(:gb,)_with_states deleted file mode 100644 index b5ddc0a0a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK2/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -PK2 -id_total, 121.760527866 diff --git a/benchmarking/IdentifiableFunctions/systems/PK2/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/PK2/timings_(:hybrid,) deleted file mode 100644 index ac610da0d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK2/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -PK2 -id_total, 120.152297539 diff --git a/benchmarking/IdentifiableFunctions/systems/PK2/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/PK2/timings_(:hybrid,)_with_states deleted file mode 100644 index ae3d53fea..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK2/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -PK2 -id_total, 118.881342787 diff --git a/benchmarking/IdentifiableFunctions/systems/PK2/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/PK2/timings_(:normalforms, 2) deleted file mode 100644 index 737588c74..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK2/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -PK2 -id_total, 114.400764136 diff --git a/benchmarking/IdentifiableFunctions/systems/PK2/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/PK2/timings_(:normalforms, 2)_with_states deleted file mode 100644 index 51738840b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK2/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -PK2 -id_total, 120.004062714 diff --git a/benchmarking/IdentifiableFunctions/systems/PK2/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/PK2/timings_(:normalforms, 3) deleted file mode 100644 index a95d0e549..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK2/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -PK2 -id_total, 138.01340643 diff --git a/benchmarking/IdentifiableFunctions/systems/PK2/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/PK2/timings_(:normalforms, 3)_with_states deleted file mode 100644 index 217f24460..000000000 --- a/benchmarking/IdentifiableFunctions/systems/PK2/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -PK2 -id_total, 127.50200141 diff --git a/benchmarking/IdentifiableFunctions/systems/Pharm/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Pharm/id_funcs_(:gb,) deleted file mode 100644 index a742a20b7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pharm/id_funcs_(:gb,) +++ /dev/null @@ -1,7 +0,0 @@ -[a1, -b1, -kc, -b2, -n, -ka, -a2] diff --git a/benchmarking/IdentifiableFunctions/systems/Pharm/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Pharm/id_funcs_(:gb,)_with_states deleted file mode 100644 index 961a7173c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pharm/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,11 +0,0 @@ -[x2, -x3, -x1, -x0, -a1, -b1, -kc, -b2, -n, -ka, -a2] diff --git a/benchmarking/IdentifiableFunctions/systems/Pharm/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Pharm/id_funcs_(:hybrid,) deleted file mode 100644 index a742a20b7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pharm/id_funcs_(:hybrid,) +++ /dev/null @@ -1,7 +0,0 @@ -[a1, -b1, -kc, -b2, -n, -ka, -a2] diff --git a/benchmarking/IdentifiableFunctions/systems/Pharm/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Pharm/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index 961a7173c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pharm/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,11 +0,0 @@ -[x2, -x3, -x1, -x0, -a1, -b1, -kc, -b2, -n, -ka, -a2] diff --git a/benchmarking/IdentifiableFunctions/systems/Pharm/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Pharm/id_funcs_(:normalforms, 2) deleted file mode 100644 index a742a20b7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pharm/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,7 +0,0 @@ -[a1, -b1, -kc, -b2, -n, -ka, -a2] diff --git a/benchmarking/IdentifiableFunctions/systems/Pharm/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Pharm/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index 961a7173c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pharm/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,11 +0,0 @@ -[x2, -x3, -x1, -x0, -a1, -b1, -kc, -b2, -n, -ka, -a2] diff --git a/benchmarking/IdentifiableFunctions/systems/Pharm/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Pharm/id_funcs_(:normalforms, 3) deleted file mode 100644 index a742a20b7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pharm/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,7 +0,0 @@ -[a1, -b1, -kc, -b2, -n, -ka, -a2] diff --git a/benchmarking/IdentifiableFunctions/systems/Pharm/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Pharm/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index 961a7173c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pharm/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,11 +0,0 @@ -[x2, -x3, -x1, -x0, -a1, -b1, -kc, -b2, -n, -ka, -a2] diff --git a/benchmarking/IdentifiableFunctions/systems/Pharm/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Pharm/logs_(:gb,) deleted file mode 100644 index 15267024b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pharm/logs_(:gb,) +++ /dev/null @@ -1,92 +0,0 @@ -┌ Info: Processing Pharm -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 9.894864278 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 9.894864278 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 39.295341509 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 39.295341509 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [2936] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 3.370353678 seconds -│ :rank_time = rank_time -│ rank_times = 3.370353678 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:07 ✓ # Computing specializations.. Time: 0:00:07 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ⌞ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:03 ⌝ # Computing specializations.. Time: 0:00:03 ⌟ # Computing specializations.. Time: 0:00:04 ⌞ # Computing specializations.. Time: 0:00:04 ⌜ # Computing specializations.. Time: 0:00:05 ⌝ # Computing specializations.. Time: 0:00:05 ⌟ # Computing specializations.. Time: 0:00:05 ⌞ # Computing specializations.. Time: 0:00:06 ⌜ # Computing specializations.. Time: 0:00:06 ✓ # Computing specializations.. Time: 0:00:06 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 2  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 4  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 6  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 8  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 10  ⌝ # Computing specializations.. Time: 0:00:02 - Points: 12  ✓ # Computing specializations.. Time: 0:00:02 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 3536 functions in Rational Field(a2, ka, n, b2, kc, b1, a1)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 6)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 17.802310571 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 7.561166922 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 34.322721124 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 3535 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 116.736165389 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[a1, b1, kc, b2, n, ka, a2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Pharm/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Pharm/logs_(:gb,)_with_states deleted file mode 100644 index a277874ee..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pharm/logs_(:gb,)_with_states +++ /dev/null @@ -1,145 +0,0 @@ -┌ Info: Processing Pharm -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 9.139867859 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 9.139867859 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 40.322484057 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 40.322484057 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [2936] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 3.727658363 seconds -│ :rank_time = rank_time -│ rank_times = 3.727658363 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:07 ✓ # Computing specializations.. Time: 0:00:08 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:01 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:02 ⌜ # Computing specializations.. Time: 0:00:02 ⌝ # Computing specializations.. Time: 0:00:03 ⌟ # Computing specializations.. Time: 0:00:03 ⌞ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:04 ⌝ # Computing specializations.. Time: 0:00:04 ⌟ # Computing specializations.. Time: 0:00:05 ⌞ # Computing specializations.. Time: 0:00:05 ⌜ # Computing specializations.. Time: 0:00:06 ⌝ # Computing specializations.. Time: 0:00:06 ⌟ # Computing specializations.. Time: 0:00:07 ⌞ # Computing specializations.. Time: 0:00:07 ⌜ # Computing specializations.. Time: 0:00:08 ✓ # Computing specializations.. Time: 0:00:08 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 2  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 4  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 6  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 8  ⌜ # Computing specializations.. Time: 0:00:02 - Points: 10  ⌝ # Computing specializations.. Time: 0:00:02 - Points: 12  ✓ # Computing specializations.. Time: 0:00:02 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 3536 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 6)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 20.926989207 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 7.939509146 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 35.675170181 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 3535 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 14)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.685784892 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.165366943 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.059205296 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 11 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 66 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 124.793529267 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x2, x3, x1, x0, a1, b1, kc, b2, n, ka, a2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Pharm/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Pharm/logs_(:hybrid,) deleted file mode 100644 index 8262546bf..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pharm/logs_(:hybrid,) +++ /dev/null @@ -1,539 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing Pharm -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 8.830444547 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 8.830444547 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 40.288729233 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 40.288729233 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [2936] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 3.974204223 seconds -│ :rank_time = rank_time -│ rank_times = 3.974204223 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:09 ✓ # Computing specializations.. Time: 0:00:09 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:02 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:03 ⌞ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:04 ⌝ # Computing specializations.. Time: 0:00:04 ⌟ # Computing specializations.. Time: 0:00:05 ⌞ # Computing specializations.. Time: 0:00:05 ⌜ # Computing specializations.. Time: 0:00:05 ⌝ # Computing specializations.. Time: 0:00:06 ⌟ # Computing specializations.. Time: 0:00:06 ⌞ # Computing specializations.. Time: 0:00:07 ⌜ # Computing specializations.. Time: 0:00:07 ✓ # Computing specializations.. Time: 0:00:07 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 2  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 4  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 6  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 8  ⌜ # Computing specializations.. Time: 0:00:02 - Points: 10  ⌝ # Computing specializations.. Time: 0:00:02 - Points: 12  ✓ # Computing specializations.. Time: 0:00:02 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 3536 functions in Rational Field(a2, ka, n, b2, kc, b1, a1)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 6)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 20.687497284 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 7.725370059 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (7 in total): Nemo.fmpq_mpoly[a2, ka, n, b2, kc, b1, a1] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y4, y2, y1], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, t, y7, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(a2, ka, n, b2, kc, b1, a1)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.018087029 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002246735 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y1, y7, y4], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y5, y2, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(a2, ka, n, b2, kc, b1, a1)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011788766 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001614643 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y2, y4, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y6, t, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(a2, ka, n, b2, kc, b1, a1)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011142333 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.052819511 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y2, y4, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t, y6, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(a2, ka, n, b2, kc, b1, a1)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.017699989 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001684318 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y5, y2, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y7, y3, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(a2, ka, n, b2, kc, b1, a1)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011703787 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001544465 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y6, y7, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y4, y1, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(a2, ka, n, b2, kc, b1, a1)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011530109 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002266194 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, t, y7, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y4, y3, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(a2, ka, n, b2, kc, b1, a1)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.071903842 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001681095 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y5, t, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y1, y6, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(a2, ka, n, b2, kc, b1, a1)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011638499 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002074973 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y7, y4, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y5, y6, y2], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(a2, ka, n, b2, kc, b1, a1)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.012546953 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003164672 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y4, t, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y6, y2, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(a2, ka, n, b2, kc, b1, a1)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011829331 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.059250166 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 34.211254878 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 3535 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 122.365510826 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[a1, b1, kc, b2, n, ka, a2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Pharm/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Pharm/logs_(:hybrid,)_with_states deleted file mode 100644 index ab503be2e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pharm/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,592 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing Pharm -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 8.551873559 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 8.551873559 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 38.750644303 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 38.750644303 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [2936] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 3.845401146 seconds -│ :rank_time = rank_time -│ rank_times = 3.845401146 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:07 ✓ # Computing specializations.. Time: 0:00:07 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:02 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:03 ⌞ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:04 ⌝ # Computing specializations.. Time: 0:00:04 ⌟ # Computing specializations.. Time: 0:00:04 ⌞ # Computing specializations.. Time: 0:00:05 ⌜ # Computing specializations.. Time: 0:00:05 ⌝ # Computing specializations.. Time: 0:00:06 ⌟ # Computing specializations.. Time: 0:00:06 ⌞ # Computing specializations.. Time: 0:00:07 ⌜ # Computing specializations.. Time: 0:00:07 ✓ # Computing specializations.. Time: 0:00:07 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 2  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 4  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 6  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 8  ⌜ # Computing specializations.. Time: 0:00:02 - Points: 10  ⌝ # Computing specializations.. Time: 0:00:02 - Points: 12  ✓ # Computing specializations.. Time: 0:00:02 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:01 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 3536 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 6)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 18.999531972 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 8.409714426 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 34.871072222 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 3535 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 14)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.30512354 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.413689598 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y4, y8, y1, y10, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y11, y2, y3, y7, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.016635974 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002492384 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y8, y1, y2, y6, y10], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y4, y7, y3, y9, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.012812027 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001899734 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y11, y5, y4, t, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y2, y3, y7, y9, y10], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013410618 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.067636417 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y5, y9, y2, y11, y8], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t, y6, y1, y4, y10], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.012119892 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001914117 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y3, y10, y6, t, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y4, y9, y2, y7, y11], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011754089 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.10547868 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y7, y6, y10, t, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y2, y11, y9, y8, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.073459388 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002279907 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y10, y1, y3, y5, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, t, y7, y8, y9, y4], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.01432387 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002486324 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y5, y10, y6, y11, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y4, y7, t, y3, y9], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013241566 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001922279 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y8, y11, y1, t, y9], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y10, y6, y4, y3, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.052032515 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002289804 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y11, y5, y7, y6, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y1, y9, y10, y2, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.012274302 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001697852 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.056283561 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 11 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 66 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 122.091945529 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x2, x3, x1, x0, a1, b1, kc, b2, n, ka, a2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Pharm/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Pharm/logs_(:normalforms, 2) deleted file mode 100644 index 97b063755..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pharm/logs_(:normalforms, 2) +++ /dev/null @@ -1,103 +0,0 @@ -┌ Info: Processing Pharm -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 7.306311734 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 7.306311734 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 38.612869318 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 38.612869318 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [2936] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 3.74773403 seconds -│ :rank_time = rank_time -│ rank_times = 3.74773403 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:07 ✓ # Computing specializations.. Time: 0:00:07 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ⌞ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:03 ⌝ # Computing specializations.. Time: 0:00:03 ⌟ # Computing specializations.. Time: 0:00:04 ⌞ # Computing specializations.. Time: 0:00:04 ⌜ # Computing specializations.. Time: 0:00:04 ⌝ # Computing specializations.. Time: 0:00:05 ⌟ # Computing specializations.. Time: 0:00:05 ⌞ # Computing specializations.. Time: 0:00:06 ⌜ # Computing specializations.. Time: 0:00:06 ✓ # Computing specializations.. Time: 0:00:06 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 2  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 4  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 6  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 8  ⌜ # Computing specializations.. Time: 0:00:02 - Points: 10  ⌝ # Computing specializations.. Time: 0:00:02 - Points: 12  ✓ # Computing specializations.. Time: 0:00:02 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 3536 functions in Rational Field(a2, ka, n, b2, kc, b1, a1)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 6)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 18.136493667 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 7.406062452 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (7 in total): Nemo.fmpq_mpoly[a2, ka, n, b2, kc, b1, a1] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 34.433734534 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 3535 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 114.19482888 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[a1, b1, kc, b2, n, ka, a2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Pharm/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Pharm/logs_(:normalforms, 2)_with_states deleted file mode 100644 index 3ec48ac66..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pharm/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,156 +0,0 @@ -┌ Info: Processing Pharm -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 7.047320888 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 7.047320888 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 38.533969974 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 38.533969974 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [2936] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 3.418666325 seconds -│ :rank_time = rank_time -│ rank_times = 3.418666325 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:07 ✓ # Computing specializations.. Time: 0:00:07 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:01 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:02 ⌜ # Computing specializations.. Time: 0:00:02 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:03 ⌞ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:04 ⌝ # Computing specializations.. Time: 0:00:04 ⌟ # Computing specializations.. Time: 0:00:05 ⌞ # Computing specializations.. Time: 0:00:05 ⌜ # Computing specializations.. Time: 0:00:06 ⌝ # Computing specializations.. Time: 0:00:06 ⌟ # Computing specializations.. Time: 0:00:06 ⌞ # Computing specializations.. Time: 0:00:07 ⌜ # Computing specializations.. Time: 0:00:07 ✓ # Computing specializations.. Time: 0:00:08 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 2  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 4  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 6  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 8  ⌜ # Computing specializations.. Time: 0:00:02 - Points: 10  ⌝ # Computing specializations.. Time: 0:00:02 - Points: 12  ✓ # Computing specializations.. Time: 0:00:02 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 3536 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 6)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 19.832314701 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 8.376761854 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 35.675383218 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 3535 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 14)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.664906659 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.171782949 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.075513768 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 11 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 66 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 119.011978985 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x2, x3, x1, x0, a1, b1, kc, b2, n, ka, a2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Pharm/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Pharm/logs_(:normalforms, 3) deleted file mode 100644 index 14a58cdf0..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pharm/logs_(:normalforms, 3) +++ /dev/null @@ -1,103 +0,0 @@ -┌ Info: Processing Pharm -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 6.905644559 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 6.905644559 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 38.41761257 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 38.41761257 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [2936] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 3.702418973 seconds -│ :rank_time = rank_time -│ rank_times = 3.702418973 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:07 ✓ # Computing specializations.. Time: 0:00:07 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:02 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ⌞ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:03 ⌝ # Computing specializations.. Time: 0:00:04 ⌟ # Computing specializations.. Time: 0:00:04 ⌞ # Computing specializations.. Time: 0:00:04 ⌜ # Computing specializations.. Time: 0:00:05 ⌝ # Computing specializations.. Time: 0:00:05 ⌟ # Computing specializations.. Time: 0:00:06 ⌞ # Computing specializations.. Time: 0:00:06 ⌜ # Computing specializations.. Time: 0:00:07 ✓ # Computing specializations.. Time: 0:00:07 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 2  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 4  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 6  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 8  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 10  ⌝ # Computing specializations.. Time: 0:00:02 - Points: 12  ✓ # Computing specializations.. Time: 0:00:02 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 3536 functions in Rational Field(a2, ka, n, b2, kc, b1, a1)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 6)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 18.242180295 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 7.998856266 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (7 in total): Nemo.fmpq_mpoly[a2, ka, n, b2, kc, b1, a1] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 34.27101578 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 3535 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 114.310890628 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[a1, b1, kc, b2, n, ka, a2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Pharm/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Pharm/logs_(:normalforms, 3)_with_states deleted file mode 100644 index ea4a9360d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pharm/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,156 +0,0 @@ -┌ Info: Processing Pharm -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 7.260680011 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 7.260680011 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 41.743270393 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 41.743270393 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [2936] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.420709476 seconds -│ :rank_time = rank_time -│ rank_times = 4.420709476 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:08 ✓ # Computing specializations.. Time: 0:00:08 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:01 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:02 ⌜ # Computing specializations.. Time: 0:00:02 ⌝ # Computing specializations.. Time: 0:00:03 ⌟ # Computing specializations.. Time: 0:00:03 ⌞ # Computing specializations.. Time: 0:00:04 ⌜ # Computing specializations.. Time: 0:00:04 ⌝ # Computing specializations.. Time: 0:00:06 ⌟ # Computing specializations.. Time: 0:00:07 ⌞ # Computing specializations.. Time: 0:00:07 ⌜ # Computing specializations.. Time: 0:00:07 ⌝ # Computing specializations.. Time: 0:00:08 ⌟ # Computing specializations.. Time: 0:00:08 ⌞ # Computing specializations.. Time: 0:00:09 ⌜ # Computing specializations.. Time: 0:00:09 ✓ # Computing specializations.. Time: 0:00:10 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 2  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 4  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 6  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 8  ⌜ # Computing specializations.. Time: 0:00:02 - Points: 10  ⌝ # Computing specializations.. Time: 0:00:02 - Points: 12  ✓ # Computing specializations.. Time: 0:00:02 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 3536 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 6)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 23.26473689 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 8.560051016 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 34.930861612 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 3535 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 14)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.624985222 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.174301357 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[a2, ka, n, b2, kc, b1, a1, x0, x1, x3, x2] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.044048869 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 11 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 66 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 126.414452986 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x2, x3, x1, x0, a1, b1, kc, b2, n, ka, a2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Pharm/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Pharm/timings_(:gb,) deleted file mode 100644 index 9c08d3271..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pharm/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -Pharm -id_total, 116.736165389 diff --git a/benchmarking/IdentifiableFunctions/systems/Pharm/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Pharm/timings_(:gb,)_with_states deleted file mode 100644 index 0c18326e0..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pharm/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Pharm -id_total, 124.793529267 diff --git a/benchmarking/IdentifiableFunctions/systems/Pharm/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Pharm/timings_(:hybrid,) deleted file mode 100644 index 76852c356..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pharm/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -Pharm -id_total, 122.365510826 diff --git a/benchmarking/IdentifiableFunctions/systems/Pharm/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Pharm/timings_(:hybrid,)_with_states deleted file mode 100644 index b45af0194..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pharm/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Pharm -id_total, 122.091945529 diff --git a/benchmarking/IdentifiableFunctions/systems/Pharm/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Pharm/timings_(:normalforms, 2) deleted file mode 100644 index d31fb181d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pharm/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -Pharm -id_total, 114.19482888 diff --git a/benchmarking/IdentifiableFunctions/systems/Pharm/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Pharm/timings_(:normalforms, 2)_with_states deleted file mode 100644 index 5b3d7f3e1..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pharm/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Pharm -id_total, 119.011978985 diff --git a/benchmarking/IdentifiableFunctions/systems/Pharm/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Pharm/timings_(:normalforms, 3) deleted file mode 100644 index daacc0bc1..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pharm/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -Pharm -id_total, 114.310890628 diff --git a/benchmarking/IdentifiableFunctions/systems/Pharm/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Pharm/timings_(:normalforms, 3)_with_states deleted file mode 100644 index 1469a6078..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pharm/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Pharm -id_total, 126.414452986 diff --git a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Phosphorylation/id_funcs_(:gb,) deleted file mode 100644 index a2afb21d9..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/id_funcs_(:gb,) +++ /dev/null @@ -1,6 +0,0 @@ -[k1, -k6, -k2, -k4, -k3, -k5*k3 + k5*k2] diff --git a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Phosphorylation/id_funcs_(:gb,)_with_states deleted file mode 100644 index 40ba093d9..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,12 +0,0 @@ -[x4, -x5, -x3, -x1, -x2, -x6, -k1, -k6, -k2, -k4, -k3, -k5] diff --git a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Phosphorylation/id_funcs_(:hybrid,) deleted file mode 100644 index 744a1da63..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/id_funcs_(:hybrid,) +++ /dev/null @@ -1,6 +0,0 @@ -[k1, -k6, -k2, -k4, -k3, -k5] diff --git a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Phosphorylation/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index 40ba093d9..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,12 +0,0 @@ -[x4, -x5, -x3, -x1, -x2, -x6, -k1, -k6, -k2, -k4, -k3, -k5] diff --git a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Phosphorylation/id_funcs_(:normalforms, 2) deleted file mode 100644 index 744a1da63..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,6 +0,0 @@ -[k1, -k6, -k2, -k4, -k3, -k5] diff --git a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Phosphorylation/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index 40ba093d9..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,12 +0,0 @@ -[x4, -x5, -x3, -x1, -x2, -x6, -k1, -k6, -k2, -k4, -k3, -k5] diff --git a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Phosphorylation/id_funcs_(:normalforms, 3) deleted file mode 100644 index 744a1da63..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,6 +0,0 @@ -[k1, -k6, -k2, -k4, -k3, -k5] diff --git a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Phosphorylation/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index 40ba093d9..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,12 +0,0 @@ -[x4, -x5, -x3, -x1, -x2, -x6, -k1, -k6, -k2, -k4, -k3, -k5] diff --git a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Phosphorylation/logs_(:gb,) deleted file mode 100644 index a5d00bc90..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/logs_(:gb,) +++ /dev/null @@ -1,84 +0,0 @@ -┌ Info: Processing Phosphorylation -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.326278804 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.326278804 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.095918023 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.095918023 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [50, 35] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000209124 seconds -│ :rank_time = rank_time -│ rank_times = 0.000209124 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 128 functions in Rational Field(k5, k3, k4, k2, k6, k1)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.11658237 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.187749885 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.087504257 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 127 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 24 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 9.881499072 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k1, k6, k2, k4, k3, k5*k3 + k5*k2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Phosphorylation/logs_(:gb,)_with_states deleted file mode 100644 index 7dae721c3..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/logs_(:gb,)_with_states +++ /dev/null @@ -1,135 +0,0 @@ -┌ Info: Processing Phosphorylation -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.339863417 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.339863417 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.04539707 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.04539707 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [50, 35] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.00020304 seconds -│ :rank_time = rank_time -│ rank_times = 0.00020304 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 128 functions in Rational Field(k5, k3, k4, k2, k6, k1, x6, x2, x1, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.916003744 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.006983362 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.013688164 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 127 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 24 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(k5, k3, k4, k2, k6, k1, x6, x2, x1, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.064403411 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003292818 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.004562979 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 14 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 78 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.594014102 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x4, x5, x3, x1, x2, x6, k1, k6, k2, k4, k3, k5] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Phosphorylation/logs_(:hybrid,) deleted file mode 100644 index 05bd58372..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/logs_(:hybrid,) +++ /dev/null @@ -1,531 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing Phosphorylation -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 3.00145943 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 3.00145943 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.068109394 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.068109394 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [50, 35] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000210792 seconds -│ :rank_time = rank_time -│ rank_times = 0.000210792 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 128 functions in Rational Field(k5, k3, k4, k2, k6, k1)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 5.091107523 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.325515662 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (6 in total): Nemo.fmpq_mpoly[k5, k3, k4, k2, k6, k1] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y2, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y1, y6, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(k5, k3, k4, k2, k6, k1)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011064267 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.048454357 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y6, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y1, y3, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(k5, k3, k4, k2, k6, k1)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.01036003 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001353517 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, t, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y6, y3, y4], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(k5, k3, k4, k2, k6, k1)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009756125 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001286577 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y2, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t, y5, y6], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(k5, k3, k4, k2, k6, k1)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009775801 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001487361 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y6, y1], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y4, t, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(k5, k3, k4, k2, k6, k1)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009929224 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001398231 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y1, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y3, y4, y6], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(k5, k3, k4, k2, k6, k1)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010080455 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001267889 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y4, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t, y5, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(k5, k3, k4, k2, k6, k1)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010092855 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001433847 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y1, y5, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(k5, k3, k4, k2, k6, k1)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009878394 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00139217 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y4, y6, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(k5, k3, k4, k2, k6, k1)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.008438159 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.093226181 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y2, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y6, y4, y3], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(k5, k3, k4, k2, k6, k1)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010357118 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001235184 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.142842879 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 127 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 21 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 12.613324439 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k1, k6, k2, k4, k3, k5] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Phosphorylation/logs_(:hybrid,)_with_states deleted file mode 100644 index 6b2436b4a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,582 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing Phosphorylation -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.229257709 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.229257709 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.050517363 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.050517363 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [50, 35] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000233468 seconds -│ :rank_time = rank_time -│ rank_times = 0.000233468 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 128 functions in Rational Field(k5, k3, k4, k2, k6, k1, x6, x2, x1, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.87433378 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005811474 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.011868056 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 127 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 24 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(k5, k3, k4, k2, k6, k1, x6, x2, x1, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.021185363 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004090637 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (12 in total): Nemo.fmpq_mpoly[k5, k3, k4, k2, k6, k1, x6, x2, x1, x3, x5, x4] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y5, y11, y9, y8, y6], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t, y10, y12, y4, y7, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k5, k3, k4, k2, k6, k1, x6, x2, x1, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015332238 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001823821 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y12, y7, y11, t, y3, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y10, y2, y6, y1, y8, y9], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k5, k3, k4, k2, k6, k1, x6, x2, x1, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015506529 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002481481 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y2, y9, y12, y10, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y6, y8, y11, y4, t, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k5, k3, k4, k2, k6, k1, x6, x2, x1, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.0625569 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001830457 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y6, y1, y3, y7, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y4, y5, y10, y11, y12, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k5, k3, k4, k2, k6, k1, x6, x2, x1, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015270082 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001912526 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y6, y2, y4, y11, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y12, y3, y1, t, y8, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k5, k3, k4, k2, k6, k1, x6, x2, x1, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.014594086 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.0645295 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y1, t, y6, y5, y10], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y3, y7, y12, y2, y8, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k5, k3, k4, k2, k6, k1, x6, x2, x1, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015152015 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001806032 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y5, y2, y7, y6, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y11, y3, y12, y9, y10, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k5, k3, k4, k2, k6, k1, x6, x2, x1, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.01420397 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001808542 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y4, y9, y2, y8, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y1, y5, y12, y3, y11, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k5, k3, k4, k2, k6, k1, x6, x2, x1, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.014265166 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.059300278 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3, y1, y7, y10, y9], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y4, y11, y12, y6, y5, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k5, k3, k4, k2, k6, k1, x6, x2, x1, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.030561764 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005269065 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y7, y10, t, y2, y11], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y12, y8, y4, y1, y3, y6, y9], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(k5, k3, k4, k2, k6, k1, x6, x2, x1, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.053340348 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.006544 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.004753899 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 14 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 78 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.339176055 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x4, x5, x3, x1, x2, x6, k1, k6, k2, k4, k3, k5] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Phosphorylation/logs_(:normalforms, 2) deleted file mode 100644 index 8aee11787..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/logs_(:normalforms, 2) +++ /dev/null @@ -1,95 +0,0 @@ -┌ Info: Processing Phosphorylation -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.285848628 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.285848628 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.124228447 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.124228447 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [50, 35] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000205362 seconds -│ :rank_time = rank_time -│ rank_times = 0.000205362 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 128 functions in Rational Field(k5, k3, k4, k2, k6, k1)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.448738986 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.200500272 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (6 in total): Nemo.fmpq_mpoly[k5, k3, k4, k2, k6, k1] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.749661264 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 127 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 21 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.410934312 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k1, k6, k2, k4, k3, k5] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Phosphorylation/logs_(:normalforms, 2)_with_states deleted file mode 100644 index 7320db1a4..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,146 +0,0 @@ -┌ Info: Processing Phosphorylation -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.344910566 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.344910566 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.050492639 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.050492639 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [50, 35] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.00020266 seconds -│ :rank_time = rank_time -│ rank_times = 0.00020266 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 128 functions in Rational Field(k5, k3, k4, k2, k6, k1, x6, x2, x1, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.862600868 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.058001864 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.012716868 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 127 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 24 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(k5, k3, k4, k2, k6, k1, x6, x2, x1, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.018350637 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004095314 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (12 in total): Nemo.fmpq_mpoly[k5, k3, k4, k2, k6, k1, x6, x2, x1, x3, x5, x4] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.024531469 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 14 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 78 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.801573797 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x4, x5, x3, x1, x2, x6, k1, k6, k2, k4, k3, k5] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Phosphorylation/logs_(:normalforms, 3) deleted file mode 100644 index a4f91da05..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/logs_(:normalforms, 3) +++ /dev/null @@ -1,95 +0,0 @@ -┌ Info: Processing Phosphorylation -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.465797348 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.465797348 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.054311547 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.054311547 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [50, 35] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000203095 seconds -│ :rank_time = rank_time -│ rank_times = 0.000203095 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 128 functions in Rational Field(k5, k3, k4, k2, k6, k1)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.332727826 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.154463671 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (6 in total): Nemo.fmpq_mpoly[k5, k3, k4, k2, k6, k1] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.817227406 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 127 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 21 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.383105874 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k1, k6, k2, k4, k3, k5] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Phosphorylation/logs_(:normalforms, 3)_with_states deleted file mode 100644 index 352f048a1..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,146 +0,0 @@ -┌ Info: Processing Phosphorylation -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.336200434 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.336200434 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.055766132 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.055766132 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [50, 35] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.00021329 seconds -│ :rank_time = rank_time -│ rank_times = 0.00021329 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 128 functions in Rational Field(k5, k3, k4, k2, k6, k1, x6, x2, x1, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.914781775 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.052119941 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.012846319 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 127 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 24 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(k5, k3, k4, k2, k6, k1, x6, x2, x1, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.0188356 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003806948 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (12 in total): Nemo.fmpq_mpoly[k5, k3, k4, k2, k6, k1, x6, x2, x1, x3, x5, x4] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.005034151 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 14 initial generators there are 12 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 78 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.84405424 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x4, x5, x3, x1, x2, x6, k1, k6, k2, k4, k3, k5] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Phosphorylation/timings_(:gb,) deleted file mode 100644 index 9a9625b89..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -Phosphorylation -id_total, 9.881499072 diff --git a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Phosphorylation/timings_(:gb,)_with_states deleted file mode 100644 index 9b914173f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Phosphorylation -id_total, 3.594014102 diff --git a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Phosphorylation/timings_(:hybrid,) deleted file mode 100644 index 6d255bc43..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -Phosphorylation -id_total, 12.613324439 diff --git a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Phosphorylation/timings_(:hybrid,)_with_states deleted file mode 100644 index 00a04f104..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Phosphorylation -id_total, 4.339176055 diff --git a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Phosphorylation/timings_(:normalforms, 2) deleted file mode 100644 index 8dd532a2a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -Phosphorylation -id_total, 10.410934312 diff --git a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Phosphorylation/timings_(:normalforms, 2)_with_states deleted file mode 100644 index 1f3272e55..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Phosphorylation -id_total, 3.801573797 diff --git a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Phosphorylation/timings_(:normalforms, 3) deleted file mode 100644 index 026e68c55..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -Phosphorylation -id_total, 10.383105874 diff --git a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Phosphorylation/timings_(:normalforms, 3)_with_states deleted file mode 100644 index 3774c882c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Phosphorylation/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Phosphorylation -id_total, 3.84405424 diff --git a/benchmarking/IdentifiableFunctions/systems/Pivastatin/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Pivastatin/id_funcs_(:gb,) deleted file mode 100644 index 34aa2b386..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pivastatin/id_funcs_(:gb,) +++ /dev/null @@ -1,7 +0,0 @@ -[k2, -k4, -r1, -k3, -r3, -T0*k1, -k//k1] diff --git a/benchmarking/IdentifiableFunctions/systems/Pivastatin/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Pivastatin/id_funcs_(:gb,)_with_states deleted file mode 100644 index 083ca3369..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pivastatin/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,10 +0,0 @@ -[k2, -k4, -r1, -k3, -r3, -k1*x2, -k1*x3, -k1*x1, -T0*k1, -k//k1] diff --git a/benchmarking/IdentifiableFunctions/systems/Pivastatin/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Pivastatin/id_funcs_(:hybrid,) deleted file mode 100644 index 81a8c37d7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pivastatin/id_funcs_(:hybrid,) +++ /dev/null @@ -1,7 +0,0 @@ -[k2, -k4, -r1, -k3, -r3, -T0*k1, -T0*k] diff --git a/benchmarking/IdentifiableFunctions/systems/Pivastatin/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Pivastatin/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index 8d49e4a6e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pivastatin/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,10 +0,0 @@ -[k2, -k4, -r1, -k3, -r3, -k1*x2, -k1*x3, -k1*x1, -k*x2, -T0*k1] diff --git a/benchmarking/IdentifiableFunctions/systems/Pivastatin/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Pivastatin/id_funcs_(:normalforms, 2) deleted file mode 100644 index 81a8c37d7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pivastatin/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,7 +0,0 @@ -[k2, -k4, -r1, -k3, -r3, -T0*k1, -T0*k] diff --git a/benchmarking/IdentifiableFunctions/systems/Pivastatin/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Pivastatin/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index 8d49e4a6e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pivastatin/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,10 +0,0 @@ -[k2, -k4, -r1, -k3, -r3, -k1*x2, -k1*x3, -k1*x1, -k*x2, -T0*k1] diff --git a/benchmarking/IdentifiableFunctions/systems/Pivastatin/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Pivastatin/id_funcs_(:normalforms, 3) deleted file mode 100644 index 81a8c37d7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pivastatin/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,7 +0,0 @@ -[k2, -k4, -r1, -k3, -r3, -T0*k1, -T0*k] diff --git a/benchmarking/IdentifiableFunctions/systems/Pivastatin/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Pivastatin/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index 8d49e4a6e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pivastatin/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,10 +0,0 @@ -[k2, -k4, -r1, -k3, -r3, -k1*x2, -k1*x3, -k1*x1, -k*x2, -T0*k1] diff --git a/benchmarking/IdentifiableFunctions/systems/Pivastatin/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Pivastatin/logs_(:gb,) deleted file mode 100644 index 2527b406e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pivastatin/logs_(:gb,) +++ /dev/null @@ -1,85 +0,0 @@ -┌ Info: Processing Pivastatin -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 1.545901382 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 1.545901382 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.259032234 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.259032234 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [245] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.005462452 seconds -│ :rank_time = rank_time -│ rank_times = 0.005462452 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 252 functions in Rational Field(r3, k3, r1, k4, k2, T0, k, k1)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (8, 0)], [(0, 0), (0, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 2.275933102 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.287378556 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 3.713609537 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 251 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 57 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 9.421328176 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k2, k4, r1, k3, r3, T0*k1, k//k1] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Pivastatin/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Pivastatin/logs_(:gb,)_with_states deleted file mode 100644 index 7416bcd24..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pivastatin/logs_(:gb,)_with_states +++ /dev/null @@ -1,137 +0,0 @@ -┌ Info: Processing Pivastatin -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 1.56667228 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 1.56667228 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.260377969 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.260377969 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [245] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.005398813 seconds -│ :rank_time = rank_time -│ rank_times = 0.005398813 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 252 functions in Rational Field(r3, k3, r1, k4, k2, T0, k, k1, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (8, 0)], [(0, 0), (0, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 2.105314255 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.307776877 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 3.622831651 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 251 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 57 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(r3, k3, r1, k4, k2, T0, k, k1, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.025959387 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003941105 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.005407441 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 11 initial generators there are 10 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 96 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 9.302537913 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k2, k4, r1, k3, r3, k1*x2, k1*x3, k1*x1, T0*k1, k//k1] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Pivastatin/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Pivastatin/logs_(:hybrid,) deleted file mode 100644 index cecc6528e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pivastatin/logs_(:hybrid,) +++ /dev/null @@ -1,550 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing Pivastatin -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 1.554976537 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 1.554976537 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.186435502 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.186435502 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [245] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.005393648 seconds -│ :rank_time = rank_time -│ rank_times = 0.005393648 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 252 functions in Rational Field(r3, k3, r1, k4, k2, T0, k, k1)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (8, 0)], [(0, 0), (0, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 2.429003737 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.306977328 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (8 in total): Nemo.fmpq_mpoly[r3, k3, r1, k4, k2, T0, k, k1] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 109 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 103 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 109 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 103 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 12 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 109 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 103 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 12 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y3, y5, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y2, t, y6, y8], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(r3, k3, r1, k4, k2, T0, k, k1)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013862068 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003581263 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y5, y7, y1], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t, y4, y6, y2], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(r3, k3, r1, k4, k2, T0, k, k1)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013160622 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003468414 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y2, y1, y3], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y7, y6, y4, t], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(r3, k3, r1, k4, k2, T0, k, k1)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.014218877 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00379534 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y7, y2, y5], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y4, y1, y3, t], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(r3, k3, r1, k4, k2, T0, k, k1)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013178092 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003432856 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y4, y1, y3], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y8, y2, y5, t], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(r3, k3, r1, k4, k2, T0, k, k1)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010986758 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003443971 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y4, y7, y8], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y3, y2, y1, y5], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(r3, k3, r1, k4, k2, T0, k, k1)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 2), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011200745 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.118910114 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y5, y6, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y7, y1, t, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(r3, k3, r1, k4, k2, T0, k, k1)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(1, 1), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013654086 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001686811 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, t, y3, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y8, y4, y5, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(r3, k3, r1, k4, k2, T0, k, k1)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011804808 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001703962 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y3, y5, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y6, y8, y1, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(r3, k3, r1, k4, k2, T0, k, k1)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011846795 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001715993 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y4, y3, y5], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y7, y1, y8, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(r3, k3, r1, k4, k2, T0, k, k1)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 2), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013251262 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003045439 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 3.19263336 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 251 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 31 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 9.755710772 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k2, k4, r1, k3, r3, T0*k1, T0*k] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Pivastatin/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Pivastatin/logs_(:hybrid,)_with_states deleted file mode 100644 index 1a747d784..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pivastatin/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,602 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing Pivastatin -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.000332221 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.000332221 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.286634811 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.286634811 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [245] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.004845447 seconds -│ :rank_time = rank_time -│ rank_times = 0.004845447 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 252 functions in Rational Field(r3, k3, r1, k4, k2, T0, k, k1, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (8, 0)], [(0, 0), (0, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 2.09990936 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.63930962 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 3.750374823 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 251 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 57 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(r3, k3, r1, k4, k2, T0, k, k1, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.076726951 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003882648 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[r3, k3, r1, k4, k2, T0, k, k1, x1, x3, x2] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 308 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 302 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 308 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 302 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 48 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 308 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 302 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 48 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y5, y11, y1, y2, y3], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y7, y4, y8, y10, t], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(r3, k3, r1, k4, k2, T0, k, k1, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.01802009 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004254447 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y5, y4, y7, t, y9], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y11, y3, y1, y2, y10], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(r3, k3, r1, k4, k2, T0, k, k1, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 1)], [(0, 2), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.016367908 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.053595003 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y2, y11, y10, y8, y9], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y1, t, y7, y3, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(r3, k3, r1, k4, k2, T0, k, k1, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 0)], [(1, 1), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.018048529 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003215933 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y7, t, y4, y5, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y10, y11, y2, y9, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(r3, k3, r1, k4, k2, T0, k, k1, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(1, 1), (0, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (2, 0)], [(1, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.014674686 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002930334 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y9, y6, y5, y10, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y7, y11, y4, y3, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(r3, k3, r1, k4, k2, T0, k, k1, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(1, 1), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.04613162 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001837454 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y7, y1, y9, t, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y11, y4, y10, y5, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(r3, k3, r1, k4, k2, T0, k, k1, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(1, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013373912 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002556957 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y3, y7, y11, y8, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y10, y5, y2, y9, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(r3, k3, r1, k4, k2, T0, k, k1, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.012364156 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.037323884 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y5, y7, y1, y10, y8], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y11, y4, y6, y2, y9], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(r3, k3, r1, k4, k2, T0, k, k1, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 2), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013754003 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002433678 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y9, y1, y11, y3, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y10, y8, y6, y5, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(r3, k3, r1, k4, k2, T0, k, k1, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 2), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013564247 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00191572 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y7, y10, y9, y11, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y2, y1, t, y3, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(r3, k3, r1, k4, k2, T0, k, k1, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.012495523 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.028141463 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.003844316 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 11 initial generators there are 10 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 70 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 11.110252015 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k2, k4, r1, k3, r3, k1*x2, k1*x3, k1*x1, k*x2, T0*k1] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Pivastatin/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Pivastatin/logs_(:normalforms, 2) deleted file mode 100644 index 80cbf783a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pivastatin/logs_(:normalforms, 2) +++ /dev/null @@ -1,114 +0,0 @@ -┌ Info: Processing Pivastatin -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 1.608022761 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 1.608022761 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.298820609 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.298820609 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [245] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.005427583 seconds -│ :rank_time = rank_time -│ rank_times = 0.005427583 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 252 functions in Rational Field(r3, k3, r1, k4, k2, T0, k, k1)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (8, 0)], [(0, 0), (0, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 2.427723475 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.34989938 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (8 in total): Nemo.fmpq_mpoly[r3, k3, r1, k4, k2, T0, k, k1] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 24 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 20 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 24 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 20 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 2 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 24 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 20 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 2 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 3.128119953 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 251 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 31 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 9.381096929 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k2, k4, r1, k3, r3, T0*k1, T0*k] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Pivastatin/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Pivastatin/logs_(:normalforms, 2)_with_states deleted file mode 100644 index c3aee7090..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pivastatin/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,166 +0,0 @@ -┌ Info: Processing Pivastatin -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 1.492607006 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 1.492607006 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.195959956 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.195959956 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [245] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.005363352 seconds -│ :rank_time = rank_time -│ rank_times = 0.005363352 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 252 functions in Rational Field(r3, k3, r1, k4, k2, T0, k, k1, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (8, 0)], [(0, 0), (0, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.960097933 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.328763227 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 3.653577479 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 251 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 57 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(r3, k3, r1, k4, k2, T0, k, k1, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.023502051 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003612513 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[r3, k3, r1, k4, k2, T0, k, k1, x1, x3, x2] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 57 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 53 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 57 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 53 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 8 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 57 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 53 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 8 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.005093723 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 11 initial generators there are 10 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 70 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 9.379695813 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k2, k4, r1, k3, r3, k1*x2, k1*x3, k1*x1, k*x2, T0*k1] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Pivastatin/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Pivastatin/logs_(:normalforms, 3) deleted file mode 100644 index fd148f597..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pivastatin/logs_(:normalforms, 3) +++ /dev/null @@ -1,114 +0,0 @@ -┌ Info: Processing Pivastatin -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 1.554492153 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 1.554492153 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.190445685 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.190445685 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [245] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.00533942 seconds -│ :rank_time = rank_time -│ rank_times = 0.00533942 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 252 functions in Rational Field(r3, k3, r1, k4, k2, T0, k, k1)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (8, 0)], [(0, 0), (0, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 2.254007825 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.228820914 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (8 in total): Nemo.fmpq_mpoly[r3, k3, r1, k4, k2, T0, k, k1] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 109 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 103 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 109 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 103 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 12 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 109 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 103 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 12 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 3.206917032 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 251 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 31 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 9.18586049 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k2, k4, r1, k3, r3, T0*k1, T0*k] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Pivastatin/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Pivastatin/logs_(:normalforms, 3)_with_states deleted file mode 100644 index 6206b959c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pivastatin/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,166 +0,0 @@ -┌ Info: Processing Pivastatin -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 1.564118502 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 1.564118502 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.249742383 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.249742383 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [245] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.005397032 seconds -│ :rank_time = rank_time -│ rank_times = 0.005397032 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 252 functions in Rational Field(r3, k3, r1, k4, k2, T0, k, k1, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (8, 0)], [(0, 0), (0, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.99158651 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.286098232 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 3.465841867 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 251 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 57 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(r3, k3, r1, k4, k2, T0, k, k1, x1, x3, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.028533345 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.384259639 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[r3, k3, r1, k4, k2, T0, k, k1, x1, x3, x2] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 308 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 302 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 308 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 302 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 48 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 308 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 302 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 48 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.005573396 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 11 initial generators there are 10 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 70 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 9.736051468 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k2, k4, r1, k3, r3, k1*x2, k1*x3, k1*x1, k*x2, T0*k1] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Pivastatin/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Pivastatin/timings_(:gb,) deleted file mode 100644 index a2c7310e3..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pivastatin/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -Pivastatin -id_total, 9.421328176 diff --git a/benchmarking/IdentifiableFunctions/systems/Pivastatin/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Pivastatin/timings_(:gb,)_with_states deleted file mode 100644 index ad673c938..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pivastatin/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Pivastatin -id_total, 9.302537913 diff --git a/benchmarking/IdentifiableFunctions/systems/Pivastatin/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Pivastatin/timings_(:hybrid,) deleted file mode 100644 index ab5e93a61..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pivastatin/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -Pivastatin -id_total, 9.755710772 diff --git a/benchmarking/IdentifiableFunctions/systems/Pivastatin/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Pivastatin/timings_(:hybrid,)_with_states deleted file mode 100644 index 77753987f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pivastatin/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Pivastatin -id_total, 11.110252015 diff --git a/benchmarking/IdentifiableFunctions/systems/Pivastatin/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Pivastatin/timings_(:normalforms, 2) deleted file mode 100644 index 62065ee30..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pivastatin/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -Pivastatin -id_total, 9.381096929 diff --git a/benchmarking/IdentifiableFunctions/systems/Pivastatin/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Pivastatin/timings_(:normalforms, 2)_with_states deleted file mode 100644 index 2da2c9aa2..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pivastatin/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Pivastatin -id_total, 9.379695813 diff --git a/benchmarking/IdentifiableFunctions/systems/Pivastatin/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Pivastatin/timings_(:normalforms, 3) deleted file mode 100644 index 4f59a337a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pivastatin/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -Pivastatin -id_total, 9.18586049 diff --git a/benchmarking/IdentifiableFunctions/systems/Pivastatin/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Pivastatin/timings_(:normalforms, 3)_with_states deleted file mode 100644 index b19d9a3b2..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Pivastatin/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Pivastatin -id_total, 9.736051468 diff --git a/benchmarking/IdentifiableFunctions/systems/QWWC/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/QWWC/logs_(:gb,) deleted file mode 100644 index 233d3da3a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/QWWC/logs_(:gb,) +++ /dev/null @@ -1,13 +0,0 @@ -┌ Info: Processing QWWC -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2602997] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 diff --git a/benchmarking/IdentifiableFunctions/systems/QWWC/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/QWWC/logs_(:gb,)_with_states deleted file mode 100644 index cdbd753c6..000000000 --- a/benchmarking/IdentifiableFunctions/systems/QWWC/logs_(:gb,)_with_states +++ /dev/null @@ -1,24 +0,0 @@ -┌ Info: Processing QWWC -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2594429] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -__gmpn_divrem_2 at /home/demin/downloads/julia-1.9.2/bin/../lib/julia/libgmp.so.10 (unknown line) -unknown function (ip: 0x5437fbe0802) -unknown function (ip: 0x7ffc0128c90f) -unknown function (ip: (nil)) -Allocations: 155977395 (Pool: 155903192; Big: 74203); GC: 650 -┌ Info: Computed in 152.964562444 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 152.964562444 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 diff --git a/benchmarking/IdentifiableFunctions/systems/QWWC/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/QWWC/logs_(:hybrid,) deleted file mode 100644 index 883cfdd88..000000000 --- a/benchmarking/IdentifiableFunctions/systems/QWWC/logs_(:hybrid,) +++ /dev/null @@ -1,15 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing QWWC -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2553525] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 diff --git a/benchmarking/IdentifiableFunctions/systems/QWWC/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/QWWC/logs_(:hybrid,)_with_states deleted file mode 100644 index 37eb841ad..000000000 --- a/benchmarking/IdentifiableFunctions/systems/QWWC/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,82 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing QWWC -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2544799] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -fmpz_gcd at /workspace/srcdir/flint2/fmpz/gcd.c:21 -_fmpq_mul at /workspace/srcdir/flint2/fmpq/mul.c:53 -fmpq_mul_fmpz at /workspace/srcdir/flint2/fmpq/mul_fmpz.c:18 -coeff at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:167 -iterate at /home/demin/.julia/packages/AbstractAlgebra/FcxWh/src/generic/MPoly.jl:871 [inlined] -first at ./abstractarray.jl:465 [inlined] -leading_coefficient at /home/demin/.julia/packages/AbstractAlgebra/FcxWh/src/MPoly.jl:215 -unknown function (ip: 0x7f5ff69ca2d2) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -monomial_compress at /home/demin/StructuralIdentifiability.jl/src/wronskian.jl:38 -monomial_compress at /home/demin/StructuralIdentifiability.jl/src/wronskian.jl:20 [inlined] -#283 at ./none:0 [inlined] -iterate at ./generator.jl:47 [inlined] -collect at ./array.jl:782 -unknown function (ip: 0x7f5ff69c9c62) -wronskian at /home/demin/StructuralIdentifiability.jl/src/wronskian.jl:202 -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:96 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7f5ff6987ae6) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7f5dbfd6aa5f) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7f600d9551c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 165600434 (Pool: 165521159; Big: 79275); GC: 667 -┌ Info: Computed in 139.299107485 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 139.299107485 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 diff --git a/benchmarking/IdentifiableFunctions/systems/QWWC/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/QWWC/logs_(:normalforms, 2) deleted file mode 100644 index 5e24c74cf..000000000 --- a/benchmarking/IdentifiableFunctions/systems/QWWC/logs_(:normalforms, 2) +++ /dev/null @@ -1,23 +0,0 @@ -┌ Info: Processing QWWC -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2586136] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -__gmpn_add_n_coreisbr at /home/demin/downloads/julia-1.9.2/bin/../lib/julia/libgmp.so.10 (unknown line) -unknown function (ip: 0x8bad84bfb3113fd0) -unknown function (ip: (nil)) -Allocations: 158725435 (Pool: 158649995; Big: 75440); GC: 647 -┌ Info: Computed in 155.137419898 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 155.137419898 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 diff --git a/benchmarking/IdentifiableFunctions/systems/QWWC/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/QWWC/logs_(:normalforms, 2)_with_states deleted file mode 100644 index 5f6cb44d1..000000000 --- a/benchmarking/IdentifiableFunctions/systems/QWWC/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,80 +0,0 @@ -┌ Info: Processing QWWC -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2577650] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -__gmpn_gcd at /home/demin/downloads/julia-1.9.2/bin/../lib/julia/libgmp.so.10 (unknown line) -__gmpz_gcd at /home/demin/downloads/julia-1.9.2/bin/../lib/julia/libgmp.so.10 (unknown line) -fmpz_gcd3 at /workspace/srcdir/flint2/fmpz/gcd3.c:153 -_fmpz_vec_content at /workspace/srcdir/flint2/fmpz_vec/content.c:54 -fmpq_mpoly_reduce at /workspace/srcdir/flint2/fmpq_mpoly/reduce.c:36 -fmpq_mpoly_sub at /workspace/srcdir/flint2/fmpq_mpoly/sub.c:44 -- at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:347 -unknown function (ip: 0x7fb23a313f86) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -monomial_compress at /home/demin/StructuralIdentifiability.jl/src/wronskian.jl:40 -monomial_compress at /home/demin/StructuralIdentifiability.jl/src/wronskian.jl:20 [inlined] -#283 at ./none:0 [inlined] -iterate at ./generator.jl:47 [inlined] -collect at ./array.jl:782 -unknown function (ip: 0x7fb23a3ca322) -wronskian at /home/demin/StructuralIdentifiability.jl/src/wronskian.jl:202 -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:96 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7fb23a388206) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7fb00373288f) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7fb2513fb1c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 159268683 (Pool: 159192533; Big: 76150); GC: 654 -┌ Info: Computed in 151.835622051 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 151.835622051 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 diff --git a/benchmarking/IdentifiableFunctions/systems/QWWC/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/QWWC/logs_(:normalforms, 3) deleted file mode 100644 index ce747c0af..000000000 --- a/benchmarking/IdentifiableFunctions/systems/QWWC/logs_(:normalforms, 3) +++ /dev/null @@ -1,13 +0,0 @@ -┌ Info: Processing QWWC -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2569101] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 diff --git a/benchmarking/IdentifiableFunctions/systems/QWWC/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/QWWC/logs_(:normalforms, 3)_with_states deleted file mode 100644 index bf5b487c0..000000000 --- a/benchmarking/IdentifiableFunctions/systems/QWWC/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,85 +0,0 @@ -┌ Info: Processing QWWC -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2561343] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -unknown function (ip: 0x7f5d38629ee3) -unknown function (ip: 0x7f5d3862b17e) -unknown function (ip: 0x7f5d3862d2c1) -realloc at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -__gmpz_realloc at /home/demin/downloads/julia-1.9.2/bin/../lib/julia/libgmp.so.10 (unknown line) -flint_mpz_mul at /workspace/srcdir/flint2/fmpz/mul.c:54 -fmpz_fmma at /workspace/srcdir/flint2/fmpz/fmma.c:68 -_fmpz_mpoly_scalar_fmma1 at /workspace/srcdir/flint2/fmpz_mpoly/scalar_fmma.c:36 [inlined] -_fmpz_mpoly_scalar_fmma at /workspace/srcdir/flint2/fmpz_mpoly/scalar_fmma.c:84 -fmpz_mpoly_scalar_fmma at /workspace/srcdir/flint2/fmpz_mpoly/scalar_fmma.c:307 -fmpq_mpoly_sub at /workspace/srcdir/flint2/fmpq_mpoly/sub.c:39 -- at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:347 -unknown function (ip: 0x7f5d21513f76) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -monomial_compress at /home/demin/StructuralIdentifiability.jl/src/wronskian.jl:40 -monomial_compress at /home/demin/StructuralIdentifiability.jl/src/wronskian.jl:20 [inlined] -#283 at ./none:0 [inlined] -iterate at ./generator.jl:47 [inlined] -collect at ./array.jl:782 -unknown function (ip: 0x7f5d215ca252) -wronskian at /home/demin/StructuralIdentifiability.jl/src/wronskian.jl:202 -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:96 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7f5d21588136) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7f5aea932d6f) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7f5d385bc1c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 159456442 (Pool: 159380244; Big: 76198); GC: 656 -┌ Info: Computed in 158.484035632 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 158.484035632 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 diff --git a/benchmarking/IdentifiableFunctions/systems/QY/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/QY/id_funcs_(:gb,) deleted file mode 100644 index 88648e32c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/QY/id_funcs_(:gb,) +++ /dev/null @@ -1,9 +0,0 @@ -[Mar, -Ks, -alpa, -(siga1 + phi*Mar - Mar)//phi, -(siga1*phi - siga1 - phi*Mar + Mar)//(siga1*phi*beta_SA), -(siga1*beta_SA + beta_SI*phi*siga2 + phi*Mar*beta_SA - phi*siga2*beta_SA - Mar*beta_SA)//(phi*M*siga2), -(siga1*phi*M*siga2 - siga1*M*siga2 - phi*M*Mar*siga2 + M*Mar*siga2)//(siga1*beta_SA + phi*Mar*beta_SA - Mar*beta_SA), -(siga1*beta_SI*phi*siga2 - siga1*beta_SI*siga2 - siga1*phi*siga2*beta_SA - siga1*M*beta_SA - beta_SI*phi*Mar*siga2 + beta_SI*Mar*siga2 - phi*M*Mar*beta_SA + M*Mar*beta_SA)//(siga1*beta_SA + phi*Mar*beta_SA - Mar*beta_SA), -(siga1^2*beta_SA + siga1*beta_SI*phi*siga2 - siga1*beta_SI*siga2 + siga1*phi*Mar*beta_SA - siga1*phi*siga2*beta_SA - siga1*Mar*beta_SA + siga1*siga2*beta_SA + beta_SI*phi*M*siga2 - beta_SI*phi*Mar*siga2 + beta_SI*phi*siga2^2 + beta_SI*Mar*siga2 + phi*Mar*siga2*beta_SA - phi*siga2^2*beta_SA - Mar*siga2*beta_SA)//(phi*M*siga2)] diff --git a/benchmarking/IdentifiableFunctions/systems/QY/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/QY/id_funcs_(:gb,)_with_states deleted file mode 100644 index 8ebca9975..000000000 --- a/benchmarking/IdentifiableFunctions/systems/QY/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,15 +0,0 @@ -[P2, -P1, -P4, -P0, -P3, -Mar, -Ks, -alpa, -Mar*P5 + beta, -(siga1*phi*M*siga2 - siga1*M*siga2 - phi*M*Mar*siga2 + M*Mar*siga2)//(siga1*beta_SA + phi*Mar*beta_SA - Mar*beta_SA), -(siga1*beta_SI*phi*siga2 - siga1*beta_SI*siga2 - siga1*phi*siga2*beta_SA - siga1*M*beta_SA - beta_SI*phi*Mar*siga2 + beta_SI*Mar*siga2 - phi*M*Mar*beta_SA + M*Mar*beta_SA)//(siga1*beta_SA + phi*Mar*beta_SA - Mar*beta_SA), -(siga1^2*beta_SA + siga1*beta_SI*phi*siga2 - siga1*beta_SI*siga2 + siga1*phi*Mar*beta_SA - siga1*phi*siga2*beta_SA - siga1*Mar*beta_SA + siga1*siga2*beta_SA - beta_SI*phi*Mar*siga2 + beta_SI*Mar*siga2 + phi*Mar*siga2*beta_SA - Mar*siga2*beta_SA)//(siga1*beta_SA + phi*Mar*beta_SA - Mar*beta_SA), -(siga1^2*beta_SI*beta_SA - siga1^2*beta_SA^2 + siga1*beta_SI^2*phi*siga2 - siga1*beta_SI^2*siga2 + siga1*beta_SI*phi*Mar*beta_SA - 2*siga1*beta_SI*phi*siga2*beta_SA - siga1*beta_SI*M*beta_SA - siga1*beta_SI*Mar*beta_SA + siga1*beta_SI*siga2*beta_SA - siga1*phi*Mar*beta_SA^2 + siga1*phi*siga2*beta_SA^2 + siga1*Mar*beta_SA^2 - beta_SI^2*phi*Mar*siga2 + beta_SI^2*Mar*siga2 - beta_SI*phi*M*Mar*beta_SA + beta_SI*phi*Mar*siga2*beta_SA + beta_SI*M*Mar*beta_SA - beta_SI*Mar*siga2*beta_SA)//(siga1*M*beta_SA + phi*M*Mar*beta_SA - M*Mar*beta_SA), -(siga1^4*beta_SA^2 + 2*siga1^3*beta_SI*phi*siga2*beta_SA - 2*siga1^3*beta_SI*siga2*beta_SA + 2*siga1^3*phi*Mar*beta_SA^2 - 2*siga1^3*phi*siga2*beta_SA^2 - siga1^3*M*beta_SA^2 - 2*siga1^3*Mar*beta_SA^2 + siga1^3*siga2*beta_SA^2 + siga1^2*beta_SI^2*phi^2*siga2^2 - 2*siga1^2*beta_SI^2*phi*siga2^2 + siga1^2*beta_SI^2*siga2^2 + 2*siga1^2*beta_SI*phi^2*Mar*siga2*beta_SA - 2*siga1^2*beta_SI*phi^2*siga2^2*beta_SA - 6*siga1^2*beta_SI*phi*Mar*siga2*beta_SA + 4*siga1^2*beta_SI*phi*siga2^2*beta_SA + 4*siga1^2*beta_SI*Mar*siga2*beta_SA - 2*siga1^2*beta_SI*siga2^2*beta_SA + siga1^2*phi^2*Mar^2*beta_SA^2 - 2*siga1^2*phi^2*Mar*siga2*beta_SA^2 + siga1^2*phi^2*siga2^2*beta_SA^2 - 2*siga1^2*phi*M*Mar*beta_SA^2 + 2*siga1^2*phi*M*siga2*beta_SA^2 - 2*siga1^2*phi*Mar^2*beta_SA^2 + 4*siga1^2*phi*Mar*siga2*beta_SA^2 - 2*siga1^2*phi*siga2^2*beta_SA^2 + 2*siga1^2*M*Mar*beta_SA^2 - siga1^2*M*siga2*beta_SA^2 + siga1^2*Mar^2*beta_SA^2 - 2*siga1^2*Mar*siga2*beta_SA^2 + siga1^2*siga2^2*beta_SA^2 - 2*siga1*beta_SI^2*phi^2*Mar*siga2^2 + 4*siga1*beta_SI^2*phi*Mar*siga2^2 - 2*siga1*beta_SI^2*Mar*siga2^2 - 2*siga1*beta_SI*phi^2*Mar^2*siga2*beta_SA + 4*siga1*beta_SI*phi^2*Mar*siga2^2*beta_SA + 4*siga1*beta_SI*phi*Mar^2*siga2*beta_SA - 8*siga1*beta_SI*phi*Mar*siga2^2*beta_SA - 2*siga1*beta_SI*Mar^2*siga2*beta_SA + 4*siga1*beta_SI*Mar*siga2^2*beta_SA - siga1*phi^2*M*Mar^2*beta_SA^2 + 2*siga1*phi^2*M*Mar*siga2*beta_SA^2 + siga1*phi^2*Mar^2*siga2*beta_SA^2 - 2*siga1*phi^2*Mar*siga2^2*beta_SA^2 + 2*siga1*phi*M*Mar^2*beta_SA^2 - 4*siga1*phi*M*Mar*siga2*beta_SA^2 - 2*siga1*phi*Mar^2*siga2*beta_SA^2 + 4*siga1*phi*Mar*siga2^2*beta_SA^2 - siga1*M*Mar^2*beta_SA^2 + 2*siga1*M*Mar*siga2*beta_SA^2 + siga1*Mar^2*siga2*beta_SA^2 - 2*siga1*Mar*siga2^2*beta_SA^2 + beta_SI^2*phi^2*Mar^2*siga2^2 - 2*beta_SI^2*phi*Mar^2*siga2^2 + beta_SI^2*Mar^2*siga2^2 - 2*beta_SI*phi^2*Mar^2*siga2^2*beta_SA + 4*beta_SI*phi*Mar^2*siga2^2*beta_SA - 2*beta_SI*Mar^2*siga2^2*beta_SA - phi^2*M*Mar^2*siga2*beta_SA^2 + phi^2*Mar^2*siga2^2*beta_SA^2 + 2*phi*M*Mar^2*siga2*beta_SA^2 - 2*phi*Mar^2*siga2^2*beta_SA^2 - M*Mar^2*siga2*beta_SA^2 + Mar^2*siga2^2*beta_SA^2)//(siga1^2*phi*M*siga2*beta_SA - siga1^2*M*siga2*beta_SA + siga1*phi^2*M*Mar*siga2*beta_SA - 3*siga1*phi*M*Mar*siga2*beta_SA + 2*siga1*M*Mar*siga2*beta_SA - phi^2*M*Mar^2*siga2*beta_SA + 2*phi*M*Mar^2*siga2*beta_SA - M*Mar^2*siga2*beta_SA), -(siga1^4*beta_SI*beta_SA^2 - siga1^4*beta_SA^3 + 2*siga1^3*beta_SI^2*phi*siga2*beta_SA - 2*siga1^3*beta_SI^2*siga2*beta_SA + 2*siga1^3*beta_SI*phi*Mar*beta_SA^2 - 4*siga1^3*beta_SI*phi*siga2*beta_SA^2 - siga1^3*beta_SI*M*beta_SA^2 - 2*siga1^3*beta_SI*Mar*beta_SA^2 + 3*siga1^3*beta_SI*siga2*beta_SA^2 - 2*siga1^3*phi*Mar*beta_SA^3 + 2*siga1^3*phi*siga2*beta_SA^3 + siga1^3*M*beta_SA^3 + 2*siga1^3*Mar*beta_SA^3 - siga1^3*siga2*beta_SA^3 + siga1^2*beta_SI^3*phi^2*siga2^2 - 2*siga1^2*beta_SI^3*phi*siga2^2 + siga1^2*beta_SI^3*siga2^2 + 2*siga1^2*beta_SI^2*phi^2*Mar*siga2*beta_SA - 3*siga1^2*beta_SI^2*phi^2*siga2^2*beta_SA - siga1^2*beta_SI^2*phi*M*siga2*beta_SA - 6*siga1^2*beta_SI^2*phi*Mar*siga2*beta_SA + 5*siga1^2*beta_SI^2*phi*siga2^2*beta_SA + siga1^2*beta_SI^2*M*siga2*beta_SA + 4*siga1^2*beta_SI^2*Mar*siga2*beta_SA - 2*siga1^2*beta_SI^2*siga2^2*beta_SA + siga1^2*beta_SI*phi^2*Mar^2*beta_SA^2 - 4*siga1^2*beta_SI*phi^2*Mar*siga2*beta_SA^2 + 3*siga1^2*beta_SI*phi^2*siga2^2*beta_SA^2 - 2*siga1^2*beta_SI*phi*M*Mar*beta_SA^2 + 2*siga1^2*beta_SI*phi*M*siga2*beta_SA^2 - 2*siga1^2*beta_SI*phi*Mar^2*beta_SA^2 + 10*siga1^2*beta_SI*phi*Mar*siga2*beta_SA^2 - 4*siga1^2*beta_SI*phi*siga2^2*beta_SA^2 + 2*siga1^2*beta_SI*M*Mar*beta_SA^2 - siga1^2*beta_SI*M*siga2*beta_SA^2 + siga1^2*beta_SI*Mar^2*beta_SA^2 - 6*siga1^2*beta_SI*Mar*siga2*beta_SA^2 + siga1^2*beta_SI*siga2^2*beta_SA^2 - siga1^2*phi^2*Mar^2*beta_SA^3 + 2*siga1^2*phi^2*Mar*siga2*beta_SA^3 - siga1^2*phi^2*siga2^2*beta_SA^3 + 2*siga1^2*phi*M*Mar*beta_SA^3 - siga1^2*phi*M*siga2*beta_SA^3 + 2*siga1^2*phi*Mar^2*beta_SA^3 - 4*siga1^2*phi*Mar*siga2*beta_SA^3 + siga1^2*phi*siga2^2*beta_SA^3 - 2*siga1^2*M*Mar*beta_SA^3 - siga1^2*Mar^2*beta_SA^3 + 2*siga1^2*Mar*siga2*beta_SA^3 - 2*siga1*beta_SI^3*phi^2*Mar*siga2^2 + 4*siga1*beta_SI^3*phi*Mar*siga2^2 - 2*siga1*beta_SI^3*Mar*siga2^2 - siga1*beta_SI^2*phi^2*M*Mar*siga2*beta_SA - 2*siga1*beta_SI^2*phi^2*Mar^2*siga2*beta_SA + 5*siga1*beta_SI^2*phi^2*Mar*siga2^2*beta_SA + 3*siga1*beta_SI^2*phi*M*Mar*siga2*beta_SA + 4*siga1*beta_SI^2*phi*Mar^2*siga2*beta_SA - 9*siga1*beta_SI^2*phi*Mar*siga2^2*beta_SA - 2*siga1*beta_SI^2*M*Mar*siga2*beta_SA - 2*siga1*beta_SI^2*Mar^2*siga2*beta_SA + 4*siga1*beta_SI^2*Mar*siga2^2*beta_SA - siga1*beta_SI*phi^2*M*Mar^2*beta_SA^2 + 2*siga1*beta_SI*phi^2*M*Mar*siga2*beta_SA^2 + 3*siga1*beta_SI*phi^2*Mar^2*siga2*beta_SA^2 - 4*siga1*beta_SI*phi^2*Mar*siga2^2*beta_SA^2 + 2*siga1*beta_SI*phi*M*Mar^2*beta_SA^2 - 4*siga1*beta_SI*phi*M*Mar*siga2*beta_SA^2 - 6*siga1*beta_SI*phi*Mar^2*siga2*beta_SA^2 + 6*siga1*beta_SI*phi*Mar*siga2^2*beta_SA^2 - siga1*beta_SI*M*Mar^2*beta_SA^2 + 2*siga1*beta_SI*M*Mar*siga2*beta_SA^2 + 3*siga1*beta_SI*Mar^2*siga2*beta_SA^2 - 2*siga1*beta_SI*Mar*siga2^2*beta_SA^2 + siga1*phi^2*M*Mar^2*beta_SA^3 - siga1*phi^2*M*Mar*siga2*beta_SA^3 - siga1*phi^2*Mar^2*siga2*beta_SA^3 + siga1*phi^2*Mar*siga2^2*beta_SA^3 - 2*siga1*phi*M*Mar^2*beta_SA^3 + siga1*phi*M*Mar*siga2*beta_SA^3 + 2*siga1*phi*Mar^2*siga2*beta_SA^3 - siga1*phi*Mar*siga2^2*beta_SA^3 + siga1*M*Mar^2*beta_SA^3 - siga1*Mar^2*siga2*beta_SA^3 + beta_SI^3*phi^2*Mar^2*siga2^2 - 2*beta_SI^3*phi*Mar^2*siga2^2 + beta_SI^3*Mar^2*siga2^2 + beta_SI^2*phi^2*M*Mar^2*siga2*beta_SA - 2*beta_SI^2*phi^2*Mar^2*siga2^2*beta_SA - 2*beta_SI^2*phi*M*Mar^2*siga2*beta_SA + 4*beta_SI^2*phi*Mar^2*siga2^2*beta_SA + beta_SI^2*M*Mar^2*siga2*beta_SA - 2*beta_SI^2*Mar^2*siga2^2*beta_SA - beta_SI*phi^2*M*Mar^2*siga2*beta_SA^2 + beta_SI*phi^2*Mar^2*siga2^2*beta_SA^2 + 2*beta_SI*phi*M*Mar^2*siga2*beta_SA^2 - 2*beta_SI*phi*Mar^2*siga2^2*beta_SA^2 - beta_SI*M*Mar^2*siga2*beta_SA^2 + beta_SI*Mar^2*siga2^2*beta_SA^2)//(siga1^2*phi*M^2*siga2*beta_SA - siga1^2*M^2*siga2*beta_SA + siga1*phi^2*M^2*Mar*siga2*beta_SA - 3*siga1*phi*M^2*Mar*siga2*beta_SA + 2*siga1*M^2*Mar*siga2*beta_SA - phi^2*M^2*Mar^2*siga2*beta_SA + 2*phi*M^2*Mar^2*siga2*beta_SA - M^2*Mar^2*siga2*beta_SA)] diff --git a/benchmarking/IdentifiableFunctions/systems/QY/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/QY/id_funcs_(:hybrid,) deleted file mode 100644 index 22fe42a63..000000000 --- a/benchmarking/IdentifiableFunctions/systems/QY/id_funcs_(:hybrid,) +++ /dev/null @@ -1,9 +0,0 @@ -[Mar, -Ks, -alpa, -siga1*M*siga2, -siga1 + M + siga2, -siga1*M + siga1*siga2 + M*siga2, -phi//(siga1 - Mar), -(siga1*phi - siga1 - phi*Mar + Mar)//(siga1*phi*beta_SA), -(siga1*beta_SA + beta_SI*phi*siga2 + phi*Mar*beta_SA - phi*siga2*beta_SA - Mar*beta_SA)//(phi*M*siga2)] diff --git a/benchmarking/IdentifiableFunctions/systems/QY/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/QY/id_funcs_(:normalforms, 2) deleted file mode 100644 index 88648e32c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/QY/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,9 +0,0 @@ -[Mar, -Ks, -alpa, -(siga1 + phi*Mar - Mar)//phi, -(siga1*phi - siga1 - phi*Mar + Mar)//(siga1*phi*beta_SA), -(siga1*beta_SA + beta_SI*phi*siga2 + phi*Mar*beta_SA - phi*siga2*beta_SA - Mar*beta_SA)//(phi*M*siga2), -(siga1*phi*M*siga2 - siga1*M*siga2 - phi*M*Mar*siga2 + M*Mar*siga2)//(siga1*beta_SA + phi*Mar*beta_SA - Mar*beta_SA), -(siga1*beta_SI*phi*siga2 - siga1*beta_SI*siga2 - siga1*phi*siga2*beta_SA - siga1*M*beta_SA - beta_SI*phi*Mar*siga2 + beta_SI*Mar*siga2 - phi*M*Mar*beta_SA + M*Mar*beta_SA)//(siga1*beta_SA + phi*Mar*beta_SA - Mar*beta_SA), -(siga1^2*beta_SA + siga1*beta_SI*phi*siga2 - siga1*beta_SI*siga2 + siga1*phi*Mar*beta_SA - siga1*phi*siga2*beta_SA - siga1*Mar*beta_SA + siga1*siga2*beta_SA + beta_SI*phi*M*siga2 - beta_SI*phi*Mar*siga2 + beta_SI*phi*siga2^2 + beta_SI*Mar*siga2 + phi*Mar*siga2*beta_SA - phi*siga2^2*beta_SA - Mar*siga2*beta_SA)//(phi*M*siga2)] diff --git a/benchmarking/IdentifiableFunctions/systems/QY/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/QY/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index 8ebca9975..000000000 --- a/benchmarking/IdentifiableFunctions/systems/QY/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,15 +0,0 @@ -[P2, -P1, -P4, -P0, -P3, -Mar, -Ks, -alpa, -Mar*P5 + beta, -(siga1*phi*M*siga2 - siga1*M*siga2 - phi*M*Mar*siga2 + M*Mar*siga2)//(siga1*beta_SA + phi*Mar*beta_SA - Mar*beta_SA), -(siga1*beta_SI*phi*siga2 - siga1*beta_SI*siga2 - siga1*phi*siga2*beta_SA - siga1*M*beta_SA - beta_SI*phi*Mar*siga2 + beta_SI*Mar*siga2 - phi*M*Mar*beta_SA + M*Mar*beta_SA)//(siga1*beta_SA + phi*Mar*beta_SA - Mar*beta_SA), -(siga1^2*beta_SA + siga1*beta_SI*phi*siga2 - siga1*beta_SI*siga2 + siga1*phi*Mar*beta_SA - siga1*phi*siga2*beta_SA - siga1*Mar*beta_SA + siga1*siga2*beta_SA - beta_SI*phi*Mar*siga2 + beta_SI*Mar*siga2 + phi*Mar*siga2*beta_SA - Mar*siga2*beta_SA)//(siga1*beta_SA + phi*Mar*beta_SA - Mar*beta_SA), -(siga1^2*beta_SI*beta_SA - siga1^2*beta_SA^2 + siga1*beta_SI^2*phi*siga2 - siga1*beta_SI^2*siga2 + siga1*beta_SI*phi*Mar*beta_SA - 2*siga1*beta_SI*phi*siga2*beta_SA - siga1*beta_SI*M*beta_SA - siga1*beta_SI*Mar*beta_SA + siga1*beta_SI*siga2*beta_SA - siga1*phi*Mar*beta_SA^2 + siga1*phi*siga2*beta_SA^2 + siga1*Mar*beta_SA^2 - beta_SI^2*phi*Mar*siga2 + beta_SI^2*Mar*siga2 - beta_SI*phi*M*Mar*beta_SA + beta_SI*phi*Mar*siga2*beta_SA + beta_SI*M*Mar*beta_SA - beta_SI*Mar*siga2*beta_SA)//(siga1*M*beta_SA + phi*M*Mar*beta_SA - M*Mar*beta_SA), -(siga1^4*beta_SA^2 + 2*siga1^3*beta_SI*phi*siga2*beta_SA - 2*siga1^3*beta_SI*siga2*beta_SA + 2*siga1^3*phi*Mar*beta_SA^2 - 2*siga1^3*phi*siga2*beta_SA^2 - siga1^3*M*beta_SA^2 - 2*siga1^3*Mar*beta_SA^2 + siga1^3*siga2*beta_SA^2 + siga1^2*beta_SI^2*phi^2*siga2^2 - 2*siga1^2*beta_SI^2*phi*siga2^2 + siga1^2*beta_SI^2*siga2^2 + 2*siga1^2*beta_SI*phi^2*Mar*siga2*beta_SA - 2*siga1^2*beta_SI*phi^2*siga2^2*beta_SA - 6*siga1^2*beta_SI*phi*Mar*siga2*beta_SA + 4*siga1^2*beta_SI*phi*siga2^2*beta_SA + 4*siga1^2*beta_SI*Mar*siga2*beta_SA - 2*siga1^2*beta_SI*siga2^2*beta_SA + siga1^2*phi^2*Mar^2*beta_SA^2 - 2*siga1^2*phi^2*Mar*siga2*beta_SA^2 + siga1^2*phi^2*siga2^2*beta_SA^2 - 2*siga1^2*phi*M*Mar*beta_SA^2 + 2*siga1^2*phi*M*siga2*beta_SA^2 - 2*siga1^2*phi*Mar^2*beta_SA^2 + 4*siga1^2*phi*Mar*siga2*beta_SA^2 - 2*siga1^2*phi*siga2^2*beta_SA^2 + 2*siga1^2*M*Mar*beta_SA^2 - siga1^2*M*siga2*beta_SA^2 + siga1^2*Mar^2*beta_SA^2 - 2*siga1^2*Mar*siga2*beta_SA^2 + siga1^2*siga2^2*beta_SA^2 - 2*siga1*beta_SI^2*phi^2*Mar*siga2^2 + 4*siga1*beta_SI^2*phi*Mar*siga2^2 - 2*siga1*beta_SI^2*Mar*siga2^2 - 2*siga1*beta_SI*phi^2*Mar^2*siga2*beta_SA + 4*siga1*beta_SI*phi^2*Mar*siga2^2*beta_SA + 4*siga1*beta_SI*phi*Mar^2*siga2*beta_SA - 8*siga1*beta_SI*phi*Mar*siga2^2*beta_SA - 2*siga1*beta_SI*Mar^2*siga2*beta_SA + 4*siga1*beta_SI*Mar*siga2^2*beta_SA - siga1*phi^2*M*Mar^2*beta_SA^2 + 2*siga1*phi^2*M*Mar*siga2*beta_SA^2 + siga1*phi^2*Mar^2*siga2*beta_SA^2 - 2*siga1*phi^2*Mar*siga2^2*beta_SA^2 + 2*siga1*phi*M*Mar^2*beta_SA^2 - 4*siga1*phi*M*Mar*siga2*beta_SA^2 - 2*siga1*phi*Mar^2*siga2*beta_SA^2 + 4*siga1*phi*Mar*siga2^2*beta_SA^2 - siga1*M*Mar^2*beta_SA^2 + 2*siga1*M*Mar*siga2*beta_SA^2 + siga1*Mar^2*siga2*beta_SA^2 - 2*siga1*Mar*siga2^2*beta_SA^2 + beta_SI^2*phi^2*Mar^2*siga2^2 - 2*beta_SI^2*phi*Mar^2*siga2^2 + beta_SI^2*Mar^2*siga2^2 - 2*beta_SI*phi^2*Mar^2*siga2^2*beta_SA + 4*beta_SI*phi*Mar^2*siga2^2*beta_SA - 2*beta_SI*Mar^2*siga2^2*beta_SA - phi^2*M*Mar^2*siga2*beta_SA^2 + phi^2*Mar^2*siga2^2*beta_SA^2 + 2*phi*M*Mar^2*siga2*beta_SA^2 - 2*phi*Mar^2*siga2^2*beta_SA^2 - M*Mar^2*siga2*beta_SA^2 + Mar^2*siga2^2*beta_SA^2)//(siga1^2*phi*M*siga2*beta_SA - siga1^2*M*siga2*beta_SA + siga1*phi^2*M*Mar*siga2*beta_SA - 3*siga1*phi*M*Mar*siga2*beta_SA + 2*siga1*M*Mar*siga2*beta_SA - phi^2*M*Mar^2*siga2*beta_SA + 2*phi*M*Mar^2*siga2*beta_SA - M*Mar^2*siga2*beta_SA), -(siga1^4*beta_SI*beta_SA^2 - siga1^4*beta_SA^3 + 2*siga1^3*beta_SI^2*phi*siga2*beta_SA - 2*siga1^3*beta_SI^2*siga2*beta_SA + 2*siga1^3*beta_SI*phi*Mar*beta_SA^2 - 4*siga1^3*beta_SI*phi*siga2*beta_SA^2 - siga1^3*beta_SI*M*beta_SA^2 - 2*siga1^3*beta_SI*Mar*beta_SA^2 + 3*siga1^3*beta_SI*siga2*beta_SA^2 - 2*siga1^3*phi*Mar*beta_SA^3 + 2*siga1^3*phi*siga2*beta_SA^3 + siga1^3*M*beta_SA^3 + 2*siga1^3*Mar*beta_SA^3 - siga1^3*siga2*beta_SA^3 + siga1^2*beta_SI^3*phi^2*siga2^2 - 2*siga1^2*beta_SI^3*phi*siga2^2 + siga1^2*beta_SI^3*siga2^2 + 2*siga1^2*beta_SI^2*phi^2*Mar*siga2*beta_SA - 3*siga1^2*beta_SI^2*phi^2*siga2^2*beta_SA - siga1^2*beta_SI^2*phi*M*siga2*beta_SA - 6*siga1^2*beta_SI^2*phi*Mar*siga2*beta_SA + 5*siga1^2*beta_SI^2*phi*siga2^2*beta_SA + siga1^2*beta_SI^2*M*siga2*beta_SA + 4*siga1^2*beta_SI^2*Mar*siga2*beta_SA - 2*siga1^2*beta_SI^2*siga2^2*beta_SA + siga1^2*beta_SI*phi^2*Mar^2*beta_SA^2 - 4*siga1^2*beta_SI*phi^2*Mar*siga2*beta_SA^2 + 3*siga1^2*beta_SI*phi^2*siga2^2*beta_SA^2 - 2*siga1^2*beta_SI*phi*M*Mar*beta_SA^2 + 2*siga1^2*beta_SI*phi*M*siga2*beta_SA^2 - 2*siga1^2*beta_SI*phi*Mar^2*beta_SA^2 + 10*siga1^2*beta_SI*phi*Mar*siga2*beta_SA^2 - 4*siga1^2*beta_SI*phi*siga2^2*beta_SA^2 + 2*siga1^2*beta_SI*M*Mar*beta_SA^2 - siga1^2*beta_SI*M*siga2*beta_SA^2 + siga1^2*beta_SI*Mar^2*beta_SA^2 - 6*siga1^2*beta_SI*Mar*siga2*beta_SA^2 + siga1^2*beta_SI*siga2^2*beta_SA^2 - siga1^2*phi^2*Mar^2*beta_SA^3 + 2*siga1^2*phi^2*Mar*siga2*beta_SA^3 - siga1^2*phi^2*siga2^2*beta_SA^3 + 2*siga1^2*phi*M*Mar*beta_SA^3 - siga1^2*phi*M*siga2*beta_SA^3 + 2*siga1^2*phi*Mar^2*beta_SA^3 - 4*siga1^2*phi*Mar*siga2*beta_SA^3 + siga1^2*phi*siga2^2*beta_SA^3 - 2*siga1^2*M*Mar*beta_SA^3 - siga1^2*Mar^2*beta_SA^3 + 2*siga1^2*Mar*siga2*beta_SA^3 - 2*siga1*beta_SI^3*phi^2*Mar*siga2^2 + 4*siga1*beta_SI^3*phi*Mar*siga2^2 - 2*siga1*beta_SI^3*Mar*siga2^2 - siga1*beta_SI^2*phi^2*M*Mar*siga2*beta_SA - 2*siga1*beta_SI^2*phi^2*Mar^2*siga2*beta_SA + 5*siga1*beta_SI^2*phi^2*Mar*siga2^2*beta_SA + 3*siga1*beta_SI^2*phi*M*Mar*siga2*beta_SA + 4*siga1*beta_SI^2*phi*Mar^2*siga2*beta_SA - 9*siga1*beta_SI^2*phi*Mar*siga2^2*beta_SA - 2*siga1*beta_SI^2*M*Mar*siga2*beta_SA - 2*siga1*beta_SI^2*Mar^2*siga2*beta_SA + 4*siga1*beta_SI^2*Mar*siga2^2*beta_SA - siga1*beta_SI*phi^2*M*Mar^2*beta_SA^2 + 2*siga1*beta_SI*phi^2*M*Mar*siga2*beta_SA^2 + 3*siga1*beta_SI*phi^2*Mar^2*siga2*beta_SA^2 - 4*siga1*beta_SI*phi^2*Mar*siga2^2*beta_SA^2 + 2*siga1*beta_SI*phi*M*Mar^2*beta_SA^2 - 4*siga1*beta_SI*phi*M*Mar*siga2*beta_SA^2 - 6*siga1*beta_SI*phi*Mar^2*siga2*beta_SA^2 + 6*siga1*beta_SI*phi*Mar*siga2^2*beta_SA^2 - siga1*beta_SI*M*Mar^2*beta_SA^2 + 2*siga1*beta_SI*M*Mar*siga2*beta_SA^2 + 3*siga1*beta_SI*Mar^2*siga2*beta_SA^2 - 2*siga1*beta_SI*Mar*siga2^2*beta_SA^2 + siga1*phi^2*M*Mar^2*beta_SA^3 - siga1*phi^2*M*Mar*siga2*beta_SA^3 - siga1*phi^2*Mar^2*siga2*beta_SA^3 + siga1*phi^2*Mar*siga2^2*beta_SA^3 - 2*siga1*phi*M*Mar^2*beta_SA^3 + siga1*phi*M*Mar*siga2*beta_SA^3 + 2*siga1*phi*Mar^2*siga2*beta_SA^3 - siga1*phi*Mar*siga2^2*beta_SA^3 + siga1*M*Mar^2*beta_SA^3 - siga1*Mar^2*siga2*beta_SA^3 + beta_SI^3*phi^2*Mar^2*siga2^2 - 2*beta_SI^3*phi*Mar^2*siga2^2 + beta_SI^3*Mar^2*siga2^2 + beta_SI^2*phi^2*M*Mar^2*siga2*beta_SA - 2*beta_SI^2*phi^2*Mar^2*siga2^2*beta_SA - 2*beta_SI^2*phi*M*Mar^2*siga2*beta_SA + 4*beta_SI^2*phi*Mar^2*siga2^2*beta_SA + beta_SI^2*M*Mar^2*siga2*beta_SA - 2*beta_SI^2*Mar^2*siga2^2*beta_SA - beta_SI*phi^2*M*Mar^2*siga2*beta_SA^2 + beta_SI*phi^2*Mar^2*siga2^2*beta_SA^2 + 2*beta_SI*phi*M*Mar^2*siga2*beta_SA^2 - 2*beta_SI*phi*Mar^2*siga2^2*beta_SA^2 - beta_SI*M*Mar^2*siga2*beta_SA^2 + beta_SI*Mar^2*siga2^2*beta_SA^2)//(siga1^2*phi*M^2*siga2*beta_SA - siga1^2*M^2*siga2*beta_SA + siga1*phi^2*M^2*Mar*siga2*beta_SA - 3*siga1*phi*M^2*Mar*siga2*beta_SA + 2*siga1*M^2*Mar*siga2*beta_SA - phi^2*M^2*Mar^2*siga2*beta_SA + 2*phi*M^2*Mar^2*siga2*beta_SA - M^2*Mar^2*siga2*beta_SA)] diff --git a/benchmarking/IdentifiableFunctions/systems/QY/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/QY/id_funcs_(:normalforms, 3) deleted file mode 100644 index a2d4a8ff8..000000000 --- a/benchmarking/IdentifiableFunctions/systems/QY/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,9 +0,0 @@ -[Mar, -Ks, -alpa, -siga1*M*siga2, -(siga1 + phi*Mar - Mar)//phi, -(siga1*phi - siga1 - phi*Mar + Mar)//(siga1*phi*beta_SA), -(siga1*beta_SA + beta_SI*phi*siga2 + phi*Mar*beta_SA - phi*siga2*beta_SA - Mar*beta_SA)//(phi*M*siga2), -(siga1*beta_SI*phi*siga2 - siga1*beta_SI*siga2 - siga1*phi*siga2*beta_SA - siga1*M*beta_SA - beta_SI*phi*Mar*siga2 + beta_SI*Mar*siga2 - phi*M*Mar*beta_SA + M*Mar*beta_SA)//(siga1*beta_SA + phi*Mar*beta_SA - Mar*beta_SA), -(siga1^2*beta_SA + siga1*beta_SI*phi*siga2 - siga1*beta_SI*siga2 + siga1*phi*Mar*beta_SA - siga1*phi*siga2*beta_SA - siga1*Mar*beta_SA + siga1*siga2*beta_SA + beta_SI*phi*M*siga2 - beta_SI*phi*Mar*siga2 + beta_SI*phi*siga2^2 + beta_SI*Mar*siga2 + phi*Mar*siga2*beta_SA - phi*siga2^2*beta_SA - Mar*siga2*beta_SA)//(phi*M*siga2)] diff --git a/benchmarking/IdentifiableFunctions/systems/QY/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/QY/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index 4ba9eacc4..000000000 --- a/benchmarking/IdentifiableFunctions/systems/QY/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,15 +0,0 @@ -[P2, -P1, -P4, -P0, -P3, -Mar, -Ks, -alpa, -siga1*M*siga2, -Mar*P5 + beta, -(siga1*phi*M*siga2 - siga1*M*siga2 - phi*M*Mar*siga2 + M*Mar*siga2)//(siga1*beta_SA + phi*Mar*beta_SA - Mar*beta_SA), -(siga1*beta_SI*phi*siga2 - siga1*beta_SI*siga2 - siga1*phi*siga2*beta_SA - siga1*M*beta_SA - beta_SI*phi*Mar*siga2 + beta_SI*Mar*siga2 - phi*M*Mar*beta_SA + M*Mar*beta_SA)//(siga1*beta_SA + phi*Mar*beta_SA - Mar*beta_SA), -(siga1^2*beta_SA + siga1*beta_SI*phi*siga2 - siga1*beta_SI*siga2 + siga1*phi*Mar*beta_SA - siga1*phi*siga2*beta_SA - siga1*Mar*beta_SA + siga1*siga2*beta_SA - beta_SI*phi*Mar*siga2 + beta_SI*Mar*siga2 + phi*Mar*siga2*beta_SA - Mar*siga2*beta_SA)//(siga1*beta_SA + phi*Mar*beta_SA - Mar*beta_SA), -(siga1^2*beta_SI*beta_SA - siga1^2*beta_SA^2 + siga1*beta_SI^2*phi*siga2 - siga1*beta_SI^2*siga2 + siga1*beta_SI*phi*Mar*beta_SA - 2*siga1*beta_SI*phi*siga2*beta_SA - siga1*beta_SI*M*beta_SA - siga1*beta_SI*Mar*beta_SA + siga1*beta_SI*siga2*beta_SA - siga1*phi*Mar*beta_SA^2 + siga1*phi*siga2*beta_SA^2 + siga1*Mar*beta_SA^2 - beta_SI^2*phi*Mar*siga2 + beta_SI^2*Mar*siga2 - beta_SI*phi*M*Mar*beta_SA + beta_SI*phi*Mar*siga2*beta_SA + beta_SI*M*Mar*beta_SA - beta_SI*Mar*siga2*beta_SA)//(siga1*M*beta_SA + phi*M*Mar*beta_SA - M*Mar*beta_SA), -(siga1^4*beta_SA^2 + 2*siga1^3*beta_SI*phi*siga2*beta_SA - 2*siga1^3*beta_SI*siga2*beta_SA + 2*siga1^3*phi*Mar*beta_SA^2 - 2*siga1^3*phi*siga2*beta_SA^2 - siga1^3*M*beta_SA^2 - 2*siga1^3*Mar*beta_SA^2 + siga1^3*siga2*beta_SA^2 + siga1^2*beta_SI^2*phi^2*siga2^2 - 2*siga1^2*beta_SI^2*phi*siga2^2 + siga1^2*beta_SI^2*siga2^2 + 2*siga1^2*beta_SI*phi^2*Mar*siga2*beta_SA - 2*siga1^2*beta_SI*phi^2*siga2^2*beta_SA - 6*siga1^2*beta_SI*phi*Mar*siga2*beta_SA + 4*siga1^2*beta_SI*phi*siga2^2*beta_SA + 4*siga1^2*beta_SI*Mar*siga2*beta_SA - 2*siga1^2*beta_SI*siga2^2*beta_SA + siga1^2*phi^2*Mar^2*beta_SA^2 - 2*siga1^2*phi^2*Mar*siga2*beta_SA^2 + siga1^2*phi^2*siga2^2*beta_SA^2 - 2*siga1^2*phi*M*Mar*beta_SA^2 + 2*siga1^2*phi*M*siga2*beta_SA^2 - 2*siga1^2*phi*Mar^2*beta_SA^2 + 4*siga1^2*phi*Mar*siga2*beta_SA^2 - 2*siga1^2*phi*siga2^2*beta_SA^2 + 2*siga1^2*M*Mar*beta_SA^2 - siga1^2*M*siga2*beta_SA^2 + siga1^2*Mar^2*beta_SA^2 - 2*siga1^2*Mar*siga2*beta_SA^2 + siga1^2*siga2^2*beta_SA^2 - 2*siga1*beta_SI^2*phi^2*Mar*siga2^2 + 4*siga1*beta_SI^2*phi*Mar*siga2^2 - 2*siga1*beta_SI^2*Mar*siga2^2 - 2*siga1*beta_SI*phi^2*Mar^2*siga2*beta_SA + 4*siga1*beta_SI*phi^2*Mar*siga2^2*beta_SA + 4*siga1*beta_SI*phi*Mar^2*siga2*beta_SA - 8*siga1*beta_SI*phi*Mar*siga2^2*beta_SA - 2*siga1*beta_SI*Mar^2*siga2*beta_SA + 4*siga1*beta_SI*Mar*siga2^2*beta_SA - siga1*phi^2*M*Mar^2*beta_SA^2 + 2*siga1*phi^2*M*Mar*siga2*beta_SA^2 + siga1*phi^2*Mar^2*siga2*beta_SA^2 - 2*siga1*phi^2*Mar*siga2^2*beta_SA^2 + 2*siga1*phi*M*Mar^2*beta_SA^2 - 4*siga1*phi*M*Mar*siga2*beta_SA^2 - 2*siga1*phi*Mar^2*siga2*beta_SA^2 + 4*siga1*phi*Mar*siga2^2*beta_SA^2 - siga1*M*Mar^2*beta_SA^2 + 2*siga1*M*Mar*siga2*beta_SA^2 + siga1*Mar^2*siga2*beta_SA^2 - 2*siga1*Mar*siga2^2*beta_SA^2 + beta_SI^2*phi^2*Mar^2*siga2^2 - 2*beta_SI^2*phi*Mar^2*siga2^2 + beta_SI^2*Mar^2*siga2^2 - 2*beta_SI*phi^2*Mar^2*siga2^2*beta_SA + 4*beta_SI*phi*Mar^2*siga2^2*beta_SA - 2*beta_SI*Mar^2*siga2^2*beta_SA - phi^2*M*Mar^2*siga2*beta_SA^2 + phi^2*Mar^2*siga2^2*beta_SA^2 + 2*phi*M*Mar^2*siga2*beta_SA^2 - 2*phi*Mar^2*siga2^2*beta_SA^2 - M*Mar^2*siga2*beta_SA^2 + Mar^2*siga2^2*beta_SA^2)//(siga1^2*phi*M*siga2*beta_SA - siga1^2*M*siga2*beta_SA + siga1*phi^2*M*Mar*siga2*beta_SA - 3*siga1*phi*M*Mar*siga2*beta_SA + 2*siga1*M*Mar*siga2*beta_SA - phi^2*M*Mar^2*siga2*beta_SA + 2*phi*M*Mar^2*siga2*beta_SA - M*Mar^2*siga2*beta_SA)] diff --git a/benchmarking/IdentifiableFunctions/systems/QY/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/QY/logs_(:gb,) deleted file mode 100644 index 18429ef19..000000000 --- a/benchmarking/IdentifiableFunctions/systems/QY/logs_(:gb,) +++ /dev/null @@ -1,130 +0,0 @@ -┌ Info: Processing QY -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.057615557 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.057615557 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.169664678 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.169664678 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [64] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000247633 seconds -│ :rank_time = rank_time -│ rank_times = 0.000247633 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 58  ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 63  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 138  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 212  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 294  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 375  ✓ # Computing specializations.. Time: 0:00:01 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 65 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (5, 5), (6, 4), (5, 4)], [(0, 0), (1, 0)], [(0, 0), (5, 5), (7, 5), (6, 5)], [(0, 0), (5, 5), (6, 4), (5, 4)], [(0, 0), (6, 9), (5, 6), (6, 8)], [(0, 0), (0, 0)], [(0, 0), (3, 3), (2, 3), (4, 5), (4, 3), (5, 5)], [(0, 0), (5, 4), (9, 6), (8, 6)], [(0, 0), (7, 5), (2, 1), (6, 5), (4, 3), (10, 7), (9, 7)], [(0, 0), (11, 9), (6, 5), (10, 9), (5, 4), (14, 11), (13, 11)], [(0, 0), (4, 3), (4, 3), (9, 8), (9, 6), (9, 7)], [(0, 0), (7, 5), (2, 1), (6, 5), (10, 7), (9, 7)], [(0, 0), (8, 7), (9, 8), (10, 9), (14, 11), (14, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.631866358 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.079347773 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 65 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (5, 5), (6, 4), (5, 4)], [(0, 0), (1, 0)], [(0, 0), (5, 5), (7, 5), (6, 5)], [(0, 0), (5, 5), (6, 4), (5, 4)], [(0, 0), (6, 9), (5, 6), (6, 8)], [(0, 0), (0, 0)], [(0, 0), (3, 3), (2, 3), (4, 5), (4, 3), (5, 5)], [(0, 0), (5, 4), (9, 6), (8, 6)], [(0, 0), (7, 5), (2, 1), (6, 5), (4, 3), (10, 7), (9, 7)], [(0, 0), (11, 9), (6, 5), (10, 9), (5, 4), (14, 11), (13, 11)], [(0, 0), (4, 3), (4, 3), (9, 8), (9, 6), (9, 7)], [(0, 0), (7, 5), (2, 1), (6, 5), (10, 7), (9, 7)], [(0, 0), (8, 7), (9, 8), (10, 9), (14, 11), (14, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 384 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 14 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 2.108312433 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.034018271 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 5.472957636 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 64 initial generators there are 9 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 106246 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 9.676963241 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[Mar, Ks, alpa, (siga1 + phi*Mar - Mar)//phi, (siga1*phi - siga1 - phi*Mar + Mar)//(siga1*phi*beta_SA), (siga1*beta_SA + beta_SI*phi*siga2 + phi*Mar*beta_SA - phi*siga2*beta_SA - Mar*beta_SA)//(phi*M*siga2), (siga1*phi*M*siga2 - siga1*M*siga2 - phi*M*Mar*siga2 + M*Mar*siga2)//(siga1*beta_SA + phi*Mar*beta_SA - Mar*beta_SA), (siga1*beta_SI*phi*siga2 - siga1*beta_SI*siga2 - siga1*phi*siga2*beta_SA - siga1*M*beta_SA - beta_SI*phi*Mar*siga2 + beta_SI*Mar*siga2 - phi*M*Mar*beta_SA + M*Mar*beta_SA)//(siga1*beta_SA + phi*Mar*beta_SA - Mar*beta_SA), (siga1^2*beta_SA + siga1*beta_SI*phi*siga2 - siga1*beta_SI*siga2 + siga1*phi*Mar*beta_SA - siga1*phi*siga2*beta_SA - siga1*Mar*beta_SA + siga1*siga2*beta_SA + beta_SI*phi*M*siga2 - beta_SI*phi*Mar*siga2 + beta_SI*phi*siga2^2 + beta_SI*Mar*siga2 + phi*Mar*siga2*beta_SA - phi*siga2^2*beta_SA - Mar*siga2*beta_SA)//(phi*M*siga2)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/QY/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/QY/logs_(:gb,)_with_states deleted file mode 100644 index cb9d51e60..000000000 --- a/benchmarking/IdentifiableFunctions/systems/QY/logs_(:gb,)_with_states +++ /dev/null @@ -1,465 +0,0 @@ -┌ Info: Processing QY -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.072752875 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.072752875 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.123580852 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.123580852 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [64] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000235515 seconds -│ :rank_time = rank_time -│ rank_times = 0.000235515 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 56  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 125  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 196  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 262  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 333  ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 75  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 140  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 208  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 286  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 366  ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 71  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 134  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 192  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 270  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 345  ⌝ # Computing specializations.. Time: 0:00:02 - Points: 420  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 497  ⌞ # Computing specializations.. Time: 0:00:02 - Points: 574  ⌜ # Computing specializations.. Time: 0:00:03 - Points: 650  ⌝ # Computing specializations.. Time: 0:00:03 - Points: 727  ⌟ # Computing specializations.. Time: 0:00:03 - Points: 805  ⌞ # Computing specializations.. Time: 0:00:04 - Points: 881  ⌜ # Computing specializations.. Time: 0:00:04 - Points: 959  ⌝ # Computing specializations.. Time: 0:00:04 - Points: 1037  ⌟ # Computing specializations.. Time: 0:00:05 - Points: 1114  ⌞ # Computing specializations.. Time: 0:00:05 - Points: 1193  ⌜ # Computing specializations.. Time: 0:00:05 - Points: 1270  ⌝ # Computing specializations.. Time: 0:00:06 - Points: 1346  ⌟ # Computing specializations.. Time: 0:00:06 - Points: 1423  ⌞ # Computing specializations.. Time: 0:00:07 - Points: 1500  ⌜ # Computing specializations.. Time: 0:00:07 - Points: 1576  ⌝ # Computing specializations.. Time: 0:00:07 - Points: 1652  ⌟ # Computing specializations.. Time: 0:00:08 - Points: 1728  ⌞ # Computing specializations.. Time: 0:00:08 - Points: 1807  ⌜ # Computing specializations.. Time: 0:00:08 - Points: 1885  ⌝ # Computing specializations.. Time: 0:00:08 - Points: 1961  ⌟ # Computing specializations.. Time: 0:00:09 - Points: 2039  ⌞ # Computing specializations.. Time: 0:00:09 - Points: 2118  ⌜ # Computing specializations.. Time: 0:00:09 - Points: 2194  ⌝ # Computing specializations.. Time: 0:00:10 - Points: 2272  ⌟ # Computing specializations.. Time: 0:00:10 - Points: 2350  ⌞ # Computing specializations.. Time: 0:00:10 - Points: 2427  ⌜ # Computing specializations.. Time: 0:00:11 - Points: 2505  ✓ # Computing specializations.. Time: 0:00:12 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:00 ⌞ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 72  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 141  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 200  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 278  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 355  ⌝ # Computing specializations.. Time: 0:00:02 - Points: 429  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 502  ⌞ # Computing specializations.. Time: 0:00:02 - Points: 577  ⌜ # Computing specializations.. Time: 0:00:03 - Points: 648  ⌝ # Computing specializations.. Time: 0:00:03 - Points: 721  ⌟ # Computing specializations.. Time: 0:00:03 - Points: 792  ⌞ # Computing specializations.. Time: 0:00:04 - Points: 871  ⌜ # Computing specializations.. Time: 0:00:04 - Points: 948  ⌝ # Computing specializations.. Time: 0:00:04 - Points: 1025  ⌟ # Computing specializations.. Time: 0:00:04 - Points: 1102  ⌞ # Computing specializations.. Time: 0:00:05 - Points: 1179  ⌜ # Computing specializations.. Time: 0:00:06 - Points: 1256  ⌝ # Computing specializations.. Time: 0:00:06 - Points: 1332  ⌟ # Computing specializations.. Time: 0:00:06 - Points: 1408  ⌞ # Computing specializations.. Time: 0:00:07 - Points: 1484  ⌜ # Computing specializations.. Time: 0:00:07 - Points: 1562  ⌝ # Computing specializations.. Time: 0:00:07 - Points: 1639  ⌟ # Computing specializations.. Time: 0:00:07 - Points: 1716  ⌞ # Computing specializations.. Time: 0:00:08 - Points: 1794  ⌜ # Computing specializations.. Time: 0:00:08 - Points: 1873  ⌝ # Computing specializations.. Time: 0:00:08 - Points: 1950  ⌟ # Computing specializations.. Time: 0:00:09 - Points: 2028  ⌞ # Computing specializations.. Time: 0:00:09 - Points: 2106  ⌜ # Computing specializations.. Time: 0:00:09 - Points: 2184  ⌝ # Computing specializations.. Time: 0:00:10 - Points: 2262  ⌟ # Computing specializations.. Time: 0:00:11 - Points: 2339  ⌞ # Computing specializations.. Time: 0:00:11 - Points: 2423  ⌜ # Computing specializations.. Time: 0:00:11 - Points: 2500  ⌝ # Computing specializations.. Time: 0:00:12 - Points: 2577  ⌟ # Computing specializations.. Time: 0:00:12 - Points: 2654  ⌞ # Computing specializations.. Time: 0:00:12 - Points: 2730  ⌜ # Computing specializations.. Time: 0:00:13 - Points: 2808  ⌝ # Computing specializations.. Time: 0:00:13 - Points: 2884  ⌟ # Computing specializations.. Time: 0:00:13 - Points: 2963  ⌞ # Computing specializations.. Time: 0:00:14 - Points: 3041  ⌜ # Computing specializations.. Time: 0:00:14 - Points: 3119  ⌝ # Computing specializations.. Time: 0:00:14 - Points: 3198  ⌟ # Computing specializations.. Time: 0:00:14 - Points: 3277  ⌞ # Computing specializations.. Time: 0:00:15 - Points: 3356  ⌜ # Computing specializations.. Time: 0:00:15 - Points: 3435  ⌝ # Computing specializations.. Time: 0:00:15 - Points: 3513  ⌟ # Computing specializations.. Time: 0:00:16 - Points: 3591  ⌞ # Computing specializations.. Time: 0:00:16 - Points: 3668  ⌜ # Computing specializations.. Time: 0:00:16 - Points: 3745  ⌝ # Computing specializations.. Time: 0:00:17 - Points: 3822  ⌟ # Computing specializations.. Time: 0:00:17 - Points: 3899  ⌞ # Computing specializations.. Time: 0:00:17 - Points: 3976  ⌜ # Computing specializations.. Time: 0:00:18 - Points: 4054  ⌝ # Computing specializations.. Time: 0:00:18 - Points: 4132  ⌟ # Computing specializations.. Time: 0:00:18 - Points: 4210  ⌞ # Computing specializations.. Time: 0:00:18 - Points: 4287  ⌜ # Computing specializations.. Time: 0:00:19 - Points: 4365  ⌝ # Computing specializations.. Time: 0:00:19 - Points: 4444  ⌟ # Computing specializations.. Time: 0:00:19 - Points: 4522  ⌞ # Computing specializations.. Time: 0:00:20 - Points: 4600  ⌜ # Computing specializations.. Time: 0:00:22 - Points: 4676  ⌝ # Computing specializations.. Time: 0:00:22 - Points: 4764  ⌟ # Computing specializations.. Time: 0:00:22 - Points: 4843  ⌞ # Computing specializations.. Time: 0:00:23 - Points: 4921  ⌜ # Computing specializations.. Time: 0:00:23 - Points: 4999  ⌝ # Computing specializations.. Time: 0:00:23 - Points: 5079  ⌟ # Computing specializations.. Time: 0:00:24 - Points: 5158  ⌞ # Computing specializations.. Time: 0:00:24 - Points: 5236  ⌜ # Computing specializations.. Time: 0:00:24 - Points: 5315  ⌝ # Computing specializations.. Time: 0:00:24 - Points: 5394  ⌟ # Computing specializations.. Time: 0:00:25 - Points: 5473  ⌞ # Computing specializations.. Time: 0:00:25 - Points: 5551  ⌜ # Computing specializations.. Time: 0:00:25 - Points: 5629  ⌝ # Computing specializations.. Time: 0:00:26 - Points: 5707  ⌟ # Computing specializations.. Time: 0:00:26 - Points: 5786  ⌞ # Computing specializations.. Time: 0:00:26 - Points: 5865  ⌜ # Computing specializations.. Time: 0:00:27 - Points: 5944  ⌝ # Computing specializations.. Time: 0:00:27 - Points: 6022  ⌟ # Computing specializations.. Time: 0:00:27 - Points: 6101  ⌞ # Computing specializations.. Time: 0:00:27 - Points: 6180  ⌜ # Computing specializations.. Time: 0:00:28 - Points: 6258  ⌝ # Computing specializations.. Time: 0:00:28 - Points: 6337  ⌟ # Computing specializations.. Time: 0:00:28 - Points: 6416  ⌞ # Computing specializations.. Time: 0:00:29 - Points: 6495  ⌜ # Computing specializations.. Time: 0:00:29 - Points: 6574  ⌝ # Computing specializations.. Time: 0:00:29 - Points: 6653  ⌟ # Computing specializations.. Time: 0:00:30 - Points: 6732  ⌞ # Computing specializations.. Time: 0:00:30 - Points: 6811  ⌜ # Computing specializations.. Time: 0:00:30 - Points: 6892  ⌝ # Computing specializations.. Time: 0:00:31 - Points: 6971  ⌟ # Computing specializations.. Time: 0:00:31 - Points: 7051  ⌞ # Computing specializations.. Time: 0:00:31 - Points: 7130  ⌜ # Computing specializations.. Time: 0:00:32 - Points: 7209  ⌝ # Computing specializations.. Time: 0:00:32 - Points: 7288  ⌟ # Computing specializations.. Time: 0:00:32 - Points: 7367  ⌞ # Computing specializations.. Time: 0:00:32 - Points: 7446  ⌜ # Computing specializations.. Time: 0:00:33 - Points: 7525  ⌝ # Computing specializations.. Time: 0:00:33 - Points: 7604  ⌟ # Computing specializations.. Time: 0:00:33 - Points: 7682  ⌞ # Computing specializations.. Time: 0:00:34 - Points: 7761  ⌜ # Computing specializations.. Time: 0:00:34 - Points: 7840  ⌝ # Computing specializations.. Time: 0:00:34 - Points: 7919  ⌟ # Computing specializations.. Time: 0:00:35 - Points: 7999  ⌞ # Computing specializations.. Time: 0:00:35 - Points: 8078  ⌜ # Computing specializations.. Time: 0:00:35 - Points: 8157  ⌝ # Computing specializations.. Time: 0:00:35 - Points: 8236  ⌟ # Computing specializations.. Time: 0:00:36 - Points: 8317  ⌞ # Computing specializations.. Time: 0:00:36 - Points: 8396  ⌜ # Computing specializations.. Time: 0:00:36 - Points: 8475  ⌝ # Computing specializations.. Time: 0:00:37 - Points: 8554  ⌟ # Computing specializations.. Time: 0:00:37 - Points: 8633  ⌞ # Computing specializations.. Time: 0:00:37 - Points: 8712  ⌜ # Computing specializations.. Time: 0:00:38 - Points: 8791  ⌝ # Computing specializations.. Time: 0:00:38 - Points: 8871  ⌟ # Computing specializations.. Time: 0:00:38 - Points: 8950  ⌞ # Computing specializations.. Time: 0:00:39 - Points: 9029  ⌜ # Computing specializations.. Time: 0:00:39 - Points: 9106  ⌝ # Computing specializations.. Time: 0:00:39 - Points: 9184  ✓ # Computing specializations.. Time: 0:00:42 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 65 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA, P3, P0, P4, P1, P2, P5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (5, 5), (6, 4), (5, 4)], [(0, 0), (1, 0)], [(0, 0), (5, 5), (7, 5), (6, 5)], [(0, 0), (5, 5), (6, 4), (5, 4)], [(0, 0), (6, 9), (5, 6), (6, 8)], [(0, 0), (0, 0)], [(0, 0), (3, 3), (2, 3), (4, 5), (4, 3), (5, 5)], [(0, 0), (5, 4), (9, 6), (8, 6)], [(0, 0), (7, 5), (2, 1), (6, 5), (4, 3), (10, 7), (9, 7)], [(0, 0), (11, 9), (6, 5), (10, 9), (5, 4), (14, 11), (13, 11)], [(0, 0), (4, 3), (4, 3), (9, 8), (9, 6), (9, 7)], [(0, 0), (7, 5), (2, 1), (6, 5), (10, 7), (9, 7)], [(0, 0), (8, 7), (9, 8), (10, 9), (14, 11), (14, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 5.359837062 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.171035653 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 65 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA, P3, P0, P4, P1, P2, P5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (5, 5), (6, 4), (5, 4)], [(0, 0), (1, 0)], [(0, 0), (5, 5), (7, 5), (6, 5)], [(0, 0), (5, 5), (6, 4), (5, 4)], [(0, 0), (6, 9), (5, 6), (6, 8)], [(0, 0), (0, 0)], [(0, 0), (3, 3), (2, 3), (4, 5), (4, 3), (5, 5)], [(0, 0), (5, 4), (9, 6), (8, 6)], [(0, 0), (7, 5), (2, 1), (6, 5), (4, 3), (10, 7), (9, 7)], [(0, 0), (11, 9), (6, 5), (10, 9), (5, 4), (14, 11), (13, 11)], [(0, 0), (4, 3), (4, 3), (9, 8), (9, 6), (9, 7)], [(0, 0), (7, 5), (2, 1), (6, 5), (10, 7), (9, 7)], [(0, 0), (8, 7), (9, 8), (10, 9), (14, 11), (14, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 384 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 14 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 2.335069381 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.040243315 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 7.466309761 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 64 initial generators there are 9 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 106246 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 17 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA, P3, P0, P4, P1, P2, P5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 258 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (23, 23), (32, 20), (23, 22)], [(0, 0), (1, 0)], [(0, 0), (23, 23), (32, 20), (24, 23)], [(0, 0), (23, 23), (32, 20), (23, 22)], [(0, 0), (38, 61), (41, 52), (41, 63)], [(0, 0), (17, 28), (21, 20), (19, 29)], [(0, 0), (21, 21), (19, 30), (21, 32), (22, 21), (22, 32)], [(0, 0), (25, 24), (34, 21), (28, 26)], [(0, 0), (31, 19), (20, 19), (24, 23), (4, 3), (32, 19), (27, 25)], [(0, 0), (32, 20), (24, 23), (28, 27), (5, 4), (33, 20), (31, 29)], [(0, 0), (4, 3), (4, 3), (27, 26), (33, 20), (27, 25)], [(0, 0), (31, 19), (20, 19), (24, 23), (32, 19), (25, 23)], [(0, 0), (8, 7), (9, 8), (28, 27), (33, 20), (32, 30)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.852613141 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.112879309 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 17 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA, P3, P0, P4, P1, P2, P5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 258 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (23, 23), (32, 20), (23, 22)], [(0, 0), (1, 0)], [(0, 0), (23, 23), (32, 20), (24, 23)], [(0, 0), (23, 23), (32, 20), (23, 22)], [(0, 0), (38, 61), (41, 52), (41, 63)], [(0, 0), (17, 28), (21, 20), (19, 29)], [(0, 0), (21, 21), (19, 30), (21, 32), (22, 21), (22, 32)], [(0, 0), (25, 24), (34, 21), (28, 26)], [(0, 0), (31, 19), (20, 19), (24, 23), (4, 3), (32, 19), (27, 25)], [(0, 0), (32, 20), (24, 23), (28, 27), (5, 4), (33, 20), (31, 29)], [(0, 0), (4, 3), (4, 3), (27, 26), (33, 20), (27, 25)], [(0, 0), (31, 19), (20, 19), (24, 23), (32, 19), (25, 23)], [(0, 0), (8, 7), (9, 8), (28, 27), (33, 20), (32, 30)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 384 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 11 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 3.448791947 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.159907086 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (8, 8) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 17 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA, P3, P0, P4, P1, P2, P5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 258 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (23, 23), (32, 20), (23, 22)], [(0, 0), (1, 0)], [(0, 0), (23, 23), (32, 20), (24, 23)], [(0, 0), (23, 23), (32, 20), (23, 22)], [(0, 0), (38, 61), (41, 52), (41, 63)], [(0, 0), (17, 28), (21, 20), (19, 29)], [(0, 0), (21, 21), (19, 30), (21, 32), (22, 21), (22, 32)], [(0, 0), (25, 24), (34, 21), (28, 26)], [(0, 0), (31, 19), (20, 19), (24, 23), (4, 3), (32, 19), (27, 25)], [(0, 0), (32, 20), (24, 23), (28, 27), (5, 4), (33, 20), (31, 29)], [(0, 0), (4, 3), (4, 3), (27, 26), (33, 20), (27, 25)], [(0, 0), (31, 19), (20, 19), (24, 23), (32, 19), (25, 23)], [(0, 0), (8, 7), (9, 8), (28, 27), (33, 20), (32, 30)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 9, Denominator: 9 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 2560 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 8 for num. and 7 for den. -│ Maximal number of interpolated terms are: 63 for num. and 8 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 13.706455405 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.215681097 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (16, 16) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 17 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA, P3, P0, P4, P1, P2, P5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 258 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (23, 23), (32, 20), (23, 22)], [(0, 0), (1, 0)], [(0, 0), (23, 23), (32, 20), (24, 23)], [(0, 0), (23, 23), (32, 20), (23, 22)], [(0, 0), (38, 61), (41, 52), (41, 63)], [(0, 0), (17, 28), (21, 20), (19, 29)], [(0, 0), (21, 21), (19, 30), (21, 32), (22, 21), (22, 32)], [(0, 0), (25, 24), (34, 21), (28, 26)], [(0, 0), (31, 19), (20, 19), (24, 23), (4, 3), (32, 19), (27, 25)], [(0, 0), (32, 20), (24, 23), (28, 27), (5, 4), (33, 20), (31, 29)], [(0, 0), (4, 3), (4, 3), (27, 26), (33, 20), (27, 25)], [(0, 0), (31, 19), (20, 19), (24, 23), (32, 19), (25, 23)], [(0, 0), (8, 7), (9, 8), (28, 27), (33, 20), (32, 30)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Warning: In Prime number approach the field order might be too small -│ Nd = 17 -│ Dd = 17 -│ max(Nd, Dd) * log(n) = 47.13400827807628 -│ log(BigInt(order(K))) = 42.97512519471660922051442496041699641866702992303280170414601427331657565689629 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:301 -┌ Info: Interpolating for degrees: -│ Numerator: 17, Denominator: 17 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 9216 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 9 for num. and 8 for den. -│ Maximal number of interpolated terms are: 98 for num. and 8 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 44.952218936 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.144719033 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 17 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 6.448146147 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 16 initial generators there are 15 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 16999374 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 88.380370794 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[P2, P1, P4, P0, P3, Mar, Ks, alpa, Mar*P5 + beta, (siga1*phi*M*siga2 - siga1*M*siga2 - phi*M*Mar*siga2 + M*Mar*siga2)//(siga1*beta_SA + phi*Mar*beta_SA - Mar*beta_SA), (siga1*beta_SI*phi*siga2 - siga1*beta_SI*siga2 - siga1*phi*siga2*beta_SA - siga1*M*beta_SA - beta_SI*phi*Mar*siga2 + beta_SI*Mar*siga2 - phi*M*Mar*beta_SA + M*Mar*beta_SA)//(siga1*beta_SA + phi*Mar*beta_SA - Mar*beta_SA), (siga1^2*beta_SA + siga1*beta_SI*phi*siga2 - siga1*beta_SI*siga2 + siga1*phi*Mar*beta_SA - siga1*phi*siga2*beta_SA - siga1*Mar*beta_SA + siga1*siga2*beta_SA - beta_SI*phi*Mar*siga2 + beta_SI*Mar*siga2 + phi*Mar*siga2*beta_SA - Mar*siga2*beta_SA)//(siga1*beta_SA + phi*Mar*beta_SA - Mar*beta_SA), (siga1^2*beta_SI*beta_SA - siga1^2*beta_SA^2 + siga1*beta_SI^2*phi*siga2 - siga1*beta_SI^2*siga2 + siga1*beta_SI*phi*Mar*beta_SA - 2*siga1*beta_SI*phi*siga2*beta_SA - siga1*beta_SI*M*beta_SA - siga1*beta_SI*Mar*beta_SA + siga1*beta_SI*siga2*beta_SA - siga1*phi*Mar*beta_SA^2 + siga1*phi*siga2*beta_SA^2 + siga1*Mar*beta_SA^2 - beta_SI^2*phi*Mar*siga2 + beta_SI^2*Mar*siga2 - beta_SI*phi*M*Mar*beta_SA + beta_SI*phi*Mar*siga2*beta_SA + beta_SI*M*Mar*beta_SA - beta_SI*Mar*siga2*beta_SA)//(siga1*M*beta_SA + phi*M*Mar*beta_SA - M*Mar*beta_SA), (siga1^4*beta_SA^2 + 2*siga1^3*beta_SI*phi*siga2*beta_SA - 2*siga1^3*beta_SI*siga2*beta_SA + 2*siga1^3*phi*Mar*beta_SA^2 - 2*siga1^3*phi*siga2*beta_SA^2 - siga1^3*M*beta_SA^2 - 2*siga1^3*Mar*beta_SA^2 + siga1^3*siga2*beta_SA^2 + siga1^2*beta_SI^2*phi^2*siga2^2 - 2*siga1^2*beta_SI^2*phi*siga2^2 + siga1^2*beta_SI^2*siga2^2 + 2*siga1^2*beta_SI*phi^2*Mar*siga2*beta_SA - 2*siga1^2*beta_SI*phi^2*siga2^2*beta_SA - 6*siga1^2*beta_SI*phi*Mar*siga2*beta_SA + 4*siga1^2*beta_SI*phi*siga2^2*beta_SA + 4*siga1^2*beta_SI*Mar*siga2*beta_SA - 2*siga1^2*beta_SI*siga2^2*beta_SA + siga1^2*phi^2*Mar^2*beta_SA^2 - 2*siga1^2*phi^2*Mar*siga2*beta_SA^2 + siga1^2*phi^2*siga2^2*beta_SA^2 - 2*siga1^2*phi*M*Mar*beta_SA^2 + 2*siga1^2*phi*M*siga2*beta_SA^2 - 2*siga1^2*phi*Mar^2*beta_SA^2 + 4*siga1^2*phi*Mar*siga2*beta_SA^2 - 2*siga1^2*phi*siga2^2*beta_SA^2 + 2*siga1^2*M*Mar*beta_SA^2 - siga1^2*M*siga2*beta_SA^2 + siga1^2*Mar^2*beta_SA^2 - 2*siga1^2*Mar*siga2*beta_SA^2 + siga1^2*siga2^2*beta_SA^2 - 2*siga1*beta_SI^2*phi^2*Mar*siga2^2 + 4*siga1*beta_SI^2*phi*Mar*siga2^2 - 2*siga1*beta_SI^2*Mar*siga2^2 - 2*siga1*beta_SI*phi^2*Mar^2*siga2*beta_SA + 4*siga1*beta_SI*phi^2*Mar*siga2^2*beta_SA + 4*siga1*beta_SI*phi*Mar^2*siga2*beta_SA - 8*siga1*beta_SI*phi*Mar*siga2^2*beta_SA - 2*siga1*beta_SI*Mar^2*siga2*beta_SA + 4*siga1*beta_SI*Mar*siga2^2*beta_SA - siga1*phi^2*M*Mar^2*beta_SA^2 + 2*siga1*phi^2*M*Mar*siga2*beta_SA^2 + siga1*phi^2*Mar^2*siga2*beta_SA^2 - 2*siga1*phi^2*Mar*siga2^2*beta_SA^2 + 2*siga1*phi*M*Mar^2*beta_SA^2 - 4*siga1*phi*M*Mar*siga2*beta_SA^2 - 2*siga1*phi*Mar^2*siga2*beta_SA^2 + 4*siga1*phi*Mar*siga2^2*beta_SA^2 - siga1*M*Mar^2*beta_SA^2 + 2*siga1*M*Mar*siga2*beta_SA^2 + siga1*Mar^2*siga2*beta_SA^2 - 2*siga1*Mar*siga2^2*beta_SA^2 + beta_SI^2*phi^2*Mar^2*siga2^2 - 2*beta_SI^2*phi*Mar^2*siga2^2 + beta_SI^2*Mar^2*siga2^2 - 2*beta_SI*phi^2*Mar^2*siga2^2*beta_SA + 4*beta_SI*phi*Mar^2*siga2^2*beta_SA - 2*beta_SI*Mar^2*siga2^2*beta_SA - phi^2*M*Mar^2*siga2*beta_SA^2 + phi^2*Mar^2*siga2^2*beta_SA^2 + 2*phi*M*Mar^2*siga2*beta_SA^2 - 2*phi*Mar^2*siga2^2*beta_SA^2 - M*Mar^2*siga2*beta_SA^2 + Mar^2*siga2^2*beta_SA^2)//(siga1^2*phi*M*siga2*beta_SA - siga1^2*M*siga2*beta_SA + siga1*phi^2*M*Mar*siga2*beta_SA - 3*siga1*phi*M*Mar*siga2*beta_SA + 2*siga1*M*Mar*siga2*beta_SA - phi^2*M*Mar^2*siga2*beta_SA + 2*phi*M*Mar^2*siga2*beta_SA - M*Mar^2*siga2*beta_SA), (siga1^4*beta_SI*beta_SA^2 - siga1^4*beta_SA^3 + 2*siga1^3*beta_SI^2*phi*siga2*beta_SA - 2*siga1^3*beta_SI^2*siga2*beta_SA + 2*siga1^3*beta_SI*phi*Mar*beta_SA^2 - 4*siga1^3*beta_SI*phi*siga2*beta_SA^2 - siga1^3*beta_SI*M*beta_SA^2 - 2*siga1^3*beta_SI*Mar*beta_SA^2 + 3*siga1^3*beta_SI*siga2*beta_SA^2 - 2*siga1^3*phi*Mar*beta_SA^3 + 2*siga1^3*phi*siga2*beta_SA^3 + siga1^3*M*beta_SA^3 + 2*siga1^3*Mar*beta_SA^3 - siga1^3*siga2*beta_SA^3 + siga1^2*beta_SI^3*phi^2*siga2^2 - 2*siga1^2*beta_SI^3*phi*siga2^2 + siga1^2*beta_SI^3*siga2^2 + 2*siga1^2*beta_SI^2*phi^2*Mar*siga2*beta_SA - 3*siga1^2*beta_SI^2*phi^2*siga2^2*beta_SA - siga1^2*beta_SI^2*phi*M*siga2*beta_SA - 6*siga1^2*beta_SI^2*phi*Mar*siga2*beta_SA + 5*siga1^2*beta_SI^2*phi*siga2^2*beta_SA + siga1^2*beta_SI^2*M*siga2*beta_SA + 4*siga1^2*beta_SI^2*Mar*siga2*beta_SA - 2*siga1^2*beta_SI^2*siga2^2*beta_SA + siga1^2*beta_SI*phi^2*Mar^2*beta_SA^2 - 4*siga1^2*beta_SI*phi^2*Mar*siga2*beta_SA^2 + 3*siga1^2*beta_SI*phi^2*siga2^2*beta_SA^2 - 2*siga1^2*beta_SI*phi*M*Mar*beta_SA^2 + 2*siga1^2*beta_SI*phi*M*siga2*beta_SA^2 - 2*siga1^2*beta_SI*phi*Mar^2*beta_SA^2 + 10*siga1^2*beta_SI*phi*Mar*siga2*beta_SA^2 - 4*siga1^2*beta_SI*phi*siga2^2*beta_SA^2 + 2*siga1^2*beta_SI*M*Mar*beta_SA^2 - siga1^2*beta_SI*M*siga2*beta_SA^2 + siga1^2*beta_SI*Mar^2*beta_SA^2 - 6*siga1^2*beta_SI*Mar*siga2*beta_SA^2 + siga1^2*beta_SI*siga2^2*beta_SA^2 - siga1^2*phi^2*Mar^2*beta_SA^3 + 2*siga1^2*phi^2*Mar*siga2*beta_SA^3 - siga1^2*phi^2*siga2^2*beta_SA^3 + 2*siga1^2*phi*M*Mar*beta_SA^3 - siga1^2*phi*M*siga2*beta_SA^3 + 2*siga1^2*phi*Mar^2*beta_SA^3 - 4*siga1^2*phi*Mar*siga2*beta_SA^3 + siga1^2*phi*siga2^2*beta_SA^3 - 2*siga1^2*M*Mar*beta_SA^3 - siga1^2*Mar^2*beta_SA^3 + 2*siga1^2*Mar*siga2*beta_SA^3 - 2*siga1*beta_SI^3*phi^2*Mar*siga2^2 + 4*siga1*beta_SI^3*phi*Mar*siga2^2 - 2*siga1*beta_SI^3*Mar*siga2^2 - siga1*beta_SI^2*phi^2*M*Mar*siga2*beta_SA - 2*siga1*beta_SI^2*phi^2*Mar^2*siga2*beta_SA + 5*siga1*beta_SI^2*phi^2*Mar*siga2^2*beta_SA + 3*siga1*beta_SI^2*phi*M*Mar*siga2*beta_SA + 4*siga1*beta_SI^2*phi*Mar^2*siga2*beta_SA - 9*siga1*beta_SI^2*phi*Mar*siga2^2*beta_SA - 2*siga1*beta_SI^2*M*Mar*siga2*beta_SA - 2*siga1*beta_SI^2*Mar^2*siga2*beta_SA + 4*siga1*beta_SI^2*Mar*siga2^2*beta_SA - siga1*beta_SI*phi^2*M*Mar^2*beta_SA^2 + 2*siga1*beta_SI*phi^2*M*Mar*siga2*beta_SA^2 + 3*siga1*beta_SI*phi^2*Mar^2*siga2*beta_SA^2 - 4*siga1*beta_SI*phi^2*Mar*siga2^2*beta_SA^2 + 2*siga1*beta_SI*phi*M*Mar^2*beta_SA^2 - 4*siga1*beta_SI*phi*M*Mar*siga2*beta_SA^2 - 6*siga1*beta_SI*phi*Mar^2*siga2*beta_SA^2 + 6*siga1*beta_SI*phi*Mar*siga2^2*beta_SA^2 - siga1*beta_SI*M*Mar^2*beta_SA^2 + 2*siga1*beta_SI*M*Mar*siga2*beta_SA^2 + 3*siga1*beta_SI*Mar^2*siga2*beta_SA^2 - 2*siga1*beta_SI*Mar*siga2^2*beta_SA^2 + siga1*phi^2*M*Mar^2*beta_SA^3 - siga1*phi^2*M*Mar*siga2*beta_SA^3 - siga1*phi^2*Mar^2*siga2*beta_SA^3 + siga1*phi^2*Mar*siga2^2*beta_SA^3 - 2*siga1*phi*M*Mar^2*beta_SA^3 + siga1*phi*M*Mar*siga2*beta_SA^3 + 2*siga1*phi*Mar^2*siga2*beta_SA^3 - siga1*phi*Mar*siga2^2*beta_SA^3 + siga1*M*Mar^2*beta_SA^3 - siga1*Mar^2*siga2*beta_SA^3 + beta_SI^3*phi^2*Mar^2*siga2^2 - 2*beta_SI^3*phi*Mar^2*siga2^2 + beta_SI^3*Mar^2*siga2^2 + beta_SI^2*phi^2*M*Mar^2*siga2*beta_SA - 2*beta_SI^2*phi^2*Mar^2*siga2^2*beta_SA - 2*beta_SI^2*phi*M*Mar^2*siga2*beta_SA + 4*beta_SI^2*phi*Mar^2*siga2^2*beta_SA + beta_SI^2*M*Mar^2*siga2*beta_SA - 2*beta_SI^2*Mar^2*siga2^2*beta_SA - beta_SI*phi^2*M*Mar^2*siga2*beta_SA^2 + beta_SI*phi^2*Mar^2*siga2^2*beta_SA^2 + 2*beta_SI*phi*M*Mar^2*siga2*beta_SA^2 - 2*beta_SI*phi*Mar^2*siga2^2*beta_SA^2 - beta_SI*M*Mar^2*siga2*beta_SA^2 + beta_SI*Mar^2*siga2^2*beta_SA^2)//(siga1^2*phi*M^2*siga2*beta_SA - siga1^2*M^2*siga2*beta_SA + siga1*phi^2*M^2*Mar*siga2*beta_SA - 3*siga1*phi*M^2*Mar*siga2*beta_SA + 2*siga1*M^2*Mar*siga2*beta_SA - phi^2*M^2*Mar^2*siga2*beta_SA + 2*phi*M^2*Mar^2*siga2*beta_SA - M^2*Mar^2*siga2*beta_SA)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/QY/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/QY/logs_(:hybrid,) deleted file mode 100644 index f8e982896..000000000 --- a/benchmarking/IdentifiableFunctions/systems/QY/logs_(:hybrid,) +++ /dev/null @@ -1,599 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing QY -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.126972108 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.126972108 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.077098086 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.077098086 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [64] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000241541 seconds -│ :rank_time = rank_time -│ rank_times = 0.000241541 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 86  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 155  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 225  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 309  ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 65 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (5, 5), (6, 4), (5, 4)], [(0, 0), (1, 0)], [(0, 0), (5, 5), (7, 5), (6, 5)], [(0, 0), (5, 5), (6, 4), (5, 4)], [(0, 0), (6, 9), (5, 6), (6, 8)], [(0, 0), (0, 0)], [(0, 0), (3, 3), (2, 3), (4, 5), (4, 3), (5, 5)], [(0, 0), (5, 4), (9, 6), (8, 6)], [(0, 0), (7, 5), (2, 1), (6, 5), (4, 3), (10, 7), (9, 7)], [(0, 0), (11, 9), (6, 5), (10, 9), (5, 4), (14, 11), (13, 11)], [(0, 0), (4, 3), (4, 3), (9, 8), (9, 6), (9, 7)], [(0, 0), (7, 5), (2, 1), (6, 5), (10, 7), (9, 7)], [(0, 0), (8, 7), (9, 8), (10, 9), (14, 11), (14, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.645864244 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.075049487 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 65 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (5, 5), (6, 4), (5, 4)], [(0, 0), (1, 0)], [(0, 0), (5, 5), (7, 5), (6, 5)], [(0, 0), (5, 5), (6, 4), (5, 4)], [(0, 0), (6, 9), (5, 6), (6, 8)], [(0, 0), (0, 0)], [(0, 0), (3, 3), (2, 3), (4, 5), (4, 3), (5, 5)], [(0, 0), (5, 4), (9, 6), (8, 6)], [(0, 0), (7, 5), (2, 1), (6, 5), (4, 3), (10, 7), (9, 7)], [(0, 0), (11, 9), (6, 5), (10, 9), (5, 4), (14, 11), (13, 11)], [(0, 0), (4, 3), (4, 3), (9, 8), (9, 6), (9, 7)], [(0, 0), (7, 5), (2, 1), (6, 5), (10, 7), (9, 7)], [(0, 0), (8, 7), (9, 8), (10, 9), (14, 11), (14, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 384 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 14 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 2.151135464 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.117663013 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (10 in total): Nemo.fmpq_mpoly[siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 266 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 83 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 266 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 83 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 1 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 266 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 83 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 1 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y6, y3, y8, y10], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y7, t, y9, y5, y2], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 130 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (8, 7), (9, 8), (8, 6)], [(0, 0), (4, 3), (5, 4), (4, 2)], [(16, 25), (0, 0), (17, 25), (20, 28), (5, 4), (21, 28)], [(0, 0), (4, 3), (4, 3), (4, 2)], [(0, 0), (15, 14), (15, 14), (24, 14), (16, 14)], [(14, 23), (0, 0), (15, 23), (14, 22), (33, 41), (18, 17), (34, 41)], [(0, 0), (4, 3), (18, 17), (15, 14), (24, 14), (18, 16)], [(14, 23), (0, 0), (15, 23), (19, 27), (4, 3), (20, 27)], [(0, 0), (27, 44), (27, 44), (30, 38), (28, 44)], [(18, 18), (18, 18), (0, 0), (23, 14), (19, 18)], [(0, 0), (1, 1), (1, 1), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 4 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.765304006 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004320593 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y10, y9, y2, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y4, y7, y6, y8, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 130 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (2, 1), (4, 2), (5, 2)], [(15, 25), (15, 24), (0, 0), (16, 24)], [(9, 11), (9, 10), (10, 11), (9, 9), (10, 10), (0, 0), (10, 9)], [(4, 5), (4, 4), (0, 0), (4, 3)], [(9, 11), (9, 10), (10, 11), (9, 9), (10, 10), (0, 0), (10, 9)], [(4, 5), (0, 0), (4, 4), (6, 6), (4, 3), (6, 5), (6, 4)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 4 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.430555971 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.046653064 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y3, y9, y4, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y5, y1, y7, y2, y8], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 130 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (8, 7), (9, 8), (8, 6)], [(0, 0), (4, 3), (5, 4), (4, 2)], [(0, 0), (0, 0), (1, 0), (4, 3), (4, 3), (4, 2)], [(0, 0), (4, 3), (4, 3), (4, 2)], [(0, 0), (5, 4), (4, 3), (6, 4), (8, 6), (9, 7), (9, 6)], [(0, 0), (1, 0), (2, 0), (3, 0)], [(14, 24), (15, 24), (0, 0), (13, 21)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(1, 1), (0, 0), (2, 1)], [(3, 4), (4, 4), (0, 0), (5, 4)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.629442001 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004325481 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y2, y6, y7, y10], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y5, y9, y4, y1, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 130 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0), (0, 0), (1, 0)], [(2, 2), (1, 1), (0, 0), (2, 1), (1, 0), (2, 0)], [(0, 0), (2, 1), (4, 2), (5, 2)], [(4, 5), (4, 4), (0, 0), (4, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(3, 4), (0, 0), (4, 4), (3, 3), (4, 3)], [(15, 25), (15, 24), (0, 0), (16, 24)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 7 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.55652188 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004254884 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, t, y1, y2, y8], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y10, y5, y9, y7, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 130 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1), (1, 1), (2, 1)], [(0, 0), (4, 3), (4, 2)], [(0, 0), (0, 0), (1, 0), (1, 0), (4, 3), (4, 2)], [(0, 0), (0, 0), (3, 2), (3, 2), (1, 0), (4, 2)], [(0, 0), (7, 6), (7, 6), (5, 4), (8, 6)], [(0, 0), (1, 0), (2, 0), (3, 0)], [(0, 0), (3, 2), (1, 0), (4, 2), (4, 2), (2, 0), (5, 2)], [(3, 4), (0, 0), (4, 4), (4, 4), (0, 0), (5, 4)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(15, 24), (15, 24), (14, 23), (0, 0), (18, 26)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 4 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.46088842 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004467854 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y2, y6, y8, y9], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y4, y1, t, y7, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 130 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(18, 18), (0, 0), (23, 14), (19, 18)], [(0, 0), (0, 0), (15, 14), (1, 0), (24, 14), (16, 14)], [(0, 0), (27, 44), (30, 38), (25, 41)], [(0, 0), (14, 22), (15, 14), (12, 19)], [(0, 0), (15, 14), (24, 14), (16, 14)], [(0, 0), (1, 0), (2, 0), (3, 0)], [(0, 0), (14, 22), (15, 14), (29, 36), (15, 22), (30, 28), (30, 36)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(3, 4), (0, 0), (4, 4), (3, 2)], [(1, 1), (0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.401569031 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.045994927 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, t, y6, y10, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y4, y5, y9, y2, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 55  ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 130 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0), (2, 1)], [(0, 0), (4, 3), (4, 3), (4, 3), (5, 3)], [(0, 0), (9, 8), (8, 7), (9, 8), (10, 8)], [(0, 0), (0, 0), (5, 4), (4, 3), (5, 4), (6, 4)], [(0, 0), (0, 0), (4, 3), (4, 3), (4, 3), (5, 3)], [(0, 0), (1, 0), (2, 0), (3, 0)], [(0, 0), (5, 4), (4, 3), (9, 7), (8, 6), (9, 7), (10, 7)], [(0, 0), (1, 0)], [(3, 4), (4, 4), (0, 0), (5, 4)], [(0, 0), (1, 0)], [(14, 24), (15, 24), (0, 0), (13, 21)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.609544494 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.034332494 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y9, y4, y3, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y1, y6, y5, y10, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 130 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (7, 6), (5, 4), (8, 6)], [(0, 0), (3, 2), (4, 2)], [(0, 0), (4, 4), (7, 6), (3, 2), (5, 4), (5, 4), (8, 6)], [(0, 0), (4, 3), (4, 3), (4, 2)], [(0, 0), (4, 3), (4, 3), (4, 3)], [(0, 0), (4, 3), (5, 4), (4, 2)], [(0, 0), (1, 0), (4, 3), (4, 2)], [(0, 0), (0, 0), (3, 2), (4, 3), (5, 4), (4, 3), (4, 2)], [(0, 0), (8, 7), (9, 8), (8, 6)], [(1, 1), (0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(15, 24), (14, 23), (0, 0), (18, 26)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.446725024 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004357773 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y2, y10, y8, y9], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y7, y5, y3, y4, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 130 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1), (1, 0)], [(2, 2), (1, 1), (0, 0), (2, 1), (1, 0), (2, 0)], [(0, 0), (2, 1), (4, 2), (5, 2)], [(1, 1), (0, 0), (0, 0), (1, 0)], [(4, 5), (4, 4), (0, 0), (4, 3)], [(4, 5), (3, 4), (0, 0), (4, 4), (3, 3), (4, 3)], [(15, 25), (15, 24), (0, 0), (16, 24)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 7 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.50969189 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004289184 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y6, y7, y5, y10], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y4, y1, y2, y8, y9], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 130 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (18, 17), (4, 3), (4, 3), (24, 14), (19, 17)], [(0, 0), (4, 3), (4, 3), (4, 3), (5, 3)], [(14, 23), (0, 0), (15, 23), (19, 27), (4, 3), (20, 27)], [(0, 0), (9, 8), (8, 7), (9, 8), (10, 8)], [(0, 0), (0, 0), (5, 4), (4, 3), (5, 4), (6, 4)], [(16, 25), (0, 0), (17, 25), (20, 28), (5, 4), (21, 28)], [(0, 0), (15, 14), (24, 14), (16, 14)], [(0, 0), (14, 22), (15, 14), (12, 19)], [(0, 0), (27, 44), (30, 38), (25, 41)], [(18, 18), (0, 0), (23, 14), (19, 18)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.064866017 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004041938 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.712113848 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 64 initial generators there are 9 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 2959 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 13.708548323 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[Mar, Ks, alpa, siga1*M*siga2, siga1 + M + siga2, siga1*M + siga1*siga2 + M*siga2, phi//(siga1 - Mar), (siga1*phi - siga1 - phi*Mar + Mar)//(siga1*phi*beta_SA), (siga1*beta_SA + beta_SI*phi*siga2 + phi*Mar*beta_SA - phi*siga2*beta_SA - Mar*beta_SA)//(phi*M*siga2)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/QY/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/QY/logs_(:hybrid,)_with_states deleted file mode 100644 index 724700940..000000000 --- a/benchmarking/IdentifiableFunctions/systems/QY/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,766 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing QY -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.145983204 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.145983204 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.062465245 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.062465245 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [64] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000218849 seconds -│ :rank_time = rank_time -│ rank_times = 0.000218849 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 58  ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 59  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 131  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 203  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 281  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 359  ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 86  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 157  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 227  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 312  ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 86  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 159  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 225  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 313  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 400  ⌝ # Computing specializations.. Time: 0:00:02 - Points: 486  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 572  ⌞ # Computing specializations.. Time: 0:00:02 - Points: 655  ⌜ # Computing specializations.. Time: 0:00:03 - Points: 740  ⌝ # Computing specializations.. Time: 0:00:03 - Points: 825  ⌟ # Computing specializations.. Time: 0:00:03 - Points: 910  ⌞ # Computing specializations.. Time: 0:00:04 - Points: 995  ⌜ # Computing specializations.. Time: 0:00:04 - Points: 1080  ⌝ # Computing specializations.. Time: 0:00:04 - Points: 1164  ⌟ # Computing specializations.. Time: 0:00:05 - Points: 1248  ⌞ # Computing specializations.. Time: 0:00:05 - Points: 1330  ⌜ # Computing specializations.. Time: 0:00:06 - Points: 1414  ⌝ # Computing specializations.. Time: 0:00:06 - Points: 1501  ⌟ # Computing specializations.. Time: 0:00:06 - Points: 1588  ⌞ # Computing specializations.. Time: 0:00:07 - Points: 1675  ⌜ # Computing specializations.. Time: 0:00:07 - Points: 1760  ⌝ # Computing specializations.. Time: 0:00:07 - Points: 1844  ⌟ # Computing specializations.. Time: 0:00:07 - Points: 1928  ⌞ # Computing specializations.. Time: 0:00:08 - Points: 2012  ⌜ # Computing specializations.. Time: 0:00:08 - Points: 2095  ⌝ # Computing specializations.. Time: 0:00:08 - Points: 2179  ⌟ # Computing specializations.. Time: 0:00:09 - Points: 2263  ⌞ # Computing specializations.. Time: 0:00:09 - Points: 2348  ⌜ # Computing specializations.. Time: 0:00:09 - Points: 2433  ⌝ # Computing specializations.. Time: 0:00:10 - Points: 2516  ✓ # Computing specializations.. Time: 0:00:11 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 81  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 161  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 242  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 321  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 403  ⌝ # Computing specializations.. Time: 0:00:02 - Points: 484  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 565  ⌞ # Computing specializations.. Time: 0:00:03 - Points: 644  ⌜ # Computing specializations.. Time: 0:00:03 - Points: 726  ⌝ # Computing specializations.. Time: 0:00:03 - Points: 808  ⌟ # Computing specializations.. Time: 0:00:03 - Points: 890  ⌞ # Computing specializations.. Time: 0:00:04 - Points: 970  ⌜ # Computing specializations.. Time: 0:00:04 - Points: 1052  ⌝ # Computing specializations.. Time: 0:00:04 - Points: 1133  ⌟ # Computing specializations.. Time: 0:00:05 - Points: 1212  ⌞ # Computing specializations.. Time: 0:00:05 - Points: 1295  ⌜ # Computing specializations.. Time: 0:00:06 - Points: 1378  ⌝ # Computing specializations.. Time: 0:00:06 - Points: 1463  ⌟ # Computing specializations.. Time: 0:00:06 - Points: 1546  ⌞ # Computing specializations.. Time: 0:00:07 - Points: 1629  ⌜ # Computing specializations.. Time: 0:00:07 - Points: 1712  ⌝ # Computing specializations.. Time: 0:00:07 - Points: 1795  ⌟ # Computing specializations.. Time: 0:00:07 - Points: 1877  ⌞ # Computing specializations.. Time: 0:00:08 - Points: 1959  ⌜ # Computing specializations.. Time: 0:00:08 - Points: 2045  ⌝ # Computing specializations.. Time: 0:00:08 - Points: 2131  ⌟ # Computing specializations.. Time: 0:00:09 - Points: 2215  ⌞ # Computing specializations.. Time: 0:00:09 - Points: 2297  ⌜ # Computing specializations.. Time: 0:00:10 - Points: 2377  ⌝ # Computing specializations.. Time: 0:00:10 - Points: 2461  ⌟ # Computing specializations.. Time: 0:00:11 - Points: 2545  ⌞ # Computing specializations.. Time: 0:00:11 - Points: 2630  ⌜ # Computing specializations.. Time: 0:00:11 - Points: 2714  ⌝ # Computing specializations.. Time: 0:00:12 - Points: 2798  ⌟ # Computing specializations.. Time: 0:00:12 - Points: 2881  ⌞ # Computing specializations.. Time: 0:00:12 - Points: 2964  ⌜ # Computing specializations.. Time: 0:00:13 - Points: 3047  ⌝ # Computing specializations.. Time: 0:00:13 - Points: 3128  ⌟ # Computing specializations.. Time: 0:00:13 - Points: 3209  ⌞ # Computing specializations.. Time: 0:00:14 - Points: 3291  ⌜ # Computing specializations.. Time: 0:00:14 - Points: 3373  ⌝ # Computing specializations.. Time: 0:00:14 - Points: 3455  ⌟ # Computing specializations.. Time: 0:00:14 - Points: 3535  ⌞ # Computing specializations.. Time: 0:00:15 - Points: 3615  ⌜ # Computing specializations.. Time: 0:00:15 - Points: 3697  ⌝ # Computing specializations.. Time: 0:00:15 - Points: 3781  ⌟ # Computing specializations.. Time: 0:00:16 - Points: 3865  ⌞ # Computing specializations.. Time: 0:00:16 - Points: 3946  ⌜ # Computing specializations.. Time: 0:00:16 - Points: 4032  ⌝ # Computing specializations.. Time: 0:00:17 - Points: 4118  ⌟ # Computing specializations.. Time: 0:00:17 - Points: 4204  ⌞ # Computing specializations.. Time: 0:00:17 - Points: 4289  ⌜ # Computing specializations.. Time: 0:00:17 - Points: 4374  ⌝ # Computing specializations.. Time: 0:00:18 - Points: 4457  ⌟ # Computing specializations.. Time: 0:00:18 - Points: 4541  ⌞ # Computing specializations.. Time: 0:00:20 - Points: 4623  ⌜ # Computing specializations.. Time: 0:00:20 - Points: 4706  ⌝ # Computing specializations.. Time: 0:00:21 - Points: 4788  ⌟ # Computing specializations.. Time: 0:00:21 - Points: 4870  ⌞ # Computing specializations.. Time: 0:00:21 - Points: 4951  ⌜ # Computing specializations.. Time: 0:00:22 - Points: 5034  ⌝ # Computing specializations.. Time: 0:00:22 - Points: 5123  ⌟ # Computing specializations.. Time: 0:00:22 - Points: 5211  ⌞ # Computing specializations.. Time: 0:00:23 - Points: 5298  ⌜ # Computing specializations.. Time: 0:00:23 - Points: 5386  ⌝ # Computing specializations.. Time: 0:00:23 - Points: 5474  ⌟ # Computing specializations.. Time: 0:00:23 - Points: 5561  ⌞ # Computing specializations.. Time: 0:00:24 - Points: 5650  ⌜ # Computing specializations.. Time: 0:00:24 - Points: 5738  ⌝ # Computing specializations.. Time: 0:00:24 - Points: 5827  ⌟ # Computing specializations.. Time: 0:00:25 - Points: 5915  ⌞ # Computing specializations.. Time: 0:00:25 - Points: 6000  ⌜ # Computing specializations.. Time: 0:00:25 - Points: 6086  ⌝ # Computing specializations.. Time: 0:00:26 - Points: 6170  ⌟ # Computing specializations.. Time: 0:00:26 - Points: 6254  ⌞ # Computing specializations.. Time: 0:00:26 - Points: 6340  ⌜ # Computing specializations.. Time: 0:00:27 - Points: 6426  ⌝ # Computing specializations.. Time: 0:00:27 - Points: 6509  ⌟ # Computing specializations.. Time: 0:00:27 - Points: 6591  ⌞ # Computing specializations.. Time: 0:00:27 - Points: 6672  ⌜ # Computing specializations.. Time: 0:00:28 - Points: 6756  ⌝ # Computing specializations.. Time: 0:00:28 - Points: 6838  ⌟ # Computing specializations.. Time: 0:00:28 - Points: 6920  ⌞ # Computing specializations.. Time: 0:00:29 - Points: 7006  ⌜ # Computing specializations.. Time: 0:00:29 - Points: 7093  ⌝ # Computing specializations.. Time: 0:00:29 - Points: 7180  ⌟ # Computing specializations.. Time: 0:00:30 - Points: 7266  ⌞ # Computing specializations.. Time: 0:00:30 - Points: 7352  ⌜ # Computing specializations.. Time: 0:00:30 - Points: 7436  ⌝ # Computing specializations.. Time: 0:00:31 - Points: 7523  ⌟ # Computing specializations.. Time: 0:00:31 - Points: 7610  ⌞ # Computing specializations.. Time: 0:00:31 - Points: 7697  ⌜ # Computing specializations.. Time: 0:00:31 - Points: 7782  ⌝ # Computing specializations.. Time: 0:00:32 - Points: 7869  ⌟ # Computing specializations.. Time: 0:00:32 - Points: 7956  ⌞ # Computing specializations.. Time: 0:00:32 - Points: 8041  ⌜ # Computing specializations.. Time: 0:00:33 - Points: 8126  ⌝ # Computing specializations.. Time: 0:00:33 - Points: 8211  ⌟ # Computing specializations.. Time: 0:00:33 - Points: 8295  ⌞ # Computing specializations.. Time: 0:00:34 - Points: 8381  ⌜ # Computing specializations.. Time: 0:00:34 - Points: 8468  ⌝ # Computing specializations.. Time: 0:00:34 - Points: 8555  ⌟ # Computing specializations.. Time: 0:00:34 - Points: 8642  ⌞ # Computing specializations.. Time: 0:00:35 - Points: 8730  ⌜ # Computing specializations.. Time: 0:00:35 - Points: 8818  ⌝ # Computing specializations.. Time: 0:00:35 - Points: 8905  ⌟ # Computing specializations.. Time: 0:00:36 - Points: 8990  ⌞ # Computing specializations.. Time: 0:00:36 - Points: 9077  ⌜ # Computing specializations.. Time: 0:00:36 - Points: 9163  ✓ # Computing specializations.. Time: 0:00:40 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 65  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 124  ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:00 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ⌞ # Computing specializations.. Time: 0:00:02 ⌜ # Computing specializations.. Time: 0:00:03 ⌝ # Computing specializations.. Time: 0:00:03 ⌟ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:04 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 34  ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 65 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA, P3, P0, P4, P1, P2, P5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (5, 5), (6, 4), (5, 4)], [(0, 0), (1, 0)], [(0, 0), (5, 5), (7, 5), (6, 5)], [(0, 0), (5, 5), (6, 4), (5, 4)], [(0, 0), (6, 9), (5, 6), (6, 8)], [(0, 0), (0, 0)], [(0, 0), (3, 3), (2, 3), (4, 5), (4, 3), (5, 5)], [(0, 0), (5, 4), (9, 6), (8, 6)], [(0, 0), (7, 5), (2, 1), (6, 5), (4, 3), (10, 7), (9, 7)], [(0, 0), (11, 9), (6, 5), (10, 9), (5, 4), (14, 11), (13, 11)], [(0, 0), (4, 3), (4, 3), (9, 8), (9, 6), (9, 7)], [(0, 0), (7, 5), (2, 1), (6, 5), (10, 7), (9, 7)], [(0, 0), (8, 7), (9, 8), (10, 9), (14, 11), (14, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 5.269459003 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.039514079 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 65 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA, P3, P0, P4, P1, P2, P5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (5, 5), (6, 4), (5, 4)], [(0, 0), (1, 0)], [(0, 0), (5, 5), (7, 5), (6, 5)], [(0, 0), (5, 5), (6, 4), (5, 4)], [(0, 0), (6, 9), (5, 6), (6, 8)], [(0, 0), (0, 0)], [(0, 0), (3, 3), (2, 3), (4, 5), (4, 3), (5, 5)], [(0, 0), (5, 4), (9, 6), (8, 6)], [(0, 0), (7, 5), (2, 1), (6, 5), (4, 3), (10, 7), (9, 7)], [(0, 0), (11, 9), (6, 5), (10, 9), (5, 4), (14, 11), (13, 11)], [(0, 0), (4, 3), (4, 3), (9, 8), (9, 6), (9, 7)], [(0, 0), (7, 5), (2, 1), (6, 5), (10, 7), (9, 7)], [(0, 0), (8, 7), (9, 8), (10, 9), (14, 11), (14, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 384 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 14 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 2.170388267 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.110344379 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 6.82411992 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 64 initial generators there are 9 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 106246 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 17 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA, P3, P0, P4, P1, P2, P5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 258 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (23, 23), (32, 20), (23, 22)], [(0, 0), (1, 0)], [(0, 0), (23, 23), (32, 20), (24, 23)], [(0, 0), (23, 23), (32, 20), (23, 22)], [(0, 0), (38, 61), (41, 52), (41, 63)], [(0, 0), (17, 28), (21, 20), (19, 29)], [(0, 0), (21, 21), (19, 30), (21, 32), (22, 21), (22, 32)], [(0, 0), (25, 24), (34, 21), (28, 26)], [(0, 0), (31, 19), (20, 19), (24, 23), (4, 3), (32, 19), (27, 25)], [(0, 0), (32, 20), (24, 23), (28, 27), (5, 4), (33, 20), (31, 29)], [(0, 0), (4, 3), (4, 3), (27, 26), (33, 20), (27, 25)], [(0, 0), (31, 19), (20, 19), (24, 23), (32, 19), (25, 23)], [(0, 0), (8, 7), (9, 8), (28, 27), (33, 20), (32, 30)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.649681672 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.102294502 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 17 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA, P3, P0, P4, P1, P2, P5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 258 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (23, 23), (32, 20), (23, 22)], [(0, 0), (1, 0)], [(0, 0), (23, 23), (32, 20), (24, 23)], [(0, 0), (23, 23), (32, 20), (23, 22)], [(0, 0), (38, 61), (41, 52), (41, 63)], [(0, 0), (17, 28), (21, 20), (19, 29)], [(0, 0), (21, 21), (19, 30), (21, 32), (22, 21), (22, 32)], [(0, 0), (25, 24), (34, 21), (28, 26)], [(0, 0), (31, 19), (20, 19), (24, 23), (4, 3), (32, 19), (27, 25)], [(0, 0), (32, 20), (24, 23), (28, 27), (5, 4), (33, 20), (31, 29)], [(0, 0), (4, 3), (4, 3), (27, 26), (33, 20), (27, 25)], [(0, 0), (31, 19), (20, 19), (24, 23), (32, 19), (25, 23)], [(0, 0), (8, 7), (9, 8), (28, 27), (33, 20), (32, 30)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 384 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 11 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 3.189196221 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.129110909 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (8, 8) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 17 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA, P3, P0, P4, P1, P2, P5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 258 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (23, 23), (32, 20), (23, 22)], [(0, 0), (1, 0)], [(0, 0), (23, 23), (32, 20), (24, 23)], [(0, 0), (23, 23), (32, 20), (23, 22)], [(0, 0), (38, 61), (41, 52), (41, 63)], [(0, 0), (17, 28), (21, 20), (19, 29)], [(0, 0), (21, 21), (19, 30), (21, 32), (22, 21), (22, 32)], [(0, 0), (25, 24), (34, 21), (28, 26)], [(0, 0), (31, 19), (20, 19), (24, 23), (4, 3), (32, 19), (27, 25)], [(0, 0), (32, 20), (24, 23), (28, 27), (5, 4), (33, 20), (31, 29)], [(0, 0), (4, 3), (4, 3), (27, 26), (33, 20), (27, 25)], [(0, 0), (31, 19), (20, 19), (24, 23), (32, 19), (25, 23)], [(0, 0), (8, 7), (9, 8), (28, 27), (33, 20), (32, 30)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 9, Denominator: 9 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 2560 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 8 for num. and 7 for den. -│ Maximal number of interpolated terms are: 63 for num. and 8 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 12.509113586 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.204032433 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (16, 16) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 17 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA, P3, P0, P4, P1, P2, P5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 258 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (23, 23), (32, 20), (23, 22)], [(0, 0), (1, 0)], [(0, 0), (23, 23), (32, 20), (24, 23)], [(0, 0), (23, 23), (32, 20), (23, 22)], [(0, 0), (38, 61), (41, 52), (41, 63)], [(0, 0), (17, 28), (21, 20), (19, 29)], [(0, 0), (21, 21), (19, 30), (21, 32), (22, 21), (22, 32)], [(0, 0), (25, 24), (34, 21), (28, 26)], [(0, 0), (31, 19), (20, 19), (24, 23), (4, 3), (32, 19), (27, 25)], [(0, 0), (32, 20), (24, 23), (28, 27), (5, 4), (33, 20), (31, 29)], [(0, 0), (4, 3), (4, 3), (27, 26), (33, 20), (27, 25)], [(0, 0), (31, 19), (20, 19), (24, 23), (32, 19), (25, 23)], [(0, 0), (8, 7), (9, 8), (28, 27), (33, 20), (32, 30)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Warning: In Prime number approach the field order might be too small -│ Nd = 17 -│ Dd = 17 -│ max(Nd, Dd) * log(n) = 47.13400827807628 -│ log(BigInt(order(K))) = 42.97512519471660922051442496041699641866702992303280170414601427331657565689629 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:301 -┌ Info: Interpolating for degrees: -│ Numerator: 17, Denominator: 17 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 9216 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 9 for num. and 8 for den. -│ Maximal number of interpolated terms are: 98 for num. and 8 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 41.781824405 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.121977907 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 17 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (16 in total): Nemo.fmpq_mpoly[siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA, P3, P0, P4, P1, P2, P5] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 804 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 666 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 804 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 666 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 1 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 804 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 666 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 1 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y16, y12, y2, y7, y11, t, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y5, y6, y9, y13, y8, y14, y3, y15], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 16 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA, P3, P0, P4, P1, P2, P5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 130 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1), (1, 0)], [(2, 2), (1, 1), (0, 0), (2, 1), (1, 0), (2, 0)], [(0, 0), (2, 1), (4, 2), (5, 2)], [(0, 0), (1, 0)], [(14, 25), (14, 24), (15, 24), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(3, 4), (0, 0), (4, 4), (3, 3), (4, 3)], [(0, 0), (1, 0)], [(0, 1), (0, 0), (2, 1)], [(4, 5), (4, 4), (0, 0), (4, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 7 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.755566055 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.014323564 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 18 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y13, y16, y6, y14, y9, y5, y12, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y15, y11, y10, y2, y3, y8, t, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 16 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA, P3, P0, P4, P1, P2, P5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 514 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (38, 29), (24, 32), (42, 50), (42, 50), (31, 30), (46, 53)], [(0, 0), (38, 29), (21, 29), (46, 54), (45, 53), (32, 31), (49, 56)], [(0, 0), (38, 29), (21, 29), (40, 48), (39, 47), (32, 31), (43, 50)], [(0, 0), (2, 1), (5, 4), (5, 3)], [(0, 0), (52, 34), (31, 30), (52, 51), (52, 51), (46, 36), (56, 54)], [(0, 0), (3, 2), (2, 1), (3, 2)], [(0, 0), (51, 33), (34, 33), (51, 50), (51, 50), (45, 35), (56, 54)], [(0, 0), (53, 35), (34, 33), (56, 55), (52, 51), (47, 37), (57, 55)], [(0, 0), (7, 6), (5, 4), (7, 5)], [(0, 0), (45, 53), (35, 60), (73, 98), (72, 97), (45, 61), (76, 100)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(48, 31), (29, 29), (47, 47), (0, 0), (45, 45), (42, 33), (48, 47)], [(48, 31), (29, 29), (47, 47), (0, 0), (45, 45), (42, 33), (48, 47)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 1), (0, 0), (2, 1)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 4 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 5.407854497 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.012856071 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 41  ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:00 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:02 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 29  ✓ # Computing specializations.. Time: 0:00:00 - -[2544223] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -== at ./promotion.jl:499 [inlined] -!= at ./operators.jl:269 [inlined] -is_monom_elementwise_eq at /home/demin/Groebner.jl/src/monomials/exponentvector.jl:324 [inlined] -ishashcollision at /home/demin/Groebner.jl/src/f4/hashtable.jl:282 [inlined] -insert_multiplied_poly_in_hash_table! at /home/demin/Groebner.jl/src/f4/hashtable.jl:522 -multiplied_poly_to_matrix_row! at /home/demin/Groebner.jl/src/f4/hashtable.jl:566 [inlined] -#find_multiplied_reducer!#297 at /home/demin/Groebner.jl/src/f4/f4.jl:345 -find_multiplied_reducer! at /home/demin/Groebner.jl/src/f4/f4.jl:292 [inlined] -macro expansion at /home/demin/Groebner.jl/src/f4/f4.jl:156 [inlined] -symbolic_preprocessing! at /home/demin/Groebner.jl/src/utils/performance.jl:114 -symbolic_preprocessing! at /home/demin/Groebner.jl/src/f4/learn-apply.jl:378 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -f4_learn! at /home/demin/Groebner.jl/src/f4/learn-apply.jl:531 -_groebner_learn at /home/demin/Groebner.jl/src/groebner/learn-apply.jl:74 -unknown function (ip: 0x7f3b887cf488) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_groebner_learn at /home/demin/Groebner.jl/src/groebner/learn-apply.jl:39 -_groebner_learn at /home/demin/Groebner.jl/src/groebner/learn-apply.jl:21 -#groebner_learn#577 at /home/demin/Groebner.jl/src/interface.jl:106 [inlined] -groebner_learn at /home/demin/Groebner.jl/src/interface.jl:105 -unknown function (ip: 0x7f3b88741016) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -#discover_shape!#118 at /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:151 -discover_shape! at /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:133 [inlined] -_paramgb at /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:96 -#paramgb#115 at /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:70 -paramgb at /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:46 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#groebner_basis_coeffs#477 at /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:322 -groebner_basis_coeffs at /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:301 -unknown function (ip: 0x7f3b8873ce06) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -#generating_sets_fan#478 at /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:392 -generating_sets_fan at /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:365 -unknown function (ip: 0x7f3b887340c0) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -#simplified_generating_set#480 at /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:525 -simplified_generating_set at /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:440 -unknown function (ip: 0x7f3b88711546) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:65 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7f3dbf35d9d6) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7f3b8876dadf) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7f3dd62d81c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 433689237 (Pool: 432414871; Big: 1274366); GC: 990 -┌ Info: Possible overflow of exponent vector detected. -└ Restarting with at least 32 bits per exponent. -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y6, y5, y2, y9, y1, y11, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y15, y14, y8, y4, y12, y16, y3, t, y13], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 16 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA, P3, P0, P4, P1, P2, P5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 258 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (57, 83), (30, 47), (30, 38), (58, 83), (30, 46), (59, 83)], [(0, 0), (27, 44), (16, 24), (15, 14), (27, 43), (17, 24), (28, 43)], [(0, 0), (27, 35), (16, 15), (25, 15), (29, 36), (18, 16), (31, 37)], [(0, 0), (2, 1), (4, 2), (5, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1), (1, 0)], [(37, 38), (28, 20), (33, 16), (38, 38), (0, 0), (29, 20), (39, 38)], [(41, 42), (32, 24), (35, 18), (0, 0), (42, 42), (33, 24), (43, 42)], [(37, 38), (28, 20), (33, 16), (38, 38), (0, 0), (29, 20), (39, 38)], [(0, 0), (1, 0)], [(4, 5), (4, 4), (0, 0), (4, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 4 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 2.549790302 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.013989088 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y16, y2, y5, y15, y10, y7, y11], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y6, y4, y12, y13, y1, y9, y14, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 16 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA, P3, P0, P4, P1, P2, P5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 258 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0), (2, 1)], [(0, 0), (37, 37), (46, 37), (36, 44), (32, 40), (38, 37), (34, 41)], [(0, 0), (50, 41), (57, 39), (38, 37), (38, 37), (47, 37), (39, 37)], [(0, 0), (50, 41), (57, 39), (38, 37), (38, 37), (47, 37), (39, 37)], [(0, 0), (46, 37), (55, 37), (38, 37), (38, 37), (47, 37), (39, 37)], [(0, 0), (68, 85), (53, 61), (61, 86), (58, 83), (66, 82), (59, 83)], [(0, 0), (53, 61), (38, 37), (47, 63), (44, 60), (51, 58), (45, 60)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(45, 37), (54, 37), (41, 41), (37, 37), (0, 0), (46, 37), (42, 41)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(51, 43), (58, 41), (41, 41), (0, 0), (41, 41), (46, 37), (42, 41)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 3.636286492 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.013356154 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y15, y8, y11, y3, y5, y1, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y12, y16, t, y2, y14, y6, y13, y4, y10], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 16 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA, P3, P0, P4, P1, P2, P5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 diff --git a/benchmarking/IdentifiableFunctions/systems/QY/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/QY/logs_(:normalforms, 2) deleted file mode 100644 index 2823a6030..000000000 --- a/benchmarking/IdentifiableFunctions/systems/QY/logs_(:normalforms, 2) +++ /dev/null @@ -1,156 +0,0 @@ -┌ Info: Processing QY -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.112868059 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.112868059 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.145056393 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.145056393 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [64] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000247803 seconds -│ :rank_time = rank_time -│ rank_times = 0.000247803 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 88  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 171  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 253  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 339  ✓ # Computing specializations.. Time: 0:00:01 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 65 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (5, 5), (6, 4), (5, 4)], [(0, 0), (1, 0)], [(0, 0), (5, 5), (7, 5), (6, 5)], [(0, 0), (5, 5), (6, 4), (5, 4)], [(0, 0), (6, 9), (5, 6), (6, 8)], [(0, 0), (0, 0)], [(0, 0), (3, 3), (2, 3), (4, 5), (4, 3), (5, 5)], [(0, 0), (5, 4), (9, 6), (8, 6)], [(0, 0), (7, 5), (2, 1), (6, 5), (4, 3), (10, 7), (9, 7)], [(0, 0), (11, 9), (6, 5), (10, 9), (5, 4), (14, 11), (13, 11)], [(0, 0), (4, 3), (4, 3), (9, 8), (9, 6), (9, 7)], [(0, 0), (7, 5), (2, 1), (6, 5), (10, 7), (9, 7)], [(0, 0), (8, 7), (9, 8), (10, 9), (14, 11), (14, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.571955663 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.074335738 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 65 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (5, 5), (6, 4), (5, 4)], [(0, 0), (1, 0)], [(0, 0), (5, 5), (7, 5), (6, 5)], [(0, 0), (5, 5), (6, 4), (5, 4)], [(0, 0), (6, 9), (5, 6), (6, 8)], [(0, 0), (0, 0)], [(0, 0), (3, 3), (2, 3), (4, 5), (4, 3), (5, 5)], [(0, 0), (5, 4), (9, 6), (8, 6)], [(0, 0), (7, 5), (2, 1), (6, 5), (4, 3), (10, 7), (9, 7)], [(0, 0), (11, 9), (6, 5), (10, 9), (5, 4), (14, 11), (13, 11)], [(0, 0), (4, 3), (4, 3), (9, 8), (9, 6), (9, 7)], [(0, 0), (7, 5), (2, 1), (6, 5), (10, 7), (9, 7)], [(0, 0), (8, 7), (9, 8), (10, 9), (14, 11), (14, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 384 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 14 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.961597288 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.032866329 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (10 in total): Nemo.fmpq_mpoly[siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 56 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 16 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 56 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 16 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 56 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 16 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 5.395361195 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 64 initial generators there are 9 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 106246 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 9.683326824 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[Mar, Ks, alpa, (siga1 + phi*Mar - Mar)//phi, (siga1*phi - siga1 - phi*Mar + Mar)//(siga1*phi*beta_SA), (siga1*beta_SA + beta_SI*phi*siga2 + phi*Mar*beta_SA - phi*siga2*beta_SA - Mar*beta_SA)//(phi*M*siga2), (siga1*phi*M*siga2 - siga1*M*siga2 - phi*M*Mar*siga2 + M*Mar*siga2)//(siga1*beta_SA + phi*Mar*beta_SA - Mar*beta_SA), (siga1*beta_SI*phi*siga2 - siga1*beta_SI*siga2 - siga1*phi*siga2*beta_SA - siga1*M*beta_SA - beta_SI*phi*Mar*siga2 + beta_SI*Mar*siga2 - phi*M*Mar*beta_SA + M*Mar*beta_SA)//(siga1*beta_SA + phi*Mar*beta_SA - Mar*beta_SA), (siga1^2*beta_SA + siga1*beta_SI*phi*siga2 - siga1*beta_SI*siga2 + siga1*phi*Mar*beta_SA - siga1*phi*siga2*beta_SA - siga1*Mar*beta_SA + siga1*siga2*beta_SA + beta_SI*phi*M*siga2 - beta_SI*phi*Mar*siga2 + beta_SI*phi*siga2^2 + beta_SI*Mar*siga2 + phi*Mar*siga2*beta_SA - phi*siga2^2*beta_SA - Mar*siga2*beta_SA)//(phi*M*siga2)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/QY/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/QY/logs_(:normalforms, 2)_with_states deleted file mode 100644 index 662472a53..000000000 --- a/benchmarking/IdentifiableFunctions/systems/QY/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,487 +0,0 @@ -┌ Info: Processing QY -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.143700466 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.143700466 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.069350257 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.069350257 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [64] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000239945 seconds -│ :rank_time = rank_time -│ rank_times = 0.000239945 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 55  ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 63  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 135  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 206  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 281  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 359  ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:00 ⌞ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 80  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 151  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 221  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 303  ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:00 ⌞ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 49  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 120  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 186  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 264  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 342  ⌝ # Computing specializations.. Time: 0:00:01 - Points: 424  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 505  ⌞ # Computing specializations.. Time: 0:00:02 - Points: 588  ⌜ # Computing specializations.. Time: 0:00:03 - Points: 671  ⌝ # Computing specializations.. Time: 0:00:03 - Points: 750  ⌟ # Computing specializations.. Time: 0:00:03 - Points: 827  ⌞ # Computing specializations.. Time: 0:00:04 - Points: 910  ⌜ # Computing specializations.. Time: 0:00:04 - Points: 991  ⌝ # Computing specializations.. Time: 0:00:04 - Points: 1073  ⌟ # Computing specializations.. Time: 0:00:04 - Points: 1155  ⌞ # Computing specializations.. Time: 0:00:05 - Points: 1238  ⌜ # Computing specializations.. Time: 0:00:06 - Points: 1321  ⌝ # Computing specializations.. Time: 0:00:06 - Points: 1398  ⌟ # Computing specializations.. Time: 0:00:06 - Points: 1481  ⌞ # Computing specializations.. Time: 0:00:07 - Points: 1562  ⌜ # Computing specializations.. Time: 0:00:07 - Points: 1644  ⌝ # Computing specializations.. Time: 0:00:07 - Points: 1726  ⌟ # Computing specializations.. Time: 0:00:07 - Points: 1808  ⌞ # Computing specializations.. Time: 0:00:08 - Points: 1890  ⌜ # Computing specializations.. Time: 0:00:08 - Points: 1974  ⌝ # Computing specializations.. Time: 0:00:08 - Points: 2056  ⌟ # Computing specializations.. Time: 0:00:09 - Points: 2139  ⌞ # Computing specializations.. Time: 0:00:09 - Points: 2217  ⌜ # Computing specializations.. Time: 0:00:09 - Points: 2297  ⌝ # Computing specializations.. Time: 0:00:10 - Points: 2379  ⌟ # Computing specializations.. Time: 0:00:10 - Points: 2461  ⌞ # Computing specializations.. Time: 0:00:10 - Points: 2543  ✓ # Computing specializations.. Time: 0:00:11 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:00 ⌞ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 37  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 106  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 174  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 242  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 309  ⌝ # Computing specializations.. Time: 0:00:01 - Points: 391  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 471  ⌞ # Computing specializations.. Time: 0:00:02 - Points: 552  ⌜ # Computing specializations.. Time: 0:00:03 - Points: 631  ⌝ # Computing specializations.. Time: 0:00:03 - Points: 707  ⌟ # Computing specializations.. Time: 0:00:03 - Points: 789  ⌞ # Computing specializations.. Time: 0:00:03 - Points: 869  ⌜ # Computing specializations.. Time: 0:00:04 - Points: 951  ⌝ # Computing specializations.. Time: 0:00:04 - Points: 1032  ⌟ # Computing specializations.. Time: 0:00:04 - Points: 1112  ⌞ # Computing specializations.. Time: 0:00:05 - Points: 1192  ⌜ # Computing specializations.. Time: 0:00:05 - Points: 1275  ⌝ # Computing specializations.. Time: 0:00:06 - Points: 1357  ⌟ # Computing specializations.. Time: 0:00:06 - Points: 1436  ⌞ # Computing specializations.. Time: 0:00:06 - Points: 1515  ⌜ # Computing specializations.. Time: 0:00:07 - Points: 1594  ⌝ # Computing specializations.. Time: 0:00:07 - Points: 1672  ⌟ # Computing specializations.. Time: 0:00:07 - Points: 1751  ⌞ # Computing specializations.. Time: 0:00:08 - Points: 1836  ⌜ # Computing specializations.. Time: 0:00:08 - Points: 1919  ⌝ # Computing specializations.. Time: 0:00:08 - Points: 1999  ⌟ # Computing specializations.. Time: 0:00:08 - Points: 2079  ⌞ # Computing specializations.. Time: 0:00:09 - Points: 2159  ⌜ # Computing specializations.. Time: 0:00:09 - Points: 2242  ⌝ # Computing specializations.. Time: 0:00:10 - Points: 2323  ⌟ # Computing specializations.. Time: 0:00:11 - Points: 2398  ⌞ # Computing specializations.. Time: 0:00:11 - Points: 2477  ⌜ # Computing specializations.. Time: 0:00:11 - Points: 2554  ⌝ # Computing specializations.. Time: 0:00:11 - Points: 2624  ⌟ # Computing specializations.. Time: 0:00:12 - Points: 2701  ⌞ # Computing specializations.. Time: 0:00:12 - Points: 2786  ⌜ # Computing specializations.. Time: 0:00:12 - Points: 2869  ⌝ # Computing specializations.. Time: 0:00:13 - Points: 2953  ⌟ # Computing specializations.. Time: 0:00:13 - Points: 3036  ⌞ # Computing specializations.. Time: 0:00:13 - Points: 3117  ⌜ # Computing specializations.. Time: 0:00:14 - Points: 3200  ⌝ # Computing specializations.. Time: 0:00:14 - Points: 3283  ⌟ # Computing specializations.. Time: 0:00:14 - Points: 3366  ⌞ # Computing specializations.. Time: 0:00:15 - Points: 3449  ⌜ # Computing specializations.. Time: 0:00:15 - Points: 3532  ⌝ # Computing specializations.. Time: 0:00:15 - Points: 3615  ⌟ # Computing specializations.. Time: 0:00:15 - Points: 3698  ⌞ # Computing specializations.. Time: 0:00:16 - Points: 3781  ⌜ # Computing specializations.. Time: 0:00:16 - Points: 3865  ⌝ # Computing specializations.. Time: 0:00:16 - Points: 3947  ⌟ # Computing specializations.. Time: 0:00:17 - Points: 4030  ⌞ # Computing specializations.. Time: 0:00:17 - Points: 4113  ⌜ # Computing specializations.. Time: 0:00:17 - Points: 4196  ⌝ # Computing specializations.. Time: 0:00:18 - Points: 4280  ⌟ # Computing specializations.. Time: 0:00:18 - Points: 4362  ⌞ # Computing specializations.. Time: 0:00:18 - Points: 4445  ⌜ # Computing specializations.. Time: 0:00:18 - Points: 4528  ⌝ # Computing specializations.. Time: 0:00:20 - Points: 4609  ⌟ # Computing specializations.. Time: 0:00:21 - Points: 4682  ⌞ # Computing specializations.. Time: 0:00:21 - Points: 4765  ⌜ # Computing specializations.. Time: 0:00:21 - Points: 4848  ⌝ # Computing specializations.. Time: 0:00:22 - Points: 4930  ⌟ # Computing specializations.. Time: 0:00:22 - Points: 5013  ⌞ # Computing specializations.. Time: 0:00:22 - Points: 5096  ⌜ # Computing specializations.. Time: 0:00:23 - Points: 5178  ⌝ # Computing specializations.. Time: 0:00:23 - Points: 5260  ⌟ # Computing specializations.. Time: 0:00:23 - Points: 5342  ⌞ # Computing specializations.. Time: 0:00:23 - Points: 5425  ⌜ # Computing specializations.. Time: 0:00:24 - Points: 5508  ⌝ # Computing specializations.. Time: 0:00:24 - Points: 5591  ⌟ # Computing specializations.. Time: 0:00:24 - Points: 5674  ⌞ # Computing specializations.. Time: 0:00:25 - Points: 5755  ⌜ # Computing specializations.. Time: 0:00:25 - Points: 5839  ⌝ # Computing specializations.. Time: 0:00:25 - Points: 5923  ⌟ # Computing specializations.. Time: 0:00:26 - Points: 6006  ⌞ # Computing specializations.. Time: 0:00:26 - Points: 6089  ⌜ # Computing specializations.. Time: 0:00:26 - Points: 6171  ⌝ # Computing specializations.. Time: 0:00:26 - Points: 6254  ⌟ # Computing specializations.. Time: 0:00:27 - Points: 6337  ⌞ # Computing specializations.. Time: 0:00:27 - Points: 6420  ⌜ # Computing specializations.. Time: 0:00:27 - Points: 6502  ⌝ # Computing specializations.. Time: 0:00:28 - Points: 6584  ⌟ # Computing specializations.. Time: 0:00:28 - Points: 6666  ⌞ # Computing specializations.. Time: 0:00:28 - Points: 6749  ⌜ # Computing specializations.. Time: 0:00:29 - Points: 6832  ⌝ # Computing specializations.. Time: 0:00:29 - Points: 6915  ⌟ # Computing specializations.. Time: 0:00:29 - Points: 6998  ⌞ # Computing specializations.. Time: 0:00:30 - Points: 7080  ⌜ # Computing specializations.. Time: 0:00:30 - Points: 7163  ⌝ # Computing specializations.. Time: 0:00:30 - Points: 7246  ⌟ # Computing specializations.. Time: 0:00:30 - Points: 7329  ⌞ # Computing specializations.. Time: 0:00:31 - Points: 7412  ⌜ # Computing specializations.. Time: 0:00:31 - Points: 7495  ⌝ # Computing specializations.. Time: 0:00:31 - Points: 7578  ⌟ # Computing specializations.. Time: 0:00:32 - Points: 7661  ⌞ # Computing specializations.. Time: 0:00:32 - Points: 7745  ⌜ # Computing specializations.. Time: 0:00:32 - Points: 7827  ⌝ # Computing specializations.. Time: 0:00:33 - Points: 7909  ⌟ # Computing specializations.. Time: 0:00:33 - Points: 7992  ⌞ # Computing specializations.. Time: 0:00:33 - Points: 8075  ⌜ # Computing specializations.. Time: 0:00:33 - Points: 8158  ⌝ # Computing specializations.. Time: 0:00:34 - Points: 8240  ⌟ # Computing specializations.. Time: 0:00:34 - Points: 8323  ⌞ # Computing specializations.. Time: 0:00:34 - Points: 8406  ⌜ # Computing specializations.. Time: 0:00:35 - Points: 8489  ⌝ # Computing specializations.. Time: 0:00:35 - Points: 8572  ⌟ # Computing specializations.. Time: 0:00:35 - Points: 8655  ⌞ # Computing specializations.. Time: 0:00:36 - Points: 8738  ⌜ # Computing specializations.. Time: 0:00:36 - Points: 8822  ⌝ # Computing specializations.. Time: 0:00:36 - Points: 8905  ⌟ # Computing specializations.. Time: 0:00:36 - Points: 8988  ⌞ # Computing specializations.. Time: 0:00:37 - Points: 9070  ⌜ # Computing specializations.. Time: 0:00:37 - Points: 9153  ✓ # Computing specializations.. Time: 0:00:40 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 65 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA, P3, P0, P4, P1, P2, P5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (5, 5), (6, 4), (5, 4)], [(0, 0), (1, 0)], [(0, 0), (5, 5), (7, 5), (6, 5)], [(0, 0), (5, 5), (6, 4), (5, 4)], [(0, 0), (6, 9), (5, 6), (6, 8)], [(0, 0), (0, 0)], [(0, 0), (3, 3), (2, 3), (4, 5), (4, 3), (5, 5)], [(0, 0), (5, 4), (9, 6), (8, 6)], [(0, 0), (7, 5), (2, 1), (6, 5), (4, 3), (10, 7), (9, 7)], [(0, 0), (11, 9), (6, 5), (10, 9), (5, 4), (14, 11), (13, 11)], [(0, 0), (4, 3), (4, 3), (9, 8), (9, 6), (9, 7)], [(0, 0), (7, 5), (2, 1), (6, 5), (10, 7), (9, 7)], [(0, 0), (8, 7), (9, 8), (10, 9), (14, 11), (14, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 5.415271838 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.193273496 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 65 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA, P3, P0, P4, P1, P2, P5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (5, 5), (6, 4), (5, 4)], [(0, 0), (1, 0)], [(0, 0), (5, 5), (7, 5), (6, 5)], [(0, 0), (5, 5), (6, 4), (5, 4)], [(0, 0), (6, 9), (5, 6), (6, 8)], [(0, 0), (0, 0)], [(0, 0), (3, 3), (2, 3), (4, 5), (4, 3), (5, 5)], [(0, 0), (5, 4), (9, 6), (8, 6)], [(0, 0), (7, 5), (2, 1), (6, 5), (4, 3), (10, 7), (9, 7)], [(0, 0), (11, 9), (6, 5), (10, 9), (5, 4), (14, 11), (13, 11)], [(0, 0), (4, 3), (4, 3), (9, 8), (9, 6), (9, 7)], [(0, 0), (7, 5), (2, 1), (6, 5), (10, 7), (9, 7)], [(0, 0), (8, 7), (9, 8), (10, 9), (14, 11), (14, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 384 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 14 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 2.164652583 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.107307848 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 7.101372646 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 64 initial generators there are 9 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 106246 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 17 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA, P3, P0, P4, P1, P2, P5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 258 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (23, 23), (32, 20), (23, 22)], [(0, 0), (1, 0)], [(0, 0), (23, 23), (32, 20), (24, 23)], [(0, 0), (23, 23), (32, 20), (23, 22)], [(0, 0), (38, 61), (41, 52), (41, 63)], [(0, 0), (17, 28), (21, 20), (19, 29)], [(0, 0), (21, 21), (19, 30), (21, 32), (22, 21), (22, 32)], [(0, 0), (25, 24), (34, 21), (28, 26)], [(0, 0), (31, 19), (20, 19), (24, 23), (4, 3), (32, 19), (27, 25)], [(0, 0), (32, 20), (24, 23), (28, 27), (5, 4), (33, 20), (31, 29)], [(0, 0), (4, 3), (4, 3), (27, 26), (33, 20), (27, 25)], [(0, 0), (31, 19), (20, 19), (24, 23), (32, 19), (25, 23)], [(0, 0), (8, 7), (9, 8), (28, 27), (33, 20), (32, 30)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.764865464 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.099089559 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 17 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA, P3, P0, P4, P1, P2, P5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 258 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (23, 23), (32, 20), (23, 22)], [(0, 0), (1, 0)], [(0, 0), (23, 23), (32, 20), (24, 23)], [(0, 0), (23, 23), (32, 20), (23, 22)], [(0, 0), (38, 61), (41, 52), (41, 63)], [(0, 0), (17, 28), (21, 20), (19, 29)], [(0, 0), (21, 21), (19, 30), (21, 32), (22, 21), (22, 32)], [(0, 0), (25, 24), (34, 21), (28, 26)], [(0, 0), (31, 19), (20, 19), (24, 23), (4, 3), (32, 19), (27, 25)], [(0, 0), (32, 20), (24, 23), (28, 27), (5, 4), (33, 20), (31, 29)], [(0, 0), (4, 3), (4, 3), (27, 26), (33, 20), (27, 25)], [(0, 0), (31, 19), (20, 19), (24, 23), (32, 19), (25, 23)], [(0, 0), (8, 7), (9, 8), (28, 27), (33, 20), (32, 30)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 384 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 11 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 3.366186982 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.127997736 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (8, 8) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 17 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA, P3, P0, P4, P1, P2, P5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 258 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (23, 23), (32, 20), (23, 22)], [(0, 0), (1, 0)], [(0, 0), (23, 23), (32, 20), (24, 23)], [(0, 0), (23, 23), (32, 20), (23, 22)], [(0, 0), (38, 61), (41, 52), (41, 63)], [(0, 0), (17, 28), (21, 20), (19, 29)], [(0, 0), (21, 21), (19, 30), (21, 32), (22, 21), (22, 32)], [(0, 0), (25, 24), (34, 21), (28, 26)], [(0, 0), (31, 19), (20, 19), (24, 23), (4, 3), (32, 19), (27, 25)], [(0, 0), (32, 20), (24, 23), (28, 27), (5, 4), (33, 20), (31, 29)], [(0, 0), (4, 3), (4, 3), (27, 26), (33, 20), (27, 25)], [(0, 0), (31, 19), (20, 19), (24, 23), (32, 19), (25, 23)], [(0, 0), (8, 7), (9, 8), (28, 27), (33, 20), (32, 30)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 9, Denominator: 9 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 2560 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 8 for num. and 7 for den. -│ Maximal number of interpolated terms are: 63 for num. and 8 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 13.148538713 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.170903677 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (16, 16) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 17 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA, P3, P0, P4, P1, P2, P5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 258 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (23, 23), (32, 20), (23, 22)], [(0, 0), (1, 0)], [(0, 0), (23, 23), (32, 20), (24, 23)], [(0, 0), (23, 23), (32, 20), (23, 22)], [(0, 0), (38, 61), (41, 52), (41, 63)], [(0, 0), (17, 28), (21, 20), (19, 29)], [(0, 0), (21, 21), (19, 30), (21, 32), (22, 21), (22, 32)], [(0, 0), (25, 24), (34, 21), (28, 26)], [(0, 0), (31, 19), (20, 19), (24, 23), (4, 3), (32, 19), (27, 25)], [(0, 0), (32, 20), (24, 23), (28, 27), (5, 4), (33, 20), (31, 29)], [(0, 0), (4, 3), (4, 3), (27, 26), (33, 20), (27, 25)], [(0, 0), (31, 19), (20, 19), (24, 23), (32, 19), (25, 23)], [(0, 0), (8, 7), (9, 8), (28, 27), (33, 20), (32, 30)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Warning: In Prime number approach the field order might be too small -│ Nd = 17 -│ Dd = 17 -│ max(Nd, Dd) * log(n) = 47.13400827807628 -│ log(BigInt(order(K))) = 42.97512519471660922051442496041699641866702992303280170414601427331657565689629 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:301 -┌ Info: Interpolating for degrees: -│ Numerator: 17, Denominator: 17 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 9216 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 9 for num. and 8 for den. -│ Maximal number of interpolated terms are: 98 for num. and 8 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 42.635595453 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.104880088 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 17 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (16 in total): Nemo.fmpq_mpoly[siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA, P3, P0, P4, P1, P2, P5] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 108 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 87 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 108 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 87 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 108 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 87 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 5.609509648 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 16 initial generators there are 15 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 16999374 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 84.480897954 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[P2, P1, P4, P0, P3, Mar, Ks, alpa, Mar*P5 + beta, (siga1*phi*M*siga2 - siga1*M*siga2 - phi*M*Mar*siga2 + M*Mar*siga2)//(siga1*beta_SA + phi*Mar*beta_SA - Mar*beta_SA), (siga1*beta_SI*phi*siga2 - siga1*beta_SI*siga2 - siga1*phi*siga2*beta_SA - siga1*M*beta_SA - beta_SI*phi*Mar*siga2 + beta_SI*Mar*siga2 - phi*M*Mar*beta_SA + M*Mar*beta_SA)//(siga1*beta_SA + phi*Mar*beta_SA - Mar*beta_SA), (siga1^2*beta_SA + siga1*beta_SI*phi*siga2 - siga1*beta_SI*siga2 + siga1*phi*Mar*beta_SA - siga1*phi*siga2*beta_SA - siga1*Mar*beta_SA + siga1*siga2*beta_SA - beta_SI*phi*Mar*siga2 + beta_SI*Mar*siga2 + phi*Mar*siga2*beta_SA - Mar*siga2*beta_SA)//(siga1*beta_SA + phi*Mar*beta_SA - Mar*beta_SA), (siga1^2*beta_SI*beta_SA - siga1^2*beta_SA^2 + siga1*beta_SI^2*phi*siga2 - siga1*beta_SI^2*siga2 + siga1*beta_SI*phi*Mar*beta_SA - 2*siga1*beta_SI*phi*siga2*beta_SA - siga1*beta_SI*M*beta_SA - siga1*beta_SI*Mar*beta_SA + siga1*beta_SI*siga2*beta_SA - siga1*phi*Mar*beta_SA^2 + siga1*phi*siga2*beta_SA^2 + siga1*Mar*beta_SA^2 - beta_SI^2*phi*Mar*siga2 + beta_SI^2*Mar*siga2 - beta_SI*phi*M*Mar*beta_SA + beta_SI*phi*Mar*siga2*beta_SA + beta_SI*M*Mar*beta_SA - beta_SI*Mar*siga2*beta_SA)//(siga1*M*beta_SA + phi*M*Mar*beta_SA - M*Mar*beta_SA), (siga1^4*beta_SA^2 + 2*siga1^3*beta_SI*phi*siga2*beta_SA - 2*siga1^3*beta_SI*siga2*beta_SA + 2*siga1^3*phi*Mar*beta_SA^2 - 2*siga1^3*phi*siga2*beta_SA^2 - siga1^3*M*beta_SA^2 - 2*siga1^3*Mar*beta_SA^2 + siga1^3*siga2*beta_SA^2 + siga1^2*beta_SI^2*phi^2*siga2^2 - 2*siga1^2*beta_SI^2*phi*siga2^2 + siga1^2*beta_SI^2*siga2^2 + 2*siga1^2*beta_SI*phi^2*Mar*siga2*beta_SA - 2*siga1^2*beta_SI*phi^2*siga2^2*beta_SA - 6*siga1^2*beta_SI*phi*Mar*siga2*beta_SA + 4*siga1^2*beta_SI*phi*siga2^2*beta_SA + 4*siga1^2*beta_SI*Mar*siga2*beta_SA - 2*siga1^2*beta_SI*siga2^2*beta_SA + siga1^2*phi^2*Mar^2*beta_SA^2 - 2*siga1^2*phi^2*Mar*siga2*beta_SA^2 + siga1^2*phi^2*siga2^2*beta_SA^2 - 2*siga1^2*phi*M*Mar*beta_SA^2 + 2*siga1^2*phi*M*siga2*beta_SA^2 - 2*siga1^2*phi*Mar^2*beta_SA^2 + 4*siga1^2*phi*Mar*siga2*beta_SA^2 - 2*siga1^2*phi*siga2^2*beta_SA^2 + 2*siga1^2*M*Mar*beta_SA^2 - siga1^2*M*siga2*beta_SA^2 + siga1^2*Mar^2*beta_SA^2 - 2*siga1^2*Mar*siga2*beta_SA^2 + siga1^2*siga2^2*beta_SA^2 - 2*siga1*beta_SI^2*phi^2*Mar*siga2^2 + 4*siga1*beta_SI^2*phi*Mar*siga2^2 - 2*siga1*beta_SI^2*Mar*siga2^2 - 2*siga1*beta_SI*phi^2*Mar^2*siga2*beta_SA + 4*siga1*beta_SI*phi^2*Mar*siga2^2*beta_SA + 4*siga1*beta_SI*phi*Mar^2*siga2*beta_SA - 8*siga1*beta_SI*phi*Mar*siga2^2*beta_SA - 2*siga1*beta_SI*Mar^2*siga2*beta_SA + 4*siga1*beta_SI*Mar*siga2^2*beta_SA - siga1*phi^2*M*Mar^2*beta_SA^2 + 2*siga1*phi^2*M*Mar*siga2*beta_SA^2 + siga1*phi^2*Mar^2*siga2*beta_SA^2 - 2*siga1*phi^2*Mar*siga2^2*beta_SA^2 + 2*siga1*phi*M*Mar^2*beta_SA^2 - 4*siga1*phi*M*Mar*siga2*beta_SA^2 - 2*siga1*phi*Mar^2*siga2*beta_SA^2 + 4*siga1*phi*Mar*siga2^2*beta_SA^2 - siga1*M*Mar^2*beta_SA^2 + 2*siga1*M*Mar*siga2*beta_SA^2 + siga1*Mar^2*siga2*beta_SA^2 - 2*siga1*Mar*siga2^2*beta_SA^2 + beta_SI^2*phi^2*Mar^2*siga2^2 - 2*beta_SI^2*phi*Mar^2*siga2^2 + beta_SI^2*Mar^2*siga2^2 - 2*beta_SI*phi^2*Mar^2*siga2^2*beta_SA + 4*beta_SI*phi*Mar^2*siga2^2*beta_SA - 2*beta_SI*Mar^2*siga2^2*beta_SA - phi^2*M*Mar^2*siga2*beta_SA^2 + phi^2*Mar^2*siga2^2*beta_SA^2 + 2*phi*M*Mar^2*siga2*beta_SA^2 - 2*phi*Mar^2*siga2^2*beta_SA^2 - M*Mar^2*siga2*beta_SA^2 + Mar^2*siga2^2*beta_SA^2)//(siga1^2*phi*M*siga2*beta_SA - siga1^2*M*siga2*beta_SA + siga1*phi^2*M*Mar*siga2*beta_SA - 3*siga1*phi*M*Mar*siga2*beta_SA + 2*siga1*M*Mar*siga2*beta_SA - phi^2*M*Mar^2*siga2*beta_SA + 2*phi*M*Mar^2*siga2*beta_SA - M*Mar^2*siga2*beta_SA), (siga1^4*beta_SI*beta_SA^2 - siga1^4*beta_SA^3 + 2*siga1^3*beta_SI^2*phi*siga2*beta_SA - 2*siga1^3*beta_SI^2*siga2*beta_SA + 2*siga1^3*beta_SI*phi*Mar*beta_SA^2 - 4*siga1^3*beta_SI*phi*siga2*beta_SA^2 - siga1^3*beta_SI*M*beta_SA^2 - 2*siga1^3*beta_SI*Mar*beta_SA^2 + 3*siga1^3*beta_SI*siga2*beta_SA^2 - 2*siga1^3*phi*Mar*beta_SA^3 + 2*siga1^3*phi*siga2*beta_SA^3 + siga1^3*M*beta_SA^3 + 2*siga1^3*Mar*beta_SA^3 - siga1^3*siga2*beta_SA^3 + siga1^2*beta_SI^3*phi^2*siga2^2 - 2*siga1^2*beta_SI^3*phi*siga2^2 + siga1^2*beta_SI^3*siga2^2 + 2*siga1^2*beta_SI^2*phi^2*Mar*siga2*beta_SA - 3*siga1^2*beta_SI^2*phi^2*siga2^2*beta_SA - siga1^2*beta_SI^2*phi*M*siga2*beta_SA - 6*siga1^2*beta_SI^2*phi*Mar*siga2*beta_SA + 5*siga1^2*beta_SI^2*phi*siga2^2*beta_SA + siga1^2*beta_SI^2*M*siga2*beta_SA + 4*siga1^2*beta_SI^2*Mar*siga2*beta_SA - 2*siga1^2*beta_SI^2*siga2^2*beta_SA + siga1^2*beta_SI*phi^2*Mar^2*beta_SA^2 - 4*siga1^2*beta_SI*phi^2*Mar*siga2*beta_SA^2 + 3*siga1^2*beta_SI*phi^2*siga2^2*beta_SA^2 - 2*siga1^2*beta_SI*phi*M*Mar*beta_SA^2 + 2*siga1^2*beta_SI*phi*M*siga2*beta_SA^2 - 2*siga1^2*beta_SI*phi*Mar^2*beta_SA^2 + 10*siga1^2*beta_SI*phi*Mar*siga2*beta_SA^2 - 4*siga1^2*beta_SI*phi*siga2^2*beta_SA^2 + 2*siga1^2*beta_SI*M*Mar*beta_SA^2 - siga1^2*beta_SI*M*siga2*beta_SA^2 + siga1^2*beta_SI*Mar^2*beta_SA^2 - 6*siga1^2*beta_SI*Mar*siga2*beta_SA^2 + siga1^2*beta_SI*siga2^2*beta_SA^2 - siga1^2*phi^2*Mar^2*beta_SA^3 + 2*siga1^2*phi^2*Mar*siga2*beta_SA^3 - siga1^2*phi^2*siga2^2*beta_SA^3 + 2*siga1^2*phi*M*Mar*beta_SA^3 - siga1^2*phi*M*siga2*beta_SA^3 + 2*siga1^2*phi*Mar^2*beta_SA^3 - 4*siga1^2*phi*Mar*siga2*beta_SA^3 + siga1^2*phi*siga2^2*beta_SA^3 - 2*siga1^2*M*Mar*beta_SA^3 - siga1^2*Mar^2*beta_SA^3 + 2*siga1^2*Mar*siga2*beta_SA^3 - 2*siga1*beta_SI^3*phi^2*Mar*siga2^2 + 4*siga1*beta_SI^3*phi*Mar*siga2^2 - 2*siga1*beta_SI^3*Mar*siga2^2 - siga1*beta_SI^2*phi^2*M*Mar*siga2*beta_SA - 2*siga1*beta_SI^2*phi^2*Mar^2*siga2*beta_SA + 5*siga1*beta_SI^2*phi^2*Mar*siga2^2*beta_SA + 3*siga1*beta_SI^2*phi*M*Mar*siga2*beta_SA + 4*siga1*beta_SI^2*phi*Mar^2*siga2*beta_SA - 9*siga1*beta_SI^2*phi*Mar*siga2^2*beta_SA - 2*siga1*beta_SI^2*M*Mar*siga2*beta_SA - 2*siga1*beta_SI^2*Mar^2*siga2*beta_SA + 4*siga1*beta_SI^2*Mar*siga2^2*beta_SA - siga1*beta_SI*phi^2*M*Mar^2*beta_SA^2 + 2*siga1*beta_SI*phi^2*M*Mar*siga2*beta_SA^2 + 3*siga1*beta_SI*phi^2*Mar^2*siga2*beta_SA^2 - 4*siga1*beta_SI*phi^2*Mar*siga2^2*beta_SA^2 + 2*siga1*beta_SI*phi*M*Mar^2*beta_SA^2 - 4*siga1*beta_SI*phi*M*Mar*siga2*beta_SA^2 - 6*siga1*beta_SI*phi*Mar^2*siga2*beta_SA^2 + 6*siga1*beta_SI*phi*Mar*siga2^2*beta_SA^2 - siga1*beta_SI*M*Mar^2*beta_SA^2 + 2*siga1*beta_SI*M*Mar*siga2*beta_SA^2 + 3*siga1*beta_SI*Mar^2*siga2*beta_SA^2 - 2*siga1*beta_SI*Mar*siga2^2*beta_SA^2 + siga1*phi^2*M*Mar^2*beta_SA^3 - siga1*phi^2*M*Mar*siga2*beta_SA^3 - siga1*phi^2*Mar^2*siga2*beta_SA^3 + siga1*phi^2*Mar*siga2^2*beta_SA^3 - 2*siga1*phi*M*Mar^2*beta_SA^3 + siga1*phi*M*Mar*siga2*beta_SA^3 + 2*siga1*phi*Mar^2*siga2*beta_SA^3 - siga1*phi*Mar*siga2^2*beta_SA^3 + siga1*M*Mar^2*beta_SA^3 - siga1*Mar^2*siga2*beta_SA^3 + beta_SI^3*phi^2*Mar^2*siga2^2 - 2*beta_SI^3*phi*Mar^2*siga2^2 + beta_SI^3*Mar^2*siga2^2 + beta_SI^2*phi^2*M*Mar^2*siga2*beta_SA - 2*beta_SI^2*phi^2*Mar^2*siga2^2*beta_SA - 2*beta_SI^2*phi*M*Mar^2*siga2*beta_SA + 4*beta_SI^2*phi*Mar^2*siga2^2*beta_SA + beta_SI^2*M*Mar^2*siga2*beta_SA - 2*beta_SI^2*Mar^2*siga2^2*beta_SA - beta_SI*phi^2*M*Mar^2*siga2*beta_SA^2 + beta_SI*phi^2*Mar^2*siga2^2*beta_SA^2 + 2*beta_SI*phi*M*Mar^2*siga2*beta_SA^2 - 2*beta_SI*phi*Mar^2*siga2^2*beta_SA^2 - beta_SI*M*Mar^2*siga2*beta_SA^2 + beta_SI*Mar^2*siga2^2*beta_SA^2)//(siga1^2*phi*M^2*siga2*beta_SA - siga1^2*M^2*siga2*beta_SA + siga1*phi^2*M^2*Mar*siga2*beta_SA - 3*siga1*phi*M^2*Mar*siga2*beta_SA + 2*siga1*M^2*Mar*siga2*beta_SA - phi^2*M^2*Mar^2*siga2*beta_SA + 2*phi*M^2*Mar^2*siga2*beta_SA - M^2*Mar^2*siga2*beta_SA)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/QY/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/QY/logs_(:normalforms, 3) deleted file mode 100644 index a686c0983..000000000 --- a/benchmarking/IdentifiableFunctions/systems/QY/logs_(:normalforms, 3) +++ /dev/null @@ -1,159 +0,0 @@ -┌ Info: Processing QY -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.139774095 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.139774095 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.067562576 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.067562576 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [64] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000242977 seconds -│ :rank_time = rank_time -│ rank_times = 0.000242977 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 45  ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 69  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 148  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 227  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 313  ✓ # Computing specializations.. Time: 0:00:01 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 65 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (5, 5), (6, 4), (5, 4)], [(0, 0), (1, 0)], [(0, 0), (5, 5), (7, 5), (6, 5)], [(0, 0), (5, 5), (6, 4), (5, 4)], [(0, 0), (6, 9), (5, 6), (6, 8)], [(0, 0), (0, 0)], [(0, 0), (3, 3), (2, 3), (4, 5), (4, 3), (5, 5)], [(0, 0), (5, 4), (9, 6), (8, 6)], [(0, 0), (7, 5), (2, 1), (6, 5), (4, 3), (10, 7), (9, 7)], [(0, 0), (11, 9), (6, 5), (10, 9), (5, 4), (14, 11), (13, 11)], [(0, 0), (4, 3), (4, 3), (9, 8), (9, 6), (9, 7)], [(0, 0), (7, 5), (2, 1), (6, 5), (10, 7), (9, 7)], [(0, 0), (8, 7), (9, 8), (10, 9), (14, 11), (14, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.606894189 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.071719299 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 65 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (5, 5), (6, 4), (5, 4)], [(0, 0), (1, 0)], [(0, 0), (5, 5), (7, 5), (6, 5)], [(0, 0), (5, 5), (6, 4), (5, 4)], [(0, 0), (6, 9), (5, 6), (6, 8)], [(0, 0), (0, 0)], [(0, 0), (3, 3), (2, 3), (4, 5), (4, 3), (5, 5)], [(0, 0), (5, 4), (9, 6), (8, 6)], [(0, 0), (7, 5), (2, 1), (6, 5), (4, 3), (10, 7), (9, 7)], [(0, 0), (11, 9), (6, 5), (10, 9), (5, 4), (14, 11), (13, 11)], [(0, 0), (4, 3), (4, 3), (9, 8), (9, 6), (9, 7)], [(0, 0), (7, 5), (2, 1), (6, 5), (10, 7), (9, 7)], [(0, 0), (8, 7), (9, 8), (10, 9), (14, 11), (14, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 384 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 14 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.999853054 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.102734167 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (10 in total): Nemo.fmpq_mpoly[siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 266 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 83 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 266 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 83 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 1 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 266 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 83 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 1 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 4.992844983 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 64 initial generators there are 9 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 45639 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 9.479075102 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[Mar, Ks, alpa, siga1*M*siga2, (siga1 + phi*Mar - Mar)//phi, (siga1*phi - siga1 - phi*Mar + Mar)//(siga1*phi*beta_SA), (siga1*beta_SA + beta_SI*phi*siga2 + phi*Mar*beta_SA - phi*siga2*beta_SA - Mar*beta_SA)//(phi*M*siga2), (siga1*beta_SI*phi*siga2 - siga1*beta_SI*siga2 - siga1*phi*siga2*beta_SA - siga1*M*beta_SA - beta_SI*phi*Mar*siga2 + beta_SI*Mar*siga2 - phi*M*Mar*beta_SA + M*Mar*beta_SA)//(siga1*beta_SA + phi*Mar*beta_SA - Mar*beta_SA), (siga1^2*beta_SA + siga1*beta_SI*phi*siga2 - siga1*beta_SI*siga2 + siga1*phi*Mar*beta_SA - siga1*phi*siga2*beta_SA - siga1*Mar*beta_SA + siga1*siga2*beta_SA + beta_SI*phi*M*siga2 - beta_SI*phi*Mar*siga2 + beta_SI*phi*siga2^2 + beta_SI*Mar*siga2 + phi*Mar*siga2*beta_SA - phi*siga2^2*beta_SA - Mar*siga2*beta_SA)//(phi*M*siga2)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/QY/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/QY/logs_(:normalforms, 3)_with_states deleted file mode 100644 index 04fc621bd..000000000 --- a/benchmarking/IdentifiableFunctions/systems/QY/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,502 +0,0 @@ -┌ Info: Processing QY -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.164954549 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.164954549 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.084502639 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.084502639 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [64] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000238917 seconds -│ :rank_time = rank_time -│ rank_times = 0.000238917 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 54  ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 79  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 148  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 216  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 289  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 364  ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:00 ⌞ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:00 ⌞ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 44  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 106  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 178  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 249  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 321  ✓ # Computing specializations.. Time: 0:00:02 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:00 ⌞ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 49  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 107  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 163  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 227  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 296  ⌝ # Computing specializations.. Time: 0:00:01 - Points: 364  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 433  ⌞ # Computing specializations.. Time: 0:00:02 - Points: 502  ⌜ # Computing specializations.. Time: 0:00:02 - Points: 569  ⌝ # Computing specializations.. Time: 0:00:03 - Points: 640  ⌟ # Computing specializations.. Time: 0:00:03 - Points: 709  ⌞ # Computing specializations.. Time: 0:00:03 - Points: 776  ⌜ # Computing specializations.. Time: 0:00:04 - Points: 845  ⌝ # Computing specializations.. Time: 0:00:04 - Points: 918  ⌟ # Computing specializations.. Time: 0:00:04 - Points: 989  ⌞ # Computing specializations.. Time: 0:00:05 - Points: 1059  ⌜ # Computing specializations.. Time: 0:00:05 - Points: 1135  ⌝ # Computing specializations.. Time: 0:00:05 - Points: 1209  ⌟ # Computing specializations.. Time: 0:00:06 - Points: 1282  ⌞ # Computing specializations.. Time: 0:00:06 - Points: 1355  ⌜ # Computing specializations.. Time: 0:00:07 - Points: 1430  ⌝ # Computing specializations.. Time: 0:00:07 - Points: 1503  ⌟ # Computing specializations.. Time: 0:00:07 - Points: 1576  ⌞ # Computing specializations.. Time: 0:00:08 - Points: 1643  ⌜ # Computing specializations.. Time: 0:00:08 - Points: 1718  ⌝ # Computing specializations.. Time: 0:00:08 - Points: 1793  ⌟ # Computing specializations.. Time: 0:00:09 - Points: 1867  ⌞ # Computing specializations.. Time: 0:00:09 - Points: 1936  ⌜ # Computing specializations.. Time: 0:00:09 - Points: 2004  ⌝ # Computing specializations.. Time: 0:00:10 - Points: 2076  ⌟ # Computing specializations.. Time: 0:00:10 - Points: 2148  ⌞ # Computing specializations.. Time: 0:00:10 - Points: 2214  ⌜ # Computing specializations.. Time: 0:00:11 - Points: 2287  ⌝ # Computing specializations.. Time: 0:00:11 - Points: 2366  ⌟ # Computing specializations.. Time: 0:00:11 - Points: 2443  ⌞ # Computing specializations.. Time: 0:00:11 - Points: 2520  ✓ # Computing specializations.. Time: 0:00:12 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 75  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 149  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 216  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 294  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 359  ⌝ # Computing specializations.. Time: 0:00:02 - Points: 420  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 497  ⌞ # Computing specializations.. Time: 0:00:02 - Points: 574  ⌜ # Computing specializations.. Time: 0:00:03 - Points: 649  ⌝ # Computing specializations.. Time: 0:00:03 - Points: 728  ⌟ # Computing specializations.. Time: 0:00:03 - Points: 805  ⌞ # Computing specializations.. Time: 0:00:04 - Points: 882  ⌜ # Computing specializations.. Time: 0:00:04 - Points: 959  ⌝ # Computing specializations.. Time: 0:00:04 - Points: 1035  ⌟ # Computing specializations.. Time: 0:00:05 - Points: 1109  ⌞ # Computing specializations.. Time: 0:00:05 - Points: 1179  ⌜ # Computing specializations.. Time: 0:00:06 - Points: 1244  ⌝ # Computing specializations.. Time: 0:00:06 - Points: 1316  ⌟ # Computing specializations.. Time: 0:00:06 - Points: 1387  ⌞ # Computing specializations.. Time: 0:00:07 - Points: 1456  ⌜ # Computing specializations.. Time: 0:00:07 - Points: 1530  ⌝ # Computing specializations.. Time: 0:00:07 - Points: 1601  ⌟ # Computing specializations.. Time: 0:00:08 - Points: 1672  ⌞ # Computing specializations.. Time: 0:00:08 - Points: 1745  ⌜ # Computing specializations.. Time: 0:00:08 - Points: 1816  ⌝ # Computing specializations.. Time: 0:00:08 - Points: 1889  ⌟ # Computing specializations.. Time: 0:00:09 - Points: 1962  ⌞ # Computing specializations.. Time: 0:00:09 - Points: 2033  ⌜ # Computing specializations.. Time: 0:00:09 - Points: 2102  ⌝ # Computing specializations.. Time: 0:00:10 - Points: 2173  ⌟ # Computing specializations.. Time: 0:00:10 - Points: 2244  ⌞ # Computing specializations.. Time: 0:00:11 - Points: 2312  ⌜ # Computing specializations.. Time: 0:00:11 - Points: 2376  ⌝ # Computing specializations.. Time: 0:00:12 - Points: 2448  ⌟ # Computing specializations.. Time: 0:00:12 - Points: 2518  ⌞ # Computing specializations.. Time: 0:00:12 - Points: 2587  ⌜ # Computing specializations.. Time: 0:00:13 - Points: 2656  ⌝ # Computing specializations.. Time: 0:00:13 - Points: 2723  ⌟ # Computing specializations.. Time: 0:00:13 - Points: 2798  ⌞ # Computing specializations.. Time: 0:00:14 - Points: 2875  ⌜ # Computing specializations.. Time: 0:00:14 - Points: 2952  ⌝ # Computing specializations.. Time: 0:00:14 - Points: 3030  ⌟ # Computing specializations.. Time: 0:00:15 - Points: 3109  ⌞ # Computing specializations.. Time: 0:00:15 - Points: 3186  ⌜ # Computing specializations.. Time: 0:00:15 - Points: 3263  ⌝ # Computing specializations.. Time: 0:00:15 - Points: 3339  ⌟ # Computing specializations.. Time: 0:00:16 - Points: 3416  ⌞ # Computing specializations.. Time: 0:00:16 - Points: 3492  ⌜ # Computing specializations.. Time: 0:00:16 - Points: 3568  ⌝ # Computing specializations.. Time: 0:00:17 - Points: 3644  ⌟ # Computing specializations.. Time: 0:00:17 - Points: 3721  ⌞ # Computing specializations.. Time: 0:00:17 - Points: 3800  ⌜ # Computing specializations.. Time: 0:00:18 - Points: 3877  ⌝ # Computing specializations.. Time: 0:00:18 - Points: 3956  ⌟ # Computing specializations.. Time: 0:00:18 - Points: 4033  ⌞ # Computing specializations.. Time: 0:00:18 - Points: 4111  ⌜ # Computing specializations.. Time: 0:00:19 - Points: 4189  ⌝ # Computing specializations.. Time: 0:00:19 - Points: 4265  ⌟ # Computing specializations.. Time: 0:00:19 - Points: 4344  ⌞ # Computing specializations.. Time: 0:00:20 - Points: 4421  ⌜ # Computing specializations.. Time: 0:00:20 - Points: 4500  ⌝ # Computing specializations.. Time: 0:00:20 - Points: 4577  ⌟ # Computing specializations.. Time: 0:00:22 - Points: 4653  ⌞ # Computing specializations.. Time: 0:00:23 - Points: 4735  ⌜ # Computing specializations.. Time: 0:00:23 - Points: 4810  ⌝ # Computing specializations.. Time: 0:00:23 - Points: 4882  ⌟ # Computing specializations.. Time: 0:00:24 - Points: 4958  ⌞ # Computing specializations.. Time: 0:00:24 - Points: 5034  ⌜ # Computing specializations.. Time: 0:00:24 - Points: 5108  ⌝ # Computing specializations.. Time: 0:00:25 - Points: 5185  ⌟ # Computing specializations.. Time: 0:00:25 - Points: 5261  ⌞ # Computing specializations.. Time: 0:00:25 - Points: 5330  ⌜ # Computing specializations.. Time: 0:00:26 - Points: 5408  ⌝ # Computing specializations.. Time: 0:00:26 - Points: 5484  ⌟ # Computing specializations.. Time: 0:00:26 - Points: 5560  ⌞ # Computing specializations.. Time: 0:00:27 - Points: 5639  ⌜ # Computing specializations.. Time: 0:00:27 - Points: 5716  ⌝ # Computing specializations.. Time: 0:00:27 - Points: 5792  ⌟ # Computing specializations.. Time: 0:00:27 - Points: 5870  ⌞ # Computing specializations.. Time: 0:00:28 - Points: 5948  ⌜ # Computing specializations.. Time: 0:00:28 - Points: 6024  ⌝ # Computing specializations.. Time: 0:00:28 - Points: 6102  ⌟ # Computing specializations.. Time: 0:00:29 - Points: 6180  ⌞ # Computing specializations.. Time: 0:00:29 - Points: 6259  ⌜ # Computing specializations.. Time: 0:00:29 - Points: 6335  ⌝ # Computing specializations.. Time: 0:00:30 - Points: 6412  ⌟ # Computing specializations.. Time: 0:00:30 - Points: 6490  ⌞ # Computing specializations.. Time: 0:00:30 - Points: 6568  ⌜ # Computing specializations.. Time: 0:00:31 - Points: 6646  ⌝ # Computing specializations.. Time: 0:00:31 - Points: 6724  ⌟ # Computing specializations.. Time: 0:00:31 - Points: 6802  ⌞ # Computing specializations.. Time: 0:00:31 - Points: 6880  ⌜ # Computing specializations.. Time: 0:00:32 - Points: 6958  ⌝ # Computing specializations.. Time: 0:00:32 - Points: 7034  ⌟ # Computing specializations.. Time: 0:00:32 - Points: 7113  ⌞ # Computing specializations.. Time: 0:00:33 - Points: 7190  ⌜ # Computing specializations.. Time: 0:00:33 - Points: 7268  ⌝ # Computing specializations.. Time: 0:00:33 - Points: 7344  ⌟ # Computing specializations.. Time: 0:00:34 - Points: 7422  ⌞ # Computing specializations.. Time: 0:00:34 - Points: 7500  ⌜ # Computing specializations.. Time: 0:00:34 - Points: 7579  ⌝ # Computing specializations.. Time: 0:00:35 - Points: 7655  ⌟ # Computing specializations.. Time: 0:00:35 - Points: 7734  ⌞ # Computing specializations.. Time: 0:00:35 - Points: 7810  ⌜ # Computing specializations.. Time: 0:00:35 - Points: 7888  ⌝ # Computing specializations.. Time: 0:00:36 - Points: 7966  ⌟ # Computing specializations.. Time: 0:00:36 - Points: 8044  ⌞ # Computing specializations.. Time: 0:00:36 - Points: 8123  ⌜ # Computing specializations.. Time: 0:00:37 - Points: 8199  ⌝ # Computing specializations.. Time: 0:00:37 - Points: 8277  ⌟ # Computing specializations.. Time: 0:00:37 - Points: 8356  ⌞ # Computing specializations.. Time: 0:00:38 - Points: 8433  ⌜ # Computing specializations.. Time: 0:00:38 - Points: 8510  ⌝ # Computing specializations.. Time: 0:00:38 - Points: 8588  ⌟ # Computing specializations.. Time: 0:00:39 - Points: 8666  ⌞ # Computing specializations.. Time: 0:00:39 - Points: 8743  ⌜ # Computing specializations.. Time: 0:00:39 - Points: 8818  ⌝ # Computing specializations.. Time: 0:00:39 - Points: 8895  ⌟ # Computing specializations.. Time: 0:00:40 - Points: 8970  ⌞ # Computing specializations.. Time: 0:00:40 - Points: 9042  ⌜ # Computing specializations.. Time: 0:00:40 - Points: 9118  ⌝ # Computing specializations.. Time: 0:00:41 - Points: 9195  ✓ # Computing specializations.. Time: 0:00:44 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 65 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA, P3, P0, P4, P1, P2, P5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (5, 5), (6, 4), (5, 4)], [(0, 0), (1, 0)], [(0, 0), (5, 5), (7, 5), (6, 5)], [(0, 0), (5, 5), (6, 4), (5, 4)], [(0, 0), (6, 9), (5, 6), (6, 8)], [(0, 0), (0, 0)], [(0, 0), (3, 3), (2, 3), (4, 5), (4, 3), (5, 5)], [(0, 0), (5, 4), (9, 6), (8, 6)], [(0, 0), (7, 5), (2, 1), (6, 5), (4, 3), (10, 7), (9, 7)], [(0, 0), (11, 9), (6, 5), (10, 9), (5, 4), (14, 11), (13, 11)], [(0, 0), (4, 3), (4, 3), (9, 8), (9, 6), (9, 7)], [(0, 0), (7, 5), (2, 1), (6, 5), (10, 7), (9, 7)], [(0, 0), (8, 7), (9, 8), (10, 9), (14, 11), (14, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 5.558398146 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.254414457 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 65 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA, P3, P0, P4, P1, P2, P5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (5, 5), (6, 4), (5, 4)], [(0, 0), (1, 0)], [(0, 0), (5, 5), (7, 5), (6, 5)], [(0, 0), (5, 5), (6, 4), (5, 4)], [(0, 0), (6, 9), (5, 6), (6, 8)], [(0, 0), (0, 0)], [(0, 0), (3, 3), (2, 3), (4, 5), (4, 3), (5, 5)], [(0, 0), (5, 4), (9, 6), (8, 6)], [(0, 0), (7, 5), (2, 1), (6, 5), (4, 3), (10, 7), (9, 7)], [(0, 0), (11, 9), (6, 5), (10, 9), (5, 4), (14, 11), (13, 11)], [(0, 0), (4, 3), (4, 3), (9, 8), (9, 6), (9, 7)], [(0, 0), (7, 5), (2, 1), (6, 5), (10, 7), (9, 7)], [(0, 0), (8, 7), (9, 8), (10, 9), (14, 11), (14, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 384 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 14 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 2.198395807 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.105858167 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 7.136287251 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 64 initial generators there are 9 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 106246 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 17 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA, P3, P0, P4, P1, P2, P5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 258 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (23, 23), (32, 20), (23, 22)], [(0, 0), (1, 0)], [(0, 0), (23, 23), (32, 20), (24, 23)], [(0, 0), (23, 23), (32, 20), (23, 22)], [(0, 0), (38, 61), (41, 52), (41, 63)], [(0, 0), (17, 28), (21, 20), (19, 29)], [(0, 0), (21, 21), (19, 30), (21, 32), (22, 21), (22, 32)], [(0, 0), (25, 24), (34, 21), (28, 26)], [(0, 0), (31, 19), (20, 19), (24, 23), (4, 3), (32, 19), (27, 25)], [(0, 0), (32, 20), (24, 23), (28, 27), (5, 4), (33, 20), (31, 29)], [(0, 0), (4, 3), (4, 3), (27, 26), (33, 20), (27, 25)], [(0, 0), (31, 19), (20, 19), (24, 23), (32, 19), (25, 23)], [(0, 0), (8, 7), (9, 8), (28, 27), (33, 20), (32, 30)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.975453879 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.124551397 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 17 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA, P3, P0, P4, P1, P2, P5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 258 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (23, 23), (32, 20), (23, 22)], [(0, 0), (1, 0)], [(0, 0), (23, 23), (32, 20), (24, 23)], [(0, 0), (23, 23), (32, 20), (23, 22)], [(0, 0), (38, 61), (41, 52), (41, 63)], [(0, 0), (17, 28), (21, 20), (19, 29)], [(0, 0), (21, 21), (19, 30), (21, 32), (22, 21), (22, 32)], [(0, 0), (25, 24), (34, 21), (28, 26)], [(0, 0), (31, 19), (20, 19), (24, 23), (4, 3), (32, 19), (27, 25)], [(0, 0), (32, 20), (24, 23), (28, 27), (5, 4), (33, 20), (31, 29)], [(0, 0), (4, 3), (4, 3), (27, 26), (33, 20), (27, 25)], [(0, 0), (31, 19), (20, 19), (24, 23), (32, 19), (25, 23)], [(0, 0), (8, 7), (9, 8), (28, 27), (33, 20), (32, 30)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 384 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 11 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 3.651581441 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.169090104 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (8, 8) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 17 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA, P3, P0, P4, P1, P2, P5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 258 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (23, 23), (32, 20), (23, 22)], [(0, 0), (1, 0)], [(0, 0), (23, 23), (32, 20), (24, 23)], [(0, 0), (23, 23), (32, 20), (23, 22)], [(0, 0), (38, 61), (41, 52), (41, 63)], [(0, 0), (17, 28), (21, 20), (19, 29)], [(0, 0), (21, 21), (19, 30), (21, 32), (22, 21), (22, 32)], [(0, 0), (25, 24), (34, 21), (28, 26)], [(0, 0), (31, 19), (20, 19), (24, 23), (4, 3), (32, 19), (27, 25)], [(0, 0), (32, 20), (24, 23), (28, 27), (5, 4), (33, 20), (31, 29)], [(0, 0), (4, 3), (4, 3), (27, 26), (33, 20), (27, 25)], [(0, 0), (31, 19), (20, 19), (24, 23), (32, 19), (25, 23)], [(0, 0), (8, 7), (9, 8), (28, 27), (33, 20), (32, 30)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 9, Denominator: 9 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 2560 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 8 for num. and 7 for den. -│ Maximal number of interpolated terms are: 63 for num. and 8 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 14.715383141 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.143997664 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (16, 16) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 17 functions in Rational Field(siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA, P3, P0, P4, P1, P2, P5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 258 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (23, 23), (32, 20), (23, 22)], [(0, 0), (1, 0)], [(0, 0), (23, 23), (32, 20), (24, 23)], [(0, 0), (23, 23), (32, 20), (23, 22)], [(0, 0), (38, 61), (41, 52), (41, 63)], [(0, 0), (17, 28), (21, 20), (19, 29)], [(0, 0), (21, 21), (19, 30), (21, 32), (22, 21), (22, 32)], [(0, 0), (25, 24), (34, 21), (28, 26)], [(0, 0), (31, 19), (20, 19), (24, 23), (4, 3), (32, 19), (27, 25)], [(0, 0), (32, 20), (24, 23), (28, 27), (5, 4), (33, 20), (31, 29)], [(0, 0), (4, 3), (4, 3), (27, 26), (33, 20), (27, 25)], [(0, 0), (31, 19), (20, 19), (24, 23), (32, 19), (25, 23)], [(0, 0), (8, 7), (9, 8), (28, 27), (33, 20), (32, 30)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Warning: In Prime number approach the field order might be too small -│ Nd = 17 -│ Dd = 17 -│ max(Nd, Dd) * log(n) = 47.13400827807628 -│ log(BigInt(order(K))) = 42.97512519471660922051442496041699641866702992303280170414601427331657565689629 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:301 -┌ Info: Interpolating for degrees: -│ Numerator: 17, Denominator: 17 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 9216 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 9 for num. and 8 for den. -│ Maximal number of interpolated terms are: 98 for num. and 8 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 46.316878994 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.191775597 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 17 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (16 in total): Nemo.fmpq_mpoly[siga1, beta_SI, phi, alpa, M, Ks, Mar, beta, siga2, beta_SA, P3, P0, P4, P1, P2, P5] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 804 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 666 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 804 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 666 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 1 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 804 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 666 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 1 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 4.03429316 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 16 initial generators there are 15 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 5072433 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 89.483704329 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[P2, P1, P4, P0, P3, Mar, Ks, alpa, siga1*M*siga2, Mar*P5 + beta, (siga1*phi*M*siga2 - siga1*M*siga2 - phi*M*Mar*siga2 + M*Mar*siga2)//(siga1*beta_SA + phi*Mar*beta_SA - Mar*beta_SA), (siga1*beta_SI*phi*siga2 - siga1*beta_SI*siga2 - siga1*phi*siga2*beta_SA - siga1*M*beta_SA - beta_SI*phi*Mar*siga2 + beta_SI*Mar*siga2 - phi*M*Mar*beta_SA + M*Mar*beta_SA)//(siga1*beta_SA + phi*Mar*beta_SA - Mar*beta_SA), (siga1^2*beta_SA + siga1*beta_SI*phi*siga2 - siga1*beta_SI*siga2 + siga1*phi*Mar*beta_SA - siga1*phi*siga2*beta_SA - siga1*Mar*beta_SA + siga1*siga2*beta_SA - beta_SI*phi*Mar*siga2 + beta_SI*Mar*siga2 + phi*Mar*siga2*beta_SA - Mar*siga2*beta_SA)//(siga1*beta_SA + phi*Mar*beta_SA - Mar*beta_SA), (siga1^2*beta_SI*beta_SA - siga1^2*beta_SA^2 + siga1*beta_SI^2*phi*siga2 - siga1*beta_SI^2*siga2 + siga1*beta_SI*phi*Mar*beta_SA - 2*siga1*beta_SI*phi*siga2*beta_SA - siga1*beta_SI*M*beta_SA - siga1*beta_SI*Mar*beta_SA + siga1*beta_SI*siga2*beta_SA - siga1*phi*Mar*beta_SA^2 + siga1*phi*siga2*beta_SA^2 + siga1*Mar*beta_SA^2 - beta_SI^2*phi*Mar*siga2 + beta_SI^2*Mar*siga2 - beta_SI*phi*M*Mar*beta_SA + beta_SI*phi*Mar*siga2*beta_SA + beta_SI*M*Mar*beta_SA - beta_SI*Mar*siga2*beta_SA)//(siga1*M*beta_SA + phi*M*Mar*beta_SA - M*Mar*beta_SA), (siga1^4*beta_SA^2 + 2*siga1^3*beta_SI*phi*siga2*beta_SA - 2*siga1^3*beta_SI*siga2*beta_SA + 2*siga1^3*phi*Mar*beta_SA^2 - 2*siga1^3*phi*siga2*beta_SA^2 - siga1^3*M*beta_SA^2 - 2*siga1^3*Mar*beta_SA^2 + siga1^3*siga2*beta_SA^2 + siga1^2*beta_SI^2*phi^2*siga2^2 - 2*siga1^2*beta_SI^2*phi*siga2^2 + siga1^2*beta_SI^2*siga2^2 + 2*siga1^2*beta_SI*phi^2*Mar*siga2*beta_SA - 2*siga1^2*beta_SI*phi^2*siga2^2*beta_SA - 6*siga1^2*beta_SI*phi*Mar*siga2*beta_SA + 4*siga1^2*beta_SI*phi*siga2^2*beta_SA + 4*siga1^2*beta_SI*Mar*siga2*beta_SA - 2*siga1^2*beta_SI*siga2^2*beta_SA + siga1^2*phi^2*Mar^2*beta_SA^2 - 2*siga1^2*phi^2*Mar*siga2*beta_SA^2 + siga1^2*phi^2*siga2^2*beta_SA^2 - 2*siga1^2*phi*M*Mar*beta_SA^2 + 2*siga1^2*phi*M*siga2*beta_SA^2 - 2*siga1^2*phi*Mar^2*beta_SA^2 + 4*siga1^2*phi*Mar*siga2*beta_SA^2 - 2*siga1^2*phi*siga2^2*beta_SA^2 + 2*siga1^2*M*Mar*beta_SA^2 - siga1^2*M*siga2*beta_SA^2 + siga1^2*Mar^2*beta_SA^2 - 2*siga1^2*Mar*siga2*beta_SA^2 + siga1^2*siga2^2*beta_SA^2 - 2*siga1*beta_SI^2*phi^2*Mar*siga2^2 + 4*siga1*beta_SI^2*phi*Mar*siga2^2 - 2*siga1*beta_SI^2*Mar*siga2^2 - 2*siga1*beta_SI*phi^2*Mar^2*siga2*beta_SA + 4*siga1*beta_SI*phi^2*Mar*siga2^2*beta_SA + 4*siga1*beta_SI*phi*Mar^2*siga2*beta_SA - 8*siga1*beta_SI*phi*Mar*siga2^2*beta_SA - 2*siga1*beta_SI*Mar^2*siga2*beta_SA + 4*siga1*beta_SI*Mar*siga2^2*beta_SA - siga1*phi^2*M*Mar^2*beta_SA^2 + 2*siga1*phi^2*M*Mar*siga2*beta_SA^2 + siga1*phi^2*Mar^2*siga2*beta_SA^2 - 2*siga1*phi^2*Mar*siga2^2*beta_SA^2 + 2*siga1*phi*M*Mar^2*beta_SA^2 - 4*siga1*phi*M*Mar*siga2*beta_SA^2 - 2*siga1*phi*Mar^2*siga2*beta_SA^2 + 4*siga1*phi*Mar*siga2^2*beta_SA^2 - siga1*M*Mar^2*beta_SA^2 + 2*siga1*M*Mar*siga2*beta_SA^2 + siga1*Mar^2*siga2*beta_SA^2 - 2*siga1*Mar*siga2^2*beta_SA^2 + beta_SI^2*phi^2*Mar^2*siga2^2 - 2*beta_SI^2*phi*Mar^2*siga2^2 + beta_SI^2*Mar^2*siga2^2 - 2*beta_SI*phi^2*Mar^2*siga2^2*beta_SA + 4*beta_SI*phi*Mar^2*siga2^2*beta_SA - 2*beta_SI*Mar^2*siga2^2*beta_SA - phi^2*M*Mar^2*siga2*beta_SA^2 + phi^2*Mar^2*siga2^2*beta_SA^2 + 2*phi*M*Mar^2*siga2*beta_SA^2 - 2*phi*Mar^2*siga2^2*beta_SA^2 - M*Mar^2*siga2*beta_SA^2 + Mar^2*siga2^2*beta_SA^2)//(siga1^2*phi*M*siga2*beta_SA - siga1^2*M*siga2*beta_SA + siga1*phi^2*M*Mar*siga2*beta_SA - 3*siga1*phi*M*Mar*siga2*beta_SA + 2*siga1*M*Mar*siga2*beta_SA - phi^2*M*Mar^2*siga2*beta_SA + 2*phi*M*Mar^2*siga2*beta_SA - M*Mar^2*siga2*beta_SA)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/QY/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/QY/timings_(:gb,) deleted file mode 100644 index 67a65bed7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/QY/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -QY -id_total, 9.676963241 diff --git a/benchmarking/IdentifiableFunctions/systems/QY/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/QY/timings_(:gb,)_with_states deleted file mode 100644 index 3c2868c75..000000000 --- a/benchmarking/IdentifiableFunctions/systems/QY/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -QY -id_total, 88.380370794 diff --git a/benchmarking/IdentifiableFunctions/systems/QY/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/QY/timings_(:hybrid,) deleted file mode 100644 index fa16e9178..000000000 --- a/benchmarking/IdentifiableFunctions/systems/QY/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -QY -id_total, 13.708548323 diff --git a/benchmarking/IdentifiableFunctions/systems/QY/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/QY/timings_(:normalforms, 2) deleted file mode 100644 index ef8a516b8..000000000 --- a/benchmarking/IdentifiableFunctions/systems/QY/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -QY -id_total, 9.683326824 diff --git a/benchmarking/IdentifiableFunctions/systems/QY/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/QY/timings_(:normalforms, 2)_with_states deleted file mode 100644 index 3072cd97a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/QY/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -QY -id_total, 84.480897954 diff --git a/benchmarking/IdentifiableFunctions/systems/QY/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/QY/timings_(:normalforms, 3) deleted file mode 100644 index 4bc2f0953..000000000 --- a/benchmarking/IdentifiableFunctions/systems/QY/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -QY -id_total, 9.479075102 diff --git a/benchmarking/IdentifiableFunctions/systems/QY/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/QY/timings_(:normalforms, 3)_with_states deleted file mode 100644 index 0108b532b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/QY/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -QY -id_total, 89.483704329 diff --git a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/id_funcs_(:gb,) deleted file mode 100644 index 65f6b1651..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/id_funcs_(:gb,) +++ /dev/null @@ -1,3 +0,0 @@ -[k2, -k4, -k3] diff --git a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/id_funcs_(:gb,)_with_states deleted file mode 100644 index 3ada1e502..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,8 +0,0 @@ -[x4, -x5, -x3, -x2, -x1, -k2, -k4, -k3] diff --git a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/id_funcs_(:hybrid,) deleted file mode 100644 index 65f6b1651..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/id_funcs_(:hybrid,) +++ /dev/null @@ -1,3 +0,0 @@ -[k2, -k4, -k3] diff --git a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index 3ada1e502..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,8 +0,0 @@ -[x4, -x5, -x3, -x2, -x1, -k2, -k4, -k3] diff --git a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/id_funcs_(:normalforms, 2) deleted file mode 100644 index 65f6b1651..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,3 +0,0 @@ -[k2, -k4, -k3] diff --git a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index 3ada1e502..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,8 +0,0 @@ -[x4, -x5, -x3, -x2, -x1, -k2, -k4, -k3] diff --git a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/id_funcs_(:normalforms, 3) deleted file mode 100644 index 65f6b1651..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,3 +0,0 @@ -[k2, -k4, -k3] diff --git a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index 3ada1e502..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,8 +0,0 @@ -[x4, -x5, -x3, -x2, -x1, -k2, -k4, -k3] diff --git a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/logs_(:gb,) deleted file mode 100644 index 486d8f8b6..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/logs_(:gb,) +++ /dev/null @@ -1,84 +0,0 @@ -┌ Info: Processing Ruminal lipolysis -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.259517538 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.259517538 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.025560242 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.025560242 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 8, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.5024e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.5024e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(k3, k4, k2)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 3.939829117 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.163137051 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.074710977 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 14 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 6 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 9.522261812 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k2, k4, k3] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/logs_(:gb,)_with_states deleted file mode 100644 index 1542e0196..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/logs_(:gb,)_with_states +++ /dev/null @@ -1,135 +0,0 @@ -┌ Info: Processing Ruminal lipolysis -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.426487039 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.426487039 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.025575315 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.025575315 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 8, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.5523e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.5523e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(k3, k4, k2, x1, x2, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.822589818 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001858816 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.001988811 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 14 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 6 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(k3, k4, k2, x1, x2, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.020513776 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003518901 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.027400054 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 11 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 36 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.492436971 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x4, x5, x3, x2, x1, k2, k4, k3] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/logs_(:hybrid,) deleted file mode 100644 index 0fc52cd1d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/logs_(:hybrid,) +++ /dev/null @@ -1,531 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing Ruminal lipolysis -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.486133262 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.486133262 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.027300336 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.027300336 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 8, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.543e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.543e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(k3, k4, k2)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.3065785 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.22500953 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (3 in total): Nemo.fmpq_mpoly[k3, k4, k2] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, t], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(k3, k4, k2)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.006677233 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000859035 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(k3, k4, k2)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.00645313 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000821668 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y3], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, t], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(k3, k4, k2)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.006145222 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000789735 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y2], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(k3, k4, k2)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.006063315 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00080684 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(k3, k4, k2)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.006005062 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00078239 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(k3, k4, k2)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.005950202 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000782629 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(k3, k4, k2)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.005998617 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000774955 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(k3, k4, k2)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.00608256 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000755261 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(k3, k4, k2)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.077890349 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000838991 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(k3, k4, k2)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.006362998 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000784297 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.822097206 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 14 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 6 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.738081999 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k2, k4, k3] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/logs_(:hybrid,)_with_states deleted file mode 100644 index d5754f5e8..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,582 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing Ruminal lipolysis -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.268371435 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.268371435 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.074580807 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.074580807 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 8, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 6.0558e-5 seconds -│ :rank_time = rank_time -│ rank_times = 6.0558e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(k3, k4, k2, x1, x2, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.680540083 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002079053 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002282389 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 14 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 6 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(k3, k4, k2, x1, x2, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.021623611 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002767757 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (8 in total): Nemo.fmpq_mpoly[k3, k4, k2, x1, x2, x3, x5, x4] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y1, y2, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3, y7, y5, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k3, k4, k2, x1, x2, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.038620748 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001507121 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y1, y7, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y6, y5, t, y8], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k3, k4, k2, x1, x2, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010807126 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00154001 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3, y4, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y8, y5, y2, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k3, k4, k2, x1, x2, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010034335 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00147339 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y7, y8, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y2, y6, y1, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k3, k4, k2, x1, x2, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.063884628 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00196807 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y2, y5, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y7, y4, y3, y8], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k3, k4, k2, x1, x2, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011543436 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001486607 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y7, y1, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y5, y8, y2, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k3, k4, k2, x1, x2, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010675958 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001551924 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y8, y4, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3, y5, y7, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k3, k4, k2, x1, x2, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010746897 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.052792048 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y6, y8, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y3, y1, t, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k3, k4, k2, x1, x2, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.01082404 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001745747 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y1, t, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y4, y5, y6, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k3, k4, k2, x1, x2, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010339092 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001656204 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y1, y8, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y4, y5, y3, y6], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(k3, k4, k2, x1, x2, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009748483 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.036540348 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002847047 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 11 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 36 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.998466122 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x4, x5, x3, x2, x1, k2, k4, k3] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/logs_(:normalforms, 2) deleted file mode 100644 index 0100c7826..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/logs_(:normalforms, 2) +++ /dev/null @@ -1,95 +0,0 @@ -┌ Info: Processing Ruminal lipolysis -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.268850951 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.268850951 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.024812054 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.024812054 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 8, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.5161e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.5161e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(k3, k4, k2)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.06163941 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.133800963 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (3 in total): Nemo.fmpq_mpoly[k3, k4, k2] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.743675408 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 14 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 6 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 9.761856715 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k2, k4, k3] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/logs_(:normalforms, 2)_with_states deleted file mode 100644 index c081b51fe..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,146 +0,0 @@ -┌ Info: Processing Ruminal lipolysis -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.311995756 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.311995756 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.027620185 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.027620185 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 8, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.3554e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.3554e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(k3, k4, k2, x1, x2, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.821396084 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001791326 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002044912 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 14 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 6 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(k3, k4, k2, x1, x2, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.021607616 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.048806869 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (8 in total): Nemo.fmpq_mpoly[k3, k4, k2, x1, x2, x3, x5, x4] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002659805 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 11 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 36 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.57976231 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x4, x5, x3, x2, x1, k2, k4, k3] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/logs_(:normalforms, 3) deleted file mode 100644 index e8cf26528..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/logs_(:normalforms, 3) +++ /dev/null @@ -1,95 +0,0 @@ -┌ Info: Processing Ruminal lipolysis -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.434275276 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.434275276 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.027234042 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.027234042 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 8, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.637e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.637e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(k3, k4, k2)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.323830504 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.274171039 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (3 in total): Nemo.fmpq_mpoly[k3, k4, k2] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.948528823 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 14 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 6 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.666380707 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[k2, k4, k3] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/logs_(:normalforms, 3)_with_states deleted file mode 100644 index 0d635920a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,146 +0,0 @@ -┌ Info: Processing Ruminal lipolysis -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.453424542 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.453424542 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.025733344 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.025733344 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 8, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.6359e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.6359e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(k3, k4, k2, x1, x2, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.815221061 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.067202685 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.001434883 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 14 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 6 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(k3, k4, k2, x1, x2, x3, x5, x4)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.021836415 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00333899 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (8 in total): Nemo.fmpq_mpoly[k3, k4, k2, x1, x2, x3, x5, x4] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.024044097 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 11 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 36 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.808286003 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x4, x5, x3, x2, x1, k2, k4, k3] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/timings_(:gb,) deleted file mode 100644 index c9e3a5e02..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -Ruminal lipolysis -id_total, 9.522261812 diff --git a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/timings_(:gb,)_with_states deleted file mode 100644 index 31891727d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Ruminal lipolysis -id_total, 3.492436971 diff --git a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/timings_(:hybrid,) deleted file mode 100644 index 5560107fb..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -Ruminal lipolysis -id_total, 10.738081999 diff --git a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/timings_(:hybrid,)_with_states deleted file mode 100644 index 42ae157a1..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Ruminal lipolysis -id_total, 3.998466122 diff --git a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/timings_(:normalforms, 2) deleted file mode 100644 index f9e22ef46..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -Ruminal lipolysis -id_total, 9.761856715 diff --git a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/timings_(:normalforms, 2)_with_states deleted file mode 100644 index 01c909757..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Ruminal lipolysis -id_total, 3.57976231 diff --git a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/timings_(:normalforms, 3) deleted file mode 100644 index 152225a94..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -Ruminal lipolysis -id_total, 10.666380707 diff --git a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/timings_(:normalforms, 3)_with_states deleted file mode 100644 index 39918d344..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Ruminal lipolysis/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Ruminal lipolysis -id_total, 3.808286003 diff --git a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/id_funcs_(:gb,) deleted file mode 100644 index 2108d7e7a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/id_funcs_(:gb,) +++ /dev/null @@ -1,6 +0,0 @@ -[g1, -k, -g2, -b, -alpha, -r//(r*q - q)] diff --git a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/id_funcs_(:gb,)_with_states deleted file mode 100644 index ca0246bd8..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,13 +0,0 @@ -[J, -C, -I, -Ninv, -g1, -k, -g2, -b, -alpha, -r*E, -r*S, -(r*A)//(r - 1), -(r*q - q)//r] diff --git a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/id_funcs_(:hybrid,) deleted file mode 100644 index 2108d7e7a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/id_funcs_(:hybrid,) +++ /dev/null @@ -1,6 +0,0 @@ -[g1, -k, -g2, -b, -alpha, -r//(r*q - q)] diff --git a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index a4347be72..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,13 +0,0 @@ -[J, -C, -I, -Ninv, -g1, -k, -g2, -b, -alpha, -q*A, -r*E, -r*S, -A//(r*E - E)] diff --git a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/id_funcs_(:normalforms, 2) deleted file mode 100644 index 2108d7e7a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,6 +0,0 @@ -[g1, -k, -g2, -b, -alpha, -r//(r*q - q)] diff --git a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index 2953b2f53..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,13 +0,0 @@ -[J, -C, -I, -Ninv, -g1, -k, -g2, -b, -alpha, -q*A, -r*E, -r*S, -(r*A)//(r - 1)] diff --git a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/id_funcs_(:normalforms, 3) deleted file mode 100644 index 2108d7e7a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,6 +0,0 @@ -[g1, -k, -g2, -b, -alpha, -r//(r*q - q)] diff --git a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index 2953b2f53..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,13 +0,0 @@ -[J, -C, -I, -Ninv, -g1, -k, -g2, -b, -alpha, -q*A, -r*E, -r*S, -(r*A)//(r - 1)] diff --git a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/logs_(:gb,) deleted file mode 100644 index cb5b74f33..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/logs_(:gb,) +++ /dev/null @@ -1,97 +0,0 @@ -┌ Info: Processing SEAIJRC Covid model -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 20.086268672 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 20.086268672 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 8.449590185 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 8.449590185 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1282, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.560137045 seconds -│ :rank_time = rank_time -│ rank_times = 0.560137045 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:02 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ⌞ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:03 ⌝ # Computing specializations.. Time: 0:00:03 ⌟ # Computing specializations.. Time: 0:00:04 ⌞ # Computing specializations.. Time: 0:00:04 ⌜ # Computing specializations.. Time: 0:00:05 ⌝ # Computing specializations.. Time: 0:00:05 ⌟ # Computing specializations.. Time: 0:00:06 ⌞ # Computing specializations.. Time: 0:00:06 ⌜ # Computing specializations.. Time: 0:00:07 ⌝ # Computing specializations.. Time: 0:00:07 ⌟ # Computing specializations.. Time: 0:00:07 ⌞ # Computing specializations.. Time: 0:00:08 ⌜ # Computing specializations.. Time: 0:00:08 ⌝ # Computing specializations.. Time: 0:00:09 ⌟ # Computing specializations.. Time: 0:00:09 ✓ # Computing specializations.. Time: 0:00:09 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 2  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 4  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 7  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 10  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 13  ⌝ # Computing specializations.. Time: 0:00:02 - Points: 16  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 18  ⌞ # Computing specializations.. Time: 0:00:03 - Points: 21  ⌜ # Computing specializations.. Time: 0:00:03 - Points: 24  ⌝ # Computing specializations.. Time: 0:00:04 - Points: 27  ⌟ # Computing specializations.. Time: 0:00:04 - Points: 30  ✓ # Computing specializations.. Time: 0:00:04 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 1465 functions in Rational Field(alpha, b, g2, k, g1, r, q)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (0, 0)], [(0, 0), (2, 4), (3, 9), (0, 0), (1, 2), (2, 7), (1, 5)], [(0, 0), (1, 5), (2, 1), (2, 5), (6, 3), (4, 2), (4, 6), (6, 7)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 18.415481849 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 5.133201847 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 27.674279437 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 1464 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 1750 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 84.442398562 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[g1, k, g2, b, alpha, r//(r*q - q)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/logs_(:gb,)_with_states deleted file mode 100644 index 3fdce3e8d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/logs_(:gb,)_with_states +++ /dev/null @@ -1,154 +0,0 @@ -┌ Info: Processing SEAIJRC Covid model -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 20.127467616 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 20.127467616 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 8.531264341 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 8.531264341 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1282, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.551308556 seconds -│ :rank_time = rank_time -│ rank_times = 0.551308556 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:02 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:02 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:03 ⌞ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:03 ⌝ # Computing specializations.. Time: 0:00:04 ⌟ # Computing specializations.. Time: 0:00:04 ⌞ # Computing specializations.. Time: 0:00:05 ⌜ # Computing specializations.. Time: 0:00:05 ⌝ # Computing specializations.. Time: 0:00:06 ⌟ # Computing specializations.. Time: 0:00:06 ⌞ # Computing specializations.. Time: 0:00:06 ⌜ # Computing specializations.. Time: 0:00:07 ⌝ # Computing specializations.. Time: 0:00:07 ⌟ # Computing specializations.. Time: 0:00:08 ⌞ # Computing specializations.. Time: 0:00:08 ⌜ # Computing specializations.. Time: 0:00:09 ⌝ # Computing specializations.. Time: 0:00:09 ⌟ # Computing specializations.. Time: 0:00:09 ⌞ # Computing specializations.. Time: 0:00:10 ⌜ # Computing specializations.. Time: 0:00:10 ⌝ # Computing specializations.. Time: 0:00:11 ⌟ # Computing specializations.. Time: 0:00:11 ⌞ # Computing specializations.. Time: 0:00:12 ⌜ # Computing specializations.. Time: 0:00:12 ⌝ # Computing specializations.. Time: 0:00:12 ⌟ # Computing specializations.. Time: 0:00:13 ⌞ # Computing specializations.. Time: 0:00:13 ⌜ # Computing specializations.. Time: 0:00:14 ✓ # Computing specializations.. Time: 0:00:14 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 2  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 4  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 6  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 8  ⌜ # Computing specializations.. Time: 0:00:02 - Points: 10  ⌝ # Computing specializations.. Time: 0:00:02 - Points: 12  ⌟ # Computing specializations.. Time: 0:00:03 - Points: 14  ⌞ # Computing specializations.. Time: 0:00:03 - Points: 16  ⌜ # Computing specializations.. Time: 0:00:03 - Points: 18  ⌝ # Computing specializations.. Time: 0:00:04 - Points: 20  ⌟ # Computing specializations.. Time: 0:00:04 - Points: 22  ⌞ # Computing specializations.. Time: 0:00:05 - Points: 24  ⌜ # Computing specializations.. Time: 0:00:05 - Points: 26  ⌝ # Computing specializations.. Time: 0:00:06 - Points: 28  ⌟ # Computing specializations.. Time: 0:00:06 - Points: 30  ⌞ # Computing specializations.. Time: 0:00:07 - Points: 32  ✓ # Computing specializations.. Time: 0:00:07 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 1465 functions in Rational Field(alpha, b, g2, k, g1, r, q, A, Ninv, I, C, J, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (0, 0)], [(0, 0), (2, 4), (3, 9), (0, 0), (1, 2), (2, 7), (1, 5)], [(0, 0), (1, 5), (2, 1), (2, 5), (6, 3), (4, 2), (4, 6), (6, 7)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 25.917514351 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 5.053610588 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 29.597437923 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 1464 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 1750 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(alpha, b, g2, k, g1, r, q, A, Ninv, I, C, J, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (2, 1)], [(0, 0), (0, 0)], [(0, 0), (2, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.167428011 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.011484104 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 17 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.047230693 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 14 initial generators there are 13 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 565 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 94.644791655 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[J, C, I, Ninv, g1, k, g2, b, alpha, r*E, r*S, (r*A)//(r - 1), (r*q - q)//r] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/logs_(:hybrid,) deleted file mode 100644 index 4bd1fa855..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/logs_(:hybrid,) +++ /dev/null @@ -1,567 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing SEAIJRC Covid model -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 20.272265757 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 20.272265757 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 8.704277296 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 8.704277296 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1282, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.522033186 seconds -│ :rank_time = rank_time -│ rank_times = 0.522033186 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:02 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:00 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ⌝ # Computing specializations.. Time: 0:00:01 ⌟ # Computing specializations.. Time: 0:00:02 ⌞ # Computing specializations.. Time: 0:00:02 ⌜ # Computing specializations.. Time: 0:00:02 ⌝ # Computing specializations.. Time: 0:00:03 ⌟ # Computing specializations.. Time: 0:00:03 ⌞ # Computing specializations.. Time: 0:00:04 ⌜ # Computing specializations.. Time: 0:00:04 ⌝ # Computing specializations.. Time: 0:00:04 ⌟ # Computing specializations.. Time: 0:00:05 ⌞ # Computing specializations.. Time: 0:00:05 ⌜ # Computing specializations.. Time: 0:00:05 ⌝ # Computing specializations.. Time: 0:00:06 ⌟ # Computing specializations.. Time: 0:00:06 ⌞ # Computing specializations.. Time: 0:00:06 ⌜ # Computing specializations.. Time: 0:00:07 ⌝ # Computing specializations.. Time: 0:00:07 ⌟ # Computing specializations.. Time: 0:00:07 ⌞ # Computing specializations.. Time: 0:00:07 ⌜ # Computing specializations.. Time: 0:00:08 ⌝ # Computing specializations.. Time: 0:00:08 ⌟ # Computing specializations.. Time: 0:00:08 ⌞ # Computing specializations.. Time: 0:00:09 ⌜ # Computing specializations.. Time: 0:00:09 ⌝ # Computing specializations.. Time: 0:00:09 ⌟ # Computing specializations.. Time: 0:00:10 ⌞ # Computing specializations.. Time: 0:00:10 ⌜ # Computing specializations.. Time: 0:00:10 ✓ # Computing specializations.. Time: 0:00:10 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 2  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 4  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 6  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 8  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 10  ⌝ # Computing specializations.. Time: 0:00:01 - Points: 12  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 14  ⌞ # Computing specializations.. Time: 0:00:02 - Points: 16  ⌜ # Computing specializations.. Time: 0:00:02 - Points: 18  ⌝ # Computing specializations.. Time: 0:00:03 - Points: 20  ⌟ # Computing specializations.. Time: 0:00:03 - Points: 22  ⌞ # Computing specializations.. Time: 0:00:03 - Points: 24  ⌜ # Computing specializations.. Time: 0:00:04 - Points: 26  ⌝ # Computing specializations.. Time: 0:00:04 - Points: 28  ⌟ # Computing specializations.. Time: 0:00:04 - Points: 30  ⌞ # Computing specializations.. Time: 0:00:04 - Points: 32  ✓ # Computing specializations.. Time: 0:00:04 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 1465 functions in Rational Field(alpha, b, g2, k, g1, r, q)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (0, 0)], [(0, 0), (2, 4), (3, 9), (0, 0), (1, 2), (2, 7), (1, 5)], [(0, 0), (1, 5), (2, 1), (2, 5), (6, 3), (4, 2), (4, 6), (6, 7)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 19.585477357 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 4.993163694 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (7 in total): Nemo.fmpq_mpoly[alpha, b, g2, k, g1, r, q] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 64 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 58 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 64 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 58 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 64 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 58 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y7, y4, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y2, y1, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(alpha, b, g2, k, g1, r, q)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (2, 1)], [(0, 0), (0, 0)], [(0, 0), (2, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.019132355 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.045250654 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y4, y7, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y3, t, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(alpha, b, g2, k, g1, r, q)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (0, 0)], [(0, 0), (0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.018842419 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001805823 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, t, y6, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y5, y2, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(alpha, b, g2, k, g1, r, q)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (2, 1), (0, 0)], [(0, 0), (0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.016296202 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001685499 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y2, y6, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, t, y3, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(alpha, b, g2, k, g1, r, q)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (2, 1)], [(0, 0), (2, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015124152 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.056044493 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y7, y3, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y2, y5, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(alpha, b, g2, k, g1, r, q)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (0, 0)], [(0, 0), (0, 0), (2, 1)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.01956525 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001874962 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y6, y4, t], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y2, y3, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(alpha, b, g2, k, g1, r, q)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015288478 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001756819 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y2, y6, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y4, y3, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(alpha, b, g2, k, g1, r, q)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (0, 0), (2, 1)], [(0, 0), (2, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.074983685 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001790896 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y6, t, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y2, y5, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(alpha, b, g2, k, g1, r, q)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (0, 0), (2, 1)], [(0, 0), (2, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.022856953 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00175747 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y2, y7, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y5, y4, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(alpha, b, g2, k, g1, r, q)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.014027539 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001605161 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y2, y6, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y1, y7, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(alpha, b, g2, k, g1, r, q)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (2, 1)], [(0, 0), (2, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.059318877 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001883544 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 31.067176012 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 1464 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 1750 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 90.063214279 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[g1, k, g2, b, alpha, r//(r*q - q)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/logs_(:hybrid,)_with_states deleted file mode 100644 index 289f84323..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,619 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing SEAIJRC Covid model -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 18.529424259 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 18.529424259 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 8.389113024 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 8.389113024 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1282, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.459036712 seconds -│ :rank_time = rank_time -│ rank_times = 0.459036712 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:02 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:02 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ⌞ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:03 ⌝ # Computing specializations.. Time: 0:00:04 ⌟ # Computing specializations.. Time: 0:00:04 ⌞ # Computing specializations.. Time: 0:00:04 ⌜ # Computing specializations.. Time: 0:00:05 ⌝ # Computing specializations.. Time: 0:00:05 ⌟ # Computing specializations.. Time: 0:00:05 ⌞ # Computing specializations.. Time: 0:00:06 ⌜ # Computing specializations.. Time: 0:00:06 ⌝ # Computing specializations.. Time: 0:00:07 ⌟ # Computing specializations.. Time: 0:00:07 ⌞ # Computing specializations.. Time: 0:00:08 ⌜ # Computing specializations.. Time: 0:00:08 ⌝ # Computing specializations.. Time: 0:00:08 ⌟ # Computing specializations.. Time: 0:00:09 ⌞ # Computing specializations.. Time: 0:00:09 ⌜ # Computing specializations.. Time: 0:00:09 ⌝ # Computing specializations.. Time: 0:00:10 ⌟ # Computing specializations.. Time: 0:00:10 ⌞ # Computing specializations.. Time: 0:00:11 ⌜ # Computing specializations.. Time: 0:00:11 ⌝ # Computing specializations.. Time: 0:00:11 ⌟ # Computing specializations.. Time: 0:00:12 ⌞ # Computing specializations.. Time: 0:00:12 ⌜ # Computing specializations.. Time: 0:00:13 ✓ # Computing specializations.. Time: 0:00:13 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 2  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 4  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 6  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 8  ⌜ # Computing specializations.. Time: 0:00:02 - Points: 10  ⌝ # Computing specializations.. Time: 0:00:02 - Points: 12  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 14  ⌞ # Computing specializations.. Time: 0:00:03 - Points: 16  ⌜ # Computing specializations.. Time: 0:00:03 - Points: 18  ⌝ # Computing specializations.. Time: 0:00:04 - Points: 20  ⌟ # Computing specializations.. Time: 0:00:04 - Points: 22  ⌞ # Computing specializations.. Time: 0:00:04 - Points: 24  ⌜ # Computing specializations.. Time: 0:00:05 - Points: 26  ⌝ # Computing specializations.. Time: 0:00:05 - Points: 28  ⌟ # Computing specializations.. Time: 0:00:06 - Points: 30  ⌞ # Computing specializations.. Time: 0:00:06 - Points: 32  ✓ # Computing specializations.. Time: 0:00:06 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 1465 functions in Rational Field(alpha, b, g2, k, g1, r, q, A, Ninv, I, C, J, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (0, 0)], [(0, 0), (2, 4), (3, 9), (0, 0), (1, 2), (2, 7), (1, 5)], [(0, 0), (1, 5), (2, 1), (2, 5), (6, 3), (4, 2), (4, 6), (6, 7)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 23.676705414 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 4.991166495 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 29.028629452 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 1464 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 1750 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(alpha, b, g2, k, g1, r, q, A, Ninv, I, C, J, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (2, 1)], [(0, 0), (0, 0)], [(0, 0), (2, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.121182723 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.011825546 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 17 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (14 in total): Nemo.fmpq_mpoly[alpha, b, g2, k, g1, r, q, A, Ninv, I, C, J, S, E] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 460 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 439 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 460 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 439 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 30 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 460 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 439 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 30 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y9, y2, y5, y14, y3, y11], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y8, y4, y13, y1, y7, y12, y10], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 14 functions in Rational Field(alpha, b, g2, k, g1, r, q, A, Ninv, I, C, J, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 2), (2, 1)], [(0, 0), (2, 0), (3, 0)], [(0, 0), (2, 1), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 2), (0, 2), (0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.032026516 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.041921712 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 18 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y7, y12, y4, y10, y14, y11], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, t, y6, y3, y9, y13, y1, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 14 functions in Rational Field(alpha, b, g2, k, g1, r, q, A, Ninv, I, C, J, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 2), (2, 1)], [(0, 0), (2, 0)], [(0, 2), (0, 0), (2, 0)], [(0, 0), (0, 2), (0, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 3), (2, 1), (2, 1)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.034791215 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002488906 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 18 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y5, y9, y8, y10, y12, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y4, y14, t, y13, y6, y7, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 14 functions in Rational Field(alpha, b, g2, k, g1, r, q, A, Ninv, I, C, J, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(1, 2), (0, 2), (0, 0), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (0, 0)], [(0, 0), (2, 0), (3, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 2), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.082544793 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002424232 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 18 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y13, y6, y5, y11, y1, y12], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y8, y3, t, y2, y14, y4, y9], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 14 functions in Rational Field(alpha, b, g2, k, g1, r, q, A, Ninv, I, C, J, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 2), (2, 1)], [(0, 0), (2, 3), (2, 1), (2, 1)], [(0, 2), (0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 2), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.035612884 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.056767824 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 18 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y11, y4, y12, y3, y1, y6], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y10, y14, y7, y9, y8, y13, t], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 14 functions in Rational Field(alpha, b, g2, k, g1, r, q, A, Ninv, I, C, J, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 2), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 3), (2, 1), (2, 1)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0), (4, 0)], [(0, 0), (0, 2), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.03366824 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002641637 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 18 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y3, y4, y10, y12, y5, y13], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y7, y14, y8, y9, t, y6, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 14 functions in Rational Field(alpha, b, g2, k, g1, r, q, A, Ninv, I, C, J, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(2, 1), (0, 0), (2, 0)], [(0, 0), (3, 3), (2, 1), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 2), (0, 0), (0, 0)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (2, 1), (2, 1), (4, 2)], [(2, 1), (0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.080465596 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002580895 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 21 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y13, y2, t, y3, y5, y7, y10], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y6, y9, y14, y4, y12, y11, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 14 functions in Rational Field(alpha, b, g2, k, g1, r, q, A, Ninv, I, C, J, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 2), (2, 1)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0), (3, 0)], [(0, 0), (2, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 2), (0, 2), (0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.033667531 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002384806 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 18 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y13, y9, y4, y5, y8, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y1, y12, y11, y3, y7, y6, y14], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 14 functions in Rational Field(alpha, b, g2, k, g1, r, q, A, Ninv, I, C, J, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0), (3, 0)], [(0, 0), (2, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 2), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(1, 2), (0, 2), (0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.073046967 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002754261 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 18 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y2, y8, y9, y4, y13, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y5, y10, y14, t, y7, y11, y12], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 14 functions in Rational Field(alpha, b, g2, k, g1, r, q, A, Ninv, I, C, J, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(3, 2), (0, 0), (2, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 2), (0, 0), (0, 0), (2, 1)], [(0, 0), (1, 0)], [(3, 2), (0, 0), (2, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(3, 3), (0, 0), (2, 1), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (0, 0)], [(0, 0), (1, 2), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.087110751 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002409146 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 18 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y8, y1, y2, y12, y13, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y11, y6, y14, y5, y7, y9, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 14 functions in Rational Field(alpha, b, g2, k, g1, r, q, A, Ninv, I, C, J, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 2), (0, 2), (0, 0), (0, 0)], [(0, 0), (2, 0), (3, 0)], [(0, 0), (2, 1), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 2), (2, 1)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.033670034 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002587497 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 18 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.015725116 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 14 initial generators there are 13 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 1829 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 91.114158531 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[J, C, I, Ninv, g1, k, g2, b, alpha, q*A, r*E, r*S, A//(r*E - E)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/logs_(:normalforms, 2) deleted file mode 100644 index 61d06e536..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/logs_(:normalforms, 2) +++ /dev/null @@ -1,126 +0,0 @@ -┌ Info: Processing SEAIJRC Covid model -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 19.478030813 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 19.478030813 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 8.327507481 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 8.327507481 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1282, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.543465401 seconds -│ :rank_time = rank_time -│ rank_times = 0.543465401 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:02 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:02 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ⌞ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:03 ⌝ # Computing specializations.. Time: 0:00:04 ⌟ # Computing specializations.. Time: 0:00:04 ⌞ # Computing specializations.. Time: 0:00:05 ⌜ # Computing specializations.. Time: 0:00:05 ⌝ # Computing specializations.. Time: 0:00:05 ⌟ # Computing specializations.. Time: 0:00:06 ⌞ # Computing specializations.. Time: 0:00:06 ⌜ # Computing specializations.. Time: 0:00:07 ⌝ # Computing specializations.. Time: 0:00:07 ⌟ # Computing specializations.. Time: 0:00:08 ⌞ # Computing specializations.. Time: 0:00:08 ⌜ # Computing specializations.. Time: 0:00:08 ⌝ # Computing specializations.. Time: 0:00:09 ⌟ # Computing specializations.. Time: 0:00:09 ✓ # Computing specializations.. Time: 0:00:09 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 2  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 5  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 8  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 11  ⌜ # Computing specializations.. Time: 0:00:02 - Points: 14  ⌝ # Computing specializations.. Time: 0:00:02 - Points: 17  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 20  ⌞ # Computing specializations.. Time: 0:00:03 - Points: 23  ⌜ # Computing specializations.. Time: 0:00:03 - Points: 26  ⌝ # Computing specializations.. Time: 0:00:04 - Points: 29  ⌟ # Computing specializations.. Time: 0:00:04 - Points: 32  ✓ # Computing specializations.. Time: 0:00:04 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 1465 functions in Rational Field(alpha, b, g2, k, g1, r, q)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (0, 0)], [(0, 0), (2, 4), (3, 9), (0, 0), (1, 2), (2, 7), (1, 5)], [(0, 0), (1, 5), (2, 1), (2, 5), (6, 3), (4, 2), (4, 6), (6, 7)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 18.491910143 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 5.063301475 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (7 in total): Nemo.fmpq_mpoly[alpha, b, g2, k, g1, r, q] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 15 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 11 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 15 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 11 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 15 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 11 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 27.283201758 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 1464 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 1750 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 83.534459142 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[g1, k, g2, b, alpha, r//(r*q - q)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/logs_(:normalforms, 2)_with_states deleted file mode 100644 index a7da1d5dc..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,183 +0,0 @@ -┌ Info: Processing SEAIJRC Covid model -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 56.345120296 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 56.345120296 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 8.404169386 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 8.404169386 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1282, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.526690379 seconds -│ :rank_time = rank_time -│ rank_times = 0.526690379 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:02 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:02 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:03 ⌞ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:03 ⌝ # Computing specializations.. Time: 0:00:04 ⌟ # Computing specializations.. Time: 0:00:04 ⌞ # Computing specializations.. Time: 0:00:05 ⌜ # Computing specializations.. Time: 0:00:05 ⌝ # Computing specializations.. Time: 0:00:05 ⌟ # Computing specializations.. Time: 0:00:06 ⌞ # Computing specializations.. Time: 0:00:06 ⌜ # Computing specializations.. Time: 0:00:07 ⌝ # Computing specializations.. Time: 0:00:07 ⌟ # Computing specializations.. Time: 0:00:08 ⌞ # Computing specializations.. Time: 0:00:08 ⌜ # Computing specializations.. Time: 0:00:08 ⌝ # Computing specializations.. Time: 0:00:09 ⌟ # Computing specializations.. Time: 0:00:09 ⌞ # Computing specializations.. Time: 0:00:10 ⌜ # Computing specializations.. Time: 0:00:10 ⌝ # Computing specializations.. Time: 0:00:10 ⌟ # Computing specializations.. Time: 0:00:11 ⌞ # Computing specializations.. Time: 0:00:11 ⌜ # Computing specializations.. Time: 0:00:12 ⌝ # Computing specializations.. Time: 0:00:12 ⌟ # Computing specializations.. Time: 0:00:13 ⌞ # Computing specializations.. Time: 0:00:13 ⌜ # Computing specializations.. Time: 0:00:13 ✓ # Computing specializations.. Time: 0:00:13 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 2  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 4  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 6  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 8  ⌜ # Computing specializations.. Time: 0:00:02 - Points: 10  ⌝ # Computing specializations.. Time: 0:00:02 - Points: 12  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 14  ⌞ # Computing specializations.. Time: 0:00:03 - Points: 16  ⌜ # Computing specializations.. Time: 0:00:03 - Points: 18  ⌝ # Computing specializations.. Time: 0:00:04 - Points: 20  ⌟ # Computing specializations.. Time: 0:00:04 - Points: 22  ⌞ # Computing specializations.. Time: 0:00:05 - Points: 24  ⌜ # Computing specializations.. Time: 0:00:05 - Points: 26  ⌝ # Computing specializations.. Time: 0:00:05 - Points: 28  ⌟ # Computing specializations.. Time: 0:00:06 - Points: 30  ⌞ # Computing specializations.. Time: 0:00:06 - Points: 32  ✓ # Computing specializations.. Time: 0:00:06 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 1465 functions in Rational Field(alpha, b, g2, k, g1, r, q, A, Ninv, I, C, J, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (0, 0)], [(0, 0), (2, 4), (3, 9), (0, 0), (1, 2), (2, 7), (1, 5)], [(0, 0), (1, 5), (2, 1), (2, 5), (6, 3), (4, 2), (4, 6), (6, 7)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 25.079864317 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 4.970668903 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 28.567487811 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 1464 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 1750 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(alpha, b, g2, k, g1, r, q, A, Ninv, I, C, J, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (2, 1)], [(0, 0), (0, 0)], [(0, 0), (2, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.206237223 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.013138958 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 17 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (14 in total): Nemo.fmpq_mpoly[alpha, b, g2, k, g1, r, q, A, Ninv, I, C, J, S, E] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 65 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 45 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 65 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 45 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 65 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 45 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.039668383 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 14 initial generators there are 13 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 318 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 129.048477397 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[J, C, I, Ninv, g1, k, g2, b, alpha, q*A, r*E, r*S, (r*A)//(r - 1)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/logs_(:normalforms, 3) deleted file mode 100644 index 5a5613682..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/logs_(:normalforms, 3) +++ /dev/null @@ -1,126 +0,0 @@ -┌ Info: Processing SEAIJRC Covid model -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 55.969837787 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 55.969837787 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 8.892527568 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 8.892527568 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1282, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.550217099 seconds -│ :rank_time = rank_time -│ rank_times = 0.550217099 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:02 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ⌞ # Computing specializations.. Time: 0:00:02 ⌜ # Computing specializations.. Time: 0:00:03 ⌝ # Computing specializations.. Time: 0:00:03 ⌟ # Computing specializations.. Time: 0:00:04 ⌞ # Computing specializations.. Time: 0:00:04 ⌜ # Computing specializations.. Time: 0:00:05 ⌝ # Computing specializations.. Time: 0:00:05 ⌟ # Computing specializations.. Time: 0:00:05 ⌞ # Computing specializations.. Time: 0:00:06 ⌜ # Computing specializations.. Time: 0:00:06 ⌝ # Computing specializations.. Time: 0:00:07 ⌟ # Computing specializations.. Time: 0:00:07 ⌞ # Computing specializations.. Time: 0:00:08 ⌜ # Computing specializations.. Time: 0:00:08 ⌝ # Computing specializations.. Time: 0:00:09 ⌟ # Computing specializations.. Time: 0:00:09 ⌞ # Computing specializations.. Time: 0:00:09 ✓ # Computing specializations.. Time: 0:00:09 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 2  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 4  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 7  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 10  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 13  ⌝ # Computing specializations.. Time: 0:00:02 - Points: 16  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 18  ⌞ # Computing specializations.. Time: 0:00:03 - Points: 21  ⌜ # Computing specializations.. Time: 0:00:03 - Points: 24  ⌝ # Computing specializations.. Time: 0:00:04 - Points: 27  ⌟ # Computing specializations.. Time: 0:00:04 - Points: 30  ✓ # Computing specializations.. Time: 0:00:04 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 1465 functions in Rational Field(alpha, b, g2, k, g1, r, q)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (0, 0)], [(0, 0), (2, 4), (3, 9), (0, 0), (1, 2), (2, 7), (1, 5)], [(0, 0), (1, 5), (2, 1), (2, 5), (6, 3), (4, 2), (4, 6), (6, 7)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 18.594018018 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 4.849611089 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (7 in total): Nemo.fmpq_mpoly[alpha, b, g2, k, g1, r, q] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 64 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 58 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 64 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 58 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 64 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 58 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 28.592378507 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 1464 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 1750 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 121.650775075 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[g1, k, g2, b, alpha, r//(r*q - q)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/logs_(:normalforms, 3)_with_states deleted file mode 100644 index bafa4658c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,183 +0,0 @@ -┌ Info: Processing SEAIJRC Covid model -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 19.983236809 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 19.983236809 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 8.588620895 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 8.588620895 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1282, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.553585456 seconds -│ :rank_time = rank_time -│ rank_times = 0.553585456 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:02 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:02 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ⌞ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:03 ⌝ # Computing specializations.. Time: 0:00:04 ⌟ # Computing specializations.. Time: 0:00:04 ⌞ # Computing specializations.. Time: 0:00:05 ⌜ # Computing specializations.. Time: 0:00:05 ⌝ # Computing specializations.. Time: 0:00:05 ⌟ # Computing specializations.. Time: 0:00:06 ⌞ # Computing specializations.. Time: 0:00:06 ⌜ # Computing specializations.. Time: 0:00:07 ⌝ # Computing specializations.. Time: 0:00:07 ⌟ # Computing specializations.. Time: 0:00:08 ⌞ # Computing specializations.. Time: 0:00:08 ⌜ # Computing specializations.. Time: 0:00:08 ⌝ # Computing specializations.. Time: 0:00:09 ⌟ # Computing specializations.. Time: 0:00:09 ⌞ # Computing specializations.. Time: 0:00:10 ⌜ # Computing specializations.. Time: 0:00:10 ⌝ # Computing specializations.. Time: 0:00:10 ⌟ # Computing specializations.. Time: 0:00:11 ⌞ # Computing specializations.. Time: 0:00:11 ⌜ # Computing specializations.. Time: 0:00:12 ⌝ # Computing specializations.. Time: 0:00:12 ⌟ # Computing specializations.. Time: 0:00:13 ⌞ # Computing specializations.. Time: 0:00:13 ⌜ # Computing specializations.. Time: 0:00:13 ✓ # Computing specializations.. Time: 0:00:13 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 2  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 4  ⌟ # Computing specializations.. Time: 0:00:01 - Points: 6  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 8  ⌜ # Computing specializations.. Time: 0:00:02 - Points: 10  ⌝ # Computing specializations.. Time: 0:00:02 - Points: 12  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 14  ⌞ # Computing specializations.. Time: 0:00:03 - Points: 16  ⌜ # Computing specializations.. Time: 0:00:03 - Points: 18  ⌝ # Computing specializations.. Time: 0:00:04 - Points: 20  ⌟ # Computing specializations.. Time: 0:00:04 - Points: 22  ⌞ # Computing specializations.. Time: 0:00:05 - Points: 24  ⌜ # Computing specializations.. Time: 0:00:05 - Points: 26  ⌝ # Computing specializations.. Time: 0:00:05 - Points: 28  ⌟ # Computing specializations.. Time: 0:00:06 - Points: 30  ⌞ # Computing specializations.. Time: 0:00:06 - Points: 32  ✓ # Computing specializations.. Time: 0:00:06 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 1465 functions in Rational Field(alpha, b, g2, k, g1, r, q, A, Ninv, I, C, J, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (0, 0)], [(0, 0), (2, 4), (3, 9), (0, 0), (1, 2), (2, 7), (1, 5)], [(0, 0), (1, 5), (2, 1), (2, 5), (6, 3), (4, 2), (4, 6), (6, 7)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 25.104391412 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 5.061548613 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 27.879319413 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 1464 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 1750 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(alpha, b, g2, k, g1, r, q, A, Ninv, I, C, J, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (2, 1)], [(0, 0), (0, 0)], [(0, 0), (2, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 20 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.132386864 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.031603838 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 17 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (14 in total): Nemo.fmpq_mpoly[alpha, b, g2, k, g1, r, q, A, Ninv, I, C, J, S, E] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 460 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 439 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 460 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 439 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 30 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 460 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 439 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 30 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.019482865 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 14 initial generators there are 13 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 318 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 92.438250109 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[J, C, I, Ninv, g1, k, g2, b, alpha, q*A, r*E, r*S, (r*A)//(r - 1)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/timings_(:gb,) deleted file mode 100644 index cea0cfc84..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -SEAIJRC Covid model -id_total, 84.442398562 diff --git a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/timings_(:gb,)_with_states deleted file mode 100644 index de38ac5d1..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SEAIJRC Covid model -id_total, 94.644791655 diff --git a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/timings_(:hybrid,) deleted file mode 100644 index 64c8ddbde..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -SEAIJRC Covid model -id_total, 90.063214279 diff --git a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/timings_(:hybrid,)_with_states deleted file mode 100644 index 7c4debfdc..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SEAIJRC Covid model -id_total, 91.114158531 diff --git a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/timings_(:normalforms, 2) deleted file mode 100644 index 91ff81ff4..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -SEAIJRC Covid model -id_total, 83.534459142 diff --git a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/timings_(:normalforms, 2)_with_states deleted file mode 100644 index c7bf2c33e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SEAIJRC Covid model -id_total, 129.048477397 diff --git a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/timings_(:normalforms, 3) deleted file mode 100644 index 1c091c951..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -SEAIJRC Covid model -id_total, 121.650775075 diff --git a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/timings_(:normalforms, 3)_with_states deleted file mode 100644 index ca426cab1..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEAIJRC Covid model/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SEAIJRC Covid model -id_total, 92.438250109 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 34/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SEIR 34/id_funcs_(:gb,) deleted file mode 100644 index e746144db..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 34/id_funcs_(:gb,) +++ /dev/null @@ -1,5 +0,0 @@ -[mu, -K*epsilon, -gamma + epsilon, -gamma//(K^2*epsilon), -(K*epsilon*r*beta)//gamma] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 34/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR 34/id_funcs_(:gb,)_with_states deleted file mode 100644 index 3e7c4b9e0..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 34/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,10 +0,0 @@ -[S, -A, -N, -mu, -K*epsilon*N^2, -gamma*N^2*I, -gamma*epsilon*N^2, -I + E, -gamma + epsilon, -(gamma*r*beta + epsilon*r*beta)//gamma] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 34/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SEIR 34/id_funcs_(:hybrid,) deleted file mode 100644 index 378727ed8..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 34/id_funcs_(:hybrid,) +++ /dev/null @@ -1,5 +0,0 @@ -[mu, -K*epsilon, -gamma*epsilon, -epsilon*r*beta, -gamma + epsilon] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 34/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR 34/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index 3434326f1..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 34/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,10 +0,0 @@ -[S, -A, -N, -mu, -K*I, -K*epsilon, -gamma*I, -r*beta*I, -I + E, -gamma + epsilon] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 34/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SEIR 34/id_funcs_(:normalforms, 2) deleted file mode 100644 index 047813c21..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 34/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,5 +0,0 @@ -[mu, -K*epsilon, -gamma*epsilon, -gamma + epsilon, -(K*epsilon*r*beta)//gamma] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 34/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR 34/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index 195a7c77b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 34/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,10 +0,0 @@ -[S, -A, -N, -mu, -K*I, -K*epsilon, -gamma*I, -I + E, -gamma + epsilon, -(gamma*r*beta + epsilon*r*beta)//gamma] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 34/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SEIR 34/id_funcs_(:normalforms, 3) deleted file mode 100644 index 378727ed8..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 34/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,5 +0,0 @@ -[mu, -K*epsilon, -gamma*epsilon, -epsilon*r*beta, -gamma + epsilon] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 34/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR 34/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index 3434326f1..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 34/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,10 +0,0 @@ -[S, -A, -N, -mu, -K*I, -K*epsilon, -gamma*I, -r*beta*I, -I + E, -gamma + epsilon] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 34/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SEIR 34/logs_(:gb,) deleted file mode 100644 index b3dbee2c0..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 34/logs_(:gb,) +++ /dev/null @@ -1,124 +0,0 @@ -┌ Info: Processing SEIR 34 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.368658031 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.368658031 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.031855016 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.031855016 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [9, 1, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.0182e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.0182e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Warning: One of the Wronskians has corank greater than one, so the results of the algorithm will be valid only for multiexperiment identifiability. If you still would like to assess single-experiment identifiability, we recommend using SIAN (https://github.com/alexeyovchinnikov/SIAN-Julia) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:110 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(gamma, K, epsilon, mu, r, beta)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (3, 1), (2, 1)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (1, 2), (1, 3)], [(0, 0), (4, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.39844764 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.239342085 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(gamma, K, epsilon, mu, r, beta)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (3, 1), (2, 1)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (1, 2), (1, 3)], [(0, 0), (4, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 36 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.02949927 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002151567 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.185406153 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 9 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 1510 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.339596295 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[mu, K*epsilon, gamma + epsilon, gamma//(K^2*epsilon), (K*epsilon*r*beta)//gamma] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 34/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR 34/logs_(:gb,)_with_states deleted file mode 100644 index 4b7432521..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 34/logs_(:gb,)_with_states +++ /dev/null @@ -1,213 +0,0 @@ -┌ Info: Processing SEIR 34 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.520847403 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.520847403 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.08992517 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.08992517 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [9, 1, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.3091e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.3091e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Warning: One of the Wronskians has corank greater than one, so the results of the algorithm will be valid only for multiexperiment identifiability. If you still would like to assess single-experiment identifiability, we recommend using SIAN (https://github.com/alexeyovchinnikov/SIAN-Julia) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:110 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(gamma, K, epsilon, mu, r, beta, N, A, I, R, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (3, 1), (2, 1)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (1, 2), (1, 3)], [(0, 0), (4, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.948806174 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002510645 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(gamma, K, epsilon, mu, r, beta, N, A, I, R, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (3, 1), (2, 1)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (1, 2), (1, 3)], [(0, 0), (4, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 36 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.043497523 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00259953 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.003157471 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 9 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 1510 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(gamma, K, epsilon, mu, r, beta, N, A, I, R, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)], [(0, 0), (4, 0), (2, 1)], [(0, 0), (4, 0), (1, 0)], [(0, 0), (1, 4), (0, 6)], [(0, 0), (5, 0), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.036224587 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003351626 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(gamma, K, epsilon, mu, r, beta, N, A, I, R, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)], [(0, 0), (4, 0), (2, 1)], [(0, 0), (4, 0), (1, 0)], [(0, 0), (1, 4), (0, 6)], [(0, 0), (5, 0), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.108813632 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002979156 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.009460293 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 11 initial generators there are 10 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 137 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.099074276 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[S, A, N, mu, K*epsilon*N^2, gamma*N^2*I, gamma*epsilon*N^2, I + E, gamma + epsilon, (gamma*r*beta + epsilon*r*beta)//gamma] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 34/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SEIR 34/logs_(:hybrid,) deleted file mode 100644 index 1a60f1a8b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 34/logs_(:hybrid,) +++ /dev/null @@ -1,589 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing SEIR 34 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.580513337 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.580513337 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.032158112 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.032158112 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [9, 1, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.8166e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.8166e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Warning: One of the Wronskians has corank greater than one, so the results of the algorithm will be valid only for multiexperiment identifiability. If you still would like to assess single-experiment identifiability, we recommend using SIAN (https://github.com/alexeyovchinnikov/SIAN-Julia) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:110 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(gamma, K, epsilon, mu, r, beta)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (3, 1), (2, 1)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (1, 2), (1, 3)], [(0, 0), (4, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.348046611 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.205122142 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(gamma, K, epsilon, mu, r, beta)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (3, 1), (2, 1)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (1, 2), (1, 3)], [(0, 0), (4, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 36 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.031783774 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002033552 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (6 in total): Nemo.fmpq_mpoly[gamma, K, epsilon, mu, r, beta] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 80 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 69 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 80 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 69 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 5 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 80 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 69 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 5 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y1, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y4, t, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(gamma, K, epsilon, mu, r, beta)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 2), (0, 2)], [(0, 0), (2, 0), (2, 1)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (3, 0), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.076513184 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001579875 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y1, y2, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(gamma, K, epsilon, mu, r, beta)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 1)], [(0, 2), (0, 0), (1, 2)], [(1, 1), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.02439655 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001589016 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y4, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y3, t, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(gamma, K, epsilon, mu, r, beta)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 2), (0, 0), (1, 2)], [(1, 1), (0, 0), (1, 0)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.026001338 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001656758 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y6, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y5, y4, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(gamma, K, epsilon, mu, r, beta)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (1, 2), (0, 2)], [(0, 0), (2, 0), (2, 1)], [(0, 0), (3, 0), (3, 1)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.026419795 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001509316 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y3, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y4, y1, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(gamma, K, epsilon, mu, r, beta)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0), (2, 1)], [(0, 0), (1, 2), (0, 2)], [(0, 0), (2, 0)], [(0, 0), (3, 0), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.120081317 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001637324 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y3, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y4, y6, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(gamma, K, epsilon, mu, r, beta)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 1), (3, 1)], [(0, 2), (0, 0), (1, 2)], [(1, 1), (0, 0), (1, 0)], [(0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.024731895 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001571781 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y2, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3, y5, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(gamma, K, epsilon, mu, r, beta)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (1, 1), (2, 1)], [(0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.023581157 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001469253 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y6, y1], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y5, y3, t], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(gamma, K, epsilon, mu, r, beta)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (2, 0), (2, 1)], [(0, 0), (1, 2), (0, 2)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (3, 0), (3, 1)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.026435179 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001476626 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y1, y4, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(gamma, K, epsilon, mu, r, beta)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 0), (2, 0)], [(1, 1), (0, 0)], [(0, 2), (0, 0), (1, 2)], [(0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.108740096 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001519435 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y1, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y6, y3, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(gamma, K, epsilon, mu, r, beta)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 1), (2, 1)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (0, 0), (1, 0)], [(0, 2), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.023838159 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001489713 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.831107116 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 9 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 27 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 11.342428681 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[mu, K*epsilon, gamma*epsilon, epsilon*r*beta, gamma + epsilon] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 34/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR 34/logs_(:hybrid,)_with_states deleted file mode 100644 index fbdf8901f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 34/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,678 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing SEIR 34 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.47835473 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.47835473 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.11505131 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.11505131 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [9, 1, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.0979e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.0979e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Warning: One of the Wronskians has corank greater than one, so the results of the algorithm will be valid only for multiexperiment identifiability. If you still would like to assess single-experiment identifiability, we recommend using SIAN (https://github.com/alexeyovchinnikov/SIAN-Julia) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:110 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(gamma, K, epsilon, mu, r, beta, N, A, I, R, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (3, 1), (2, 1)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (1, 2), (1, 3)], [(0, 0), (4, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.852353526 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002209624 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(gamma, K, epsilon, mu, r, beta, N, A, I, R, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (3, 1), (2, 1)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (1, 2), (1, 3)], [(0, 0), (4, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 36 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.030191621 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00253414 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.003428716 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 9 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 1510 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(gamma, K, epsilon, mu, r, beta, N, A, I, R, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)], [(0, 0), (4, 0), (2, 1)], [(0, 0), (4, 0), (1, 0)], [(0, 0), (1, 4), (0, 6)], [(0, 0), (5, 0), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.033989694 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00340478 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(gamma, K, epsilon, mu, r, beta, N, A, I, R, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)], [(0, 0), (4, 0), (2, 1)], [(0, 0), (4, 0), (1, 0)], [(0, 0), (1, 4), (0, 6)], [(0, 0), (5, 0), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.097768189 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003000508 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (12 in total): Nemo.fmpq_mpoly[gamma, K, epsilon, mu, r, beta, N, A, I, R, S, E] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 420 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 396 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 420 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 396 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 36 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 420 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 396 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 36 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y9, y8, t, y3, y10], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y2, y12, y5, y11, y6, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(gamma, K, epsilon, mu, r, beta, N, A, I, R, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (3, 2)], [(0, 0), (1, 1), (2, 1)], [(0, 0), (3, 2), (4, 2)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (1, 1), (2, 1)], [(0, 2), (0, 0), (1, 2)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 56 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.096560432 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00266348 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y4, t, y9, y2, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y10, y12, y1, y6, y7, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(gamma, K, epsilon, mu, r, beta, N, A, I, R, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(1, 1), (0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0), (2, 1)], [(0, 2), (0, 0), (1, 2)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.025863082 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002313992 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y5, y9, y4, y7, t], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y11, y12, y2, y10, y3, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(gamma, K, epsilon, mu, r, beta, N, A, I, R, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (1, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 2), (0, 0), (1, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0), (2, 1)], [(0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.092524042 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002550761 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y1, t, y11, y10, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y12, y5, y4, y2, y9, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(gamma, K, epsilon, mu, r, beta, N, A, I, R, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(1, 1), (0, 0)], [(0, 0), (1, 1), (2, 1)], [(0, 0), (1, 0)], [(1, 1), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.038425918 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002598546 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y3, y4, y12, y6, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y8, y9, y5, y10, y1, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(gamma, K, epsilon, mu, r, beta, N, A, I, R, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0), (2, 1)], [(0, 0), (1, 2), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (3, 0), (3, 1)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.10542334 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002443139 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y8, y11, y12, y10, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y4, y1, y7, y6, y2, y9], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(gamma, K, epsilon, mu, r, beta, N, A, I, R, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 2), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (1, 1)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.035495385 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00235304 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y8, y7, y5, y2, y12], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y11, y3, t, y4, y1, y9], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(gamma, K, epsilon, mu, r, beta, N, A, I, R, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 2), (2, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.037057274 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002344012 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y5, y12, y9, y6, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y7, y3, y1, y11, y10, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(gamma, K, epsilon, mu, r, beta, N, A, I, R, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 2), (0, 0), (1, 2)], [(1, 1), (0, 0), (2, 1)], [(1, 1), (0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.025658341 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.049507192 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y7, t, y3, y5, y8], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y6, y12, y1, y11, y10, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(gamma, K, epsilon, mu, r, beta, N, A, I, R, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0), (2, 1)], [(1, 1), (0, 0), (2, 1)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (0, 0), (1, 0)], [(0, 2), (0, 0), (1, 2)], [(0, 0), (1, 0)], [(1, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.026282734 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002310801 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y3, t, y10, y9, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y5, y12, y7, y2, y4, y11], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(gamma, K, epsilon, mu, r, beta, N, A, I, R, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(2, 2), (0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (2, 1)], [(2, 2), (0, 0), (2, 1)], [(0, 2), (0, 0), (1, 2)], [(1, 1), (0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.039795596 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.063674939 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 16 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.021017469 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 11 initial generators there are 10 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 79 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 5.308653055 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[S, A, N, mu, K*I, K*epsilon, gamma*I, r*beta*I, I + E, gamma + epsilon] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 34/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SEIR 34/logs_(:normalforms, 2) deleted file mode 100644 index 32d3a95be..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 34/logs_(:normalforms, 2) +++ /dev/null @@ -1,153 +0,0 @@ -┌ Info: Processing SEIR 34 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.288014978 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.288014978 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.030035439 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.030035439 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [9, 1, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.0765e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.0765e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Warning: One of the Wronskians has corank greater than one, so the results of the algorithm will be valid only for multiexperiment identifiability. If you still would like to assess single-experiment identifiability, we recommend using SIAN (https://github.com/alexeyovchinnikov/SIAN-Julia) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:110 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(gamma, K, epsilon, mu, r, beta)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (3, 1), (2, 1)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (1, 2), (1, 3)], [(0, 0), (4, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.18154032 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.101604837 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(gamma, K, epsilon, mu, r, beta)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (3, 1), (2, 1)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (1, 2), (1, 3)], [(0, 0), (4, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 36 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.075471306 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001798384 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (6 in total): Nemo.fmpq_mpoly[gamma, K, epsilon, mu, r, beta] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 25 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 18 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 25 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 18 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 2 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 25 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 18 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 2 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.70447956 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 9 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 54 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 9.975141276 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[mu, K*epsilon, gamma*epsilon, gamma + epsilon, (K*epsilon*r*beta)//gamma] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 34/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR 34/logs_(:normalforms, 2)_with_states deleted file mode 100644 index eb9e096dc..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 34/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,242 +0,0 @@ -┌ Info: Processing SEIR 34 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.33752025 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.33752025 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.029634544 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.029634544 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [9, 1, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.1611e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.1611e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Warning: One of the Wronskians has corank greater than one, so the results of the algorithm will be valid only for multiexperiment identifiability. If you still would like to assess single-experiment identifiability, we recommend using SIAN (https://github.com/alexeyovchinnikov/SIAN-Julia) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:110 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(gamma, K, epsilon, mu, r, beta, N, A, I, R, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (3, 1), (2, 1)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (1, 2), (1, 3)], [(0, 0), (4, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.865263276 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00258173 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(gamma, K, epsilon, mu, r, beta, N, A, I, R, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (3, 1), (2, 1)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (1, 2), (1, 3)], [(0, 0), (4, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 36 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.083092566 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002401446 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.003912598 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 9 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 1510 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(gamma, K, epsilon, mu, r, beta, N, A, I, R, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)], [(0, 0), (4, 0), (2, 1)], [(0, 0), (4, 0), (1, 0)], [(0, 0), (1, 4), (0, 6)], [(0, 0), (5, 0), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.035462773 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.05200031 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(gamma, K, epsilon, mu, r, beta, N, A, I, R, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)], [(0, 0), (4, 0), (2, 1)], [(0, 0), (4, 0), (1, 0)], [(0, 0), (1, 4), (0, 6)], [(0, 0), (5, 0), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.043210636 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002896519 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (12 in total): Nemo.fmpq_mpoly[gamma, K, epsilon, mu, r, beta, N, A, I, R, S, E] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 76 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 64 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 76 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 64 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 8 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 76 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 64 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 8 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.027328512 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 11 initial generators there are 10 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 107 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.000135235 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[S, A, N, mu, K*I, K*epsilon, gamma*I, I + E, gamma + epsilon, (gamma*r*beta + epsilon*r*beta)//gamma] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 34/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SEIR 34/logs_(:normalforms, 3) deleted file mode 100644 index 2af04cfd2..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 34/logs_(:normalforms, 3) +++ /dev/null @@ -1,153 +0,0 @@ -┌ Info: Processing SEIR 34 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.497141951 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.497141951 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.031699522 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.031699522 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [9, 1, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.2604e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.2604e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Warning: One of the Wronskians has corank greater than one, so the results of the algorithm will be valid only for multiexperiment identifiability. If you still would like to assess single-experiment identifiability, we recommend using SIAN (https://github.com/alexeyovchinnikov/SIAN-Julia) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:110 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(gamma, K, epsilon, mu, r, beta)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (3, 1), (2, 1)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (1, 2), (1, 3)], [(0, 0), (4, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.219880965 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.172117294 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(gamma, K, epsilon, mu, r, beta)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (3, 1), (2, 1)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (1, 2), (1, 3)], [(0, 0), (4, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 36 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.029206963 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002160341 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (6 in total): Nemo.fmpq_mpoly[gamma, K, epsilon, mu, r, beta] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 80 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 69 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 80 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 69 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 5 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 80 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 69 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 5 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.794193021 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 9 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 27 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.382197489 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[mu, K*epsilon, gamma*epsilon, epsilon*r*beta, gamma + epsilon] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 34/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR 34/logs_(:normalforms, 3)_with_states deleted file mode 100644 index fd2a790aa..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 34/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,242 +0,0 @@ -┌ Info: Processing SEIR 34 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.297847374 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.297847374 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.025517623 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.025517623 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [9, 1, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.4623e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.4623e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Warning: One of the Wronskians has corank greater than one, so the results of the algorithm will be valid only for multiexperiment identifiability. If you still would like to assess single-experiment identifiability, we recommend using SIAN (https://github.com/alexeyovchinnikov/SIAN-Julia) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:110 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(gamma, K, epsilon, mu, r, beta, N, A, I, R, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (3, 1), (2, 1)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (1, 2), (1, 3)], [(0, 0), (4, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.966380273 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002853255 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(gamma, K, epsilon, mu, r, beta, N, A, I, R, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (3, 1), (2, 1)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (1, 2), (1, 3)], [(0, 0), (4, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 36 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.030556373 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.060499192 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.003722834 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 9 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 1510 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(gamma, K, epsilon, mu, r, beta, N, A, I, R, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)], [(0, 0), (4, 0), (2, 1)], [(0, 0), (4, 0), (1, 0)], [(0, 0), (1, 4), (0, 6)], [(0, 0), (5, 0), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.052048432 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.064593951 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(gamma, K, epsilon, mu, r, beta, N, A, I, R, S, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)], [(0, 0), (4, 0), (2, 1)], [(0, 0), (4, 0), (1, 0)], [(0, 0), (1, 4), (0, 6)], [(0, 0), (5, 0), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.04513629 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002949721 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (12 in total): Nemo.fmpq_mpoly[gamma, K, epsilon, mu, r, beta, N, A, I, R, S, E] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 420 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 396 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 420 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 396 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 36 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 420 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 396 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 36 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.010289135 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 11 initial generators there are 10 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 79 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.242355707 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[S, A, N, mu, K*I, K*epsilon, gamma*I, r*beta*I, I + E, gamma + epsilon] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 34/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SEIR 34/timings_(:gb,) deleted file mode 100644 index 5bd86df90..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 34/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -SEIR 34 -id_total, 10.339596295 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 34/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR 34/timings_(:gb,)_with_states deleted file mode 100644 index 8d6ae7dae..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 34/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SEIR 34 -id_total, 4.099074276 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 34/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SEIR 34/timings_(:hybrid,) deleted file mode 100644 index b039a4d8d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 34/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -SEIR 34 -id_total, 11.342428681 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 34/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR 34/timings_(:hybrid,)_with_states deleted file mode 100644 index 5abdf1dc7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 34/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SEIR 34 -id_total, 5.308653055 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 34/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SEIR 34/timings_(:normalforms, 2) deleted file mode 100644 index ddebcdcf0..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 34/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -SEIR 34 -id_total, 9.975141276 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 34/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR 34/timings_(:normalforms, 2)_with_states deleted file mode 100644 index 6fb36355b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 34/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SEIR 34 -id_total, 4.000135235 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 34/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SEIR 34/timings_(:normalforms, 3) deleted file mode 100644 index 9acd70b8b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 34/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -SEIR 34 -id_total, 10.382197489 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 34/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR 34/timings_(:normalforms, 3)_with_states deleted file mode 100644 index e3c96dc63..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 34/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SEIR 34 -id_total, 4.242355707 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/id_funcs_(:gb,) deleted file mode 100644 index 5a2cc9c14..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/id_funcs_(:gb,) +++ /dev/null @@ -1,11 +0,0 @@ -[beta_d, -gamma_d, -phi_e, -beta, -mu_i, -s, -mu_d, -s_d, -mu_0, -phi, -gamma] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/id_funcs_(:gb,)_with_states deleted file mode 100644 index c0ff8377d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,20 +0,0 @@ -[E, -Di, -N, -De, -S, -I, -nu, -F, -q, -beta_d, -gamma_d, -phi_e, -beta, -mu_i, -s, -mu_d, -s_d, -mu_0, -phi, -gamma] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/id_funcs_(:hybrid,) deleted file mode 100644 index 5a2cc9c14..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/id_funcs_(:hybrid,) +++ /dev/null @@ -1,11 +0,0 @@ -[beta_d, -gamma_d, -phi_e, -beta, -mu_i, -s, -mu_d, -s_d, -mu_0, -phi, -gamma] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index c0ff8377d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,20 +0,0 @@ -[E, -Di, -N, -De, -S, -I, -nu, -F, -q, -beta_d, -gamma_d, -phi_e, -beta, -mu_i, -s, -mu_d, -s_d, -mu_0, -phi, -gamma] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/id_funcs_(:normalforms, 2) deleted file mode 100644 index 5a2cc9c14..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,11 +0,0 @@ -[beta_d, -gamma_d, -phi_e, -beta, -mu_i, -s, -mu_d, -s_d, -mu_0, -phi, -gamma] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index c0ff8377d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,20 +0,0 @@ -[E, -Di, -N, -De, -S, -I, -nu, -F, -q, -beta_d, -gamma_d, -phi_e, -beta, -mu_i, -s, -mu_d, -s_d, -mu_0, -phi, -gamma] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/id_funcs_(:normalforms, 3) deleted file mode 100644 index 5a2cc9c14..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,11 +0,0 @@ -[beta_d, -gamma_d, -phi_e, -beta, -mu_i, -s, -mu_d, -s_d, -mu_0, -phi, -gamma] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index c0ff8377d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,20 +0,0 @@ -[E, -Di, -N, -De, -S, -I, -nu, -F, -q, -beta_d, -gamma_d, -phi_e, -beta, -mu_i, -s, -mu_d, -s_d, -mu_0, -phi, -gamma] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/logs_(:gb,) deleted file mode 100644 index c85ef7c1c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/logs_(:gb,) +++ /dev/null @@ -1,85 +0,0 @@ -┌ Info: Processing SEIR 36 ref -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.831135183 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.831135183 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.286686359 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.286686359 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1, 47, 4, 5, 1, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000139206 seconds -│ :rank_time = rank_time -│ rank_times = 0.000139206 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Warning: One of the Wronskians has corank greater than one, so the results of the algorithm will be valid only for multiexperiment identifiability. If you still would like to assess single-experiment identifiability, we recommend using SIAN (https://github.com/alexeyovchinnikov/SIAN-Julia) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:110 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 54 functions in Rational Field(gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 4)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.951681991 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.007379181 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.010407904 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 53 initial generators there are 11 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 66 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.263157948 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[beta_d, gamma_d, phi_e, beta, mu_i, s, mu_d, s_d, mu_0, phi, gamma] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/logs_(:gb,)_with_states deleted file mode 100644 index 1e53ce179..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/logs_(:gb,)_with_states +++ /dev/null @@ -1,138 +0,0 @@ -┌ Info: Processing SEIR 36 ref -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.726582819 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.726582819 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.287237354 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.287237354 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1, 47, 4, 5, 1, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000146621 seconds -│ :rank_time = rank_time -│ rank_times = 0.000146621 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Warning: One of the Wronskians has corank greater than one, so the results of the algorithm will be valid only for multiexperiment identifiability. If you still would like to assess single-experiment identifiability, we recommend using SIAN (https://github.com/alexeyovchinnikov/SIAN-Julia) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:110 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 54 functions in Rational Field(gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d, q, F, nu, I, S, De, N, Di, R, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 4)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.838982475 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.133658348 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.988624075 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 53 initial generators there are 11 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 66 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 24 functions in Rational Field(gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d, q, F, nu, I, S, De, N, Di, R, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.144637819 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.010787835 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 22 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.006364162 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 23 initial generators there are 20 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 210 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 11.548732271 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[E, Di, N, De, S, I, nu, F, q, beta_d, gamma_d, phi_e, beta, mu_i, s, mu_d, s_d, mu_0, phi, gamma] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/logs_(:hybrid,) deleted file mode 100644 index 284744a02..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/logs_(:hybrid,) +++ /dev/null @@ -1,532 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing SEIR 36 ref -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.946550041 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.946550041 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.23439759 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.23439759 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1, 47, 4, 5, 1, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000143726 seconds -│ :rank_time = rank_time -│ rank_times = 0.000143726 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Warning: One of the Wronskians has corank greater than one, so the results of the algorithm will be valid only for multiexperiment identifiability. If you still would like to assess single-experiment identifiability, we recommend using SIAN (https://github.com/alexeyovchinnikov/SIAN-Julia) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:110 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 54 functions in Rational Field(gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 4)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.835573798 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.007814412 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y7, y3, y5, y2, y4], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y6, y8, y10, y9, t], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015009936 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003482325 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y3, t, y10, y2, y7], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y8, y11, y6, y1, y9], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015065379 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.049730957 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y5, y4, y8, t, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y9, y3, y10, y2, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015046705 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002387652 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y6, y8, y4, y7, y2], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y1, t, y10, y3, y9], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.014987447 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003214393 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y2, y10, y6, y5, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, t, y3, y9, y1, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.06971118 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001933184 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y7, y6, y9, y2, y10], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t, y4, y3, y11, y8], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.014970236 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002115672 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y6, y11, y7, t, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y2, y3, y9, y4, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.014496315 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002100627 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y6, y3, y7, y10, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y11, y9, y4, y2, y8], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.066088923 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001914908 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y6, y8, y1, y7, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y10, y5, y2, y4, y9], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015401634 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001950862 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y11, y6, t, y8, y4], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y10, y1, y7, y5, y9], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.0144246 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001839284 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.022133251 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 53 initial generators there are 11 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 66 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 5.087552499 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[beta_d, gamma_d, phi_e, beta, mu_i, s, mu_d, s_d, mu_0, phi, gamma] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/logs_(:hybrid,)_with_states deleted file mode 100644 index d44c7ad85..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,603 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing SEIR 36 ref -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.729316532 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.729316532 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.306486835 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.306486835 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1, 47, 4, 5, 1, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000130055 seconds -│ :rank_time = rank_time -│ rank_times = 0.000130055 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Warning: One of the Wronskians has corank greater than one, so the results of the algorithm will be valid only for multiexperiment identifiability. If you still would like to assess single-experiment identifiability, we recommend using SIAN (https://github.com/alexeyovchinnikov/SIAN-Julia) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:110 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 54 functions in Rational Field(gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d, q, F, nu, I, S, De, N, Di, R, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 4)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.513974798 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.050254964 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.756925664 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 53 initial generators there are 11 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 66 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 24 functions in Rational Field(gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d, q, F, nu, I, S, De, N, Di, R, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.09255439 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004621631 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 22 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (21 in total): Nemo.fmpq_mpoly[gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d, q, F, nu, I, S, De, N, Di, R, E] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 253 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 250 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 253 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 250 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 253 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 250 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y14, y21, y6, y7, y20, t, y13, y17, y19, y18, y8], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y16, y2, y10, y4, y15, y5, y11, y12, y3, y9], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 22 functions in Rational Field(gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d, q, F, nu, I, S, De, N, Di, R, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.026063689 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.042492355 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 22 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y16, y5, y10, y13, y7, y18, y3, y15, y8, y14, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y12, y9, y2, y17, t, y6, y4, y11, y21, y20, y19], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 22 functions in Rational Field(gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d, q, F, nu, I, S, De, N, Di, R, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.026161348 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003122674 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 22 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y16, t, y7, y10, y21, y12, y20, y19, y15, y17, y11], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y3, y6, y18, y14, y5, y1, y13, y8, y4, y9], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 22 functions in Rational Field(gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d, q, F, nu, I, S, De, N, Di, R, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.026733425 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.063064846 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 22 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y5, y19, y18, y1, y15, y11, y7, y10, y20, y12], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y16, y21, y2, y17, y4, y13, y14, t, y9, y3, y6], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 22 functions in Rational Field(gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d, q, F, nu, I, S, De, N, Di, R, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.026615471 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002788584 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 22 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y21, y20, y3, y10, y14, y18, y8, y4, y11, y7], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y6, y16, y2, y12, y15, y13, y19, y1, y17, y9], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 22 functions in Rational Field(gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d, q, F, nu, I, S, De, N, Di, R, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.025679338 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.065483575 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 22 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y18, y13, y2, y12, y20, y17, y3, y7, t, y6, y21], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y5, y16, y15, y4, y11, y8, y14, y10, y1, y19], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 22 functions in Rational Field(gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d, q, F, nu, I, S, De, N, Di, R, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.026484825 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002694474 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 22 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y3, t, y19, y18, y14, y1, y12, y17, y11, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y20, y5, y9, y10, y6, y8, y15, y13, y4, y16, y21], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 22 functions in Rational Field(gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d, q, F, nu, I, S, De, N, Di, R, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.072138906 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002748877 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 22 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y13, y6, y14, y21, y10, y1, y4, y8, y5, y7, t], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y18, y19, y15, y3, y17, y12, y9, y11, y20, y16], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 22 functions in Rational Field(gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d, q, F, nu, I, S, De, N, Di, R, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.025685887 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002719342 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 22 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y19, y2, y12, y14, y3, y10, y17, y6, y13, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y20, y15, y7, y16, y8, y1, y21, y11, y18, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 22 functions in Rational Field(gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d, q, F, nu, I, S, De, N, Di, R, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.103790715 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003713948 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 22 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y17, y9, y6, y14, y12, y2, y3, y7, y15, y5, y13], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y16, y1, y21, y10, y18, y4, t, y20, y11, y19, y8], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 22 functions in Rational Field(gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d, q, F, nu, I, S, De, N, Di, R, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.034158683 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003055768 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 22 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.006374494 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 23 initial generators there are 20 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 210 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 12.154479408 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[E, Di, N, De, S, I, nu, F, q, beta_d, gamma_d, phi_e, beta, mu_i, s, mu_d, s_d, mu_0, phi, gamma] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/logs_(:normalforms, 2) deleted file mode 100644 index 63f0a1c11..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/logs_(:normalforms, 2) +++ /dev/null @@ -1,96 +0,0 @@ -┌ Info: Processing SEIR 36 ref -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.630400627 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.630400627 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.360027679 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.360027679 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1, 47, 4, 5, 1, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.00014147 seconds -│ :rank_time = rank_time -│ rank_times = 0.00014147 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Warning: One of the Wronskians has corank greater than one, so the results of the algorithm will be valid only for multiexperiment identifiability. If you still would like to assess single-experiment identifiability, we recommend using SIAN (https://github.com/alexeyovchinnikov/SIAN-Julia) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:110 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 54 functions in Rational Field(gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 4)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.930129701 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.007001378 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.009861155 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 53 initial generators there are 11 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 66 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.350222798 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[beta_d, gamma_d, phi_e, beta, mu_i, s, mu_d, s_d, mu_0, phi, gamma] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/logs_(:normalforms, 2)_with_states deleted file mode 100644 index a8e1c5fe7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,167 +0,0 @@ -┌ Info: Processing SEIR 36 ref -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.639010072 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.639010072 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.285354098 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.285354098 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1, 47, 4, 5, 1, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000150076 seconds -│ :rank_time = rank_time -│ rank_times = 0.000150076 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Warning: One of the Wronskians has corank greater than one, so the results of the algorithm will be valid only for multiexperiment identifiability. If you still would like to assess single-experiment identifiability, we recommend using SIAN (https://github.com/alexeyovchinnikov/SIAN-Julia) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:110 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 54 functions in Rational Field(gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d, q, F, nu, I, S, De, N, Di, R, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 4)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.78063196 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.169473226 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.886750741 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 53 initial generators there are 11 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 66 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 24 functions in Rational Field(gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d, q, F, nu, I, S, De, N, Di, R, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.035331236 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005146614 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 22 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (21 in total): Nemo.fmpq_mpoly[gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d, q, F, nu, I, S, De, N, Di, R, E] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 22 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 20 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 22 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 20 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 22 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 20 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.006126878 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 23 initial generators there are 20 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 210 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 11.675287136 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[E, Di, N, De, S, I, nu, F, q, beta_d, gamma_d, phi_e, beta, mu_i, s, mu_d, s_d, mu_0, phi, gamma] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/logs_(:normalforms, 3) deleted file mode 100644 index 917805cf4..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/logs_(:normalforms, 3) +++ /dev/null @@ -1,96 +0,0 @@ -┌ Info: Processing SEIR 36 ref -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.750291924 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.750291924 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.220692579 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.220692579 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1, 47, 4, 5, 1, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000143856 seconds -│ :rank_time = rank_time -│ rank_times = 0.000143856 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Warning: One of the Wronskians has corank greater than one, so the results of the algorithm will be valid only for multiexperiment identifiability. If you still would like to assess single-experiment identifiability, we recommend using SIAN (https://github.com/alexeyovchinnikov/SIAN-Julia) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:110 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 54 functions in Rational Field(gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 4)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.893447062 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00657149 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.010184075 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 53 initial generators there are 11 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 66 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.380621117 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[beta_d, gamma_d, phi_e, beta, mu_i, s, mu_d, s_d, mu_0, phi, gamma] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/logs_(:normalforms, 3)_with_states deleted file mode 100644 index 5bc8ef20e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,167 +0,0 @@ -┌ Info: Processing SEIR 36 ref -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.903861816 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.903861816 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.234814037 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.234814037 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1, 47, 4, 5, 1, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000169204 seconds -│ :rank_time = rank_time -│ rank_times = 0.000169204 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Warning: One of the Wronskians has corank greater than one, so the results of the algorithm will be valid only for multiexperiment identifiability. If you still would like to assess single-experiment identifiability, we recommend using SIAN (https://github.com/alexeyovchinnikov/SIAN-Julia) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:110 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:04 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 54 functions in Rational Field(gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d, q, F, nu, I, S, De, N, Di, R, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 4)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 5.032928323 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.203959057 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.069411018 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 53 initial generators there are 11 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 66 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 24 functions in Rational Field(gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d, q, F, nu, I, S, De, N, Di, R, E)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.040608427 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.011488 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 22 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (21 in total): Nemo.fmpq_mpoly[gamma, phi, mu_0, s_d, mu_d, s, mu_i, beta, phi_e, gamma_d, beta_d, q, F, nu, I, S, De, N, Di, R, E] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 253 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 250 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 253 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 250 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 253 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 250 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.006989136 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 23 initial generators there are 20 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 210 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 12.461922712 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[E, Di, N, De, S, I, nu, F, q, beta_d, gamma_d, phi_e, beta, mu_i, s, mu_d, s_d, mu_0, phi, gamma] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/timings_(:gb,) deleted file mode 100644 index 51b0fd950..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -SEIR 36 ref -id_total, 4.263157948 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/timings_(:gb,)_with_states deleted file mode 100644 index b451fb259..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SEIR 36 ref -id_total, 11.548732271 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/timings_(:hybrid,) deleted file mode 100644 index 9a1015409..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -SEIR 36 ref -id_total, 5.087552499 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/timings_(:hybrid,)_with_states deleted file mode 100644 index c6e984e96..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SEIR 36 ref -id_total, 12.154479408 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/timings_(:normalforms, 2) deleted file mode 100644 index 9c7b3385d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -SEIR 36 ref -id_total, 4.350222798 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/timings_(:normalforms, 2)_with_states deleted file mode 100644 index 6a7c9e2e2..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SEIR 36 ref -id_total, 11.675287136 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/timings_(:normalforms, 3) deleted file mode 100644 index 3fd666bcb..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -SEIR 36 ref -id_total, 4.380621117 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/timings_(:normalforms, 3)_with_states deleted file mode 100644 index 70cb47f44..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR 36 ref/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SEIR 36 ref -id_total, 12.461922712 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR2T/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SEIR2T/id_funcs_(:gb,) deleted file mode 100644 index 1b472fec9..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR2T/id_funcs_(:gb,) +++ /dev/null @@ -1,3 +0,0 @@ -[nu, -b, -a] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR2T/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR2T/id_funcs_(:gb,)_with_states deleted file mode 100644 index 158da059b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR2T/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,8 +0,0 @@ -[Cu, -E, -N, -In, -S, -nu, -b, -a] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR2T/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SEIR2T/id_funcs_(:hybrid,) deleted file mode 100644 index 1b472fec9..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR2T/id_funcs_(:hybrid,) +++ /dev/null @@ -1,3 +0,0 @@ -[nu, -b, -a] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR2T/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR2T/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index 158da059b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR2T/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,8 +0,0 @@ -[Cu, -E, -N, -In, -S, -nu, -b, -a] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR2T/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SEIR2T/id_funcs_(:normalforms, 2) deleted file mode 100644 index 1b472fec9..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR2T/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,3 +0,0 @@ -[nu, -b, -a] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR2T/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR2T/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index 158da059b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR2T/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,8 +0,0 @@ -[Cu, -E, -N, -In, -S, -nu, -b, -a] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR2T/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SEIR2T/id_funcs_(:normalforms, 3) deleted file mode 100644 index 1b472fec9..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR2T/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,3 +0,0 @@ -[nu, -b, -a] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR2T/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR2T/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index 158da059b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR2T/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,8 +0,0 @@ -[Cu, -E, -N, -In, -S, -nu, -b, -a] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR2T/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SEIR2T/logs_(:gb,) deleted file mode 100644 index f589044b1..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR2T/logs_(:gb,) +++ /dev/null @@ -1,84 +0,0 @@ -┌ Info: Processing SEIR2T -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.310409243 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.310409243 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.033248584 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.033248584 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1, 26] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 7.646e-5 seconds -│ :rank_time = rank_time -│ rank_times = 7.646e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 40 functions in Rational Field(a, b, nu)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.179594891 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.127611993 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.085591008 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 39 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 6 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 9.797299583 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[nu, b, a] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR2T/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR2T/logs_(:gb,)_with_states deleted file mode 100644 index 5b0148241..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR2T/logs_(:gb,)_with_states +++ /dev/null @@ -1,135 +0,0 @@ -┌ Info: Processing SEIR2T -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.255367996 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.255367996 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.03108784 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.03108784 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1, 26] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 8.0551e-5 seconds -│ :rank_time = rank_time -│ rank_times = 8.0551e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 40 functions in Rational Field(a, b, nu, S, In, N, E, Cu)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.763596759 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.051937876 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.003321167 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 39 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 6 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(a, b, nu, S, In, N, E, Cu)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.024211736 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003759455 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.003202029 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 9 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 36 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.422055544 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[Cu, E, N, In, S, nu, b, a] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR2T/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SEIR2T/logs_(:hybrid,) deleted file mode 100644 index 8ae016c55..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR2T/logs_(:hybrid,) +++ /dev/null @@ -1,531 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing SEIR2T -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.449521732 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.449521732 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.032986078 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.032986078 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1, 26] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 8.1159e-5 seconds -│ :rank_time = rank_time -│ rank_times = 8.1159e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 40 functions in Rational Field(a, b, nu)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.237435693 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.200305712 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (3 in total): Nemo.fmpq_mpoly[a, b, nu] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(a, b, nu)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.006979336 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000945127 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(a, b, nu)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.006898813 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000843248 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(a, b, nu)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.006458583 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000815831 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y2], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(a, b, nu)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.006496419 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000814379 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(a, b, nu)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.006313622 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000816286 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(a, b, nu)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.006396972 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000823943 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(a, b, nu)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.006254659 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000805086 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(a, b, nu)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.078003358 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000875376 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(a, b, nu)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.006629553 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000828379 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(a, b, nu)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.006315419 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00080396 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.992344136 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 39 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 6 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.846693726 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[nu, b, a] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR2T/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR2T/logs_(:hybrid,)_with_states deleted file mode 100644 index 453e981c0..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR2T/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,582 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing SEIR2T -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.441997625 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.441997625 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.033734702 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.033734702 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1, 26] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 7.1378e-5 seconds -│ :rank_time = rank_time -│ rank_times = 7.1378e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 40 functions in Rational Field(a, b, nu, S, In, N, E, Cu)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.79305523 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002552274 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002981683 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 39 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 6 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(a, b, nu, S, In, N, E, Cu)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.029585862 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002824199 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (8 in total): Nemo.fmpq_mpoly[a, b, nu, S, In, N, E, Cu] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t, y8, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y5, y6, y3, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(a, b, nu, S, In, N, E, Cu)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.043739591 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001896598 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y8, y7, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y5, y2, y3, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(a, b, nu, S, In, N, E, Cu)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.012256707 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001592044 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y5, y6, y2], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y8, y1, y4, y7], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(a, b, nu, S, In, N, E, Cu)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.012677938 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003102409 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y7, y2, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y1, y6, t, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(a, b, nu, S, In, N, E, Cu)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013214674 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.074243516 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y1, t, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y5, y4, y3, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(a, b, nu, S, In, N, E, Cu)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.014112072 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001656957 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y5, t, y6], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y3, y8, y1, y2], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(a, b, nu, S, In, N, E, Cu)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.0110458 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001965356 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y4, y8, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, t, y1, y6, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(a, b, nu, S, In, N, E, Cu)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011103742 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.053221599 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y2, y3, y4], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y8, y5, y7, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(a, b, nu, S, In, N, E, Cu)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010811436 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001523967 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y4, y1, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y6, y5, y8, y3], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(a, b, nu, S, In, N, E, Cu)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010051286 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001753712 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3, y6, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y2, y1, y7, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(a, b, nu, S, In, N, E, Cu)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011225915 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.04162859 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.007621983 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 9 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 36 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.334399006 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[Cu, E, N, In, S, nu, b, a] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR2T/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SEIR2T/logs_(:normalforms, 2) deleted file mode 100644 index 3509d997a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR2T/logs_(:normalforms, 2) +++ /dev/null @@ -1,95 +0,0 @@ -┌ Info: Processing SEIR2T -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.446372906 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.446372906 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.029456096 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.029456096 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1, 26] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 7.1608e-5 seconds -│ :rank_time = rank_time -│ rank_times = 7.1608e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 40 functions in Rational Field(a, b, nu)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.050360278 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.145458388 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (3 in total): Nemo.fmpq_mpoly[a, b, nu] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.748959385 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 39 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 6 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 9.951506249 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[nu, b, a] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR2T/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR2T/logs_(:normalforms, 2)_with_states deleted file mode 100644 index 4e9856bfc..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR2T/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,146 +0,0 @@ -┌ Info: Processing SEIR2T -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.23195408 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.23195408 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.031491966 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.031491966 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1, 26] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 8.7314e-5 seconds -│ :rank_time = rank_time -│ rank_times = 8.7314e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 40 functions in Rational Field(a, b, nu, S, In, N, E, Cu)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.813486386 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002545323 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.0027147 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 39 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 6 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(a, b, nu, S, In, N, E, Cu)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.073312415 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002271606 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (8 in total): Nemo.fmpq_mpoly[a, b, nu, S, In, N, E, Cu] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002729809 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 9 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 36 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.574405651 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[Cu, E, N, In, S, nu, b, a] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR2T/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SEIR2T/logs_(:normalforms, 3) deleted file mode 100644 index 4a1420b5f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR2T/logs_(:normalforms, 3) +++ /dev/null @@ -1,95 +0,0 @@ -┌ Info: Processing SEIR2T -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.459262449 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.459262449 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.032129481 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.032129481 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1, 26] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 7.6794e-5 seconds -│ :rank_time = rank_time -│ rank_times = 7.6794e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 40 functions in Rational Field(a, b, nu)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.437851777 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.237034772 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (3 in total): Nemo.fmpq_mpoly[a, b, nu] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.951800752 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 39 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 6 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.668301961 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[nu, b, a] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR2T/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR2T/logs_(:normalforms, 3)_with_states deleted file mode 100644 index 5c0f415cc..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR2T/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,146 +0,0 @@ -┌ Info: Processing SEIR2T -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.270636039 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.270636039 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.078037288 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.078037288 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1, 26] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 8.0971e-5 seconds -│ :rank_time = rank_time -│ rank_times = 8.0971e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 40 functions in Rational Field(a, b, nu, S, In, N, E, Cu)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.84635048 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003196679 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002758919 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 39 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 6 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(a, b, nu, S, In, N, E, Cu)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.078494762 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002146048 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (8 in total): Nemo.fmpq_mpoly[a, b, nu, S, In, N, E, Cu] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002404529 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 9 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 36 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.704754836 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[Cu, E, N, In, S, nu, b, a] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR2T/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SEIR2T/timings_(:gb,) deleted file mode 100644 index 01df08c30..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR2T/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -SEIR2T -id_total, 9.797299583 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR2T/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR2T/timings_(:gb,)_with_states deleted file mode 100644 index b287b52fe..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR2T/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SEIR2T -id_total, 3.422055544 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR2T/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SEIR2T/timings_(:hybrid,) deleted file mode 100644 index 86de71903..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR2T/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -SEIR2T -id_total, 10.846693726 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR2T/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR2T/timings_(:hybrid,)_with_states deleted file mode 100644 index 51cea901e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR2T/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SEIR2T -id_total, 4.334399006 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR2T/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SEIR2T/timings_(:normalforms, 2) deleted file mode 100644 index 1dedda6b2..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR2T/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -SEIR2T -id_total, 9.951506249 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR2T/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR2T/timings_(:normalforms, 2)_with_states deleted file mode 100644 index 8ce130b01..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR2T/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SEIR2T -id_total, 3.574405651 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR2T/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SEIR2T/timings_(:normalforms, 3) deleted file mode 100644 index fe8087870..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR2T/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -SEIR2T -id_total, 10.668301961 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR2T/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR2T/timings_(:normalforms, 3)_with_states deleted file mode 100644 index 655dc2d5e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR2T/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SEIR2T -id_total, 3.704754836 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIRT/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SEIRT/id_funcs_(:gb,) deleted file mode 100644 index 7dc371818..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIRT/id_funcs_(:gb,) +++ /dev/null @@ -1,3 +0,0 @@ -[beta, -lambda*alpha, -lambda + alpha] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIRT/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIRT/id_funcs_(:gb,)_with_states deleted file mode 100644 index 7c8a3a1bd..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIRT/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,7 +0,0 @@ -[I, -N, -beta, -lambda + alpha, -lambda//S, -(alpha*S^2)//lambda, -(I + E)//S] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIRT/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SEIRT/id_funcs_(:hybrid,) deleted file mode 100644 index 7dc371818..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIRT/id_funcs_(:hybrid,) +++ /dev/null @@ -1,3 +0,0 @@ -[beta, -lambda*alpha, -lambda + alpha] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIRT/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIRT/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index fa9dba348..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIRT/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,7 +0,0 @@ -[I, -N, -beta, -alpha*S, -lambda*alpha, -lambda + alpha, -alpha*I + alpha*E] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIRT/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SEIRT/id_funcs_(:normalforms, 2) deleted file mode 100644 index 7dc371818..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIRT/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,3 +0,0 @@ -[beta, -lambda*alpha, -lambda + alpha] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIRT/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIRT/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index fa9dba348..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIRT/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,7 +0,0 @@ -[I, -N, -beta, -alpha*S, -lambda*alpha, -lambda + alpha, -alpha*I + alpha*E] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIRT/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SEIRT/id_funcs_(:normalforms, 3) deleted file mode 100644 index 7dc371818..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIRT/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,3 +0,0 @@ -[beta, -lambda*alpha, -lambda + alpha] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIRT/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIRT/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index fa9dba348..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIRT/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,7 +0,0 @@ -[I, -N, -beta, -alpha*S, -lambda*alpha, -lambda + alpha, -alpha*I + alpha*E] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIRT/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SEIRT/logs_(:gb,) deleted file mode 100644 index e3ad849cc..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIRT/logs_(:gb,) +++ /dev/null @@ -1,84 +0,0 @@ -┌ Info: Processing SEIRT -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.290669116 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.290669116 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.021989099 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.021989099 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1, 5] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.0069e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.0069e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(lambda, alpha, beta)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.035890787 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.163417531 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.997631218 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 9 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 9.568569473 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[beta, lambda*alpha, lambda + alpha] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIRT/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIRT/logs_(:gb,)_with_states deleted file mode 100644 index 11091a6ad..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIRT/logs_(:gb,)_with_states +++ /dev/null @@ -1,173 +0,0 @@ -┌ Info: Processing SEIRT -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.369586227 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.369586227 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.029916932 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.029916932 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1, 5] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.7264e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.7264e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(lambda, alpha, beta, N, I, E, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.879850263 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002824998 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.001510823 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 9 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(lambda, alpha, beta, N, I, E, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.026453674 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003940017 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(lambda, alpha, beta, N, I, E, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 3 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.092868634 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002567969 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.005630625 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 8 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 199 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.652864442 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[I, N, beta, lambda + alpha, lambda//S, (alpha*S^2)//lambda, (I + E)//S] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIRT/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SEIRT/logs_(:hybrid,) deleted file mode 100644 index 2e58ad87d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIRT/logs_(:hybrid,) +++ /dev/null @@ -1,549 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing SEIRT -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.442075286 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.442075286 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.023323437 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.023323437 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1, 5] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.0831e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.0831e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(lambda, alpha, beta)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.120555154 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.19626541 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (3 in total): Nemo.fmpq_mpoly[lambda, alpha, beta] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 16 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 15 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 16 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 15 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 16 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 15 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y2], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(lambda, alpha, beta)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010543076 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000903763 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(lambda, alpha, beta)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009875705 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000864795 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(lambda, alpha, beta)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009505457 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000876785 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y1], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(lambda, alpha, beta)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.00942407 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000915546 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(lambda, alpha, beta)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009242252 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000887455 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(lambda, alpha, beta)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009668442 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000883908 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(lambda, alpha, beta)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010035467 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.081854113 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(lambda, alpha, beta)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.01039691 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000871522 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(lambda, alpha, beta)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009538631 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000852331 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(lambda, alpha, beta)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.008987479 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000853003 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.936855068 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 9 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.600172829 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[beta, lambda*alpha, lambda + alpha] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIRT/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIRT/logs_(:hybrid,)_with_states deleted file mode 100644 index 5536672f0..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIRT/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,638 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing SEIRT -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.494093117 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.494093117 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.022809841 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.022809841 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1, 5] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.579e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.579e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(lambda, alpha, beta, N, I, E, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.852123854 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001887201 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002136854 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 9 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(lambda, alpha, beta, N, I, E, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.069770309 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002878114 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(lambda, alpha, beta, N, I, E, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 3 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.025658263 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002252481 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (8 in total): Nemo.fmpq_mpoly[lambda, alpha, beta, N, I, E, R, S] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 145 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 139 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 145 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 139 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 13 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 145 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 139 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 13 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t, y4, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y1, y8, y6, y5], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(lambda, alpha, beta, N, I, E, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(1, 1), (0, 0), (2, 1)], [(0, 0), (1, 1), (2, 1)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (1, 1), (2, 1)], [(0, 0), (1, 0)], [(1, 4), (0, 0), (3, 5)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 4 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.040299929 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001974028 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y5, y4, t], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y2, y3, y6, y8], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(lambda, alpha, beta, N, I, E, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (2, 1), (3, 1)], [(1, 4), (0, 0), (2, 4)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.027002986 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.063488959 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3, y4, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y5, y2, y6, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(lambda, alpha, beta, N, I, E, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(1, 1), (0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 4), (0, 0), (2, 4)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.027459979 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001738335 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, t, y2, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y7, y6, y1, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(lambda, alpha, beta, N, I, E, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(1, 1), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(1, 4), (0, 0), (2, 4)], [(1, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.029278479 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.05706762 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y8, y4, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y5, y2, y1, t], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(lambda, alpha, beta, N, I, E, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 1), (2, 1)], [(0, 0), (4, 1), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 4), (0, 4)], [(0, 0), (1, 0)], [(0, 0), (4, 1), (3, 2)], [(0, 0), (4, 1), (3, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.03426434 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001804713 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y6, y8, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y7, y2, t, y3], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(lambda, alpha, beta, N, I, E, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (4, 1), (2, 1)], [(0, 0), (4, 1), (2, 1)], [(0, 0), (2, 4), (0, 4)], [(0, 0), (1, 0)], [(0, 0), (4, 1), (3, 2)], [(0, 0), (4, 1), (3, 2)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.09165661 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001698368 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y4, y3, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, t, y2, y1, y8], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(lambda, alpha, beta, N, I, E, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 1), (1, 0)], [(1, 4), (0, 0), (2, 4)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.026985808 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001781902 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y6, t, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y3, y7, y5, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(lambda, alpha, beta, N, I, E, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(1, 1), (0, 0), (2, 1)], [(1, 4), (0, 0), (0, 2)], [(1, 1), (0, 0), (2, 1)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 56 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.096324004 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001850922 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y1, y7, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y2, y6, y5, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(lambda, alpha, beta, N, I, E, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (3, 1)], [(1, 1), (0, 0), (2, 1)], [(0, 0), (1, 1), (2, 1)], [(1, 4), (0, 0), (3, 5)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 4 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.0420785 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.0019769 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, t, y1, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y3, y2, y8, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(lambda, alpha, beta, N, I, E, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (3, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(1, 4), (0, 0), (2, 4)], [(0, 0), (1, 1), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.085097205 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001703098 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.003430688 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 8 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 40 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.862120857 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[I, N, beta, alpha*S, lambda*alpha, lambda + alpha, alpha*I + alpha*E] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIRT/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SEIRT/logs_(:normalforms, 2) deleted file mode 100644 index 65f606a71..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIRT/logs_(:normalforms, 2) +++ /dev/null @@ -1,113 +0,0 @@ -┌ Info: Processing SEIRT -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.244445722 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.244445722 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.021218089 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.021218089 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1, 5] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.8263e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.8263e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(lambda, alpha, beta)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.273501158 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.152969659 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (3 in total): Nemo.fmpq_mpoly[lambda, alpha, beta] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 7 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 6 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 7 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 6 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 2 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 7 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 6 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 2 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.757841949 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 9 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 9.985014039 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[beta, lambda*alpha, lambda + alpha] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIRT/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIRT/logs_(:normalforms, 2)_with_states deleted file mode 100644 index b08abb792..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIRT/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,202 +0,0 @@ -┌ Info: Processing SEIRT -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.266088441 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.266088441 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.023229529 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.023229529 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1, 5] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.5624e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.5624e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(lambda, alpha, beta, N, I, E, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.824853523 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001632982 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002123677 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 9 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(lambda, alpha, beta, N, I, E, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.026989255 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.051151304 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(lambda, alpha, beta, N, I, E, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 3 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.027366842 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002722862 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (8 in total): Nemo.fmpq_mpoly[lambda, alpha, beta, N, I, E, R, S] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 35 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 31 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 35 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 31 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 4 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 35 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 31 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 4 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.004092779 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 8 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 40 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.699950709 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[I, N, beta, alpha*S, lambda*alpha, lambda + alpha, alpha*I + alpha*E] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIRT/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SEIRT/logs_(:normalforms, 3) deleted file mode 100644 index 271b6e9fc..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIRT/logs_(:normalforms, 3) +++ /dev/null @@ -1,113 +0,0 @@ -┌ Info: Processing SEIRT -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.305262359 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.305262359 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.021567288 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.021567288 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1, 5] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.8061e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.8061e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(lambda, alpha, beta)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.200313585 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.181305841 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (3 in total): Nemo.fmpq_mpoly[lambda, alpha, beta] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 16 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 15 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 16 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 15 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 16 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 15 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.801830174 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 9 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.060754734 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[beta, lambda*alpha, lambda + alpha] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIRT/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIRT/logs_(:normalforms, 3)_with_states deleted file mode 100644 index 7b5368079..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIRT/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,202 +0,0 @@ -┌ Info: Processing SEIRT -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.276290891 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.276290891 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.072065333 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.072065333 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1, 5] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.9353e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.9353e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(lambda, alpha, beta, N, I, E, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.782706813 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.060070285 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.001619767 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 9 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(lambda, alpha, beta, N, I, E, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.028120125 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.049298703 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(lambda, alpha, beta, N, I, E, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 1), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 3 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.027988623 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00269174 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (8 in total): Nemo.fmpq_mpoly[lambda, alpha, beta, N, I, E, R, S] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 145 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 139 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 145 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 139 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 13 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 145 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 139 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 13 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.004555029 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 8 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 40 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.820383345 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[I, N, beta, alpha*S, lambda*alpha, lambda + alpha, alpha*I + alpha*E] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIRT/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SEIRT/timings_(:gb,) deleted file mode 100644 index 6e3992fe4..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIRT/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -SEIRT -id_total, 9.568569473 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIRT/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIRT/timings_(:gb,)_with_states deleted file mode 100644 index 0d9490234..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIRT/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SEIRT -id_total, 3.652864442 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIRT/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SEIRT/timings_(:hybrid,) deleted file mode 100644 index 9013da987..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIRT/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -SEIRT -id_total, 10.600172829 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIRT/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIRT/timings_(:hybrid,)_with_states deleted file mode 100644 index 9185be3af..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIRT/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SEIRT -id_total, 4.862120857 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIRT/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SEIRT/timings_(:normalforms, 2) deleted file mode 100644 index 9b4274bc8..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIRT/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -SEIRT -id_total, 9.985014039 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIRT/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIRT/timings_(:normalforms, 2)_with_states deleted file mode 100644 index 31e9298a2..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIRT/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SEIRT -id_total, 3.699950709 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIRT/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SEIRT/timings_(:normalforms, 3) deleted file mode 100644 index d312dd4a6..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIRT/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -SEIRT -id_total, 10.060754734 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIRT/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIRT/timings_(:normalforms, 3)_with_states deleted file mode 100644 index e87d3d59e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIRT/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SEIRT -id_total, 3.820383345 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/id_funcs_(:gb,) deleted file mode 100644 index 45e8654e0..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/id_funcs_(:gb,) +++ /dev/null @@ -1,4 +0,0 @@ -[gamma, -gamma*psi - v*psi, -(gamma*beta - beta*v)//(gamma - 1), -(gamma*psi + gamma - v - psi)//(gamma - 1)] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/id_funcs_(:gb,)_with_states deleted file mode 100644 index 772995feb..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,8 +0,0 @@ -[Q, -gamma, -(gamma*psi*I - psi*I)//gamma, -(gamma*psi*I - gamma*I - psi*I)//(gamma*S), -(gamma*psi*I + gamma*E - psi*I)//(gamma*S), -(gamma^2*psi - gamma^2 - gamma*v*psi - gamma*psi + v*psi)//gamma, -(gamma^2 + gamma*v*psi - gamma*v - v*psi)//(gamma^2 - gamma), -(gamma^2*beta + gamma*beta*v*psi - gamma*beta*v - beta*v*psi)//(gamma^2*psi - gamma*psi)] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/id_funcs_(:hybrid,) deleted file mode 100644 index a34a839ae..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/id_funcs_(:hybrid,) +++ /dev/null @@ -1,4 +0,0 @@ -[gamma, -gamma*psi - v*psi, -gamma*psi - v - psi, -psi//beta] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index eaef03952..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,8 +0,0 @@ -[Q, -gamma, -psi*I, -beta*I, -v*psi*S, -gamma*psi - v - psi, -(gamma - v)//I, -(gamma*psi*I + gamma*E - psi*I)//(gamma*S)] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/id_funcs_(:normalforms, 2) deleted file mode 100644 index 45e8654e0..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,4 +0,0 @@ -[gamma, -gamma*psi - v*psi, -(gamma*beta - beta*v)//(gamma - 1), -(gamma*psi + gamma - v - psi)//(gamma - 1)] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index 57955e944..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,8 +0,0 @@ -[Q, -gamma, -psi*I, -beta*I, -(gamma*psi*I - gamma*I - psi*I)//(gamma*S), -(gamma*psi*I + gamma*E - psi*I)//(gamma*S), -(gamma^2*psi - gamma^2 - gamma*v*psi - gamma*psi + v*psi)//gamma, -(gamma^2 + gamma*v*psi - gamma*v - v*psi)//(gamma^2 - gamma)] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/id_funcs_(:normalforms, 3) deleted file mode 100644 index 45e8654e0..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,4 +0,0 @@ -[gamma, -gamma*psi - v*psi, -(gamma*beta - beta*v)//(gamma - 1), -(gamma*psi + gamma - v - psi)//(gamma - 1)] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index 86ed7760d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,8 +0,0 @@ -[Q, -gamma, -psi*I, -beta*I, -v*psi*S, -(gamma*psi*I - gamma*I - psi*I)//(gamma*S), -(gamma*psi*I + gamma*E - psi*I)//(gamma*S), -(gamma^2*psi - gamma^2 - gamma*v*psi - gamma*psi + v*psi)//gamma] diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/logs_(:gb,) deleted file mode 100644 index 6b2aa6f8c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/logs_(:gb,) +++ /dev/null @@ -1,84 +0,0 @@ -┌ Info: Processing SEIR_1_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.012168334 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.012168334 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.013596686 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.013596686 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [15] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.5228e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.5228e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 19 functions in Rational Field(gamma, beta, v, psi)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 1), (2, 1)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (2, 1), (3, 2)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (1, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 56 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 4 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.24053551 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.12981364 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.988349399 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 18 initial generators there are 4 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 690 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 7.449087736 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[gamma, gamma*psi - v*psi, (gamma*beta - beta*v)//(gamma - 1), (gamma*psi + gamma - v - psi)//(gamma - 1)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/logs_(:gb,)_with_states deleted file mode 100644 index 510678c6b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/logs_(:gb,)_with_states +++ /dev/null @@ -1,173 +0,0 @@ -┌ Info: Processing SEIR_1_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.011732206 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.011732206 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.080660845 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.080660845 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [15] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.3097e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.3097e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 19 functions in Rational Field(gamma, beta, v, psi, E, Q, I, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 1), (2, 1)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (2, 1), (3, 2)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (1, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 56 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 4 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.815417827 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002772783 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.003019573 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 18 initial generators there are 4 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 690 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(gamma, beta, v, psi, E, Q, I, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (1, 0)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (3, 3), (3, 2)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (4, 4), (4, 3)], [(0, 0), (1, 0)], [(0, 0), (4, 3), (5, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.035794834 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002566251 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(gamma, beta, v, psi, E, Q, I, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (1, 0)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (3, 3), (3, 2)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (4, 4), (4, 3)], [(0, 0), (1, 0)], [(0, 0), (4, 3), (5, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 4 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 176 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 6 for num. and 6 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.166586813 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005187023 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.026908891 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 9 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 11730 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 1.40774474 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[Q, gamma, (gamma*psi*I - psi*I)//gamma, (gamma*psi*I - gamma*I - psi*I)//(gamma*S), (gamma*psi*I + gamma*E - psi*I)//(gamma*S), (gamma^2*psi - gamma^2 - gamma*v*psi - gamma*psi + v*psi)//gamma, (gamma^2 + gamma*v*psi - gamma*v - v*psi)//(gamma^2 - gamma), (gamma^2*beta + gamma*beta*v*psi - gamma*beta*v - beta*v*psi)//(gamma^2*psi - gamma*psi)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/logs_(:hybrid,) deleted file mode 100644 index b74fa8f7f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/logs_(:hybrid,) +++ /dev/null @@ -1,549 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing SEIR_1_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.012608015 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.012608015 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.013482045 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.013482045 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [15] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.9549e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.9549e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 19 functions in Rational Field(gamma, beta, v, psi)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 1), (2, 1)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (2, 1), (3, 2)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (1, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 56 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 4 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.275611383 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.20633776 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (4 in total): Nemo.fmpq_mpoly[gamma, beta, v, psi] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 31 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 30 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 31 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 30 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 31 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 30 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y3, t], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(gamma, beta, v, psi)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 0), (3, 0)], [(0, 1), (0, 0), (2, 1)], [(0, 0), (1, 2), (3, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 56 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 4 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.026279256 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001513552 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(gamma, beta, v, psi)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 1)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 40 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 4 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.019609631 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001723129 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y2, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(gamma, beta, v, psi)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 40 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 4 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.08625761 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001342378 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(gamma, beta, v, psi)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 1)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 40 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 4 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.017855332 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001498021 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y1, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(gamma, beta, v, psi)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 1)], [(0, 0), (1, 0)], [(0, 0), (3, 2), (3, 2)], [(2, 1), (0, 0), (2, 0)], [(1, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 56 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.027396887 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001253426 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y4, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(gamma, beta, v, psi)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 1), (0, 0), (2, 1)], [(0, 0), (1, 2), (3, 2)], [(0, 0), (2, 0), (3, 0)], [(0, 0), (0, 1)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 56 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 4 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.025026403 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001558815 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t, y4], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(gamma, beta, v, psi)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 40 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 4 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.107988239 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001371256 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y1, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(gamma, beta, v, psi)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 2), (3, 2)], [(0, 0), (2, 0), (3, 0)], [(0, 0), (0, 1)], [(0, 1), (0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 56 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 4 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.025795856 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001216055 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y1, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(gamma, beta, v, psi)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 2), (3, 2)], [(0, 0), (2, 0), (3, 0)], [(0, 0), (0, 1)], [(0, 1), (0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 56 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 4 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.027126542 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001308387 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y1, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(gamma, beta, v, psi)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 40 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 4 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.018917965 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001496461 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.78062644 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 18 initial generators there are 4 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 63 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 8.531778641 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[gamma, gamma*psi - v*psi, gamma*psi - v - psi, psi//beta] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/logs_(:hybrid,)_with_states deleted file mode 100644 index 5e28a81a1..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,638 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing SEIR_1_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.01262182 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.01262182 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.011522316 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.011522316 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [15] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.9758e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.9758e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 19 functions in Rational Field(gamma, beta, v, psi, E, Q, I, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 1), (2, 1)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (2, 1), (3, 2)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (1, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 56 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 4 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.752742594 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002681963 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.00265032 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 18 initial generators there are 4 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 690 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(gamma, beta, v, psi, E, Q, I, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (1, 0)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (3, 3), (3, 2)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (4, 4), (4, 3)], [(0, 0), (1, 0)], [(0, 0), (4, 3), (5, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.035196376 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.050637128 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(gamma, beta, v, psi, E, Q, I, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (1, 0)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (3, 3), (3, 2)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (4, 4), (4, 3)], [(0, 0), (1, 0)], [(0, 0), (4, 3), (5, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 4 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 176 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 6 for num. and 6 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.174114675 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003236959 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (9 in total): Nemo.fmpq_mpoly[gamma, beta, v, psi, E, Q, I, R, S] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 210 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 204 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 210 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 204 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 8 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 210 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 204 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 8 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, t, y3, y5, y6], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y8, y9, y2, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(gamma, beta, v, psi, E, Q, I, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 3), (3, 2)], [(2, 3), (0, 0), (3, 2)], [(0, 0), (1, 0)], [(0, 0), (3, 1), (4, 1)], [(0, 0), (1, 0)], [(0, 0), (3, 3), (3, 2)], [(0, 0), (1, 1), (1, 0)], [(1, 6), (0, 0), (0, 4)], [(0, 0), (1, 2), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 4 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.055206529 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.061122345 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y6, y5, y7, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y2, y4, y3, y9], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(gamma, beta, v, psi, E, Q, I, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (3, 2), (3, 1)], [(0, 0), (3, 3), (3, 2)], [(0, 0), (4, 4), (4, 3)], [(0, 0), (4, 3), (5, 3)], [(3, 7), (0, 0), (3, 6)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.027348843 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001699348 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 3 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y1, y5, y2, y8], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y6, y9, y3, y4], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(gamma, beta, v, psi, E, Q, I, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0), (2, 0)], [(3, 3), (0, 0), (4, 3)], [(0, 0), (1, 0)], [(2, 1), (0, 0), (3, 1)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (1, 1)], [(4, 3), (0, 0), (5, 3)], [(0, 0), (1, 0)], [(0, 4), (0, 0), (2, 5)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 4 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.111767078 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002192731 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y5, t, y1, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y4, y9, y7, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(gamma, beta, v, psi, E, Q, I, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(3, 2), (0, 0), (3, 1)], [(4, 4), (0, 0), (4, 3)], [(1, 1), (0, 0)], [(2, 1), (0, 0), (2, 0)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (1, 0)], [(0, 4), (0, 0), (2, 5)], [(5, 4), (0, 0), (5, 3)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.048354819 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001847562 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y4, t, y5, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y6, y1, y2, y9], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(gamma, beta, v, psi, E, Q, I, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 4), (4, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (4, 3), (5, 3)], [(0, 0), (3, 2), (3, 1)], [(3, 7), (0, 0), (3, 6)], [(0, 0), (3, 3), (3, 2)], [(0, 0), (3, 2), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.081417194 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00162281 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 3 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y2, y6, t, y3], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y5, y1, y4, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(gamma, beta, v, psi, E, Q, I, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 2), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (3, 3), (3, 2)], [(0, 0), (3, 1), (4, 1)], [(0, 0), (1, 1), (1, 0)], [(1, 6), (0, 0), (0, 4)], [(0, 0), (1, 0)], [(0, 0), (2, 3), (3, 2)], [(2, 3), (0, 0), (3, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 4 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.113419838 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.073283278 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y7, y5, t, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y9, y8, y2, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(gamma, beta, v, psi, E, Q, I, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(4, 4), (0, 0), (4, 3)], [(1, 1), (0, 0)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (1, 0)], [(0, 4), (0, 0), (2, 5)], [(5, 4), (0, 0), (5, 3)], [(3, 2), (0, 0), (3, 1)], [(2, 1), (0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.0517514 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002649398 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y1, y9, y2, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y5, t, y3, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(gamma, beta, v, psi, E, Q, I, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0), (2, 0)], [(0, 4), (0, 0), (2, 5)], [(4, 3), (0, 0), (5, 3)], [(2, 1), (0, 0), (3, 1)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (1, 1)], [(3, 3), (0, 0), (4, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 4 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.102018238 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001982892 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y6, y1, y5, y7], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y3, y8, y9, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(gamma, beta, v, psi, E, Q, I, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(3, 3), (0, 0), (4, 3)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 1), (2, 1)], [(2, 1), (0, 0), (3, 1)], [(4, 3), (0, 0), (5, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 4), (0, 0), (2, 5)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 4 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.050160542 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.056993016 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y6, y5, y7, y9], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y3, y4, y8, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(gamma, beta, v, psi, E, Q, I, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 1), (2, 1)], [(3, 3), (0, 0), (4, 3)], [(2, 1), (0, 0), (3, 1)], [(4, 3), (0, 0), (5, 3)], [(0, 0), (1, 0)], [(0, 4), (0, 0), (2, 5)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 4 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.05041461 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002420538 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.02534892 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 9 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 359 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 2.742245542 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[Q, gamma, psi*I, beta*I, v*psi*S, gamma*psi - v - psi, (gamma - v)//I, (gamma*psi*I + gamma*E - psi*I)//(gamma*S)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/logs_(:normalforms, 2) deleted file mode 100644 index 4f1a698f3..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/logs_(:normalforms, 2) +++ /dev/null @@ -1,113 +0,0 @@ -┌ Info: Processing SEIR_1_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.012950771 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.012950771 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.012056062 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.012056062 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [15] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.4051e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.4051e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 19 functions in Rational Field(gamma, beta, v, psi)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 1), (2, 1)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (2, 1), (3, 2)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (1, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 56 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 4 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.195780792 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.105041537 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (4 in total): Nemo.fmpq_mpoly[gamma, beta, v, psi] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 12 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 11 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 12 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 11 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 12 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 11 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.757601993 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 18 initial generators there are 4 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 690 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 7.758089543 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[gamma, gamma*psi - v*psi, (gamma*beta - beta*v)//(gamma - 1), (gamma*psi + gamma - v - psi)//(gamma - 1)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/logs_(:normalforms, 2)_with_states deleted file mode 100644 index f22d00ce8..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,202 +0,0 @@ -┌ Info: Processing SEIR_1_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.012969669 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.012969669 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.01188504 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.01188504 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [15] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.5097e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.5097e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 19 functions in Rational Field(gamma, beta, v, psi, E, Q, I, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 1), (2, 1)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (2, 1), (3, 2)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (1, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 56 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 4 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.857531175 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003190997 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002981311 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 18 initial generators there are 4 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 690 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(gamma, beta, v, psi, E, Q, I, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (1, 0)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (3, 3), (3, 2)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (4, 4), (4, 3)], [(0, 0), (1, 0)], [(0, 0), (4, 3), (5, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.035449404 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002527066 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(gamma, beta, v, psi, E, Q, I, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (1, 0)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (3, 3), (3, 2)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (4, 4), (4, 3)], [(0, 0), (1, 0)], [(0, 0), (4, 3), (5, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 4 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 176 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 6 for num. and 6 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.229649132 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003587836 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (9 in total): Nemo.fmpq_mpoly[gamma, beta, v, psi, E, Q, I, R, S] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 49 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 45 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 49 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 45 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 2 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 49 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 45 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 2 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.041587871 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 9 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 3456 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 1.60731211 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[Q, gamma, psi*I, beta*I, (gamma*psi*I - gamma*I - psi*I)//(gamma*S), (gamma*psi*I + gamma*E - psi*I)//(gamma*S), (gamma^2*psi - gamma^2 - gamma*v*psi - gamma*psi + v*psi)//gamma, (gamma^2 + gamma*v*psi - gamma*v - v*psi)//(gamma^2 - gamma)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/logs_(:normalforms, 3) deleted file mode 100644 index fb0b0d510..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/logs_(:normalforms, 3) +++ /dev/null @@ -1,113 +0,0 @@ -┌ Info: Processing SEIR_1_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.012539479 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.012539479 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.011088124 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.011088124 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [15] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 6.0192e-5 seconds -│ :rank_time = rank_time -│ rank_times = 6.0192e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 19 functions in Rational Field(gamma, beta, v, psi)[y1, y2, y3, y4, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 1), (2, 1)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (2, 1), (3, 2)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (1, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 56 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 4 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.231093418 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.18298274 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (4 in total): Nemo.fmpq_mpoly[gamma, beta, v, psi] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 31 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 30 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 31 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 30 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 31 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 30 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.792220464 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 18 initial generators there are 4 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 690 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 7.923868415 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[gamma, gamma*psi - v*psi, (gamma*beta - beta*v)//(gamma - 1), (gamma*psi + gamma - v - psi)//(gamma - 1)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/logs_(:normalforms, 3)_with_states deleted file mode 100644 index 333470d4f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,202 +0,0 @@ -┌ Info: Processing SEIR_1_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.060423604 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.060423604 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.012425182 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.012425182 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [15] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 6.0625e-5 seconds -│ :rank_time = rank_time -│ rank_times = 6.0625e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 19 functions in Rational Field(gamma, beta, v, psi, E, Q, I, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 1), (2, 1)], [(0, 0), (2, 0), (1, 0)], [(0, 0), (2, 1), (3, 2)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (1, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 56 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 4 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.938409578 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002520016 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.00305647 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 18 initial generators there are 4 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 690 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(gamma, beta, v, psi, E, Q, I, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (1, 0)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (3, 3), (3, 2)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (4, 4), (4, 3)], [(0, 0), (1, 0)], [(0, 0), (4, 3), (5, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.086229468 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005546638 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(gamma, beta, v, psi, E, Q, I, R, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 1)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (1, 0)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (3, 3), (3, 2)], [(0, 0), (3, 2), (3, 1)], [(0, 0), (4, 4), (4, 3)], [(0, 0), (1, 0)], [(0, 0), (4, 3), (5, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 4 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 176 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 6 for num. and 6 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.162883295 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.09250679 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (9 in total): Nemo.fmpq_mpoly[gamma, beta, v, psi, E, Q, I, R, S] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 210 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 204 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 210 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 204 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 8 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 210 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 204 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 8 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.013484044 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 9 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 1227 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 1.835081022 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[Q, gamma, psi*I, beta*I, v*psi*S, (gamma*psi*I - gamma*I - psi*I)//(gamma*S), (gamma*psi*I + gamma*E - psi*I)//(gamma*S), (gamma^2*psi - gamma^2 - gamma*v*psi - gamma*psi + v*psi)//gamma] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/timings_(:gb,) deleted file mode 100644 index efc8bfb0c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -SEIR_1_io -id_total, 7.449087736 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/timings_(:gb,)_with_states deleted file mode 100644 index 6260fc5a6..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SEIR_1_io -id_total, 1.40774474 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/timings_(:hybrid,) deleted file mode 100644 index 8ae5db3e0..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -SEIR_1_io -id_total, 8.531778641 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/timings_(:hybrid,)_with_states deleted file mode 100644 index eb3aad57e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SEIR_1_io -id_total, 2.742245542 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/timings_(:normalforms, 2) deleted file mode 100644 index 761ea666e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -SEIR_1_io -id_total, 7.758089543 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/timings_(:normalforms, 2)_with_states deleted file mode 100644 index 7f9af6719..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SEIR_1_io -id_total, 1.60731211 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/timings_(:normalforms, 3) deleted file mode 100644 index b9a3ceb57..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -SEIR_1_io -id_total, 7.923868415 diff --git a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/timings_(:normalforms, 3)_with_states deleted file mode 100644 index 7f881511d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEIR_1_io/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SEIR_1_io -id_total, 1.835081022 diff --git a/benchmarking/IdentifiableFunctions/systems/SEUIR/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SEUIR/id_funcs_(:gb,) deleted file mode 100644 index de673931d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEUIR/id_funcs_(:gb,) +++ /dev/null @@ -1,3 +0,0 @@ -[z, -d, -(w*N)//beta] diff --git a/benchmarking/IdentifiableFunctions/systems/SEUIR/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEUIR/id_funcs_(:gb,)_with_states deleted file mode 100644 index 1bdc6a7b0..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEUIR/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,7 +0,0 @@ -[I, -z, -d, -w*S, -E//S, -beta//(w*N), -(U + I)//S] diff --git a/benchmarking/IdentifiableFunctions/systems/SEUIR/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SEUIR/id_funcs_(:hybrid,) deleted file mode 100644 index b50ee69c5..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEUIR/id_funcs_(:hybrid,) +++ /dev/null @@ -1,3 +0,0 @@ -[z, -d, -beta//(w*N)] diff --git a/benchmarking/IdentifiableFunctions/systems/SEUIR/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEUIR/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index 2b638bc87..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEUIR/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,7 +0,0 @@ -[I, -z, -d, -w*S, -w*E, -w*U + w*I, -beta//(w*N)] diff --git a/benchmarking/IdentifiableFunctions/systems/SEUIR/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SEUIR/id_funcs_(:normalforms, 2) deleted file mode 100644 index de673931d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEUIR/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,3 +0,0 @@ -[z, -d, -(w*N)//beta] diff --git a/benchmarking/IdentifiableFunctions/systems/SEUIR/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SEUIR/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index 2b638bc87..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEUIR/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,7 +0,0 @@ -[I, -z, -d, -w*S, -w*E, -w*U + w*I, -beta//(w*N)] diff --git a/benchmarking/IdentifiableFunctions/systems/SEUIR/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SEUIR/id_funcs_(:normalforms, 3) deleted file mode 100644 index de673931d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEUIR/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,3 +0,0 @@ -[z, -d, -(w*N)//beta] diff --git a/benchmarking/IdentifiableFunctions/systems/SEUIR/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SEUIR/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index 2b638bc87..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEUIR/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,7 +0,0 @@ -[I, -z, -d, -w*S, -w*E, -w*U + w*I, -beta//(w*N)] diff --git a/benchmarking/IdentifiableFunctions/systems/SEUIR/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SEUIR/logs_(:gb,) deleted file mode 100644 index 16376577b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEUIR/logs_(:gb,) +++ /dev/null @@ -1,84 +0,0 @@ -┌ Info: Processing SEUIR -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.777844096 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.777844096 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.038818472 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.038818472 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [80] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000372589 seconds -│ :rank_time = rank_time -│ rank_times = 0.000372589 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 129 functions in Rational Field(w, N, d, z, beta)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 14 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.223765059 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.187427126 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.965010072 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 128 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 34 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 8.255414225 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[z, d, (w*N)//beta] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEUIR/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEUIR/logs_(:gb,)_with_states deleted file mode 100644 index c971823f2..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEUIR/logs_(:gb,)_with_states +++ /dev/null @@ -1,135 +0,0 @@ -┌ Info: Processing SEUIR -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.769448041 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.769448041 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.039979853 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.039979853 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [80] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000376998 seconds -│ :rank_time = rank_time -│ rank_times = 0.000376998 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 129 functions in Rational Field(w, N, d, z, beta, U, I, R, E, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 14 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.967195811 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005359958 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.009810902 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 128 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 34 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(w, N, d, z, beta, U, I, R, E, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (2, 0)], [(0, 0), (2, 1)], [(0, 0), (3, 6)], [(0, 0), (2, 4)], [(0, 0), (1, 2)], [(0, 0), (0, 0)], [(0, 0), (1, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.136127531 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003820921 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.006796474 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 8 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 573 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 2.112655938 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[I, z, d, w*S, E//S, beta//(w*N), (U + I)//S] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEUIR/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SEUIR/logs_(:hybrid,) deleted file mode 100644 index 69b204304..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEUIR/logs_(:hybrid,) +++ /dev/null @@ -1,549 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing SEUIR -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.823475202 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.823475202 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.042929607 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.042929607 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [80] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000373125 seconds -│ :rank_time = rank_time -│ rank_times = 0.000373125 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 129 functions in Rational Field(w, N, d, z, beta)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 14 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.656203377 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.336750159 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (5 in total): Nemo.fmpq_mpoly[w, N, d, z, beta] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 46 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 31 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 46 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 31 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 46 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 31 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, t, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y5, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(w, N, d, z, beta)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.007361839 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001503659 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, t, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y5, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(w, N, d, z, beta)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.054879791 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000988671 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t, y2], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y1, y4], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(w, N, d, z, beta)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.00732197 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000940922 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y1, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(w, N, d, z, beta)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.007069271 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001390199 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y5, y1], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y3, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(w, N, d, z, beta)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 2), (0, 0)], [(0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.007984822 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000935849 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y4, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, t, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(w, N, d, z, beta)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.006713237 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001487391 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y4, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y2, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(w, N, d, z, beta)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 2), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013689742 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002674171 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y4, y3], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y2, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(w, N, d, z, beta)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010423091 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001453625 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, t, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y5, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(w, N, d, z, beta)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.006972925 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001447831 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y4, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y2, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(w, N, d, z, beta)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.006927272 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001574222 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.137002826 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 128 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 222 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 9.933881762 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[z, d, beta//(w*N)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEUIR/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEUIR/logs_(:hybrid,)_with_states deleted file mode 100644 index 070ad5f14..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEUIR/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,600 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing SEUIR -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.726034155 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.726034155 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.036687768 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.036687768 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [80] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000390928 seconds -│ :rank_time = rank_time -│ rank_times = 0.000390928 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 129 functions in Rational Field(w, N, d, z, beta, U, I, R, E, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 14 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.878565467 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.058485592 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.00921894 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 128 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 34 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(w, N, d, z, beta, U, I, R, E, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (2, 0)], [(0, 0), (2, 1)], [(0, 0), (3, 6)], [(0, 0), (2, 4)], [(0, 0), (1, 2)], [(0, 0), (0, 0)], [(0, 0), (1, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.108258678 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003758808 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (10 in total): Nemo.fmpq_mpoly[w, N, d, z, beta, U, I, R, E, S] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 266 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 227 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 266 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 227 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 12 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 266 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 227 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 12 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, t, y8, y4, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y10, y9, y1, y3, y7], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(w, N, d, z, beta, U, I, R, E, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 2)], [(1, 2), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.01935818 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002542638 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y2, y5, y7, y10], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y8, y9, y1, y6, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(w, N, d, z, beta, U, I, R, E, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(1, 1), (0, 0), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(1, 1), (0, 0), (2, 1)], [(0, 0), (1, 0)], [(1, 2), (0, 0), (2, 2)], [(0, 0), (0, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.057406256 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002013852 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y10, y9, t, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y3, y6, y5, y4, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(w, N, d, z, beta, U, I, R, E, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1), (1, 0)], [(0, 0), (1, 2)], [(1, 1), (0, 0), (2, 1)], [(1, 1), (0, 0), (2, 1)], [(2, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.02063034 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002059618 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y3, y2, y7, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, t, y9, y1, y10, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(w, N, d, z, beta, U, I, R, E, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(1, 1), (0, 0), (2, 1)], [(1, 1), (0, 0), (2, 1)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 2)], [(0, 0), (1, 0)], [(1, 2), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.016941289 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.059159553 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y10, y8, y4, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y1, y6, y9, y2, y5], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(w, N, d, z, beta, U, I, R, E, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (2, 1)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (0, 2)], [(0, 0), (1, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.019656975 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001850919 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y10, y1, y9, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y2, t, y7, y8, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(w, N, d, z, beta, U, I, R, E, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 1), (1, 0)], [(0, 0), (1, 2)], [(0, 0), (1, 0)], [(1, 1), (0, 0), (2, 1)], [(2, 0), (0, 0)], [(1, 1), (0, 0), (2, 1)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.018811048 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002974578 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y7, y1, y6, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y2, y5, y4, y8, y9], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(w, N, d, z, beta, U, I, R, E, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 2)], [(0, 0), (1, 1), (1, 0)], [(2, 0), (0, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.066609931 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00178365 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y4, y7, y1, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y2, y9, t, y8, y10], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(w, N, d, z, beta, U, I, R, E, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 2)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 2), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.016481599 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001691101 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y5, y7, y4, y9], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y2, y6, y8, y10, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(w, N, d, z, beta, U, I, R, E, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 2)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(2, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.0184745 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.074596286 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y4, y6, y2, y1], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y7, y10, y9, y8, y5], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(w, N, d, z, beta, U, I, R, E, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(1, 2), (0, 0)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.059639159 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004394222 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.003982827 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 8 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 257 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 2.893235025 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[I, z, d, w*S, w*E, w*U + w*I, beta//(w*N)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEUIR/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SEUIR/logs_(:normalforms, 2) deleted file mode 100644 index 78c89562f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEUIR/logs_(:normalforms, 2) +++ /dev/null @@ -1,113 +0,0 @@ -┌ Info: Processing SEUIR -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.711948554 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.711948554 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.117103126 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.117103126 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [80] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000380746 seconds -│ :rank_time = rank_time -│ rank_times = 0.000380746 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 129 functions in Rational Field(w, N, d, z, beta)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 14 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.174926339 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.301078731 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (5 in total): Nemo.fmpq_mpoly[w, N, d, z, beta] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 15 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 7 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 15 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 7 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 15 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 7 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.721880416 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 128 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 34 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 8.60169103 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[z, d, (w*N)//beta] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEUIR/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SEUIR/logs_(:normalforms, 2)_with_states deleted file mode 100644 index bd5864337..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEUIR/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,164 +0,0 @@ -┌ Info: Processing SEUIR -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.691165926 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.691165926 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.039872125 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.039872125 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [80] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000362399 seconds -│ :rank_time = rank_time -│ rank_times = 0.000362399 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 129 functions in Rational Field(w, N, d, z, beta, U, I, R, E, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 14 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.87196212 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.064991743 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.010138986 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 128 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 34 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(w, N, d, z, beta, U, I, R, E, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (2, 0)], [(0, 0), (2, 1)], [(0, 0), (3, 6)], [(0, 0), (2, 4)], [(0, 0), (1, 2)], [(0, 0), (0, 0)], [(0, 0), (1, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.103988625 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003695959 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (10 in total): Nemo.fmpq_mpoly[w, N, d, z, beta, U, I, R, E, S] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 56 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 39 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 56 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 39 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 56 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 39 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.004721807 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 8 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 257 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 2.169583279 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[I, z, d, w*S, w*E, w*U + w*I, beta//(w*N)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEUIR/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SEUIR/logs_(:normalforms, 3) deleted file mode 100644 index 08813ea20..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEUIR/logs_(:normalforms, 3) +++ /dev/null @@ -1,113 +0,0 @@ -┌ Info: Processing SEUIR -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.695565246 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.695565246 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.130191499 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.130191499 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [80] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000368088 seconds -│ :rank_time = rank_time -│ rank_times = 0.000368088 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 129 functions in Rational Field(w, N, d, z, beta)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 14 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.156775526 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.250850651 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (5 in total): Nemo.fmpq_mpoly[w, N, d, z, beta] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 46 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 31 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 46 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 31 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 46 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 31 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.846207151 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 128 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 34 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 8.62878734 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[z, d, (w*N)//beta] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEUIR/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SEUIR/logs_(:normalforms, 3)_with_states deleted file mode 100644 index 990fba24a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEUIR/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,164 +0,0 @@ -┌ Info: Processing SEUIR -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.724132686 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.724132686 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.038947955 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.038947955 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [80] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000368052 seconds -│ :rank_time = rank_time -│ rank_times = 0.000368052 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 129 functions in Rational Field(w, N, d, z, beta, U, I, R, E, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (1, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 14 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.908888774 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.067515755 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.010176789 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 128 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 34 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(w, N, d, z, beta, U, I, R, E, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (2, 0)], [(0, 0), (2, 1)], [(0, 0), (3, 6)], [(0, 0), (2, 4)], [(0, 0), (1, 2)], [(0, 0), (0, 0)], [(0, 0), (1, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.109654228 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003770555 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (10 in total): Nemo.fmpq_mpoly[w, N, d, z, beta, U, I, R, E, S] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 266 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 227 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 266 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 227 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 12 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 266 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 227 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 12 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.003905168 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 8 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 257 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 2.334021789 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[I, z, d, w*S, w*E, w*U + w*I, beta//(w*N)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SEUIR/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SEUIR/timings_(:gb,) deleted file mode 100644 index dfc8932cf..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEUIR/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -SEUIR -id_total, 8.255414225 diff --git a/benchmarking/IdentifiableFunctions/systems/SEUIR/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEUIR/timings_(:gb,)_with_states deleted file mode 100644 index 25c2b6b4f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEUIR/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SEUIR -id_total, 2.112655938 diff --git a/benchmarking/IdentifiableFunctions/systems/SEUIR/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SEUIR/timings_(:hybrid,) deleted file mode 100644 index 13c4585d5..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEUIR/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -SEUIR -id_total, 9.933881762 diff --git a/benchmarking/IdentifiableFunctions/systems/SEUIR/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SEUIR/timings_(:hybrid,)_with_states deleted file mode 100644 index 5e96f061d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEUIR/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SEUIR -id_total, 2.893235025 diff --git a/benchmarking/IdentifiableFunctions/systems/SEUIR/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SEUIR/timings_(:normalforms, 2) deleted file mode 100644 index 2b9aae966..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEUIR/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -SEUIR -id_total, 8.60169103 diff --git a/benchmarking/IdentifiableFunctions/systems/SEUIR/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SEUIR/timings_(:normalforms, 2)_with_states deleted file mode 100644 index 6cc80da88..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEUIR/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SEUIR -id_total, 2.169583279 diff --git a/benchmarking/IdentifiableFunctions/systems/SEUIR/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SEUIR/timings_(:normalforms, 3) deleted file mode 100644 index 5dc2c3009..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEUIR/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -SEUIR -id_total, 8.62878734 diff --git a/benchmarking/IdentifiableFunctions/systems/SEUIR/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SEUIR/timings_(:normalforms, 3)_with_states deleted file mode 100644 index 64fb53732..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SEUIR/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SEUIR -id_total, 2.334021789 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 19/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SIR 19/id_funcs_(:gb,) deleted file mode 100644 index a91644d32..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 19/id_funcs_(:gb,) +++ /dev/null @@ -1,5 +0,0 @@ -[pp, -beta, -q, -r, -mu*pp] diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 19/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 19/id_funcs_(:gb,)_with_states deleted file mode 100644 index 96420a55c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 19/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,10 +0,0 @@ -[S, -I, -C, -D, -N, -pp, -beta, -q, -r, -mu] diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 19/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SIR 19/id_funcs_(:hybrid,) deleted file mode 100644 index b7b925532..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 19/id_funcs_(:hybrid,) +++ /dev/null @@ -1,5 +0,0 @@ -[pp, -beta, -q, -r, -mu] diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 19/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 19/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index 96420a55c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 19/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,10 +0,0 @@ -[S, -I, -C, -D, -N, -pp, -beta, -q, -r, -mu] diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 19/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SIR 19/id_funcs_(:normalforms, 2) deleted file mode 100644 index b7b925532..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 19/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,5 +0,0 @@ -[pp, -beta, -q, -r, -mu] diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 19/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 19/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index 96420a55c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 19/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,10 +0,0 @@ -[S, -I, -C, -D, -N, -pp, -beta, -q, -r, -mu] diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 19/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SIR 19/id_funcs_(:normalforms, 3) deleted file mode 100644 index b7b925532..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 19/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,5 +0,0 @@ -[pp, -beta, -q, -r, -mu] diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 19/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 19/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index 96420a55c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 19/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,10 +0,0 @@ -[S, -I, -C, -D, -N, -pp, -beta, -q, -r, -mu] diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 19/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SIR 19/logs_(:gb,) deleted file mode 100644 index 27fcbe0b1..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 19/logs_(:gb,) +++ /dev/null @@ -1,84 +0,0 @@ -┌ Info: Processing SIR 19 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.322632036 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.322632036 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.031271174 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.031271174 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 4, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.8363e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.8363e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(mu, r, q, beta, pp)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.128419878 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.243474686 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.118750918 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 16 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 9.959543302 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[pp, beta, q, r, mu*pp] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 19/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 19/logs_(:gb,)_with_states deleted file mode 100644 index 481396460..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 19/logs_(:gb,)_with_states +++ /dev/null @@ -1,135 +0,0 @@ -┌ Info: Processing SIR 19 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.40914786 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.40914786 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.079959193 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.079959193 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 4, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.1492e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.1492e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.386454684 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002325572 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002394835 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 16 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015775262 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.038141679 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002504125 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 10 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 55 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.183036235 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[S, I, C, D, N, pp, beta, q, r, mu] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 19/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SIR 19/logs_(:hybrid,) deleted file mode 100644 index d7cee2e43..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 19/logs_(:hybrid,) +++ /dev/null @@ -1,531 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing SIR 19 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.479402672 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.479402672 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.027971947 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.027971947 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 4, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.3819e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.3819e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(mu, r, q, beta, pp)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.167778675 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.204853846 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (5 in total): Nemo.fmpq_mpoly[mu, r, q, beta, pp] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y4, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(mu, r, q, beta, pp)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010282366 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001215584 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y3, y1], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, t, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(mu, r, q, beta, pp)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009121783 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00139353 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y1, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y3, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(mu, r, q, beta, pp)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.008921622 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00130725 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y5, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y4, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(mu, r, q, beta, pp)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.008774376 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001291957 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y1, y3], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y2, y5], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(mu, r, q, beta, pp)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.0091938 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001320544 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t, y2], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y1, y4], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(mu, r, q, beta, pp)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.008859711 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001442641 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y4, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y1, y3], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(mu, r, q, beta, pp)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.008904041 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001666575 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y5, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y4, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(mu, r, q, beta, pp)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009182451 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.083162459 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t, y5], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y2, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(mu, r, q, beta, pp)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009462273 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001257707 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y5, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y2, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(mu, r, q, beta, pp)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.008908878 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001114872 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.933191651 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 15 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.761323806 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[pp, beta, q, r, mu] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 19/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 19/logs_(:hybrid,)_with_states deleted file mode 100644 index 19e6529ca..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 19/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,600 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing SIR 19 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.230150309 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.230150309 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.026273672 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.026273672 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 4, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.39e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.39e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.309786649 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001675774 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002006106 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 16 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.017203154 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003125753 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[mu, r, q, beta, pp, N, D, C, I, S, R] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 78 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 75 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 78 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 75 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 78 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 75 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y2, y11, y5, y6, y8], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y7, y3, t, y1, y10], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.035244718 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001808921 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y6, y7, y5, t, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y3, y4, y1, y10, y8], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.012570414 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001945883 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y7, y4, y1, y2, y9], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y5, y11, y3, t, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.01208815 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001841992 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y10, y5, t, y8, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y11, y2, y9, y4, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.073601425 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001824618 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y9, y7, t, y2, y11], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y3, y1, y10, y4, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.014173087 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002015313 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y1, y8, y2, y3, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y11, y7, y10, t, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.016458539 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002320049 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, t, y5, y9, y8, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y10, y1, y7, y6, y11], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.072649719 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002210782 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y1, y11, y2, y4, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y6, y5, y9, y10, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.014895858 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001859037 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y9, y3, y2, y1, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y10, y7, y8, t, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013246928 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001858181 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y9, y1, y10, y2, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y7, y11, y8, y6, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.058505624 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001713937 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002256417 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 10 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 55 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.595617478 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[S, I, C, D, N, pp, beta, q, r, mu] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 19/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SIR 19/logs_(:normalforms, 2) deleted file mode 100644 index 8a727cf74..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 19/logs_(:normalforms, 2) +++ /dev/null @@ -1,95 +0,0 @@ -┌ Info: Processing SIR 19 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.386119767 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.386119767 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.028136897 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.028136897 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 4, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.6832e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.6832e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(mu, r, q, beta, pp)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.483698432 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.197579498 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (5 in total): Nemo.fmpq_mpoly[mu, r, q, beta, pp] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.962910796 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 15 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.700610986 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[pp, beta, q, r, mu] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 19/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 19/logs_(:normalforms, 2)_with_states deleted file mode 100644 index 06a272c4f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 19/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,164 +0,0 @@ -┌ Info: Processing SIR 19 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.27282261 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.27282261 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.027548845 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.027548845 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 4, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.3292e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.3292e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.343715012 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.075503953 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002428427 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 16 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.05113693 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00211648 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[mu, r, q, beta, pp, N, D, C, I, S, R] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 12 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 10 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 12 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 10 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 12 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 10 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002208501 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 10 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 55 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.143461891 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[S, I, C, D, N, pp, beta, q, r, mu] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 19/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SIR 19/logs_(:normalforms, 3) deleted file mode 100644 index 2938cf07b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 19/logs_(:normalforms, 3) +++ /dev/null @@ -1,95 +0,0 @@ -┌ Info: Processing SIR 19 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.321477416 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.321477416 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.029035369 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.029035369 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 4, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.0756e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.0756e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(mu, r, q, beta, pp)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.151775372 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.160535525 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (5 in total): Nemo.fmpq_mpoly[mu, r, q, beta, pp] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.718014913 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 15 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 9.97529762 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[pp, beta, q, r, mu] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 19/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 19/logs_(:normalforms, 3)_with_states deleted file mode 100644 index b316c40d0..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 19/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,164 +0,0 @@ -┌ Info: Processing SIR 19 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.364501969 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.364501969 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.029318215 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.029318215 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 4, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.5261e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.5261e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.364167579 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00185896 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.00200634 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 16 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.057187479 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00224891 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[mu, r, q, beta, pp, N, D, C, I, S, R] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 78 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 75 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 78 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 75 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 78 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 75 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.00223281 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 10 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 55 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.263298186 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[S, I, C, D, N, pp, beta, q, r, mu] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 19/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SIR 19/timings_(:gb,) deleted file mode 100644 index 22d2f29c7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 19/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -SIR 19 -id_total, 9.959543302 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 19/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 19/timings_(:gb,)_with_states deleted file mode 100644 index e75e6ba94..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 19/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SIR 19 -id_total, 3.183036235 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 19/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SIR 19/timings_(:hybrid,) deleted file mode 100644 index 95c175f01..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 19/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -SIR 19 -id_total, 10.761323806 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 19/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 19/timings_(:hybrid,)_with_states deleted file mode 100644 index a49814a7f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 19/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SIR 19 -id_total, 3.595617478 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 19/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SIR 19/timings_(:normalforms, 2) deleted file mode 100644 index bb7bae357..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 19/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -SIR 19 -id_total, 10.700610986 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 19/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 19/timings_(:normalforms, 2)_with_states deleted file mode 100644 index 764b8ac44..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 19/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SIR 19 -id_total, 3.143461891 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 19/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SIR 19/timings_(:normalforms, 3) deleted file mode 100644 index 13cbbd334..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 19/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -SIR 19 -id_total, 9.97529762 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 19/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 19/timings_(:normalforms, 3)_with_states deleted file mode 100644 index 4848317f2..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 19/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SIR 19 -id_total, 3.263298186 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 21/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SIR 21/id_funcs_(:gb,) deleted file mode 100644 index a91644d32..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 21/id_funcs_(:gb,) +++ /dev/null @@ -1,5 +0,0 @@ -[pp, -beta, -q, -r, -mu*pp] diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 21/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 21/id_funcs_(:gb,)_with_states deleted file mode 100644 index 96420a55c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 21/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,10 +0,0 @@ -[S, -I, -C, -D, -N, -pp, -beta, -q, -r, -mu] diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 21/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SIR 21/id_funcs_(:hybrid,) deleted file mode 100644 index b7b925532..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 21/id_funcs_(:hybrid,) +++ /dev/null @@ -1,5 +0,0 @@ -[pp, -beta, -q, -r, -mu] diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 21/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 21/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index 96420a55c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 21/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,10 +0,0 @@ -[S, -I, -C, -D, -N, -pp, -beta, -q, -r, -mu] diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 21/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SIR 21/id_funcs_(:normalforms, 2) deleted file mode 100644 index b7b925532..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 21/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,5 +0,0 @@ -[pp, -beta, -q, -r, -mu] diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 21/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 21/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index 96420a55c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 21/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,10 +0,0 @@ -[S, -I, -C, -D, -N, -pp, -beta, -q, -r, -mu] diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 21/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SIR 21/id_funcs_(:normalforms, 3) deleted file mode 100644 index b7b925532..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 21/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,5 +0,0 @@ -[pp, -beta, -q, -r, -mu] diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 21/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 21/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index 96420a55c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 21/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,10 +0,0 @@ -[S, -I, -C, -D, -N, -pp, -beta, -q, -r, -mu] diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 21/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SIR 21/logs_(:gb,) deleted file mode 100644 index 96bc387c0..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 21/logs_(:gb,) +++ /dev/null @@ -1,84 +0,0 @@ -┌ Info: Processing SIR 21 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.355599685 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.355599685 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.028955294 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.028955294 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 4, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.3161e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.3161e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(mu, r, q, beta, pp)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.174235593 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.184169321 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.023330321 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 16 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 9.874557745 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[pp, beta, q, r, mu*pp] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 21/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 21/logs_(:gb,)_with_states deleted file mode 100644 index 95def9602..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 21/logs_(:gb,)_with_states +++ /dev/null @@ -1,135 +0,0 @@ -┌ Info: Processing SIR 21 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.311354592 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.311354592 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.079562343 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.079562343 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 4, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.8222e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.8222e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.359579263 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002923068 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002387203 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 16 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.014890367 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.038356076 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002501076 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 10 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 55 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.057782058 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[S, I, C, D, N, pp, beta, q, r, mu] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 21/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SIR 21/logs_(:hybrid,) deleted file mode 100644 index d165ff276..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 21/logs_(:hybrid,) +++ /dev/null @@ -1,531 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing SIR 21 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.656937689 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.656937689 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.030387209 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.030387209 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 4, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.119e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.119e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(mu, r, q, beta, pp)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.288765015 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.352872186 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (5 in total): Nemo.fmpq_mpoly[mu, r, q, beta, pp] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y5, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y2, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(mu, r, q, beta, pp)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.014411147 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002839477 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y5, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(mu, r, q, beta, pp)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013749512 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001093839 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y5, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y3, t], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(mu, r, q, beta, pp)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009194754 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001266904 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y5, y1], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(mu, r, q, beta, pp)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009029277 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001106567 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y5, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y4, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(mu, r, q, beta, pp)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.008774975 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001149476 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, t, y2], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y5, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(mu, r, q, beta, pp)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010618135 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001547595 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t, y3], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y5, y2], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(mu, r, q, beta, pp)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.016565012 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003013194 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y5, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(mu, r, q, beta, pp)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009306554 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.084254316 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3, y1], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y5, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(mu, r, q, beta, pp)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009337638 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001492289 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y1, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y4, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(mu, r, q, beta, pp)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015277816 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002511557 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.952477157 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 15 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 11.355237445 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[pp, beta, q, r, mu] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 21/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 21/logs_(:hybrid,)_with_states deleted file mode 100644 index 67bcf47d4..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 21/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,600 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing SIR 21 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.399007951 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.399007951 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.089624902 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.089624902 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 4, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.5412e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.5412e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.31688003 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001777342 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.001767971 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 16 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015420754 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.044959905 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[mu, r, q, beta, pp, N, D, C, I, S, R] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 78 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 75 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 78 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 75 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 78 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 75 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y4, y2, t, y9, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y11, y1, y5, y10, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.035982692 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004600065 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y4, y2, y7, t, y9], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y5, y10, y1, y6, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013175239 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001881005 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y1, y4, y3, y5, y10], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y7, y8, y9, y6, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.012292475 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.052144381 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y1, y4, y6, y2, y9], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, t, y10, y3, y11, y8], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013152639 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001761336 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y8, y4, y7, t, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y3, y11, y5, y2, y9], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.012874143 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002136916 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y9, y11, y2, y3, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y8, y10, t, y7, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013005009 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.053332818 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y11, y9, y10, y8, y1], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y7, y3, y2, t, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.014084959 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001978229 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t, y5, y1, y4, y8], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y2, y7, y9, y6, y10], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.012599479 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001648223 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y2, y10, y11, y9, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y8, y5, y1, y4, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.012552758 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.053175855 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y9, y7, y5, y4, y11], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y10, y1, y2, y8, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.01382495 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001732303 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.003578412 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 10 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 55 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.91458989 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[S, I, C, D, N, pp, beta, q, r, mu] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 21/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SIR 21/logs_(:normalforms, 2) deleted file mode 100644 index 7363c5abc..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 21/logs_(:normalforms, 2) +++ /dev/null @@ -1,95 +0,0 @@ -┌ Info: Processing SIR 21 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.338258848 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.338258848 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.0285119 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.0285119 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 4, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.6089e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.6089e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(mu, r, q, beta, pp)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.160540113 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.133732047 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (5 in total): Nemo.fmpq_mpoly[mu, r, q, beta, pp] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.749064872 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 15 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.031499867 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[pp, beta, q, r, mu] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 21/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 21/logs_(:normalforms, 2)_with_states deleted file mode 100644 index 879ad4a81..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 21/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,164 +0,0 @@ -┌ Info: Processing SIR 21 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.362355255 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.362355255 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.026310338 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.026310338 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 4, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.7952e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.7952e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.366109078 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.07220213 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002409299 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 16 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.050777357 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002091736 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[mu, r, q, beta, pp, N, D, C, I, S, R] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 12 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 10 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 12 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 10 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 12 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 10 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002201914 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 10 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 55 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.242976997 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[S, I, C, D, N, pp, beta, q, r, mu] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 21/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SIR 21/logs_(:normalforms, 3) deleted file mode 100644 index a0997cb24..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 21/logs_(:normalforms, 3) +++ /dev/null @@ -1,95 +0,0 @@ -┌ Info: Processing SIR 21 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.601758576 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.601758576 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.029695425 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.029695425 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 4, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.168e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.168e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(mu, r, q, beta, pp)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.399648082 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.237839597 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (5 in total): Nemo.fmpq_mpoly[mu, r, q, beta, pp] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.843592381 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 15 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.736733838 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[pp, beta, q, r, mu] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 21/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 21/logs_(:normalforms, 3)_with_states deleted file mode 100644 index 6e9a9d32e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 21/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,164 +0,0 @@ -┌ Info: Processing SIR 21 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.35760841 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.35760841 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.028433513 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.028433513 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 4, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.7128e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.7128e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.365511957 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001934877 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.001557623 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 16 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(mu, r, q, beta, pp, N, D, C, I, S, R)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.0608958 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002605346 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[mu, r, q, beta, pp, N, D, C, I, S, R] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 78 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 75 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 78 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 75 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 78 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 75 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002272752 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 10 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 55 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.267169993 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[S, I, C, D, N, pp, beta, q, r, mu] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 21/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SIR 21/timings_(:gb,) deleted file mode 100644 index 205116901..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 21/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -SIR 21 -id_total, 9.874557745 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 21/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 21/timings_(:gb,)_with_states deleted file mode 100644 index cd69d37e6..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 21/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SIR 21 -id_total, 3.057782058 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 21/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SIR 21/timings_(:hybrid,) deleted file mode 100644 index 5397952f9..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 21/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -SIR 21 -id_total, 11.355237445 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 21/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 21/timings_(:hybrid,)_with_states deleted file mode 100644 index 94d852765..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 21/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SIR 21 -id_total, 3.91458989 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 21/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SIR 21/timings_(:normalforms, 2) deleted file mode 100644 index 74b4a2458..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 21/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -SIR 21 -id_total, 10.031499867 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 21/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 21/timings_(:normalforms, 2)_with_states deleted file mode 100644 index e4b8759b1..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 21/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SIR 21 -id_total, 3.242976997 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 21/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SIR 21/timings_(:normalforms, 3) deleted file mode 100644 index ad26e449f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 21/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -SIR 21 -id_total, 10.736733838 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 21/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 21/timings_(:normalforms, 3)_with_states deleted file mode 100644 index f0ba13589..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 21/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SIR 21 -id_total, 3.267169993 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 24/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SIR 24/id_funcs_(:gb,) deleted file mode 100644 index 8334fc8b6..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 24/id_funcs_(:gb,) +++ /dev/null @@ -1,3 +0,0 @@ -[K, -c*phi, -gamma + mu] diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 24/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 24/id_funcs_(:gb,)_with_states deleted file mode 100644 index 881cd8d74..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 24/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,6 +0,0 @@ -[I, -S, -K, -c*phi, -mu - A, -gamma + A] diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 24/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SIR 24/id_funcs_(:hybrid,) deleted file mode 100644 index 8334fc8b6..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 24/id_funcs_(:hybrid,) +++ /dev/null @@ -1,3 +0,0 @@ -[K, -c*phi, -gamma + mu] diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 24/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 24/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index 881cd8d74..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 24/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,6 +0,0 @@ -[I, -S, -K, -c*phi, -mu - A, -gamma + A] diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 24/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SIR 24/id_funcs_(:normalforms, 2) deleted file mode 100644 index 8334fc8b6..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 24/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,3 +0,0 @@ -[K, -c*phi, -gamma + mu] diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 24/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 24/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index 881cd8d74..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 24/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,6 +0,0 @@ -[I, -S, -K, -c*phi, -mu - A, -gamma + A] diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 24/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SIR 24/id_funcs_(:normalforms, 3) deleted file mode 100644 index 8334fc8b6..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 24/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,3 +0,0 @@ -[K, -c*phi, -gamma + mu] diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 24/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 24/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index 881cd8d74..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 24/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,6 +0,0 @@ -[I, -S, -K, -c*phi, -mu - A, -gamma + A] diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 24/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SIR 24/logs_(:gb,) deleted file mode 100644 index 836bfe663..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 24/logs_(:gb,) +++ /dev/null @@ -1,84 +0,0 @@ -┌ Info: Processing SIR 24 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.242977315 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.242977315 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.017550185 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.017550185 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [27] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 7.4476e-5 seconds -│ :rank_time = rank_time -│ rank_times = 7.4476e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 69 functions in Rational Field(gamma, c, K, phi, mu)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.142920244 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.171561549 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.112415551 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 68 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 9 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 7.747974259 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[K, c*phi, gamma + mu] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 24/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 24/logs_(:gb,)_with_states deleted file mode 100644 index 13e314efa..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 24/logs_(:gb,)_with_states +++ /dev/null @@ -1,135 +0,0 @@ -┌ Info: Processing SIR 24 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.2455486 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.2455486 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.016919726 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.016919726 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [27] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 7.5998e-5 seconds -│ :rank_time = rank_time -│ rank_times = 7.5998e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 69 functions in Rational Field(gamma, c, K, phi, mu, R, S, A, I)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.933694464 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003945332 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.008076079 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 68 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 9 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 19 functions in Rational Field(gamma, c, K, phi, mu, R, S, A, I)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 10)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.04888388 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.059898201 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.034883696 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 18 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 29 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 1.490703704 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[I, S, K, c*phi, mu - A, gamma + A] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 24/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SIR 24/logs_(:hybrid,) deleted file mode 100644 index 2c1aaabb3..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 24/logs_(:hybrid,) +++ /dev/null @@ -1,549 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing SIR 24 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.188128946 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.188128946 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.017208445 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.017208445 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [27] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 8.2997e-5 seconds -│ :rank_time = rank_time -│ rank_times = 8.2997e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 69 functions in Rational Field(gamma, c, K, phi, mu)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.564998989 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.219364282 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (5 in total): Nemo.fmpq_mpoly[gamma, c, K, phi, mu] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 52 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 37 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 52 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 37 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 4 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 52 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 37 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 4 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3, y2], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y4, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(gamma, c, K, phi, mu)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009714234 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001219211 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y5, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y1, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(gamma, c, K, phi, mu)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009924115 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001180496 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, t, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y1, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(gamma, c, K, phi, mu)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009386475 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001336734 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y3, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, t, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(gamma, c, K, phi, mu)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009975734 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.059324045 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y3, y5], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y4, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(gamma, c, K, phi, mu)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009981142 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001168052 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t, y2], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y5, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(gamma, c, K, phi, mu)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009788281 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001238066 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y5, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y2, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(gamma, c, K, phi, mu)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009793174 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001169508 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3, y5], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y2, y1], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(gamma, c, K, phi, mu)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009133542 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001024733 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y1, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, t, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(gamma, c, K, phi, mu)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009617746 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001125286 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y5, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y3, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(gamma, c, K, phi, mu)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010754548 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001190084 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.859701901 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 68 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 9 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 8.78380294 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[K, c*phi, gamma + mu] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 24/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 24/logs_(:hybrid,)_with_states deleted file mode 100644 index 19d53cbd7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 24/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,600 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing SIR 24 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.169982326 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.169982326 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.016576853 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.016576853 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [27] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 6.9938e-5 seconds -│ :rank_time = rank_time -│ rank_times = 6.9938e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 69 functions in Rational Field(gamma, c, K, phi, mu, R, S, A, I)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.850735253 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.070628512 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.007966266 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 68 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 9 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 19 functions in Rational Field(gamma, c, K, phi, mu, R, S, A, I)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 10)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.112699187 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003383153 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (9 in total): Nemo.fmpq_mpoly[gamma, c, K, phi, mu, R, S, A, I] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 200 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 171 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 200 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 171 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 9 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 200 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 171 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 9 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y9, y8, y2, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y7, y4, y6, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(gamma, c, K, phi, mu, R, S, A, I)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.014640054 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00150487 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y1, y2, y5, y4], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y7, y6, y3, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(gamma, c, K, phi, mu, R, S, A, I)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.014189202 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001456158 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y1, y6, y4, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t, y8, y9, y2], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(gamma, c, K, phi, mu, R, S, A, I)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.014640323 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.056140066 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y6, t, y5, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y1, y7, y9, y8], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(gamma, c, K, phi, mu, R, S, A, I)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013939795 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001615426 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, t, y8, y4, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y3, y5, y7, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(gamma, c, K, phi, mu, R, S, A, I)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.01413841 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001583027 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y1, y3, y9, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, t, y5, y8, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(gamma, c, K, phi, mu, R, S, A, I)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.014012171 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.056903447 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y6, y3, y8, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, t, y7, y9, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(gamma, c, K, phi, mu, R, S, A, I)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015350965 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002290349 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y8, y4, y7, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y1, t, y9, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(gamma, c, K, phi, mu, R, S, A, I)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.017063561 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001675825 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y1, t, y9, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y8, y5, y6, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(gamma, c, K, phi, mu, R, S, A, I)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013575533 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.056048185 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y5, t, y3, y8], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y9, y6, y2, y7], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(gamma, c, K, phi, mu, R, S, A, I)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.014660162 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001741452 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.007440675 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 18 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 29 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 2.098716567 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[I, S, K, c*phi, mu - A, gamma + A] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 24/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SIR 24/logs_(:normalforms, 2) deleted file mode 100644 index a42429a82..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 24/logs_(:normalforms, 2) +++ /dev/null @@ -1,113 +0,0 @@ -┌ Info: Processing SIR 24 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.18223475 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.18223475 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.091628572 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.091628572 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [27] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 7.4843e-5 seconds -│ :rank_time = rank_time -│ rank_times = 7.4843e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 69 functions in Rational Field(gamma, c, K, phi, mu)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.203949208 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.206274808 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (5 in total): Nemo.fmpq_mpoly[gamma, c, K, phi, mu] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 18 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 10 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 18 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 10 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 18 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 10 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.835241479 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 68 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 9 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 8.179389773 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[K, c*phi, gamma + mu] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 24/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 24/logs_(:normalforms, 2)_with_states deleted file mode 100644 index 890b7badd..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 24/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,164 +0,0 @@ -┌ Info: Processing SIR 24 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.179557338 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.179557338 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.016916593 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.016916593 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [27] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 7.0515e-5 seconds -│ :rank_time = rank_time -│ rank_times = 7.0515e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 69 functions in Rational Field(gamma, c, K, phi, mu, R, S, A, I)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.834470841 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.056330761 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.008620417 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 68 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 9 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 19 functions in Rational Field(gamma, c, K, phi, mu, R, S, A, I)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 10)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.110466336 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003848434 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (9 in total): Nemo.fmpq_mpoly[gamma, c, K, phi, mu, R, S, A, I] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 45 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 32 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 45 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 32 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 4 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 45 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 32 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 4 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.007623113 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 18 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 29 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 1.586285468 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[I, S, K, c*phi, mu - A, gamma + A] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 24/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SIR 24/logs_(:normalforms, 3) deleted file mode 100644 index e85e0275f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 24/logs_(:normalforms, 3) +++ /dev/null @@ -1,113 +0,0 @@ -┌ Info: Processing SIR 24 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.186701949 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.186701949 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.017531669 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.017531669 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [27] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 7.5668e-5 seconds -│ :rank_time = rank_time -│ rank_times = 7.5668e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 69 functions in Rational Field(gamma, c, K, phi, mu)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.290382316 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.242300139 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (5 in total): Nemo.fmpq_mpoly[gamma, c, K, phi, mu] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 52 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 37 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 52 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 37 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 4 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 52 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 37 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 4 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.810006912 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 68 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 9 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 8.209117901 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[K, c*phi, gamma + mu] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 24/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 24/logs_(:normalforms, 3)_with_states deleted file mode 100644 index 08b48b269..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 24/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,164 +0,0 @@ -┌ Info: Processing SIR 24 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.189718999 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.189718999 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.017017176 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.017017176 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [27] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 7.406e-5 seconds -│ :rank_time = rank_time -│ rank_times = 7.406e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 69 functions in Rational Field(gamma, c, K, phi, mu, R, S, A, I)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 2)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 24 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.866416213 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004587397 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.008056526 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 68 initial generators there are 3 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 9 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 19 functions in Rational Field(gamma, c, K, phi, mu, R, S, A, I)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 10)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 28 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.112471496 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003668083 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (9 in total): Nemo.fmpq_mpoly[gamma, c, K, phi, mu, R, S, A, I] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 200 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 171 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 200 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 171 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 9 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 200 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 171 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 9 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.007810423 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 18 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 29 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 1.658475436 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[I, S, K, c*phi, mu - A, gamma + A] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 24/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SIR 24/timings_(:gb,) deleted file mode 100644 index 342daefb5..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 24/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -SIR 24 -id_total, 7.747974259 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 24/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 24/timings_(:gb,)_with_states deleted file mode 100644 index b73810efd..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 24/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SIR 24 -id_total, 1.490703704 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 24/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SIR 24/timings_(:hybrid,) deleted file mode 100644 index 5786624bb..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 24/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -SIR 24 -id_total, 8.78380294 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 24/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 24/timings_(:hybrid,)_with_states deleted file mode 100644 index 8c6aa206a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 24/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SIR 24 -id_total, 2.098716567 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 24/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SIR 24/timings_(:normalforms, 2) deleted file mode 100644 index e7535ca88..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 24/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -SIR 24 -id_total, 8.179389773 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 24/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 24/timings_(:normalforms, 2)_with_states deleted file mode 100644 index 4de021dce..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 24/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SIR 24 -id_total, 1.586285468 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 24/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SIR 24/timings_(:normalforms, 3) deleted file mode 100644 index 09a69c2a5..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 24/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -SIR 24 -id_total, 8.209117901 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 24/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 24/timings_(:normalforms, 3)_with_states deleted file mode 100644 index 2188aabee..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 24/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SIR 24 -id_total, 1.658475436 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 6/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SIR 6/id_funcs_(:gb,) deleted file mode 100644 index 216341a25..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 6/id_funcs_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -[gamma, -K//beta] diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 6/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 6/id_funcs_(:gb,)_with_states deleted file mode 100644 index 2cdcf8182..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 6/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,5 +0,0 @@ -[N, -gamma, -beta*N^2*I, -beta*N^2*S, -beta//K] diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 6/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SIR 6/id_funcs_(:hybrid,) deleted file mode 100644 index 216341a25..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 6/id_funcs_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -[gamma, -K//beta] diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 6/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 6/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index d7e09233c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 6/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,5 +0,0 @@ -[N, -gamma, -K*I, -K*S, -beta*I] diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 6/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SIR 6/id_funcs_(:normalforms, 2) deleted file mode 100644 index 216341a25..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 6/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -[gamma, -K//beta] diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 6/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 6/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index d7e09233c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 6/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,5 +0,0 @@ -[N, -gamma, -K*I, -K*S, -beta*I] diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 6/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SIR 6/id_funcs_(:normalforms, 3) deleted file mode 100644 index 216341a25..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 6/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -[gamma, -K//beta] diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 6/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 6/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index d7e09233c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 6/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,5 +0,0 @@ -[N, -gamma, -K*I, -K*S, -beta*I] diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 6/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SIR 6/logs_(:gb,) deleted file mode 100644 index 53b8357c0..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 6/logs_(:gb,) +++ /dev/null @@ -1,84 +0,0 @@ -┌ Info: Processing SIR 6 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.267019354 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.267019354 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.012892442 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.012892442 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1, 3] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.5663e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.5663e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(gamma, beta, K)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.013630356 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.148257544 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.078573794 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 3 initial generators there are 2 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 30 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 9.580147603 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[gamma, K//beta] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 6/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 6/logs_(:gb,)_with_states deleted file mode 100644 index 41a172abf..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 6/logs_(:gb,)_with_states +++ /dev/null @@ -1,173 +0,0 @@ -┌ Info: Processing SIR 6 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.302973071 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.302973071 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.013387951 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.013387951 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1, 3] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 6.9735e-5 seconds -│ :rank_time = rank_time -│ rank_times = 6.9735e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(gamma, beta, K, N, R, S, I)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.937763376 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002158606 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.001697849 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 3 initial generators there are 2 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 30 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(gamma, beta, K, N, R, S, I)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0)], [(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.016382508 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002482756 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(gamma, beta, K, N, R, S, I)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0)], [(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.024585529 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003595973 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002285471 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 57 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.543631309 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[N, gamma, beta*N^2*I, beta*N^2*S, beta//K] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 6/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SIR 6/logs_(:hybrid,) deleted file mode 100644 index 23ce2326b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 6/logs_(:hybrid,) +++ /dev/null @@ -1,549 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing SIR 6 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.359455478 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.359455478 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.012518949 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.012518949 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1, 3] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.1266e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.1266e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(gamma, beta, K)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.174729206 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.173440118 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (3 in total): Nemo.fmpq_mpoly[gamma, beta, K] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 16 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 13 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 16 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 13 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 16 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 13 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y1], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 3 functions in Rational Field(gamma, beta, K)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.006267429 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000855676 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y1], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 3 functions in Rational Field(gamma, beta, K)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.005908381 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000783818 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y1], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 3 functions in Rational Field(gamma, beta, K)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(1, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.005116836 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000776117 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 3 functions in Rational Field(gamma, beta, K)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(1, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.005354877 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000841956 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 3 functions in Rational Field(gamma, beta, K)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(1, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.005244933 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000753021 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y1], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 3 functions in Rational Field(gamma, beta, K)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(1, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.005095525 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000732384 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 3 functions in Rational Field(gamma, beta, K)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.00544921 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000770361 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y3], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 3 functions in Rational Field(gamma, beta, K)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.005763304 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000785633 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 3 functions in Rational Field(gamma, beta, K)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.005240093 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000766494 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, t], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 3 functions in Rational Field(gamma, beta, K)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.005358928 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.000776598 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.859671145 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 3 initial generators there are 2 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 30 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.339524783 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[gamma, K//beta] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 6/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 6/logs_(:hybrid,)_with_states deleted file mode 100644 index acffa131b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 6/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,638 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing SIR 6 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.309856123 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.309856123 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.011778504 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.011778504 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1, 3] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 7.8294e-5 seconds -│ :rank_time = rank_time -│ rank_times = 7.8294e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(gamma, beta, K, N, R, S, I)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.774912823 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004440065 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.004067828 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 3 initial generators there are 2 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 30 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(gamma, beta, K, N, R, S, I)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0)], [(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.099214798 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001549858 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(gamma, beta, K, N, R, S, I)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0)], [(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015333799 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001866183 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (7 in total): Nemo.fmpq_mpoly[gamma, beta, K, N, R, S, I] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 110 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 95 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 110 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 95 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 12 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 110 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 95 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 12 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y3, y7, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y1, t, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(gamma, beta, K, N, R, S, I)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 0)], [(1, 1), (0, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010985954 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002175903 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y5, y1, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3, y4, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(gamma, beta, K, N, R, S, I)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010371044 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001426766 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y7, y5, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y2, y3, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(gamma, beta, K, N, R, S, I)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.046612026 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001478896 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, t, y2, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y7, y3, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(gamma, beta, K, N, R, S, I)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 2), (0, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010532511 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001474129 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y4, y2, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y6, y7, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(gamma, beta, K, N, R, S, I)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(1, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010276136 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002511901 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y3, y1, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, t, y7, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(gamma, beta, K, N, R, S, I)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.056602433 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001567786 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y2, y3, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y7, y1, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(gamma, beta, K, N, R, S, I)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010514624 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001480368 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, t, y1, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y4, y6, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(gamma, beta, K, N, R, S, I)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010348162 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001654054 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y1, y4, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y3, t, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(gamma, beta, K, N, R, S, I)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 2), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010608066 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.043443941 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y4, y5, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y1, y7, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(gamma, beta, K, N, R, S, I)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011175789 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001504737 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.001952255 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 21 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.150106669 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[N, gamma, K*I, K*S, beta*I] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 6/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SIR 6/logs_(:normalforms, 2) deleted file mode 100644 index 266b13734..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 6/logs_(:normalforms, 2) +++ /dev/null @@ -1,113 +0,0 @@ -┌ Info: Processing SIR 6 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.243981486 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.243981486 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.012243984 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.012243984 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1, 3] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.0995e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.0995e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(gamma, beta, K)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.042962767 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.177825076 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (3 in total): Nemo.fmpq_mpoly[gamma, beta, K] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 7 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 5 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 7 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 5 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 7 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 5 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.773219188 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 3 initial generators there are 2 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 30 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 9.79562868 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[gamma, K//beta] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 6/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 6/logs_(:normalforms, 2)_with_states deleted file mode 100644 index 68670ec2b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 6/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,202 +0,0 @@ -┌ Info: Processing SIR 6 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.212480572 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.212480572 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.061582193 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.061582193 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1, 3] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.6208e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.6208e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(gamma, beta, K, N, R, S, I)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.755056907 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.055930542 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.001183021 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 3 initial generators there are 2 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 30 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(gamma, beta, K, N, R, S, I)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0)], [(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.016323796 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003129837 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(gamma, beta, K, N, R, S, I)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0)], [(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.016087376 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.05071904 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (7 in total): Nemo.fmpq_mpoly[gamma, beta, K, N, R, S, I] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 30 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 22 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 30 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 22 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 4 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 30 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 22 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 4 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002840213 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 21 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.591368898 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[N, gamma, K*I, K*S, beta*I] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 6/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SIR 6/logs_(:normalforms, 3) deleted file mode 100644 index 2d1a5e20d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 6/logs_(:normalforms, 3) +++ /dev/null @@ -1,113 +0,0 @@ -┌ Info: Processing SIR 6 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.330870616 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.330870616 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.013055813 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.013055813 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1, 3] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.3918e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.3918e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(gamma, beta, K)[y1, y2, y3, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.624160449 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.251765105 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (3 in total): Nemo.fmpq_mpoly[gamma, beta, K] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 16 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 13 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 16 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 13 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 16 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 13 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.903461183 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 3 initial generators there are 2 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 30 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.715885433 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[gamma, K//beta] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 6/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 6/logs_(:normalforms, 3)_with_states deleted file mode 100644 index cbf0298b5..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 6/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,202 +0,0 @@ -┌ Info: Processing SIR 6 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.540607349 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.540607349 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.012746727 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.012746727 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [1, 3] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.0852e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.0852e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 4 functions in Rational Field(gamma, beta, K, N, R, S, I)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.773584325 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.04499961 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 4 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.001596946 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 3 initial generators there are 2 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 30 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(gamma, beta, K, N, R, S, I)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0)], [(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015367028 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002705547 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(gamma, beta, K, N, R, S, I)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0)], [(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015638889 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.049822308 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (7 in total): Nemo.fmpq_mpoly[gamma, beta, K, N, R, S, I] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 110 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 95 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 110 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 95 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 12 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 110 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 95 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 12 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002467269 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 21 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.948302224 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[N, gamma, K*I, K*S, beta*I] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 6/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SIR 6/timings_(:gb,) deleted file mode 100644 index d091ee881..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 6/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -SIR 6 -id_total, 9.580147603 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 6/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 6/timings_(:gb,)_with_states deleted file mode 100644 index 4cee5a668..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 6/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SIR 6 -id_total, 3.543631309 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 6/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SIR 6/timings_(:hybrid,) deleted file mode 100644 index 62fd60ec5..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 6/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -SIR 6 -id_total, 10.339524783 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 6/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 6/timings_(:hybrid,)_with_states deleted file mode 100644 index 5918a641e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 6/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SIR 6 -id_total, 4.150106669 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 6/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SIR 6/timings_(:normalforms, 2) deleted file mode 100644 index 2dadab7c9..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 6/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -SIR 6 -id_total, 9.79562868 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 6/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 6/timings_(:normalforms, 2)_with_states deleted file mode 100644 index 243a868c7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 6/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SIR 6 -id_total, 3.591368898 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 6/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SIR 6/timings_(:normalforms, 3) deleted file mode 100644 index ad076c676..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 6/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -SIR 6 -id_total, 10.715885433 diff --git a/benchmarking/IdentifiableFunctions/systems/SIR 6/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SIR 6/timings_(:normalforms, 3)_with_states deleted file mode 100644 index 70ebd54b2..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIR 6/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SIR 6 -id_total, 3.948302224 diff --git a/benchmarking/IdentifiableFunctions/systems/SIRS forced/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SIRS forced/id_funcs_(:gb,) deleted file mode 100644 index 1c9007d62..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIRS forced/id_funcs_(:gb,) +++ /dev/null @@ -1,5 +0,0 @@ -[g, -mu, -b0, -nu, -M^2] diff --git a/benchmarking/IdentifiableFunctions/systems/SIRS forced/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIRS forced/id_funcs_(:gb,)_with_states deleted file mode 100644 index 85f99cb44..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIRS forced/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,10 +0,0 @@ -[s, -r, -i, -g, -mu, -b0, -nu, -M^2, -b1*x1, -(M*x2)//x1] diff --git a/benchmarking/IdentifiableFunctions/systems/SIRS forced/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SIRS forced/id_funcs_(:hybrid,) deleted file mode 100644 index 1c9007d62..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIRS forced/id_funcs_(:hybrid,) +++ /dev/null @@ -1,5 +0,0 @@ -[g, -mu, -b0, -nu, -M^2] diff --git a/benchmarking/IdentifiableFunctions/systems/SIRS forced/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIRS forced/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index da9485d39..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIRS forced/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,10 +0,0 @@ -[s, -r, -i, -g, -mu, -b0, -nu, -M^2, -b1*x1, -b1*M*x2] diff --git a/benchmarking/IdentifiableFunctions/systems/SIRS forced/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SIRS forced/id_funcs_(:normalforms, 2) deleted file mode 100644 index 1c9007d62..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIRS forced/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,5 +0,0 @@ -[g, -mu, -b0, -nu, -M^2] diff --git a/benchmarking/IdentifiableFunctions/systems/SIRS forced/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SIRS forced/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index 85f99cb44..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIRS forced/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,10 +0,0 @@ -[s, -r, -i, -g, -mu, -b0, -nu, -M^2, -b1*x1, -(M*x2)//x1] diff --git a/benchmarking/IdentifiableFunctions/systems/SIRS forced/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SIRS forced/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index da9485d39..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIRS forced/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,10 +0,0 @@ -[s, -r, -i, -g, -mu, -b0, -nu, -M^2, -b1*x1, -b1*M*x2] diff --git a/benchmarking/IdentifiableFunctions/systems/SIRS forced/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SIRS forced/logs_(:gb,) deleted file mode 100644 index f6276b28a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIRS forced/logs_(:gb,) +++ /dev/null @@ -1,85 +0,0 @@ -┌ Info: Processing SIRS forced -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 3.562645325 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 3.562645325 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 4.953457624 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 4.953457624 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [3, 830] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.168328047 seconds -│ :rank_time = rank_time -│ rank_times = 0.168328047 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 2587 functions in Rational Field(nu, b1, b0, M, mu, g)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 5.080138092 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.817447367 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.77245003 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 2586 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 16 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 18.608803714 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[g, mu, b0, nu, M^2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIRS forced/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIRS forced/logs_(:gb,)_with_states deleted file mode 100644 index eb4219e78..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIRS forced/logs_(:gb,)_with_states +++ /dev/null @@ -1,139 +0,0 @@ -┌ Info: Processing SIRS forced -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 3.409171026 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 3.409171026 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 5.148283428 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 5.148283428 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [3, 830] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.167077961 seconds -│ :rank_time = rank_time -│ rank_times = 0.167077961 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 11  ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 2587 functions in Rational Field(nu, b1, b0, M, mu, g, i, r, s, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.408070864 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.524405103 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.55404672 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 2586 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 16 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(nu, b1, b0, M, mu, g, i, r, s, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (2, 1)], [(0, 0), (2, 2)], [(0, 0), (2, 1)], [(0, 0), (2, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.3850294 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.006049182 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.012150671 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 10 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 88 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 11.954173847 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[s, r, i, g, mu, b0, nu, M^2, b1*x1, (M*x2)//x1] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIRS forced/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SIRS forced/logs_(:hybrid,) deleted file mode 100644 index d084a97d4..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIRS forced/logs_(:hybrid,) +++ /dev/null @@ -1,550 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing SIRS forced -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 3.578231694 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 3.578231694 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 5.353120687 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 5.353120687 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [3, 830] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.25839293 seconds -│ :rank_time = rank_time -│ rank_times = 0.25839293 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 2587 functions in Rational Field(nu, b1, b0, M, mu, g)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 5.206946424 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.852846633 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (6 in total): Nemo.fmpq_mpoly[nu, b1, b0, M, mu, g] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 49 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 43 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 49 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 43 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 5 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 49 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 43 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 5 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y4, t], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y5, y1, y6], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(nu, b1, b0, M, mu, g)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010126371 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001257468 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y4, y3], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t, y6, y5], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(nu, b1, b0, M, mu, g)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009847403 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001200097 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y2, y1], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, t, y3, y4], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(nu, b1, b0, M, mu, g)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009711043 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001167867 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y6, y4], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y1, y5, t], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(nu, b1, b0, M, mu, g)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009199872 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001161288 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y1, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3, y2, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(nu, b1, b0, M, mu, g)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009129948 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001179413 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y4, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y2, y6, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(nu, b1, b0, M, mu, g)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009314921 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001182457 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y4, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y2, t, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(nu, b1, b0, M, mu, g)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009244487 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001267727 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y1, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y5, y2, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(nu, b1, b0, M, mu, g)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009282494 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001166166 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y4, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y3, t, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(nu, b1, b0, M, mu, g)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.007603849 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001422945 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y3, y6], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y4, y5, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(nu, b1, b0, M, mu, g)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.008307336 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001468941 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.819456402 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 2586 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 16 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 20.120911024 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[g, mu, b0, nu, M^2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIRS forced/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIRS forced/logs_(:hybrid,)_with_states deleted file mode 100644 index 301e5861b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIRS forced/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,604 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing SIRS forced -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 3.576623202 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 3.576623202 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 5.480856462 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 5.480856462 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [3, 830] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.177933291 seconds -│ :rank_time = rank_time -│ rank_times = 0.177933291 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 11  ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 2587 functions in Rational Field(nu, b1, b0, M, mu, g, i, r, s, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.396944662 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.639720817 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.496429301 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 2586 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 16 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(nu, b1, b0, M, mu, g, i, r, s, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (2, 1)], [(0, 0), (2, 2)], [(0, 0), (2, 1)], [(0, 0), (2, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.374561936 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005797787 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[nu, b1, b0, M, mu, g, i, r, s, x1, x2] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 244 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 232 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 244 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 232 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 17 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 244 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 232 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 17 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y5, y2, y6, y4, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y10, y9, y8, t, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(nu, b1, b0, M, mu, g, i, r, s, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(2, 2), (0, 0)], [(0, 0), (1, 0)], [(2, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.018149317 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003929944 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y4, t, y6, y1, y11], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y7, y9, y8, y3, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(nu, b1, b0, M, mu, g, i, r, s, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (2, 1)], [(0, 0), (2, 0)], [(2, 2), (0, 0)], [(0, 0), (1, 2)], [(0, 0), (2, 1)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.021476314 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004138147 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y2, y10, y3, y5, y9], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y1, y6, y11, y8, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(nu, b1, b0, M, mu, g, i, r, s, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 2), (0, 0)], [(0, 0), (2, 1)], [(0, 2), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.019100078 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003888351 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y6, t, y10, y2, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y7, y3, y9, y11, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(nu, b1, b0, M, mu, g, i, r, s, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(1, 2), (0, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015732751 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003680652 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y3, y4, y10, y2, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y5, t, y9, y11, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(nu, b1, b0, M, mu, g, i, r, s, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(2, 2), (0, 0)], [(2, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015208606 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003855557 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y5, y4, y11, y9, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y2, y3, y10, y1, y8], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(nu, b1, b0, M, mu, g, i, r, s, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(2, 2), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.014716276 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003734869 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y2, y4, t, y6, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y10, y11, y5, y3, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(nu, b1, b0, M, mu, g, i, r, s, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (2, 2)], [(2, 1), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.01534422 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003831802 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y6, t, y8, y9, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y4, y7, y10, y2, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(nu, b1, b0, M, mu, g, i, r, s, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 0)], [(1, 2), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013749993 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003796898 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y4, y8, y11, y7, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t, y2, y10, y3, y9], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(nu, b1, b0, M, mu, g, i, r, s, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 2), (0, 0)], [(0, 0), (1, 0)], [(2, 2), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.014276123 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004367418 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y6, y5, y3, y2, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y10, t, y9, y7, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(nu, b1, b0, M, mu, g, i, r, s, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(2, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(2, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.014559012 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.161257156 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.011067401 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 10 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 62 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 13.211246702 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[s, r, i, g, mu, b0, nu, M^2, b1*x1, b1*M*x2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIRS forced/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SIRS forced/logs_(:normalforms, 2) deleted file mode 100644 index 02d40d3e9..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIRS forced/logs_(:normalforms, 2) +++ /dev/null @@ -1,113 +0,0 @@ -┌ Info: Processing SIRS forced -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 3.425072764 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 3.425072764 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 5.051454035 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 5.051454035 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [3, 830] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.190135589 seconds -│ :rank_time = rank_time -│ rank_times = 0.190135589 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 2587 functions in Rational Field(nu, b1, b0, M, mu, g)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 5.06015262 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.513861814 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (6 in total): Nemo.fmpq_mpoly[nu, b1, b0, M, mu, g] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 13 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 9 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 13 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 9 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 1 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 13 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 9 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 1 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.261846878 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 2586 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 16 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 18.206465247 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[g, mu, b0, nu, M^2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIRS forced/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SIRS forced/logs_(:normalforms, 2)_with_states deleted file mode 100644 index d54ebbd72..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIRS forced/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,168 +0,0 @@ -┌ Info: Processing SIRS forced -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 3.458314886 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 3.458314886 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 5.146579219 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 5.146579219 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [3, 830] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.166167456 seconds -│ :rank_time = rank_time -│ rank_times = 0.166167456 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 11  ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 2587 functions in Rational Field(nu, b1, b0, M, mu, g, i, r, s, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.475863923 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.52110714 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.667380454 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 2586 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 16 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(nu, b1, b0, M, mu, g, i, r, s, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (2, 1)], [(0, 0), (2, 2)], [(0, 0), (2, 1)], [(0, 0), (2, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.377290487 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005966603 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[nu, b1, b0, M, mu, g, i, r, s, x1, x2] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 42 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 34 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 42 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 34 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 2 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 42 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 34 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 2 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.012185747 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 10 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 88 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 12.31007806 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[s, r, i, g, mu, b0, nu, M^2, b1*x1, (M*x2)//x1] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIRS forced/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SIRS forced/logs_(:normalforms, 3) deleted file mode 100644 index 2c0bc45b0..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIRS forced/logs_(:normalforms, 3) +++ /dev/null @@ -1,14 +0,0 @@ -┌ Info: Processing SIRS forced -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -double free or corruption (out) - -[2567222] signal (6.-6): Aborted -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 diff --git a/benchmarking/IdentifiableFunctions/systems/SIRS forced/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SIRS forced/logs_(:normalforms, 3)_with_states deleted file mode 100644 index 127e93232..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIRS forced/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,168 +0,0 @@ -┌ Info: Processing SIRS forced -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 3.447991984 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 3.447991984 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 5.208291745 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 5.208291745 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [3, 830] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.167374414 seconds -│ :rank_time = rank_time -│ rank_times = 0.167374414 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 11  ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 2587 functions in Rational Field(nu, b1, b0, M, mu, g, i, r, s, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 1.422459463 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.537837012 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.49999023 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 2586 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 16 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(nu, b1, b0, M, mu, g, i, r, s, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 1)], [(0, 0), (2, 1)], [(0, 0), (2, 2)], [(0, 0), (2, 1)], [(0, 0), (2, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.384136605 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.006249491 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 15 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[nu, b1, b0, M, mu, g, i, r, s, x1, x2] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 244 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 232 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 244 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 232 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 17 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 244 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 232 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 17 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.011636305 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 10 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 62 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 12.228320733 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[s, r, i, g, mu, b0, nu, M^2, b1*x1, b1*M*x2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIRS forced/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SIRS forced/timings_(:gb,) deleted file mode 100644 index 4f87feb7d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIRS forced/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -SIRS forced -id_total, 18.608803714 diff --git a/benchmarking/IdentifiableFunctions/systems/SIRS forced/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIRS forced/timings_(:gb,)_with_states deleted file mode 100644 index 1d452cd6b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIRS forced/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SIRS forced -id_total, 11.954173847 diff --git a/benchmarking/IdentifiableFunctions/systems/SIRS forced/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SIRS forced/timings_(:hybrid,) deleted file mode 100644 index 89dc51e5c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIRS forced/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -SIRS forced -id_total, 20.120911024 diff --git a/benchmarking/IdentifiableFunctions/systems/SIRS forced/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIRS forced/timings_(:hybrid,)_with_states deleted file mode 100644 index a9421a998..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIRS forced/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SIRS forced -id_total, 13.211246702 diff --git a/benchmarking/IdentifiableFunctions/systems/SIRS forced/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SIRS forced/timings_(:normalforms, 2) deleted file mode 100644 index ed95a87fc..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIRS forced/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -SIRS forced -id_total, 18.206465247 diff --git a/benchmarking/IdentifiableFunctions/systems/SIRS forced/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SIRS forced/timings_(:normalforms, 2)_with_states deleted file mode 100644 index 234ae87f0..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIRS forced/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SIRS forced -id_total, 12.31007806 diff --git a/benchmarking/IdentifiableFunctions/systems/SIRS forced/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SIRS forced/timings_(:normalforms, 3)_with_states deleted file mode 100644 index 24a060ee9..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIRS forced/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SIRS forced -id_total, 12.228320733 diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR original/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SIWR original/id_funcs_(:gb,) deleted file mode 100644 index 5eb7f8286..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR original/id_funcs_(:gb,) +++ /dev/null @@ -1,7 +0,0 @@ -[a, -xi, -k, -mu, -bw, -gam, -bi] diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR original/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIWR original/id_funcs_(:gb,)_with_states deleted file mode 100644 index 88a98dca3..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR original/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,11 +0,0 @@ -[W, -S, -R, -I, -a, -xi, -k, -mu, -bw, -gam, -bi] diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR original/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SIWR original/id_funcs_(:hybrid,) deleted file mode 100644 index 5eb7f8286..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR original/id_funcs_(:hybrid,) +++ /dev/null @@ -1,7 +0,0 @@ -[a, -xi, -k, -mu, -bw, -gam, -bi] diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR original/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIWR original/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index 88a98dca3..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR original/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,11 +0,0 @@ -[W, -S, -R, -I, -a, -xi, -k, -mu, -bw, -gam, -bi] diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR original/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SIWR original/id_funcs_(:normalforms, 2) deleted file mode 100644 index 5eb7f8286..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR original/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,7 +0,0 @@ -[a, -xi, -k, -mu, -bw, -gam, -bi] diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR original/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SIWR original/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index 88a98dca3..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR original/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,11 +0,0 @@ -[W, -S, -R, -I, -a, -xi, -k, -mu, -bw, -gam, -bi] diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR original/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SIWR original/id_funcs_(:normalforms, 3) deleted file mode 100644 index 5eb7f8286..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR original/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,7 +0,0 @@ -[a, -xi, -k, -mu, -bw, -gam, -bi] diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR original/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SIWR original/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index 88a98dca3..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR original/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,11 +0,0 @@ -[W, -S, -R, -I, -a, -xi, -k, -mu, -bw, -gam, -bi] diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR original/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SIWR original/logs_(:gb,) deleted file mode 100644 index 736c30702..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR original/logs_(:gb,) +++ /dev/null @@ -1,87 +0,0 @@ -┌ Info: Processing SIWR original -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 1.556870049 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 1.556870049 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 1.607842469 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 1.607842469 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [676] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.090355238 seconds -│ :rank_time = rank_time -│ rank_times = 0.090355238 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:00 ⌞ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 8  ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 771 functions in Rational Field(bi, gam, bw, mu, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 6)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 3.151616467 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.183641076 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 5.006586855 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 770 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 13.801426856 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[a, xi, k, mu, bw, gam, bi] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR original/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIWR original/logs_(:gb,)_with_states deleted file mode 100644 index 75665eaf1..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR original/logs_(:gb,)_with_states +++ /dev/null @@ -1,140 +0,0 @@ -┌ Info: Processing SIWR original -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 1.618596324 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 1.618596324 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 1.715953922 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 1.715953922 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [676] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.125914763 seconds -│ :rank_time = rank_time -│ rank_times = 0.125914763 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 6  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 12  ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 771 functions in Rational Field(bi, gam, bw, mu, k, xi, a, I, R, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 6)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 3.696196532 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.303125803 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 5.270345074 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 770 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(bi, gam, bw, mu, k, xi, a, I, R, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.033379639 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.006945463 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.006308612 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 11 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 66 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 15.122975398 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[W, S, R, I, a, xi, k, mu, bw, gam, bi] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR original/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SIWR original/logs_(:hybrid,) deleted file mode 100644 index c09a7f2fa..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR original/logs_(:hybrid,) +++ /dev/null @@ -1,534 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing SIWR original -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 1.494388518 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 1.494388518 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 1.660839853 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 1.660839853 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [676] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.09068908 seconds -│ :rank_time = rank_time -│ rank_times = 0.09068908 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:00 ⌞ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 7  ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 771 functions in Rational Field(bi, gam, bw, mu, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 6)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 3.242923855 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.163816272 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (7 in total): Nemo.fmpq_mpoly[bi, gam, bw, mu, k, xi, a] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y6, y3, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y4, y5, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(bi, gam, bw, mu, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011386405 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.032788953 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y1, y3, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y7, y5, t], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(bi, gam, bw, mu, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011180954 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002197453 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y7, y6, y5], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y1, t, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(bi, gam, bw, mu, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.01117888 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001778977 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, t, y3, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y2, y5, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(bi, gam, bw, mu, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.01088685 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001736959 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y2, y5, y1], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y7, y3, y6], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(bi, gam, bw, mu, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.056939649 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001564928 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y4, y1, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y2, t, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(bi, gam, bw, mu, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010181589 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001653021 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t, y7, y6], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y2, y4, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(bi, gam, bw, mu, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.01007856 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001541788 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y2, y7, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t, y1, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(bi, gam, bw, mu, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010517965 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.052286539 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y3, t, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y6, y5, y2], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(bi, gam, bw, mu, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011831429 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002051291 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y2, y6, y5], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y4, y7, y3], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(bi, gam, bw, mu, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010239923 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001498928 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 5.189850436 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 770 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 14.607503529 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[a, xi, k, mu, bw, gam, bi] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR original/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIWR original/logs_(:hybrid,)_with_states deleted file mode 100644 index 243a2ca8b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR original/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,586 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing SIWR original -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 1.338857291 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 1.338857291 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 1.771736111 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 1.771736111 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [676] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.08931546 seconds -│ :rank_time = rank_time -│ rank_times = 0.08931546 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 6  ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 771 functions in Rational Field(bi, gam, bw, mu, k, xi, a, I, R, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 6)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 3.699744181 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.272289647 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 5.451752257 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 770 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(bi, gam, bw, mu, k, xi, a, I, R, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.077237316 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.006124161 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[bi, gam, bw, mu, k, xi, a, I, R, S, W] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, t, y6, y7, y4, y5], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y3, y9, y1, y8, y2], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(bi, gam, bw, mu, k, xi, a, I, R, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.01183014 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002942415 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y8, y11, y4, y7, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y6, y5, y2, y10, y9], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(bi, gam, bw, mu, k, xi, a, I, R, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.040250139 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001812123 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y3, y10, y1, y7, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y8, y2, t, y5, y11], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(bi, gam, bw, mu, k, xi, a, I, R, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011075904 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002137012 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y6, y3, y8, y9, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y10, y4, y11, y7, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(bi, gam, bw, mu, k, xi, a, I, R, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011283325 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002145746 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y10, y2, y8, y1, y3], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y11, y9, y6, y7, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(bi, gam, bw, mu, k, xi, a, I, R, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.048486947 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001953257 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y7, y5, y9, y2, y1], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y10, y6, y8, y3, y4], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(bi, gam, bw, mu, k, xi, a, I, R, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010691598 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001876845 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y2, y4, y1, y8, y11], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y9, y6, y5, y10, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(bi, gam, bw, mu, k, xi, a, I, R, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011925581 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001935709 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y3, y8, y4, y7, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y10, y2, y9, y11, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(bi, gam, bw, mu, k, xi, a, I, R, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.049784755 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001841493 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y6, y10, y3, y9, y11], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y7, t, y1, y8, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(bi, gam, bw, mu, k, xi, a, I, R, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010759545 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001786345 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y5, y2, y9, y6, y11], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y3, y1, y8, t, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(bi, gam, bw, mu, k, xi, a, I, R, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011594411 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.031969339 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.01904764 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 11 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 66 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 15.513534873 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[W, S, R, I, a, xi, k, mu, bw, gam, bi] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR original/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SIWR original/logs_(:normalforms, 2) deleted file mode 100644 index 49a6fe5e6..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR original/logs_(:normalforms, 2) +++ /dev/null @@ -1,98 +0,0 @@ -┌ Info: Processing SIWR original -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 1.538734264 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 1.538734264 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 1.736485585 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 1.736485585 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [676] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.089567763 seconds -│ :rank_time = rank_time -│ rank_times = 0.089567763 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 8  ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 771 functions in Rational Field(bi, gam, bw, mu, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 6)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 3.224101622 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.128952332 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (7 in total): Nemo.fmpq_mpoly[bi, gam, bw, mu, k, xi, a] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 4.992864046 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 770 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 13.817212423 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[a, xi, k, mu, bw, gam, bi] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR original/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SIWR original/logs_(:normalforms, 2)_with_states deleted file mode 100644 index bac76ebef..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR original/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,150 +0,0 @@ -┌ Info: Processing SIWR original -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 1.422646489 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 1.422646489 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 1.758653214 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 1.758653214 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [676] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.089058178 seconds -│ :rank_time = rank_time -│ rank_times = 0.089058178 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:00 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 7  ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 771 functions in Rational Field(bi, gam, bw, mu, k, xi, a, I, R, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 6)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 3.546154416 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.307559389 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 5.511221056 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 770 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(bi, gam, bw, mu, k, xi, a, I, R, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.036142848 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.097317156 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[bi, gam, bw, mu, k, xi, a, I, R, S, W] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.006442917 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 11 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 66 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 15.031543614 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[W, S, R, I, a, xi, k, mu, bw, gam, bi] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR original/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SIWR original/logs_(:normalforms, 3) deleted file mode 100644 index d8acea3dc..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR original/logs_(:normalforms, 3) +++ /dev/null @@ -1,98 +0,0 @@ -┌ Info: Processing SIWR original -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 1.476412496 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 1.476412496 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 1.568347008 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 1.568347008 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [676] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.08996653 seconds -│ :rank_time = rank_time -│ rank_times = 0.08996653 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:00 ⌞ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 7  ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 771 functions in Rational Field(bi, gam, bw, mu, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 6)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 3.130592479 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.178184972 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (7 in total): Nemo.fmpq_mpoly[bi, gam, bw, mu, k, xi, a] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 5.104175813 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 770 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 13.718349363 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[a, xi, k, mu, bw, gam, bi] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR original/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SIWR original/logs_(:normalforms, 3)_with_states deleted file mode 100644 index 66d649baa..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR original/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,150 +0,0 @@ -┌ Info: Processing SIWR original -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 1.5346458 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 1.5346458 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 1.629406751 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 1.629406751 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [676] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.090339889 seconds -│ :rank_time = rank_time -│ rank_times = 0.090339889 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:00 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 7  ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 771 functions in Rational Field(bi, gam, bw, mu, k, xi, a, I, R, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 6)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 3.59828389 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.343386282 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 5.225936263 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 770 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(bi, gam, bw, mu, k, xi, a, I, R, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.086090395 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.006795394 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[bi, gam, bw, mu, k, xi, a, I, R, S, W] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.00670744 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 11 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 66 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 14.919472138 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[W, S, R, I, a, xi, k, mu, bw, gam, bi] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR original/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SIWR original/timings_(:gb,) deleted file mode 100644 index 9a08e29d9..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR original/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -SIWR original -id_total, 13.801426856 diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR original/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIWR original/timings_(:gb,)_with_states deleted file mode 100644 index 74f2d818b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR original/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SIWR original -id_total, 15.122975398 diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR original/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SIWR original/timings_(:hybrid,) deleted file mode 100644 index 36055e13a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR original/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -SIWR original -id_total, 14.607503529 diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR original/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIWR original/timings_(:hybrid,)_with_states deleted file mode 100644 index 1216bc363..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR original/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SIWR original -id_total, 15.513534873 diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR original/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SIWR original/timings_(:normalforms, 2) deleted file mode 100644 index fb00bcaca..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR original/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -SIWR original -id_total, 13.817212423 diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR original/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SIWR original/timings_(:normalforms, 2)_with_states deleted file mode 100644 index 460557e77..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR original/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SIWR original -id_total, 15.031543614 diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR original/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SIWR original/timings_(:normalforms, 3) deleted file mode 100644 index 7254c0d0f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR original/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -SIWR original -id_total, 13.718349363 diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR original/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SIWR original/timings_(:normalforms, 3)_with_states deleted file mode 100644 index 9271b364b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR original/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SIWR original -id_total, 14.919472138 diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/id_funcs_(:gb,) deleted file mode 100644 index 9cc8b61ab..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/id_funcs_(:gb,) +++ /dev/null @@ -1,7 +0,0 @@ -[a, -xi, -k, -bw, -mu, -gam, -bi] diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/id_funcs_(:gb,)_with_states deleted file mode 100644 index 559da164e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,11 +0,0 @@ -[S, -I, -W, -R, -a, -xi, -k, -bw, -mu, -gam, -bi] diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/id_funcs_(:hybrid,) deleted file mode 100644 index 9cc8b61ab..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/id_funcs_(:hybrid,) +++ /dev/null @@ -1,7 +0,0 @@ -[a, -xi, -k, -bw, -mu, -gam, -bi] diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index 559da164e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,11 +0,0 @@ -[S, -I, -W, -R, -a, -xi, -k, -bw, -mu, -gam, -bi] diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/id_funcs_(:normalforms, 2) deleted file mode 100644 index 9cc8b61ab..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,7 +0,0 @@ -[a, -xi, -k, -bw, -mu, -gam, -bi] diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index 559da164e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,11 +0,0 @@ -[S, -I, -W, -R, -a, -xi, -k, -bw, -mu, -gam, -bi] diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/id_funcs_(:normalforms, 3) deleted file mode 100644 index 9cc8b61ab..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,7 +0,0 @@ -[a, -xi, -k, -bw, -mu, -gam, -bi] diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index 559da164e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,11 +0,0 @@ -[S, -I, -W, -R, -a, -xi, -k, -bw, -mu, -gam, -bi] diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/logs_(:gb,) deleted file mode 100644 index 3e4c5b6a1..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/logs_(:gb,) +++ /dev/null @@ -1,83 +0,0 @@ -┌ Info: Processing SIWR with extra output -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.847969213 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.847969213 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.110409649 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.110409649 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [2, 123] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000958664 seconds -│ :rank_time = rank_time -│ rank_times = 0.000958664 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 135 functions in Rational Field(bi, gam, mu, bw, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.526075161 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.075747973 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.136904752 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 134 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.805308108 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[a, xi, k, bw, mu, gam, bi] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/logs_(:gb,)_with_states deleted file mode 100644 index d83aee4f9..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/logs_(:gb,)_with_states +++ /dev/null @@ -1,135 +0,0 @@ -┌ Info: Processing SIWR with extra output -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.816193599 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.816193599 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.097446689 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.097446689 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [2, 123] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000953434 seconds -│ :rank_time = rank_time -│ rank_times = 0.000953434 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 135 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, W, I, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.534564153 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.083917932 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.138065005 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 134 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 14 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, W, I, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.020035626 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003407924 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.005017697 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 13 initial generators there are 11 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 66 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.901103176 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[S, I, W, R, a, xi, k, bw, mu, gam, bi] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/logs_(:hybrid,) deleted file mode 100644 index 1c11e565e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/logs_(:hybrid,) +++ /dev/null @@ -1,530 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing SIWR with extra output -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 3.031076105 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 3.031076105 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.071750908 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.071750908 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [2, 123] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000952602 seconds -│ :rank_time = rank_time -│ rank_times = 0.000952602 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 135 functions in Rational Field(bi, gam, mu, bw, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.487614671 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.029756229 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (7 in total): Nemo.fmpq_mpoly[bi, gam, mu, bw, k, xi, a] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y7, y5, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y2, y6, y3], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(bi, gam, mu, bw, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.01127253 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002883065 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3, y5, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y7, y4, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(bi, gam, mu, bw, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011043418 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.037070367 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y7, y4, y1], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y6, t, y5], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(bi, gam, mu, bw, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010565452 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001559822 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, t, y1, y7], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y3, y4, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(bi, gam, mu, bw, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010411636 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002193224 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y4, y6, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y7, y2, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(bi, gam, mu, bw, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010105366 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.044232468 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y6, y3, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y4, t, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(bi, gam, mu, bw, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010603204 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001560615 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y2, y5, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y3, y7, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(bi, gam, mu, bw, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.01130161 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001549136 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y6, y1, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y7, y2, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(bi, gam, mu, bw, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.01025908 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002853478 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y4, y5, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y6, y7, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(bi, gam, mu, bw, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.054559392 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001497087 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y6, y7, y1], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y3, t, y5], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(bi, gam, mu, bw, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010045103 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001968478 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.074106444 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 134 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.569540005 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[a, xi, k, bw, mu, gam, bi] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/logs_(:hybrid,)_with_states deleted file mode 100644 index 50a641664..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,582 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing SIWR with extra output -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.674698191 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.674698191 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.053059235 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.053059235 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [2, 123] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000856345 seconds -│ :rank_time = rank_time -│ rank_times = 0.000856345 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 135 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, W, I, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.44511936 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.027177102 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.078874781 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 134 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 14 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, W, I, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.093428248 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003328414 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[bi, gam, mu, bw, k, xi, a, R, W, I, S] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y6, y1, y11, y10, y8], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y7, y9, t, y5, y3], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, W, I, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.014375807 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001909064 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, t, y11, y5, y6, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y8, y10, y9, y1, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, W, I, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.01363288 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.042124781 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, t, y10, y4, y9, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y1, y6, y5, y7, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, W, I, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.01469613 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001965231 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y4, y2, y7, y5, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y11, t, y1, y6, y9], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, W, I, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.014528722 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001813871 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y8, y9, t, y2, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y7, y10, y3, y5, y11], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, W, I, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.0158003 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.079788414 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y1, y2, y11, y6, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y10, y3, y7, y4, y9], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, W, I, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.017394803 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002132577 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y9, y3, y11, y10, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y7, y1, y5, y8, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, W, I, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015244296 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002568828 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y10, y5, y8, y3, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y11, y6, y7, y1, y9], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, W, I, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013967364 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.056188318 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y7, y5, y9, t, y10], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y11, y8, y2, y6, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, W, I, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.018198965 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002493849 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y7, y3, y4, y8, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y6, t, y1, y11, y10], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, W, I, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.018599504 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002020866 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.005547098 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 13 initial generators there are 11 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 66 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.325609141 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[S, I, W, R, a, xi, k, bw, mu, gam, bi] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/logs_(:normalforms, 2) deleted file mode 100644 index 25d68128e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/logs_(:normalforms, 2) +++ /dev/null @@ -1,94 +0,0 @@ -┌ Info: Processing SIWR with extra output -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 3.087562789 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 3.087562789 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.130041827 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.130041827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [2, 123] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000958996 seconds -│ :rank_time = rank_time -│ rank_times = 0.000958996 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 135 functions in Rational Field(bi, gam, mu, bw, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.510605087 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.070455222 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (7 in total): Nemo.fmpq_mpoly[bi, gam, mu, bw, k, xi, a] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.098700155 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 134 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.13755991 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[a, xi, k, bw, mu, gam, bi] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/logs_(:normalforms, 2)_with_states deleted file mode 100644 index 6da190ca0..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,146 +0,0 @@ -┌ Info: Processing SIWR with extra output -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.789625571 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.789625571 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.056573487 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.056573487 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [2, 123] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000960384 seconds -│ :rank_time = rank_time -│ rank_times = 0.000960384 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 135 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, W, I, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.581830584 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.028233133 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.096112403 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 134 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 14 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, W, I, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.020215963 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.065435691 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[bi, gam, mu, bw, k, xi, a, R, W, I, S] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.021042575 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 13 initial generators there are 11 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 66 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.959771829 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[S, I, W, R, a, xi, k, bw, mu, gam, bi] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/logs_(:normalforms, 3) deleted file mode 100644 index 41c68c0c4..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/logs_(:normalforms, 3) +++ /dev/null @@ -1,94 +0,0 @@ -┌ Info: Processing SIWR with extra output -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 3.021476754 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 3.021476754 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.057817295 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.057817295 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [2, 123] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000963745 seconds -│ :rank_time = rank_time -│ rank_times = 0.000963745 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 135 functions in Rational Field(bi, gam, mu, bw, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.527342189 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.026844654 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (7 in total): Nemo.fmpq_mpoly[bi, gam, mu, bw, k, xi, a] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.149107289 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 134 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.137077001 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[a, xi, k, bw, mu, gam, bi] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/logs_(:normalforms, 3)_with_states deleted file mode 100644 index 1e232f44f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,146 +0,0 @@ -┌ Info: Processing SIWR with extra output -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 3.115508106 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 3.115508106 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.119405367 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.119405367 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [2, 123] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000948384 seconds -│ :rank_time = rank_time -│ rank_times = 0.000948384 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 135 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, W, I, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.518997092 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.076677711 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.141415179 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 134 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 14 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, W, I, S)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.019437509 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003404211 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[bi, gam, mu, bw, k, xi, a, R, W, I, S] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.004098813 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 13 initial generators there are 11 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 66 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.357009512 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[S, I, W, R, a, xi, k, bw, mu, gam, bi] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/timings_(:gb,) deleted file mode 100644 index 514ae726b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -SIWR with extra output -id_total, 3.805308108 diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/timings_(:gb,)_with_states deleted file mode 100644 index 44b0b7fd9..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SIWR with extra output -id_total, 3.901103176 diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/timings_(:hybrid,) deleted file mode 100644 index 6ac3d9752..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -SIWR with extra output -id_total, 4.569540005 diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/timings_(:hybrid,)_with_states deleted file mode 100644 index e9ff5af7f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SIWR with extra output -id_total, 4.325609141 diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/timings_(:normalforms, 2) deleted file mode 100644 index 5a52529a8..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -SIWR with extra output -id_total, 4.13755991 diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/timings_(:normalforms, 2)_with_states deleted file mode 100644 index c82c645e9..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SIWR with extra output -id_total, 3.959771829 diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/timings_(:normalforms, 3) deleted file mode 100644 index 1ba8f6429..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -SIWR with extra output -id_total, 4.137077001 diff --git a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/timings_(:normalforms, 3)_with_states deleted file mode 100644 index 615ae11da..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SIWR with extra output/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SIWR with extra output -id_total, 4.357009512 diff --git a/benchmarking/IdentifiableFunctions/systems/SLIQR/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SLIQR/id_funcs_(:gb,) deleted file mode 100644 index e6e08f041..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SLIQR/id_funcs_(:gb,) +++ /dev/null @@ -1,6 +0,0 @@ -[s, -Ninv, -b, -g + a, -(e*a)//(e*s - s + a), -(e^2*s^2*g - e*s^2*g + 2*e*s*g*a - s^2*a - s*g*a + s*a^2 + g*a^2)//(e*s - s + a)] diff --git a/benchmarking/IdentifiableFunctions/systems/SLIQR/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SLIQR/id_funcs_(:gb,)_with_states deleted file mode 100644 index 2258ba941..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SLIQR/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,10 +0,0 @@ -[In, -s, -Ninv, -b, -g + a, -e*s*g - s*g + g*a, -(e*S - S)//(e*Q), -(e*s*S - s*S + a*S)//e, -(s*Q^2 - a*Q^2)//(e*g - g), -(e*In + e*L - In - L - Q)//(e*Q)] diff --git a/benchmarking/IdentifiableFunctions/systems/SLIQR/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SLIQR/id_funcs_(:hybrid,) deleted file mode 100644 index 4d0cc171e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SLIQR/id_funcs_(:hybrid,) +++ /dev/null @@ -1,6 +0,0 @@ -[s, -Ninv, -b, -e*g*a, -g + a, -(e*a)//(e*s - s + a)] diff --git a/benchmarking/IdentifiableFunctions/systems/SLIQR/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SLIQR/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index 51dd3c731..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SLIQR/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,10 +0,0 @@ -[In, -s, -Ninv, -b, -a*S, -e*g*a, -g + a, -e*s*g - s*g + g*a, -(s*Q - a*Q)//s, -(In + L + Q)//S] diff --git a/benchmarking/IdentifiableFunctions/systems/SLIQR/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SLIQR/id_funcs_(:normalforms, 2) deleted file mode 100644 index e6e08f041..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SLIQR/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,6 +0,0 @@ -[s, -Ninv, -b, -g + a, -(e*a)//(e*s - s + a), -(e^2*s^2*g - e*s^2*g + 2*e*s*g*a - s^2*a - s*g*a + s*a^2 + g*a^2)//(e*s - s + a)] diff --git a/benchmarking/IdentifiableFunctions/systems/SLIQR/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SLIQR/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index e181b286b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SLIQR/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,10 +0,0 @@ -[In, -s, -Ninv, -b, -a*S, -g + a, -e*s*g - s*g + g*a, -(e*S - S)//(e*Q), -(e*s*S - s*S + a*S)//e, -(e*In + e*L - In - L - Q)//(e*Q)] diff --git a/benchmarking/IdentifiableFunctions/systems/SLIQR/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SLIQR/id_funcs_(:normalforms, 3) deleted file mode 100644 index 4d0cc171e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SLIQR/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,6 +0,0 @@ -[s, -Ninv, -b, -e*g*a, -g + a, -(e*a)//(e*s - s + a)] diff --git a/benchmarking/IdentifiableFunctions/systems/SLIQR/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SLIQR/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index bbbed3dc4..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SLIQR/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,10 +0,0 @@ -[In, -s, -Ninv, -b, -a*S, -e*g*a, -g + a, -e*s*g - s*g + g*a, -(e*S - S)//(e*Q), -(e*In + e*L - In - L - Q)//(e*Q)] diff --git a/benchmarking/IdentifiableFunctions/systems/SLIQR/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SLIQR/logs_(:gb,) deleted file mode 100644 index a2f127f18..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SLIQR/logs_(:gb,) +++ /dev/null @@ -1,160 +0,0 @@ -┌ Info: Processing SLIQR -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.009576111 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.009576111 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.017273355 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.017273355 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [32] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 9.0066e-5 seconds -│ :rank_time = rank_time -│ rank_times = 9.0066e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 41 functions in Rational Field(b, e, Ninv, s, g, a)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 2), (3, 2), (5, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (7, 6), (4, 5), (7, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.285673262 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.174183153 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 41 functions in Rational Field(b, e, Ninv, s, g, a)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 2), (3, 2), (5, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (7, 6), (4, 5), (7, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 192 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 2 for den. -│ Maximal number of interpolated terms are: 6 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.190924342 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002802007 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (8, 8) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 41 functions in Rational Field(b, e, Ninv, s, g, a)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 2), (3, 2), (5, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (7, 6), (4, 5), (7, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 7, Denominator: 6 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 480 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 7 for num. and 6 for den. -│ Maximal number of interpolated terms are: 14 for num. and 11 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.403028442 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00374732 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.990103548 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 40 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 17563 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 8.151519694 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[s, Ninv, b, g + a, (e*a)//(e*s - s + a), (e^2*s^2*g - e*s^2*g + 2*e*s*g*a - s^2*a - s*g*a + s*a^2 + g*a^2)//(e*s - s + a)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SLIQR/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SLIQR/logs_(:gb,)_with_states deleted file mode 100644 index 63ec0e0c7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SLIQR/logs_(:gb,)_with_states +++ /dev/null @@ -1,249 +0,0 @@ -┌ Info: Processing SLIQR -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.009839585 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.009839585 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.081200067 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.081200067 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [32] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 8.4138e-5 seconds -│ :rank_time = rank_time -│ rank_times = 8.4138e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 41 functions in Rational Field(b, e, Ninv, s, g, a, S, In, L, Q)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 2), (3, 2), (5, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (7, 6), (4, 5), (7, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.917206091 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003980538 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 41 functions in Rational Field(b, e, Ninv, s, g, a, S, In, L, Q)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 2), (3, 2), (5, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (7, 6), (4, 5), (7, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 192 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 2 for den. -│ Maximal number of interpolated terms are: 6 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.178567093 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003409691 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (8, 8) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 41 functions in Rational Field(b, e, Ninv, s, g, a, S, In, L, Q)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 2), (3, 2), (5, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (7, 6), (4, 5), (7, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 7, Denominator: 6 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 480 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 7 for num. and 6 for den. -│ Maximal number of interpolated terms are: 14 for num. and 11 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.498021791 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004786295 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.015380439 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 40 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 17563 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 16 functions in Rational Field(b, e, Ninv, s, g, a, S, In, L, Q)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 2), (3, 1), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (3, 1)], [(0, 0), (3, 0), (1, 0)], [(0, 0), (3, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 4), (5, 3), (3, 3)], [(0, 0), (1, 0)], [(0, 0), (2, 6), (1, 3), (0, 3)], [(0, 0), (1, 3), (2, 3)], [(0, 0), (4, 3), (5, 2), (3, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.166206025 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00463045 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 16 functions in Rational Field(b, e, Ninv, s, g, a, S, In, L, Q)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 2), (3, 1), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (3, 1)], [(0, 0), (3, 0), (1, 0)], [(0, 0), (3, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 4), (5, 3), (3, 3)], [(0, 0), (1, 0)], [(0, 0), (2, 6), (1, 3), (0, 3)], [(0, 0), (1, 3), (2, 3)], [(0, 0), (4, 3), (5, 2), (3, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 384 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 9 for num. and 5 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.431055135 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.007338019 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 21 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.141281508 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 15 initial generators there are 10 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 4792 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 2.767614793 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[In, s, Ninv, b, g + a, e*s*g - s*g + g*a, (e*S - S)//(e*Q), (e*s*S - s*S + a*S)//e, (s*Q^2 - a*Q^2)//(e*g - g), (e*In + e*L - In - L - Q)//(e*Q)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SLIQR/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SLIQR/logs_(:hybrid,) deleted file mode 100644 index bb9ce2bf4..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SLIQR/logs_(:hybrid,) +++ /dev/null @@ -1,625 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing SLIQR -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.009366884 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.009366884 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.015797463 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.015797463 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [32] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 9.8497e-5 seconds -│ :rank_time = rank_time -│ rank_times = 9.8497e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 41 functions in Rational Field(b, e, Ninv, s, g, a)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 2), (3, 2), (5, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (7, 6), (4, 5), (7, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.200673424 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.168650802 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 41 functions in Rational Field(b, e, Ninv, s, g, a)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 2), (3, 2), (5, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (7, 6), (4, 5), (7, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 192 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 2 for den. -│ Maximal number of interpolated terms are: 6 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.156710114 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002901728 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (8, 8) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 41 functions in Rational Field(b, e, Ninv, s, g, a)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 2), (3, 2), (5, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (7, 6), (4, 5), (7, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 7, Denominator: 6 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 480 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 7 for num. and 6 for den. -│ Maximal number of interpolated terms are: 14 for num. and 11 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.515034275 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003914181 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (6 in total): Nemo.fmpq_mpoly[b, e, Ninv, s, g, a] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 64 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 62 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 64 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 62 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 11 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 64 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 62 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 11 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y2, y1, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(b, e, Ninv, s, g, a)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (4, 2), (3, 2), (5, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (7, 6), (4, 5), (7, 6)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 3), (0, 0), (1, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.042907893 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001848895 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y4, y6, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(b, e, Ninv, s, g, a)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 2), (3, 2), (5, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (7, 6), (4, 5), (7, 6)], [(0, 0), (1, 0)], [(0, 3), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.098437564 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001562589 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y1, y5], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y6, y3, t], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(b, e, Ninv, s, g, a)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (3, 0), (1, 0)], [(0, 0), (4, 8), (3, 5), (5, 8)], [(0, 0), (3, 5), (2, 2), (3, 5)], [(0, 0), (7, 6), (5, 3), (7, 6)], [(0, 0), (3, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.045749263 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001984129 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y4, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y6, y2, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(b, e, Ninv, s, g, a)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (3, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 8), (3, 5), (5, 8)], [(0, 0), (3, 5), (2, 2), (3, 5)], [(0, 0), (7, 6), (5, 3), (7, 6)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (3, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.124350633 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001570516 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, t, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y3, y1, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(b, e, Ninv, s, g, a)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (3, 0), (4, 0)], [(2, 4), (0, 0), (3, 4), (5, 4)], [(0, 3), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.042661726 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001659127 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y1, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, t, y2, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(b, e, Ninv, s, g, a)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (3, 0), (1, 0)], [(0, 0), (7, 6), (5, 3), (7, 6)], [(0, 0), (3, 5), (2, 2), (3, 5)], [(0, 0), (4, 8), (3, 5), (5, 8)], [(0, 0), (3, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.127932577 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001600536 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y3, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y6, y1, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(b, e, Ninv, s, g, a)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (3, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 3), (3, 6), (3, 8)], [(8, 4), (0, 0), (6, 4), (5, 4)], [(0, 0), (1, 0)], [(0, 0), (3, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.029806479 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001498475 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y3, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y1, t, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(b, e, Ninv, s, g, a)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 3), (0, 0), (1, 3)], [(0, 0), (1, 0)], [(0, 0), (4, 2), (3, 2), (5, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (7, 6), (4, 5), (7, 6)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.11065455 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001623228 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, t, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y1, y6, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(b, e, Ninv, s, g, a)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (3, 0), (4, 0)], [(2, 4), (0, 0), (3, 4), (5, 4)], [(0, 3), (0, 0), (1, 3)], [(0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.04035327 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001441137 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y4, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y2, y5, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(b, e, Ninv, s, g, a)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 2), (3, 2), (5, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (7, 6), (4, 5), (7, 6)], [(0, 3), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.044042677 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001681397 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.702631788 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 40 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 5863 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 9.353108887 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[s, Ninv, b, e*g*a, g + a, (e*a)//(e*s - s + a)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SLIQR/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SLIQR/logs_(:hybrid,)_with_states deleted file mode 100644 index 23a7e7d5d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SLIQR/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,716 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing SLIQR -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.009444965 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.009444965 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.017332834 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.017332834 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [32] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 7.96e-5 seconds -│ :rank_time = rank_time -│ rank_times = 7.96e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 361  ✓ # Computing specializations.. Time: 0:00:00 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 41 functions in Rational Field(b, e, Ninv, s, g, a, S, In, L, Q)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 2), (3, 2), (5, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (7, 6), (4, 5), (7, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.779160557 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.062421109 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 41 functions in Rational Field(b, e, Ninv, s, g, a, S, In, L, Q)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 2), (3, 2), (5, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (7, 6), (4, 5), (7, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 192 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 2 for den. -│ Maximal number of interpolated terms are: 6 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.195062262 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003479693 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (8, 8) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 41 functions in Rational Field(b, e, Ninv, s, g, a, S, In, L, Q)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 2), (3, 2), (5, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (7, 6), (4, 5), (7, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 7, Denominator: 6 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 480 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 7 for num. and 6 for den. -│ Maximal number of interpolated terms are: 14 for num. and 11 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.457711302 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.093109636 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.010011877 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 40 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 17563 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 16 functions in Rational Field(b, e, Ninv, s, g, a, S, In, L, Q)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 2), (3, 1), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (3, 1)], [(0, 0), (3, 0), (1, 0)], [(0, 0), (3, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 4), (5, 3), (3, 3)], [(0, 0), (1, 0)], [(0, 0), (2, 6), (1, 3), (0, 3)], [(0, 0), (1, 3), (2, 3)], [(0, 0), (4, 3), (5, 2), (3, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.175948621 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004632098 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 16 functions in Rational Field(b, e, Ninv, s, g, a, S, In, L, Q)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 2), (3, 1), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (3, 1)], [(0, 0), (3, 0), (1, 0)], [(0, 0), (3, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 4), (5, 3), (3, 3)], [(0, 0), (1, 0)], [(0, 0), (2, 6), (1, 3), (0, 3)], [(0, 0), (1, 3), (2, 3)], [(0, 0), (4, 3), (5, 2), (3, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 384 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 9 for num. and 5 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.494041856 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005937539 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 21 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (10 in total): Nemo.fmpq_mpoly[b, e, Ninv, s, g, a, S, In, L, Q] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 251 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 21 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 251 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 21 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 16 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 251 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 21 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 16 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y1, t, y2, y3], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y5, y10, y9, y6, y8], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(b, e, Ninv, s, g, a, S, In, L, Q)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(2, 3), (2, 2), (0, 0), (4, 3)], [(0, 0), (0, 0), (1, 0)], [(2, 3), (0, 0), (2, 2), (4, 3)], [(0, 0), (3, 2), (4, 2), (5, 2)], [(0, 0), (4, 3), (3, 2), (5, 3)], [(0, 0), (7, 7), (7, 6), (9, 7)], [(0, 0), (1, 0)], [(0, 0), (4, 5), (5, 5), (6, 5)], [(5, 9), (3, 6), (0, 0), (7, 9)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 5 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.296719349 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002909698 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y5, t, y8, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y2, y9, y3, y1, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(b, e, Ninv, s, g, a, S, In, L, Q)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 5), (5, 5), (6, 5)], [(2, 3), (2, 2), (0, 0), (4, 3)], [(0, 0), (3, 2), (4, 2), (5, 2)], [(0, 0), (4, 3), (3, 2), (5, 3)], [(0, 0), (7, 7), (7, 6), (9, 7)], [(2, 3), (0, 0), (2, 2), (4, 3)], [(0, 0), (1, 0)], [(5, 9), (3, 6), (0, 0), (7, 9)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 5 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.334484469 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002861532 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y1, y6, y8, y7], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y4, t, y5, y2, y10], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(b, e, Ninv, s, g, a, S, In, L, Q)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(3, 2), (0, 0), (3, 2), (3, 2)], [(6, 9), (5, 8), (0, 0), (7, 9)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (5, 4), (2, 2), (5, 4)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (5, 4), (4, 4), (5, 4)], [(4, 4), (0, 0), (2, 2), (3, 3)], [(0, 0), (1, 0)], [(3, 2), (0, 0), (3, 2), (3, 2)], [(0, 0), (1, 0)], [(4, 4), (0, 0), (2, 2), (4, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.172499707 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004797908 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y5, y10, y4, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, t, y3, y8, y7, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(b, e, Ninv, s, g, a, S, In, L, Q)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (5, 4), (7, 3), (5, 3)], [(0, 0), (7, 6), (8, 4), (8, 6)], [(0, 0), (6, 8), (4, 3), (8, 9)], [(0, 0), (11, 16), (8, 10), (12, 16)], [(0, 0), (7, 7), (9, 6), (7, 6)], [(0, 0), (1, 0)], [(5, 5), (0, 0), (6, 3), (6, 5)], [(0, 0), (5, 4), (7, 3), (5, 3)], [(5, 5), (0, 0), (6, 3), (6, 5)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.146350422 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002682191 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y7, y9, y5, y10], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y4, y8, y1, y3, t], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(b, e, Ninv, s, g, a, S, In, L, Q)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (10, 16), (7, 9), (9, 14)], [(0, 0), (7, 9), (3, 2), (6, 7)], [(0, 0), (3, 2), (7, 2), (4, 2)], [(4, 5), (0, 0), (6, 3), (6, 5)], [(0, 0), (0, 0), (1, 0)], [(5, 6), (0, 0), (6, 3), (7, 6)], [(4, 5), (0, 0), (6, 3), (6, 5)], [(0, 0), (3, 4), (7, 4), (5, 4)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.146880052 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.070209617 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y10, y2, y3, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y8, y4, t, y1, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(b, e, Ninv, s, g, a, S, In, L, Q)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(5, 5), (0, 0), (6, 3), (6, 5)], [(0, 0), (7, 6), (8, 4), (8, 6)], [(0, 0), (6, 8), (4, 3), (8, 9)], [(0, 0), (11, 16), (8, 10), (12, 16)], [(0, 0), (5, 4), (7, 3), (5, 3)], [(0, 0), (1, 0)], [(0, 0), (7, 7), (9, 6), (7, 6)], [(5, 5), (0, 0), (6, 3), (6, 5)], [(0, 0), (5, 4), (7, 3), (5, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.362918945 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.042210523 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y2, t, y1, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y5, y9, y10, y7, y8], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(b, e, Ninv, s, g, a, S, In, L, Q)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(1, 1), (0, 0), (0, 0), (1, 0)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (1, 0)], [(0, 0), (4, 3), (4, 3), (3, 2)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (4, 3), (4, 3), (3, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(3, 6), (3, 6), (0, 0), (5, 7)], [(0, 0), (4, 4), (4, 4), (3, 3)], [(0, 0), (2, 1), (2, 1), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.11828981 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.103772856 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y10, y5, y9, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, t, y1, y8, y2, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(b, e, Ninv, s, g, a, S, In, L, Q)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(7, 7), (0, 0), (8, 5), (4, 3)], [(0, 0), (10, 9), (11, 8), (8, 7)], [(0, 0), (5, 8), (5, 5), (3, 5)], [(0, 0), (14, 19), (10, 12), (12, 16)], [(0, 0), (1, 0)], [(8, 8), (0, 0), (8, 5), (6, 5)], [(4, 3), (0, 0), (7, 3), (5, 3)], [(7, 7), (0, 0), (8, 5), (6, 5)], [(4, 3), (0, 0), (7, 3), (5, 3)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.13203833 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002473911 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y6, y2, y7, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y4, y3, y1, y9, y8], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(b, e, Ninv, s, g, a, S, In, L, Q)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (6, 5), (7, 6), (7, 5)], [(0, 0), (4, 3), (5, 4), (6, 4)], [(0, 0), (4, 3), (5, 4), (6, 4)], [(3, 6), (5, 8), (0, 0), (6, 8)], [(0, 0), (1, 1), (1, 1), (2, 1)], [(0, 0), (4, 4), (5, 5), (5, 4)], [(0, 0), (2, 1), (3, 2), (3, 1)], [(0, 0), (2, 1), (3, 2), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.215797145 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003086568 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y5, y7, y8, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y10, y3, y6, t, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(b, e, Ninv, s, g, a, S, In, L, Q)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(4, 5), (0, 0), (6, 3), (6, 5)], [(5, 6), (0, 0), (6, 3), (7, 6)], [(0, 0), (10, 16), (7, 9), (9, 14)], [(0, 0), (7, 9), (3, 2), (6, 7)], [(0, 0), (3, 2), (7, 2), (4, 2)], [(0, 0), (3, 4), (7, 4), (5, 4)], [(0, 0), (1, 0)], [(4, 5), (0, 0), (6, 3), (6, 5)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 32 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 2 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.191298494 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002601266 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.028014018 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 15 initial generators there are 10 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 193 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 5.757498383 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[In, s, Ninv, b, a*S, e*g*a, g + a, e*s*g - s*g + g*a, (s*Q - a*Q)//s, (In + L + Q)//S] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SLIQR/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SLIQR/logs_(:normalforms, 2) deleted file mode 100644 index ed3882bc3..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SLIQR/logs_(:normalforms, 2) +++ /dev/null @@ -1,189 +0,0 @@ -┌ Info: Processing SLIQR -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.010029354 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.010029354 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.015736516 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.015736516 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [32] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 8.4194e-5 seconds -│ :rank_time = rank_time -│ rank_times = 8.4194e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 41 functions in Rational Field(b, e, Ninv, s, g, a)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 2), (3, 2), (5, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (7, 6), (4, 5), (7, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.191919998 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.148622414 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 41 functions in Rational Field(b, e, Ninv, s, g, a)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 2), (3, 2), (5, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (7, 6), (4, 5), (7, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 192 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 2 for den. -│ Maximal number of interpolated terms are: 6 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.191596897 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002829871 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (8, 8) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 41 functions in Rational Field(b, e, Ninv, s, g, a)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 2), (3, 2), (5, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (7, 6), (4, 5), (7, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 7, Denominator: 6 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 480 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 7 for num. and 6 for den. -│ Maximal number of interpolated terms are: 14 for num. and 11 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.401286977 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003906855 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (6 in total): Nemo.fmpq_mpoly[b, e, Ninv, s, g, a] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 18 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 16 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 18 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 16 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 4 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 18 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 16 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 4 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.775870978 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 40 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 17563 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 8.493270085 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[s, Ninv, b, g + a, (e*a)//(e*s - s + a), (e^2*s^2*g - e*s^2*g + 2*e*s*g*a - s^2*a - s*g*a + s*a^2 + g*a^2)//(e*s - s + a)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SLIQR/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SLIQR/logs_(:normalforms, 2)_with_states deleted file mode 100644 index 7560cc9c4..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SLIQR/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,278 +0,0 @@ -┌ Info: Processing SLIQR -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.009948282 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.009948282 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.016249245 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.016249245 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [32] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 9.0774e-5 seconds -│ :rank_time = rank_time -│ rank_times = 9.0774e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 41 functions in Rational Field(b, e, Ninv, s, g, a, S, In, L, Q)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 2), (3, 2), (5, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (7, 6), (4, 5), (7, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.867943847 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003559139 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 41 functions in Rational Field(b, e, Ninv, s, g, a, S, In, L, Q)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 2), (3, 2), (5, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (7, 6), (4, 5), (7, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 192 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 2 for den. -│ Maximal number of interpolated terms are: 6 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.169525092 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.083861159 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (8, 8) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 41 functions in Rational Field(b, e, Ninv, s, g, a, S, In, L, Q)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 2), (3, 2), (5, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (7, 6), (4, 5), (7, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 7, Denominator: 6 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 480 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 7 for num. and 6 for den. -│ Maximal number of interpolated terms are: 14 for num. and 11 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.391820802 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004636584 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.011021135 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 40 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 17563 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 16 functions in Rational Field(b, e, Ninv, s, g, a, S, In, L, Q)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 2), (3, 1), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (3, 1)], [(0, 0), (3, 0), (1, 0)], [(0, 0), (3, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 4), (5, 3), (3, 3)], [(0, 0), (1, 0)], [(0, 0), (2, 6), (1, 3), (0, 3)], [(0, 0), (1, 3), (2, 3)], [(0, 0), (4, 3), (5, 2), (3, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.149858701 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.041142279 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 16 functions in Rational Field(b, e, Ninv, s, g, a, S, In, L, Q)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 2), (3, 1), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (3, 1)], [(0, 0), (3, 0), (1, 0)], [(0, 0), (3, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 4), (5, 3), (3, 3)], [(0, 0), (1, 0)], [(0, 0), (2, 6), (1, 3), (0, 3)], [(0, 0), (1, 3), (2, 3)], [(0, 0), (4, 3), (5, 2), (3, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 384 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 9 for num. and 5 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.369915686 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.086324595 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 21 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (10 in total): Nemo.fmpq_mpoly[b, e, Ninv, s, g, a, S, In, L, Q] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 51 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 6 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 51 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 6 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 5 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 51 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 6 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 5 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.0415595 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 15 initial generators there are 10 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 1062 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 2.760736033 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[In, s, Ninv, b, a*S, g + a, e*s*g - s*g + g*a, (e*S - S)//(e*Q), (e*s*S - s*S + a*S)//e, (e*In + e*L - In - L - Q)//(e*Q)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SLIQR/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SLIQR/logs_(:normalforms, 3) deleted file mode 100644 index d08775aa9..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SLIQR/logs_(:normalforms, 3) +++ /dev/null @@ -1,189 +0,0 @@ -┌ Info: Processing SLIQR -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.009841202 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.009841202 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.01604261 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.01604261 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [32] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 8.9993e-5 seconds -│ :rank_time = rank_time -│ rank_times = 8.9993e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 41 functions in Rational Field(b, e, Ninv, s, g, a)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 2), (3, 2), (5, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (7, 6), (4, 5), (7, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.325199075 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.130147566 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 41 functions in Rational Field(b, e, Ninv, s, g, a)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 2), (3, 2), (5, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (7, 6), (4, 5), (7, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 192 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 2 for den. -│ Maximal number of interpolated terms are: 6 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.150290136 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002732283 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (8, 8) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 41 functions in Rational Field(b, e, Ninv, s, g, a)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 2), (3, 2), (5, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (7, 6), (4, 5), (7, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 7, Denominator: 6 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 480 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 7 for num. and 6 for den. -│ Maximal number of interpolated terms are: 14 for num. and 11 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.496749721 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004157725 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (6 in total): Nemo.fmpq_mpoly[b, e, Ninv, s, g, a] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 64 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 62 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 64 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 62 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 11 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 64 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 62 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 11 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.837969877 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 40 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 5863 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 8.69819362 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[s, Ninv, b, e*g*a, g + a, (e*a)//(e*s - s + a)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SLIQR/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SLIQR/logs_(:normalforms, 3)_with_states deleted file mode 100644 index eb1e8c50d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SLIQR/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,278 +0,0 @@ -┌ Info: Processing SLIQR -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.059599203 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.059599203 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.014898325 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.014898325 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [32] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 8.3495e-5 seconds -│ :rank_time = rank_time -│ rank_times = 8.3495e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 41 functions in Rational Field(b, e, Ninv, s, g, a, S, In, L, Q)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 2), (3, 2), (5, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (7, 6), (4, 5), (7, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 2 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.881179739 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003299621 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 41 functions in Rational Field(b, e, Ninv, s, g, a, S, In, L, Q)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 2), (3, 2), (5, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (7, 6), (4, 5), (7, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 192 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 2 for den. -│ Maximal number of interpolated terms are: 6 for num. and 3 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.184153768 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004244746 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (8, 8) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 41 functions in Rational Field(b, e, Ninv, s, g, a, S, In, L, Q)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 2), (3, 2), (5, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (7, 6), (4, 5), (7, 6)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 7, Denominator: 6 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 480 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 7 for num. and 6 for den. -│ Maximal number of interpolated terms are: 14 for num. and 11 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.52907925 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004497741 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.012369689 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 40 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 17563 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 16 functions in Rational Field(b, e, Ninv, s, g, a, S, In, L, Q)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 2), (3, 1), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (3, 1)], [(0, 0), (3, 0), (1, 0)], [(0, 0), (3, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 4), (5, 3), (3, 3)], [(0, 0), (1, 0)], [(0, 0), (2, 6), (1, 3), (0, 3)], [(0, 0), (1, 3), (2, 3)], [(0, 0), (4, 3), (5, 2), (3, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 5 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.162813756 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.043944061 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 16 functions in Rational Field(b, e, Ninv, s, g, a, S, In, L, Q)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 2), (3, 1), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (3, 1)], [(0, 0), (3, 0), (1, 0)], [(0, 0), (3, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 4), (5, 3), (3, 3)], [(0, 0), (1, 0)], [(0, 0), (2, 6), (1, 3), (0, 3)], [(0, 0), (1, 3), (2, 3)], [(0, 0), (4, 3), (5, 2), (3, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 384 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 9 for num. and 5 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.398017391 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.093818272 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 21 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (10 in total): Nemo.fmpq_mpoly[b, e, Ninv, s, g, a, S, In, L, Q] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 251 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 21 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 251 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 21 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 16 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 251 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 21 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 16 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.09591658 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 15 initial generators there are 10 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 770 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.114763974 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[In, s, Ninv, b, a*S, e*g*a, g + a, e*s*g - s*g + g*a, (e*S - S)//(e*Q), (e*In + e*L - In - L - Q)//(e*Q)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/SLIQR/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/SLIQR/timings_(:gb,) deleted file mode 100644 index c38ce02e7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SLIQR/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -SLIQR -id_total, 8.151519694 diff --git a/benchmarking/IdentifiableFunctions/systems/SLIQR/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/SLIQR/timings_(:gb,)_with_states deleted file mode 100644 index 364de5caa..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SLIQR/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SLIQR -id_total, 2.767614793 diff --git a/benchmarking/IdentifiableFunctions/systems/SLIQR/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/SLIQR/timings_(:hybrid,) deleted file mode 100644 index 50391e103..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SLIQR/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -SLIQR -id_total, 9.353108887 diff --git a/benchmarking/IdentifiableFunctions/systems/SLIQR/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/SLIQR/timings_(:hybrid,)_with_states deleted file mode 100644 index 8ce4cc619..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SLIQR/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SLIQR -id_total, 5.757498383 diff --git a/benchmarking/IdentifiableFunctions/systems/SLIQR/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/SLIQR/timings_(:normalforms, 2) deleted file mode 100644 index a86d0167e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SLIQR/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -SLIQR -id_total, 8.493270085 diff --git a/benchmarking/IdentifiableFunctions/systems/SLIQR/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/SLIQR/timings_(:normalforms, 2)_with_states deleted file mode 100644 index 27404b754..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SLIQR/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SLIQR -id_total, 2.760736033 diff --git a/benchmarking/IdentifiableFunctions/systems/SLIQR/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/SLIQR/timings_(:normalforms, 3) deleted file mode 100644 index ed168734d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SLIQR/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -SLIQR -id_total, 8.69819362 diff --git a/benchmarking/IdentifiableFunctions/systems/SLIQR/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/SLIQR/timings_(:normalforms, 3)_with_states deleted file mode 100644 index c26b019a9..000000000 --- a/benchmarking/IdentifiableFunctions/systems/SLIQR/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -SLIQR -id_total, 3.114763974 diff --git a/benchmarking/IdentifiableFunctions/systems/St/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/St/id_funcs_(:gb,) deleted file mode 100644 index 292e7822d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/St/id_funcs_(:gb,) +++ /dev/null @@ -1,7 +0,0 @@ -[Dd, -T, -e - rR + dr*T + d*T + g - r + a*T, -(rR*d - dr*r)//(dr - d), -(dr^2 + d^2 + 2*d*a + a^2)//(dr*d + dr*a), -(e*dr - e*d + rR*a + dr*g - d*g - r*a)//(dr - d), -(e*dr^2 - e*dr*d + rR*dr*a + dr*d*g - dr*r*a - d^2*g)//(dr^2 + dr*a - d^2 - d*a)] diff --git a/benchmarking/IdentifiableFunctions/systems/St/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/St/id_funcs_(:gb,)_with_states deleted file mode 100644 index b83d28f71..000000000 --- a/benchmarking/IdentifiableFunctions/systems/St/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,11 +0,0 @@ -[Dd, -T, -S + R, -rR*R - dr*T*R - d*T*S + r*S, -e - rR + dr*T + d*T + g - r + a*T, -(rR*d - dr*r)//(dr - d), -(dr*R + d*S)//(dr + d + a), -(dr*d + dr*a)//(dr^2 + d^2 + 2*d*a + a^2), -(dr*T - dr*W - d*T + d*W)//(rR - dr*T + d*T - r), -(e*dr^2*g - 2*e*dr*d*g - e*dr*g*a + e*d^2*g + e*d*g*a + rR*dr*g*a - rR*d*g*a - rR*g*a^2 - dr*g^2*a - dr*g*r*a + d*g^2*a + d*g*r*a + g*r*a^2)//(dr^2*S*R - 2*dr*d*S*R - dr*a*S^2 - dr*a*S*R + d^2*S*R + d*a*S^2 + d*a*S*R), -(e*dr^2*S - 2*e*dr*d*S - e*dr*a*S + e*d^2*S + e*d*a*S + rR*dr*a*S - rR*d*a*S - rR*a^2*S + dr^2*g*R - 2*dr*d*g*R - 2*dr*g*a*S - dr*g*a*R - dr*r*a*S + d^2*g*R + 2*d*g*a*S + d*g*a*R + d*r*a*S + r*a^2*S)//(dr^2*S*R - 2*dr*d*S*R - dr*a*S^2 - dr*a*S*R + d^2*S*R + d*a*S^2 + d*a*S*R)] diff --git a/benchmarking/IdentifiableFunctions/systems/St/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/St/id_funcs_(:normalforms, 2) deleted file mode 100644 index 292e7822d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/St/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,7 +0,0 @@ -[Dd, -T, -e - rR + dr*T + d*T + g - r + a*T, -(rR*d - dr*r)//(dr - d), -(dr^2 + d^2 + 2*d*a + a^2)//(dr*d + dr*a), -(e*dr - e*d + rR*a + dr*g - d*g - r*a)//(dr - d), -(e*dr^2 - e*dr*d + rR*dr*a + dr*d*g - dr*r*a - d^2*g)//(dr^2 + dr*a - d^2 - d*a)] diff --git a/benchmarking/IdentifiableFunctions/systems/St/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/St/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index b83d28f71..000000000 --- a/benchmarking/IdentifiableFunctions/systems/St/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,11 +0,0 @@ -[Dd, -T, -S + R, -rR*R - dr*T*R - d*T*S + r*S, -e - rR + dr*T + d*T + g - r + a*T, -(rR*d - dr*r)//(dr - d), -(dr*R + d*S)//(dr + d + a), -(dr*d + dr*a)//(dr^2 + d^2 + 2*d*a + a^2), -(dr*T - dr*W - d*T + d*W)//(rR - dr*T + d*T - r), -(e*dr^2*g - 2*e*dr*d*g - e*dr*g*a + e*d^2*g + e*d*g*a + rR*dr*g*a - rR*d*g*a - rR*g*a^2 - dr*g^2*a - dr*g*r*a + d*g^2*a + d*g*r*a + g*r*a^2)//(dr^2*S*R - 2*dr*d*S*R - dr*a*S^2 - dr*a*S*R + d^2*S*R + d*a*S^2 + d*a*S*R), -(e*dr^2*S - 2*e*dr*d*S - e*dr*a*S + e*d^2*S + e*d*a*S + rR*dr*a*S - rR*d*a*S - rR*a^2*S + dr^2*g*R - 2*dr*d*g*R - 2*dr*g*a*S - dr*g*a*R - dr*r*a*S + d^2*g*R + 2*d*g*a*S + d*g*a*R + d*r*a*S + r*a^2*S)//(dr^2*S*R - 2*dr*d*S*R - dr*a*S^2 - dr*a*S*R + d^2*S*R + d*a*S^2 + d*a*S*R)] diff --git a/benchmarking/IdentifiableFunctions/systems/St/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/St/id_funcs_(:normalforms, 3) deleted file mode 100644 index 292e7822d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/St/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,7 +0,0 @@ -[Dd, -T, -e - rR + dr*T + d*T + g - r + a*T, -(rR*d - dr*r)//(dr - d), -(dr^2 + d^2 + 2*d*a + a^2)//(dr*d + dr*a), -(e*dr - e*d + rR*a + dr*g - d*g - r*a)//(dr - d), -(e*dr^2 - e*dr*d + rR*dr*a + dr*d*g - dr*r*a - d^2*g)//(dr^2 + dr*a - d^2 - d*a)] diff --git a/benchmarking/IdentifiableFunctions/systems/St/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/St/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index b83d28f71..000000000 --- a/benchmarking/IdentifiableFunctions/systems/St/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,11 +0,0 @@ -[Dd, -T, -S + R, -rR*R - dr*T*R - d*T*S + r*S, -e - rR + dr*T + d*T + g - r + a*T, -(rR*d - dr*r)//(dr - d), -(dr*R + d*S)//(dr + d + a), -(dr*d + dr*a)//(dr^2 + d^2 + 2*d*a + a^2), -(dr*T - dr*W - d*T + d*W)//(rR - dr*T + d*T - r), -(e*dr^2*g - 2*e*dr*d*g - e*dr*g*a + e*d^2*g + e*d*g*a + rR*dr*g*a - rR*d*g*a - rR*g*a^2 - dr*g^2*a - dr*g*r*a + d*g^2*a + d*g*r*a + g*r*a^2)//(dr^2*S*R - 2*dr*d*S*R - dr*a*S^2 - dr*a*S*R + d^2*S*R + d*a*S^2 + d*a*S*R), -(e*dr^2*S - 2*e*dr*d*S - e*dr*a*S + e*d^2*S + e*d*a*S + rR*dr*a*S - rR*d*a*S - rR*a^2*S + dr^2*g*R - 2*dr*d*g*R - 2*dr*g*a*S - dr*g*a*R - dr*r*a*S + d^2*g*R + 2*d*g*a*S + d*g*a*R + d*r*a*S + r*a^2*S)//(dr^2*S*R - 2*dr*d*S*R - dr*a*S^2 - dr*a*S*R + d^2*S*R + d*a*S^2 + d*a*S*R)] diff --git a/benchmarking/IdentifiableFunctions/systems/St/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/St/logs_(:gb,) deleted file mode 100644 index f561c6035..000000000 --- a/benchmarking/IdentifiableFunctions/systems/St/logs_(:gb,) +++ /dev/null @@ -1,171 +0,0 @@ -┌ Info: Processing St -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 4.440843048 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 4.440843048 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.055924866 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.055924866 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [34, 2] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 9.0515e-5 seconds -│ :rank_time = rank_time -│ rank_times = 9.0515e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:03 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 18  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 37  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 56  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 75  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 95  ⌝ # Computing specializations.. Time: 0:00:01 - Points: 115  ✓ # Computing specializations.. Time: 0:00:02 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:00 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:03 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 16  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 35  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 54  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 74  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 94  ⌝ # Computing specializations.. Time: 0:00:01 - Points: 113  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 133  ⌞ # Computing specializations.. Time: 0:00:02 - Points: 153  ⌜ # Computing specializations.. Time: 0:00:02 - Points: 173  ⌝ # Computing specializations.. Time: 0:00:03 - Points: 193  ⌟ # Computing specializations.. Time: 0:00:03 - Points: 212  ⌞ # Computing specializations.. Time: 0:00:03 - Points: 232  ⌜ # Computing specializations.. Time: 0:00:04 - Points: 252  ⌝ # Computing specializations.. Time: 0:00:04 - Points: 272  ⌟ # Computing specializations.. Time: 0:00:04 - Points: 292  ⌞ # Computing specializations.. Time: 0:00:04 - Points: 312  ⌜ # Computing specializations.. Time: 0:00:05 - Points: 330  ⌝ # Computing specializations.. Time: 0:00:05 - Points: 347  ⌟ # Computing specializations.. Time: 0:00:05 - Points: 367  ⌞ # Computing specializations.. Time: 0:00:06 - Points: 384  ⌜ # Computing specializations.. Time: 0:00:06 - Points: 398  ⌝ # Computing specializations.. Time: 0:00:07 - Points: 418  ⌟ # Computing specializations.. Time: 0:00:07 - Points: 438  ⌞ # Computing specializations.. Time: 0:00:07 - Points: 458  ⌜ # Computing specializations.. Time: 0:00:08 - Points: 478  ⌝ # Computing specializations.. Time: 0:00:08 - Points: 498  ⌟ # Computing specializations.. Time: 0:00:08 - Points: 518  ⌞ # Computing specializations.. Time: 0:00:08 - Points: 538  ⌜ # Computing specializations.. Time: 0:00:09 - Points: 558  ⌝ # Computing specializations.. Time: 0:00:09 - Points: 578  ⌟ # Computing specializations.. Time: 0:00:09 - Points: 598  ⌞ # Computing specializations.. Time: 0:00:10 - Points: 618  ⌜ # Computing specializations.. Time: 0:00:10 - Points: 638  ⌝ # Computing specializations.. Time: 0:00:10 - Points: 658  ⌟ # Computing specializations.. Time: 0:00:11 - Points: 678  ⌞ # Computing specializations.. Time: 0:00:11 - Points: 698  ⌜ # Computing specializations.. Time: 0:00:11 - Points: 718  ⌝ # Computing specializations.. Time: 0:00:12 - Points: 738  ⌟ # Computing specializations.. Time: 0:00:12 - Points: 758  ✓ # Computing specializations.. Time: 0:00:13 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 40 functions in Rational Field(e, rR, dr, d, g, r, a, T, Dd)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 130 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0), (1, 0), (0, 0), (0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2)], [(0, 0), (0, 0), (2, 1), (4, 2), (4, 2), (4, 2), (4, 1)], [(0, 0), (0, 1), (0, 1), (0, 0), (0, 0), (0, 1), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 1), (0, 1), (0, 0), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 0), (2, 1), (2, 1)], [(0, 0), (2, 3), (0, 1), (2, 3), (0, 0), (0, 0), (0, 1), (0, 0), (6, 5), (4, 3), (6, 5)], [(0, 0), (2, 2), (0, 0), (2, 2), (1, 0), (1, 0), (0, 0), (1, 0), (4, 3), (2, 1), (5, 3)], [(0, 0), (3, 2), (1, 0), (3, 2), (2, 0), (2, 0), (1, 0), (2, 0), (3, 1), (7, 4), (5, 2), (7, 4), (5, 1)], [(0, 0), (0, 1), (4, 3), (2, 2), (2, 1), (4, 3), (7, 5), (7, 5), (7, 5)], [(0, 0), (1, 0), (4, 2), (2, 1), (6, 4), (6, 4), (3, 1), (5, 3), (7, 4), (7, 4), (3, 1), (6, 4), (7, 4), (4, 1), (8, 4), (8, 4), (5, 1), (4, 1), (8, 4), (6, 1)], [(0, 0), (0, 0), (3, 2), (4, 2), (5, 4), (5, 4), (4, 3), (6, 4), (6, 4), (4, 2), (5, 4), (6, 4), (9, 6), (9, 6), (9, 6)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (3, 6), (17, 20), (2, 6), (3, 6), (4, 6), (4, 6), (3, 6), (21, 23), (23, 24), (6, 7), (19, 20), (4, 6), (6, 7), (23, 23)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (3, 6), (17, 20), (2, 6), (3, 6), (4, 6), (4, 6), (3, 6), (21, 23), (23, 24), (6, 7), (19, 20), (4, 6), (6, 7), (23, 23)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (17, 20), (3, 6), (4, 6), (21, 23), (23, 24), (4, 5), (19, 20), (3, 6), (6, 7), (23, 23)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (15, 18), (14, 18), (17, 19), (17, 19), (16, 19), (19, 20), (18, 19), (18, 20), (20, 21), (21, 21), (3, 3), (20, 20), (2, 3), (22, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (15, 18), (14, 18), (17, 19), (17, 19), (16, 19), (19, 20), (18, 19), (18, 20), (20, 21), (21, 21), (20, 20), (22, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (16, 18), (15, 18), (7, 3), (7, 3), (7, 3), (18, 19), (18, 19), (17, 19), (20, 20), (19, 19), (19, 20), (21, 21), (22, 21), (4, 3), (21, 20), (3, 3), (23, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (16, 18), (15, 18), (6, 3), (7, 3), (6, 3), (18, 19), (18, 19), (17, 19), (20, 20), (19, 19), (19, 20), (21, 21), (22, 21), (21, 20), (23, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (4, 1), (5, 1), (5, 1), (4, 1), (17, 18), (16, 18), (7, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (19, 19), (19, 19), (18, 19), (10, 4), (10, 4), (10, 4), (21, 20), (20, 19), (20, 20), (22, 21), (23, 21), (5, 3), (22, 20), (4, 3), (24, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (17, 18), (16, 18), (6, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (19, 19), (19, 19), (18, 19), (10, 4), (10, 4), (10, 4), (21, 20), (20, 19), (20, 20), (22, 21), (23, 21), (22, 20), (24, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (4, 1), (5, 1), (5, 1), (4, 1), (5, 1), (6, 1), (6, 1), (5, 1), (18, 18), (17, 18), (7, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (8, 2), (8, 2), (7, 2), (8, 2), (20, 19), (20, 19), (19, 19), (10, 4), (10, 4), (9, 3), (11, 4), (11, 4), (10, 4), (11, 4), (22, 20), (21, 19), (21, 20), (13, 5), (13, 5), (13, 5), (23, 21), (24, 21), (6, 3), (23, 20), (5, 3), (25, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (18, 18), (17, 18), (6, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (8, 2), (8, 2), (7, 2), (20, 19), (20, 19), (19, 19), (10, 4), (10, 4), (9, 3), (11, 4), (11, 4), (10, 4), (11, 4), (22, 20), (21, 19), (21, 20), (13, 5), (13, 5), (13, 5), (23, 21), (24, 21), (23, 20), (25, 21)], [(0, 0), (4, 3), (2, 1), (4, 2), (15, 18), (14, 18), (8, 6), (6, 4), (7, 4), (7, 4), (8, 5), (7, 4), (17, 19), (17, 19), (16, 19), (12, 9), (10, 7), (11, 7), (11, 7), (12, 8), (11, 7), (19, 20), (19, 20), (18, 20), (16, 11), (14, 10), (15, 10), (15, 10), (16, 11), (15, 10), (21, 21), (20, 20), (20, 21), (19, 13), (19, 13), (19, 13), (22, 22), (23, 22), (5, 4), (22, 21), (4, 4), (24, 22)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 7 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 6.467846834 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.559927964 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 40 functions in Rational Field(e, rR, dr, d, g, r, a, T, Dd)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 130 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0), (1, 0), (0, 0), (0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2)], [(0, 0), (0, 0), (2, 1), (4, 2), (4, 2), (4, 2), (4, 1)], [(0, 0), (0, 1), (0, 1), (0, 0), (0, 0), (0, 1), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 1), (0, 1), (0, 0), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 0), (2, 1), (2, 1)], [(0, 0), (2, 3), (0, 1), (2, 3), (0, 0), (0, 0), (0, 1), (0, 0), (6, 5), (4, 3), (6, 5)], [(0, 0), (2, 2), (0, 0), (2, 2), (1, 0), (1, 0), (0, 0), (1, 0), (4, 3), (2, 1), (5, 3)], [(0, 0), (3, 2), (1, 0), (3, 2), (2, 0), (2, 0), (1, 0), (2, 0), (3, 1), (7, 4), (5, 2), (7, 4), (5, 1)], [(0, 0), (0, 1), (4, 3), (2, 2), (2, 1), (4, 3), (7, 5), (7, 5), (7, 5)], [(0, 0), (1, 0), (4, 2), (2, 1), (6, 4), (6, 4), (3, 1), (5, 3), (7, 4), (7, 4), (3, 1), (6, 4), (7, 4), (4, 1), (8, 4), (8, 4), (5, 1), (4, 1), (8, 4), (6, 1)], [(0, 0), (0, 0), (3, 2), (4, 2), (5, 4), (5, 4), (4, 3), (6, 4), (6, 4), (4, 2), (5, 4), (6, 4), (9, 6), (9, 6), (9, 6)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (3, 6), (17, 20), (2, 6), (3, 6), (4, 6), (4, 6), (3, 6), (21, 23), (23, 24), (6, 7), (19, 20), (4, 6), (6, 7), (23, 23)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (3, 6), (17, 20), (2, 6), (3, 6), (4, 6), (4, 6), (3, 6), (21, 23), (23, 24), (6, 7), (19, 20), (4, 6), (6, 7), (23, 23)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (17, 20), (3, 6), (4, 6), (21, 23), (23, 24), (4, 5), (19, 20), (3, 6), (6, 7), (23, 23)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (15, 18), (14, 18), (17, 19), (17, 19), (16, 19), (19, 20), (18, 19), (18, 20), (20, 21), (21, 21), (3, 3), (20, 20), (2, 3), (22, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (15, 18), (14, 18), (17, 19), (17, 19), (16, 19), (19, 20), (18, 19), (18, 20), (20, 21), (21, 21), (20, 20), (22, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (16, 18), (15, 18), (7, 3), (7, 3), (7, 3), (18, 19), (18, 19), (17, 19), (20, 20), (19, 19), (19, 20), (21, 21), (22, 21), (4, 3), (21, 20), (3, 3), (23, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (16, 18), (15, 18), (6, 3), (7, 3), (6, 3), (18, 19), (18, 19), (17, 19), (20, 20), (19, 19), (19, 20), (21, 21), (22, 21), (21, 20), (23, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (4, 1), (5, 1), (5, 1), (4, 1), (17, 18), (16, 18), (7, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (19, 19), (19, 19), (18, 19), (10, 4), (10, 4), (10, 4), (21, 20), (20, 19), (20, 20), (22, 21), (23, 21), (5, 3), (22, 20), (4, 3), (24, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (17, 18), (16, 18), (6, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (19, 19), (19, 19), (18, 19), (10, 4), (10, 4), (10, 4), (21, 20), (20, 19), (20, 20), (22, 21), (23, 21), (22, 20), (24, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (4, 1), (5, 1), (5, 1), (4, 1), (5, 1), (6, 1), (6, 1), (5, 1), (18, 18), (17, 18), (7, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (8, 2), (8, 2), (7, 2), (8, 2), (20, 19), (20, 19), (19, 19), (10, 4), (10, 4), (9, 3), (11, 4), (11, 4), (10, 4), (11, 4), (22, 20), (21, 19), (21, 20), (13, 5), (13, 5), (13, 5), (23, 21), (24, 21), (6, 3), (23, 20), (5, 3), (25, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (18, 18), (17, 18), (6, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (8, 2), (8, 2), (7, 2), (20, 19), (20, 19), (19, 19), (10, 4), (10, 4), (9, 3), (11, 4), (11, 4), (10, 4), (11, 4), (22, 20), (21, 19), (21, 20), (13, 5), (13, 5), (13, 5), (23, 21), (24, 21), (23, 20), (25, 21)], [(0, 0), (4, 3), (2, 1), (4, 2), (15, 18), (14, 18), (8, 6), (6, 4), (7, 4), (7, 4), (8, 5), (7, 4), (17, 19), (17, 19), (16, 19), (12, 9), (10, 7), (11, 7), (11, 7), (12, 8), (11, 7), (19, 20), (19, 20), (18, 20), (16, 11), (14, 10), (15, 10), (15, 10), (16, 11), (15, 10), (21, 21), (20, 20), (20, 21), (19, 13), (19, 13), (19, 13), (22, 22), (23, 22), (5, 4), (22, 21), (4, 4), (24, 22)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 768 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 21 for num. and 20 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 16.89289956 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.503202652 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 77 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 5.064298884 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 39 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 20503 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 34.658718777 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[Dd, T, e - rR + dr*T + d*T + g - r + a*T, (rR*d - dr*r)//(dr - d), (dr^2 + d^2 + 2*d*a + a^2)//(dr*d + dr*a), (e*dr - e*d + rR*a + dr*g - d*g - r*a)//(dr - d), (e*dr^2 - e*dr*d + rR*dr*a + dr*d*g - dr*r*a - d^2*g)//(dr^2 + dr*a - d^2 - d*a)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/St/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/St/logs_(:gb,)_with_states deleted file mode 100644 index c1cbfa831..000000000 --- a/benchmarking/IdentifiableFunctions/systems/St/logs_(:gb,)_with_states +++ /dev/null @@ -1,318 +0,0 @@ -┌ Info: Processing St -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 4.157408016 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 4.157408016 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.099148602 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.099148602 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [34, 2] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 9.4791e-5 seconds -│ :rank_time = rank_time -│ rank_times = 9.4791e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ⌞ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:03 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 15  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 32  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 50  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 68  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 87  ⌝ # Computing specializations.. Time: 0:00:01 - Points: 106  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 125  ✓ # Computing specializations.. Time: 0:00:02 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ⌞ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:03 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 17  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 35  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 53  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 71  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 90  ⌝ # Computing specializations.. Time: 0:00:01 - Points: 108  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 127  ⌞ # Computing specializations.. Time: 0:00:02 - Points: 146  ⌜ # Computing specializations.. Time: 0:00:02 - Points: 165  ⌝ # Computing specializations.. Time: 0:00:03 - Points: 184  ⌟ # Computing specializations.. Time: 0:00:03 - Points: 201  ⌞ # Computing specializations.. Time: 0:00:03 - Points: 220  ⌜ # Computing specializations.. Time: 0:00:04 - Points: 239  ⌝ # Computing specializations.. Time: 0:00:04 - Points: 257  ⌟ # Computing specializations.. Time: 0:00:04 - Points: 276  ⌞ # Computing specializations.. Time: 0:00:05 - Points: 295  ⌜ # Computing specializations.. Time: 0:00:05 - Points: 314  ⌝ # Computing specializations.. Time: 0:00:05 - Points: 333  ⌟ # Computing specializations.. Time: 0:00:05 - Points: 352  ⌞ # Computing specializations.. Time: 0:00:06 - Points: 371  ⌜ # Computing specializations.. Time: 0:00:06 - Points: 389  ⌝ # Computing specializations.. Time: 0:00:07 - Points: 406  ⌟ # Computing specializations.. Time: 0:00:07 - Points: 425  ⌞ # Computing specializations.. Time: 0:00:07 - Points: 444  ⌜ # Computing specializations.. Time: 0:00:08 - Points: 463  ⌝ # Computing specializations.. Time: 0:00:08 - Points: 482  ⌟ # Computing specializations.. Time: 0:00:08 - Points: 501  ⌞ # Computing specializations.. Time: 0:00:08 - Points: 520  ⌜ # Computing specializations.. Time: 0:00:09 - Points: 539  ⌝ # Computing specializations.. Time: 0:00:09 - Points: 558  ⌟ # Computing specializations.. Time: 0:00:09 - Points: 577  ⌞ # Computing specializations.. Time: 0:00:10 - Points: 596  ⌜ # Computing specializations.. Time: 0:00:10 - Points: 615  ⌝ # Computing specializations.. Time: 0:00:10 - Points: 634  ⌟ # Computing specializations.. Time: 0:00:11 - Points: 653  ⌞ # Computing specializations.. Time: 0:00:11 - Points: 672  ⌜ # Computing specializations.. Time: 0:00:11 - Points: 691  ⌝ # Computing specializations.. Time: 0:00:12 - Points: 710  ⌟ # Computing specializations.. Time: 0:00:12 - Points: 729  ⌞ # Computing specializations.. Time: 0:00:12 - Points: 748  ⌜ # Computing specializations.. Time: 0:00:13 - Points: 767  ✓ # Computing specializations.. Time: 0:00:14 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 15  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 33  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 50  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 67  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 84  ⌝ # Computing specializations.. Time: 0:00:01 - Points: 102  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 120  ✓ # Computing specializations.. Time: 0:00:02 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 16  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 34  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 51  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 69  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 87  ⌝ # Computing specializations.. Time: 0:00:01 - Points: 105  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 123  ⌞ # Computing specializations.. Time: 0:00:02 - Points: 141  ⌜ # Computing specializations.. Time: 0:00:02 - Points: 159  ⌝ # Computing specializations.. Time: 0:00:03 - Points: 177  ⌟ # Computing specializations.. Time: 0:00:03 - Points: 195  ⌞ # Computing specializations.. Time: 0:00:03 - Points: 213  ⌜ # Computing specializations.. Time: 0:00:04 - Points: 231  ⌝ # Computing specializations.. Time: 0:00:04 - Points: 249  ⌟ # Computing specializations.. Time: 0:00:04 - Points: 267  ⌞ # Computing specializations.. Time: 0:00:05 - Points: 285  ⌜ # Computing specializations.. Time: 0:00:05 - Points: 303  ⌝ # Computing specializations.. Time: 0:00:05 - Points: 321  ⌟ # Computing specializations.. Time: 0:00:06 - Points: 339  ⌞ # Computing specializations.. Time: 0:00:06 - Points: 357  ⌜ # Computing specializations.. Time: 0:00:06 - Points: 375  ⌝ # Computing specializations.. Time: 0:00:07 - Points: 392  ⌟ # Computing specializations.. Time: 0:00:07 - Points: 410  ⌞ # Computing specializations.. Time: 0:00:07 - Points: 428  ⌜ # Computing specializations.. Time: 0:00:07 - Points: 446  ⌝ # Computing specializations.. Time: 0:00:08 - Points: 464  ⌟ # Computing specializations.. Time: 0:00:08 - Points: 482  ⌞ # Computing specializations.. Time: 0:00:08 - Points: 500  ⌜ # Computing specializations.. Time: 0:00:09 - Points: 517  ⌝ # Computing specializations.. Time: 0:00:09 - Points: 535  ⌟ # Computing specializations.. Time: 0:00:09 - Points: 553  ⌞ # Computing specializations.. Time: 0:00:10 - Points: 571  ⌜ # Computing specializations.. Time: 0:00:10 - Points: 589  ⌝ # Computing specializations.. Time: 0:00:10 - Points: 607  ⌟ # Computing specializations.. Time: 0:00:11 - Points: 625  ⌞ # Computing specializations.. Time: 0:00:11 - Points: 643  ⌜ # Computing specializations.. Time: 0:00:11 - Points: 660  ⌝ # Computing specializations.. Time: 0:00:12 - Points: 678  ⌟ # Computing specializations.. Time: 0:00:12 - Points: 695  ⌞ # Computing specializations.. Time: 0:00:12 - Points: 713  ⌜ # Computing specializations.. Time: 0:00:13 - Points: 731  ⌝ # Computing specializations.. Time: 0:00:13 - Points: 749  ⌟ # Computing specializations.. Time: 0:00:13 - Points: 765  ✓ # Computing specializations.. Time: 0:00:14 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 40 functions in Rational Field(e, rR, dr, d, g, r, a, T, Dd, S, R, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 130 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0), (1, 0), (0, 0), (0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2)], [(0, 0), (0, 0), (2, 1), (4, 2), (4, 2), (4, 2), (4, 1)], [(0, 0), (0, 1), (0, 1), (0, 0), (0, 0), (0, 1), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 1), (0, 1), (0, 0), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 0), (2, 1), (2, 1)], [(0, 0), (2, 3), (0, 1), (2, 3), (0, 0), (0, 0), (0, 1), (0, 0), (6, 5), (4, 3), (6, 5)], [(0, 0), (2, 2), (0, 0), (2, 2), (1, 0), (1, 0), (0, 0), (1, 0), (4, 3), (2, 1), (5, 3)], [(0, 0), (3, 2), (1, 0), (3, 2), (2, 0), (2, 0), (1, 0), (2, 0), (3, 1), (7, 4), (5, 2), (7, 4), (5, 1)], [(0, 0), (0, 1), (4, 3), (2, 2), (2, 1), (4, 3), (7, 5), (7, 5), (7, 5)], [(0, 0), (1, 0), (4, 2), (2, 1), (6, 4), (6, 4), (3, 1), (5, 3), (7, 4), (7, 4), (3, 1), (6, 4), (7, 4), (4, 1), (8, 4), (8, 4), (5, 1), (4, 1), (8, 4), (6, 1)], [(0, 0), (0, 0), (3, 2), (4, 2), (5, 4), (5, 4), (4, 3), (6, 4), (6, 4), (4, 2), (5, 4), (6, 4), (9, 6), (9, 6), (9, 6)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (3, 6), (17, 20), (2, 6), (3, 6), (4, 6), (4, 6), (3, 6), (21, 23), (23, 24), (6, 7), (19, 20), (4, 6), (6, 7), (23, 23)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (3, 6), (17, 20), (2, 6), (3, 6), (4, 6), (4, 6), (3, 6), (21, 23), (23, 24), (6, 7), (19, 20), (4, 6), (6, 7), (23, 23)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (17, 20), (3, 6), (4, 6), (21, 23), (23, 24), (4, 5), (19, 20), (3, 6), (6, 7), (23, 23)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (15, 18), (14, 18), (17, 19), (17, 19), (16, 19), (19, 20), (18, 19), (18, 20), (20, 21), (21, 21), (3, 3), (20, 20), (2, 3), (22, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (15, 18), (14, 18), (17, 19), (17, 19), (16, 19), (19, 20), (18, 19), (18, 20), (20, 21), (21, 21), (20, 20), (22, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (16, 18), (15, 18), (7, 3), (7, 3), (7, 3), (18, 19), (18, 19), (17, 19), (20, 20), (19, 19), (19, 20), (21, 21), (22, 21), (4, 3), (21, 20), (3, 3), (23, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (16, 18), (15, 18), (6, 3), (7, 3), (6, 3), (18, 19), (18, 19), (17, 19), (20, 20), (19, 19), (19, 20), (21, 21), (22, 21), (21, 20), (23, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (4, 1), (5, 1), (5, 1), (4, 1), (17, 18), (16, 18), (7, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (19, 19), (19, 19), (18, 19), (10, 4), (10, 4), (10, 4), (21, 20), (20, 19), (20, 20), (22, 21), (23, 21), (5, 3), (22, 20), (4, 3), (24, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (17, 18), (16, 18), (6, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (19, 19), (19, 19), (18, 19), (10, 4), (10, 4), (10, 4), (21, 20), (20, 19), (20, 20), (22, 21), (23, 21), (22, 20), (24, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (4, 1), (5, 1), (5, 1), (4, 1), (5, 1), (6, 1), (6, 1), (5, 1), (18, 18), (17, 18), (7, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (8, 2), (8, 2), (7, 2), (8, 2), (20, 19), (20, 19), (19, 19), (10, 4), (10, 4), (9, 3), (11, 4), (11, 4), (10, 4), (11, 4), (22, 20), (21, 19), (21, 20), (13, 5), (13, 5), (13, 5), (23, 21), (24, 21), (6, 3), (23, 20), (5, 3), (25, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (18, 18), (17, 18), (6, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (8, 2), (8, 2), (7, 2), (20, 19), (20, 19), (19, 19), (10, 4), (10, 4), (9, 3), (11, 4), (11, 4), (10, 4), (11, 4), (22, 20), (21, 19), (21, 20), (13, 5), (13, 5), (13, 5), (23, 21), (24, 21), (23, 20), (25, 21)], [(0, 0), (4, 3), (2, 1), (4, 2), (15, 18), (14, 18), (8, 6), (6, 4), (7, 4), (7, 4), (8, 5), (7, 4), (17, 19), (17, 19), (16, 19), (12, 9), (10, 7), (11, 7), (11, 7), (12, 8), (11, 7), (19, 20), (19, 20), (18, 20), (16, 11), (14, 10), (15, 10), (15, 10), (16, 11), (15, 10), (21, 21), (20, 20), (20, 21), (19, 13), (19, 13), (19, 13), (22, 22), (23, 22), (5, 4), (22, 21), (4, 4), (24, 22)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 7 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 7.01441664 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.623346369 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 40 functions in Rational Field(e, rR, dr, d, g, r, a, T, Dd, S, R, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 130 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0), (1, 0), (0, 0), (0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2)], [(0, 0), (0, 0), (2, 1), (4, 2), (4, 2), (4, 2), (4, 1)], [(0, 0), (0, 1), (0, 1), (0, 0), (0, 0), (0, 1), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 1), (0, 1), (0, 0), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 0), (2, 1), (2, 1)], [(0, 0), (2, 3), (0, 1), (2, 3), (0, 0), (0, 0), (0, 1), (0, 0), (6, 5), (4, 3), (6, 5)], [(0, 0), (2, 2), (0, 0), (2, 2), (1, 0), (1, 0), (0, 0), (1, 0), (4, 3), (2, 1), (5, 3)], [(0, 0), (3, 2), (1, 0), (3, 2), (2, 0), (2, 0), (1, 0), (2, 0), (3, 1), (7, 4), (5, 2), (7, 4), (5, 1)], [(0, 0), (0, 1), (4, 3), (2, 2), (2, 1), (4, 3), (7, 5), (7, 5), (7, 5)], [(0, 0), (1, 0), (4, 2), (2, 1), (6, 4), (6, 4), (3, 1), (5, 3), (7, 4), (7, 4), (3, 1), (6, 4), (7, 4), (4, 1), (8, 4), (8, 4), (5, 1), (4, 1), (8, 4), (6, 1)], [(0, 0), (0, 0), (3, 2), (4, 2), (5, 4), (5, 4), (4, 3), (6, 4), (6, 4), (4, 2), (5, 4), (6, 4), (9, 6), (9, 6), (9, 6)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (3, 6), (17, 20), (2, 6), (3, 6), (4, 6), (4, 6), (3, 6), (21, 23), (23, 24), (6, 7), (19, 20), (4, 6), (6, 7), (23, 23)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (3, 6), (17, 20), (2, 6), (3, 6), (4, 6), (4, 6), (3, 6), (21, 23), (23, 24), (6, 7), (19, 20), (4, 6), (6, 7), (23, 23)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (17, 20), (3, 6), (4, 6), (21, 23), (23, 24), (4, 5), (19, 20), (3, 6), (6, 7), (23, 23)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (15, 18), (14, 18), (17, 19), (17, 19), (16, 19), (19, 20), (18, 19), (18, 20), (20, 21), (21, 21), (3, 3), (20, 20), (2, 3), (22, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (15, 18), (14, 18), (17, 19), (17, 19), (16, 19), (19, 20), (18, 19), (18, 20), (20, 21), (21, 21), (20, 20), (22, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (16, 18), (15, 18), (7, 3), (7, 3), (7, 3), (18, 19), (18, 19), (17, 19), (20, 20), (19, 19), (19, 20), (21, 21), (22, 21), (4, 3), (21, 20), (3, 3), (23, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (16, 18), (15, 18), (6, 3), (7, 3), (6, 3), (18, 19), (18, 19), (17, 19), (20, 20), (19, 19), (19, 20), (21, 21), (22, 21), (21, 20), (23, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (4, 1), (5, 1), (5, 1), (4, 1), (17, 18), (16, 18), (7, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (19, 19), (19, 19), (18, 19), (10, 4), (10, 4), (10, 4), (21, 20), (20, 19), (20, 20), (22, 21), (23, 21), (5, 3), (22, 20), (4, 3), (24, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (17, 18), (16, 18), (6, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (19, 19), (19, 19), (18, 19), (10, 4), (10, 4), (10, 4), (21, 20), (20, 19), (20, 20), (22, 21), (23, 21), (22, 20), (24, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (4, 1), (5, 1), (5, 1), (4, 1), (5, 1), (6, 1), (6, 1), (5, 1), (18, 18), (17, 18), (7, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (8, 2), (8, 2), (7, 2), (8, 2), (20, 19), (20, 19), (19, 19), (10, 4), (10, 4), (9, 3), (11, 4), (11, 4), (10, 4), (11, 4), (22, 20), (21, 19), (21, 20), (13, 5), (13, 5), (13, 5), (23, 21), (24, 21), (6, 3), (23, 20), (5, 3), (25, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (18, 18), (17, 18), (6, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (8, 2), (8, 2), (7, 2), (20, 19), (20, 19), (19, 19), (10, 4), (10, 4), (9, 3), (11, 4), (11, 4), (10, 4), (11, 4), (22, 20), (21, 19), (21, 20), (13, 5), (13, 5), (13, 5), (23, 21), (24, 21), (23, 20), (25, 21)], [(0, 0), (4, 3), (2, 1), (4, 2), (15, 18), (14, 18), (8, 6), (6, 4), (7, 4), (7, 4), (8, 5), (7, 4), (17, 19), (17, 19), (16, 19), (12, 9), (10, 7), (11, 7), (11, 7), (12, 8), (11, 7), (19, 20), (19, 20), (18, 20), (16, 11), (14, 10), (15, 10), (15, 10), (16, 11), (15, 10), (21, 21), (20, 20), (20, 21), (19, 13), (19, 13), (19, 13), (22, 22), (23, 22), (5, 4), (22, 21), (4, 4), (24, 22)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 768 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 21 for num. and 20 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 17.837608062 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.494231427 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 77 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 5.180293764 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 39 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 20503 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(e, rR, dr, d, g, r, a, T, Dd, S, R, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0), (1, 0), (0, 0), (0, 0), (1, 0), (2, 0)], [(0, 0), (2, 2), (3, 2), (3, 2), (2, 2), (1, 0), (4, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (2, 2), (3, 2), (3, 2)], [(0, 0), (0, 1), (1, 1), (1, 0), (1, 0), (5, 4), (1, 1), (5, 4), (6, 4)], [(0, 0), (0, 1), (1, 1), (2, 1), (2, 1), (5, 4), (1, 1), (2, 1), (5, 4), (6, 4)], [(0, 0), (0, 0), (3, 1), (3, 1), (1, 0), (3, 1), (3, 0)], [(0, 0), (5, 6), (5, 5), (6, 6), (7, 6), (7, 6), (4, 3), (6, 6), (7, 6), (7, 6), (8, 6)], [(0, 0), (5, 5), (6, 5), (6, 5), (8, 6), (8, 6), (4, 2), (6, 5), (8, 6), (7, 5), (8, 5)], [(0, 0), (4, 4), (4, 4), (5, 4), (5, 4), (6, 4)], [(0, 0), (5, 6), (5, 5), (6, 6), (7, 6), (7, 6), (7, 6), (6, 6), (7, 6), (10, 9), (11, 9)], [(0, 0), (5, 6), (5, 5), (6, 6), (7, 6), (7, 6), (7, 6), (6, 6), (7, 6), (10, 9), (11, 9)], [(0, 0), (5, 5), (6, 5), (6, 5), (8, 6), (8, 6), (4, 2), (6, 5), (8, 6), (7, 5), (8, 5)], [(0, 0), (0, 1), (0, 1), (0, 0), (0, 0), (0, 1), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 1), (0, 1), (0, 0), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 0), (2, 1), (2, 1)], [(0, 0), (2, 3), (0, 1), (2, 3), (0, 0), (0, 0), (0, 1), (0, 0), (6, 5), (4, 3), (6, 5)], [(0, 0), (2, 2), (0, 0), (2, 2), (1, 0), (1, 0), (0, 0), (1, 0), (4, 3), (2, 1), (5, 3)], [(0, 0), (3, 2), (1, 0), (3, 2), (2, 0), (2, 0), (1, 0), (2, 0), (3, 1), (7, 4), (5, 2), (7, 4), (5, 1)], [(0, 0), (2, 2), (2, 2), (3, 2), (3, 2), (2, 2), (3, 2), (1, 4), (5, 3), (5, 3), (5, 3), (2, 4), (3, 4)], [(0, 0), (1, 0), (6, 0), (6, 0), (2, 0), (3, 0)], [(0, 0), (7, 3), (7, 3), (7, 2), (7, 2), (7, 3), (7, 2), (1, 0), (3, 2), (10, 4), (10, 4), (10, 4), (2, 0), (4, 2), (5, 2)], [(0, 0), (9, 4), (9, 4), (9, 3), (9, 3), (9, 4), (9, 3), (3, 2), (5, 3), (12, 5), (12, 5), (12, 5), (7, 4), (6, 4), (8, 5), (11, 7)], [(0, 0), (8, 4), (8, 4), (8, 3), (8, 3), (8, 4), (8, 3), (1, 0), (4, 3), (11, 5), (11, 5), (11, 5), (2, 0), (5, 3), (6, 3)], [(0, 0), (9, 4), (9, 4), (9, 3), (9, 3), (9, 4), (9, 3), (3, 2), (5, 3), (12, 5), (12, 5), (12, 5), (6, 4), (7, 4), (8, 5), (11, 7)], [(0, 0), (1, 0), (1, 0), (5, 3), (1, 0), (5, 3), (2, 0), (6, 3), (2, 0), (6, 3), (6, 3), (7, 3)], [(0, 0), (1, 0), (4, 2), (1, 0), (5, 3), (5, 3), (1, 0), (4, 2), (6, 3), (6, 3), (5, 3), (6, 3), (3, 1), (3, 1), (3, 0), (7, 3), (7, 3), (4, 1), (8, 4), (5, 1), (6, 1)], [(0, 0), (2, 8), (2, 8), (5, 10), (5, 9), (5, 9), (5, 10), (5, 9), (6, 9), (6, 9), (5, 9), (4, 8), (4, 7), (4, 8), (5, 8), (7, 10), (8, 10), (8, 10), (5, 7), (7, 10), (8, 10), (6, 8), (10, 12), (13, 14)], [(0, 0), (2, 8), (2, 8), (5, 10), (5, 9), (5, 9), (5, 10), (5, 9), (6, 9), (6, 9), (5, 9), (3, 8), (4, 7), (4, 8), (5, 8), (6, 10), (8, 10), (8, 10), (5, 7), (7, 10), (8, 10), (6, 8), (10, 12), (13, 14)], [(0, 0), (2, 8), (5, 10), (5, 9), (5, 9), (6, 9), (4, 8), (4, 7), (3, 8), (5, 8), (7, 10), (8, 10), (4, 6), (5, 7), (6, 10), (8, 10), (6, 8), (10, 12), (13, 14)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (2, 5), (5, 7), (2, 5), (6, 8), (5, 7), (5, 6), (5, 6), (6, 7), (5, 7), (7, 8), (9, 10), (12, 12)], [(0, 0), (0, 0), (0, 0), (5, 3), (5, 3), (7, 4), (7, 4), (5, 3), (7, 4), (3, 5), (6, 7), (3, 5), (7, 8), (5, 6), (8, 4), (8, 4), (8, 4), (6, 7), (6, 6), (6, 6), (7, 7), (6, 7), (8, 8), (13, 13), (16, 15)], [(0, 0), (1, 0), (1, 0), (4, 3), (4, 2), (5, 7), (6, 8), (5, 3), (6, 3), (6, 3), (5, 3), (6, 3), (8, 6), (8, 5), (6, 7), (7, 8), (4, 6), (6, 7), (4, 6), (7, 8), (9, 6), (10, 6), (10, 6), (13, 9), (9, 6), (10, 6), (13, 9), (7, 8), (7, 7), (7, 7), (7, 7), (7, 8), (8, 8), (10, 10), (14, 9), (13, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 7 for num. and 4 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.302962633 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.313963607 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(e, rR, dr, d, g, r, a, T, Dd, S, R, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0), (1, 0), (0, 0), (0, 0), (1, 0), (2, 0)], [(0, 0), (2, 2), (3, 2), (3, 2), (2, 2), (1, 0), (4, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (2, 2), (3, 2), (3, 2)], [(0, 0), (0, 1), (1, 1), (1, 0), (1, 0), (5, 4), (1, 1), (5, 4), (6, 4)], [(0, 0), (0, 1), (1, 1), (2, 1), (2, 1), (5, 4), (1, 1), (2, 1), (5, 4), (6, 4)], [(0, 0), (0, 0), (3, 1), (3, 1), (1, 0), (3, 1), (3, 0)], [(0, 0), (5, 6), (5, 5), (6, 6), (7, 6), (7, 6), (4, 3), (6, 6), (7, 6), (7, 6), (8, 6)], [(0, 0), (5, 5), (6, 5), (6, 5), (8, 6), (8, 6), (4, 2), (6, 5), (8, 6), (7, 5), (8, 5)], [(0, 0), (4, 4), (4, 4), (5, 4), (5, 4), (6, 4)], [(0, 0), (5, 6), (5, 5), (6, 6), (7, 6), (7, 6), (7, 6), (6, 6), (7, 6), (10, 9), (11, 9)], [(0, 0), (5, 6), (5, 5), (6, 6), (7, 6), (7, 6), (7, 6), (6, 6), (7, 6), (10, 9), (11, 9)], [(0, 0), (5, 5), (6, 5), (6, 5), (8, 6), (8, 6), (4, 2), (6, 5), (8, 6), (7, 5), (8, 5)], [(0, 0), (0, 1), (0, 1), (0, 0), (0, 0), (0, 1), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 1), (0, 1), (0, 0), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 0), (2, 1), (2, 1)], [(0, 0), (2, 3), (0, 1), (2, 3), (0, 0), (0, 0), (0, 1), (0, 0), (6, 5), (4, 3), (6, 5)], [(0, 0), (2, 2), (0, 0), (2, 2), (1, 0), (1, 0), (0, 0), (1, 0), (4, 3), (2, 1), (5, 3)], [(0, 0), (3, 2), (1, 0), (3, 2), (2, 0), (2, 0), (1, 0), (2, 0), (3, 1), (7, 4), (5, 2), (7, 4), (5, 1)], [(0, 0), (2, 2), (2, 2), (3, 2), (3, 2), (2, 2), (3, 2), (1, 4), (5, 3), (5, 3), (5, 3), (2, 4), (3, 4)], [(0, 0), (1, 0), (6, 0), (6, 0), (2, 0), (3, 0)], [(0, 0), (7, 3), (7, 3), (7, 2), (7, 2), (7, 3), (7, 2), (1, 0), (3, 2), (10, 4), (10, 4), (10, 4), (2, 0), (4, 2), (5, 2)], [(0, 0), (9, 4), (9, 4), (9, 3), (9, 3), (9, 4), (9, 3), (3, 2), (5, 3), (12, 5), (12, 5), (12, 5), (7, 4), (6, 4), (8, 5), (11, 7)], [(0, 0), (8, 4), (8, 4), (8, 3), (8, 3), (8, 4), (8, 3), (1, 0), (4, 3), (11, 5), (11, 5), (11, 5), (2, 0), (5, 3), (6, 3)], [(0, 0), (9, 4), (9, 4), (9, 3), (9, 3), (9, 4), (9, 3), (3, 2), (5, 3), (12, 5), (12, 5), (12, 5), (6, 4), (7, 4), (8, 5), (11, 7)], [(0, 0), (1, 0), (1, 0), (5, 3), (1, 0), (5, 3), (2, 0), (6, 3), (2, 0), (6, 3), (6, 3), (7, 3)], [(0, 0), (1, 0), (4, 2), (1, 0), (5, 3), (5, 3), (1, 0), (4, 2), (6, 3), (6, 3), (5, 3), (6, 3), (3, 1), (3, 1), (3, 0), (7, 3), (7, 3), (4, 1), (8, 4), (5, 1), (6, 1)], [(0, 0), (2, 8), (2, 8), (5, 10), (5, 9), (5, 9), (5, 10), (5, 9), (6, 9), (6, 9), (5, 9), (4, 8), (4, 7), (4, 8), (5, 8), (7, 10), (8, 10), (8, 10), (5, 7), (7, 10), (8, 10), (6, 8), (10, 12), (13, 14)], [(0, 0), (2, 8), (2, 8), (5, 10), (5, 9), (5, 9), (5, 10), (5, 9), (6, 9), (6, 9), (5, 9), (3, 8), (4, 7), (4, 8), (5, 8), (6, 10), (8, 10), (8, 10), (5, 7), (7, 10), (8, 10), (6, 8), (10, 12), (13, 14)], [(0, 0), (2, 8), (5, 10), (5, 9), (5, 9), (6, 9), (4, 8), (4, 7), (3, 8), (5, 8), (7, 10), (8, 10), (4, 6), (5, 7), (6, 10), (8, 10), (6, 8), (10, 12), (13, 14)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (2, 5), (5, 7), (2, 5), (6, 8), (5, 7), (5, 6), (5, 6), (6, 7), (5, 7), (7, 8), (9, 10), (12, 12)], [(0, 0), (0, 0), (0, 0), (5, 3), (5, 3), (7, 4), (7, 4), (5, 3), (7, 4), (3, 5), (6, 7), (3, 5), (7, 8), (5, 6), (8, 4), (8, 4), (8, 4), (6, 7), (6, 6), (6, 6), (7, 7), (6, 7), (8, 8), (13, 13), (16, 15)], [(0, 0), (1, 0), (1, 0), (4, 3), (4, 2), (5, 7), (6, 8), (5, 3), (6, 3), (6, 3), (5, 3), (6, 3), (8, 6), (8, 5), (6, 7), (7, 8), (4, 6), (6, 7), (4, 6), (7, 8), (9, 6), (10, 6), (10, 6), (13, 9), (9, 6), (10, 6), (13, 9), (7, 8), (7, 7), (7, 7), (7, 7), (7, 8), (8, 8), (10, 10), (14, 9), (13, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 768 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 22 for num. and 12 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 16.8763189 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.178760905 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 64 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 4.414872846 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 11 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 1880402 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 62.670267842 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[Dd, T, S + R, rR*R - dr*T*R - d*T*S + r*S, e - rR + dr*T + d*T + g - r + a*T, (rR*d - dr*r)//(dr - d), (dr*R + d*S)//(dr + d + a), (dr*d + dr*a)//(dr^2 + d^2 + 2*d*a + a^2), (dr*T - dr*W - d*T + d*W)//(rR - dr*T + d*T - r), (e*dr^2*g - 2*e*dr*d*g - e*dr*g*a + e*d^2*g + e*d*g*a + rR*dr*g*a - rR*d*g*a - rR*g*a^2 - dr*g^2*a - dr*g*r*a + d*g^2*a + d*g*r*a + g*r*a^2)//(dr^2*S*R - 2*dr*d*S*R - dr*a*S^2 - dr*a*S*R + d^2*S*R + d*a*S^2 + d*a*S*R), (e*dr^2*S - 2*e*dr*d*S - e*dr*a*S + e*d^2*S + e*d*a*S + rR*dr*a*S - rR*d*a*S - rR*a^2*S + dr^2*g*R - 2*dr*d*g*R - 2*dr*g*a*S - dr*g*a*R - dr*r*a*S + d^2*g*R + 2*d*g*a*S + d*g*a*R + d*r*a*S + r*a^2*S)//(dr^2*S*R - 2*dr*d*S*R - dr*a*S^2 - dr*a*S*R + d^2*S*R + d*a*S^2 + d*a*S*R)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/St/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/St/logs_(:hybrid,) deleted file mode 100644 index 3fb13bff9..000000000 --- a/benchmarking/IdentifiableFunctions/systems/St/logs_(:hybrid,) +++ /dev/null @@ -1,504 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing St -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 4.859767403 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 4.859767403 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.100647092 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.100647092 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [34, 2] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000104462 seconds -│ :rank_time = rank_time -│ rank_times = 0.000104462 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:00 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:03 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 14  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 32  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 51  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 69  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 88  ⌝ # Computing specializations.. Time: 0:00:01 - Points: 107  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 126  ✓ # Computing specializations.. Time: 0:00:02 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:02 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:03 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 15  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 32  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 51  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 69  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 88  ⌝ # Computing specializations.. Time: 0:00:01 - Points: 106  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 125  ⌞ # Computing specializations.. Time: 0:00:02 - Points: 144  ⌜ # Computing specializations.. Time: 0:00:02 - Points: 163  ⌝ # Computing specializations.. Time: 0:00:03 - Points: 182  ⌟ # Computing specializations.. Time: 0:00:03 - Points: 199  ⌞ # Computing specializations.. Time: 0:00:03 - Points: 218  ⌜ # Computing specializations.. Time: 0:00:04 - Points: 237  ⌝ # Computing specializations.. Time: 0:00:04 - Points: 256  ⌟ # Computing specializations.. Time: 0:00:04 - Points: 275  ⌞ # Computing specializations.. Time: 0:00:05 - Points: 294  ⌜ # Computing specializations.. Time: 0:00:05 - Points: 313  ⌝ # Computing specializations.. Time: 0:00:05 - Points: 332  ⌟ # Computing specializations.. Time: 0:00:05 - Points: 351  ⌞ # Computing specializations.. Time: 0:00:06 - Points: 370  ⌜ # Computing specializations.. Time: 0:00:06 - Points: 387  ⌝ # Computing specializations.. Time: 0:00:07 - Points: 405  ⌟ # Computing specializations.. Time: 0:00:07 - Points: 424  ⌞ # Computing specializations.. Time: 0:00:07 - Points: 443  ⌜ # Computing specializations.. Time: 0:00:08 - Points: 462  ⌝ # Computing specializations.. Time: 0:00:08 - Points: 481  ⌟ # Computing specializations.. Time: 0:00:08 - Points: 500  ⌞ # Computing specializations.. Time: 0:00:08 - Points: 519  ⌜ # Computing specializations.. Time: 0:00:09 - Points: 538  ⌝ # Computing specializations.. Time: 0:00:09 - Points: 555  ⌟ # Computing specializations.. Time: 0:00:09 - Points: 572  ⌞ # Computing specializations.. Time: 0:00:10 - Points: 589  ⌜ # Computing specializations.. Time: 0:00:10 - Points: 605  ⌝ # Computing specializations.. Time: 0:00:10 - Points: 622  ⌟ # Computing specializations.. Time: 0:00:11 - Points: 639  ⌞ # Computing specializations.. Time: 0:00:11 - Points: 656  ⌜ # Computing specializations.. Time: 0:00:11 - Points: 673  ⌝ # Computing specializations.. Time: 0:00:12 - Points: 690  ⌟ # Computing specializations.. Time: 0:00:12 - Points: 707  ⌞ # Computing specializations.. Time: 0:00:12 - Points: 724  ⌜ # Computing specializations.. Time: 0:00:13 - Points: 741  ⌝ # Computing specializations.. Time: 0:00:13 - Points: 758  ✓ # Computing specializations.. Time: 0:00:14 - ⌜ # Computing specializations.. Time: 0:00:12 ⌝ # Computing specializations.. Time: 0:00:13 ✓ # Computing specializations.. Time: 0:00:13 - ⌜ # Computing specializations.. Time: 0:00:02 ⌝ # Computing specializations.. Time: 0:00:03 ⌟ # Computing specializations.. Time: 0:00:04 ⌞ # Computing specializations.. Time: 0:00:05 ⌜ # Computing specializations.. Time: 0:00:06 ⌝ # Computing specializations.. Time: 0:00:07 ⌟ # Computing specializations.. Time: 0:00:08 ⌞ # Computing specializations.. Time: 0:00:09 ⌜ # Computing specializations.. Time: 0:00:10 ⌝ # Computing specializations.. Time: 0:00:11 ⌟ # Computing specializations.. Time: 0:00:12 ⌞ # Computing specializations.. Time: 0:00:14 ⌜ # Computing specializations.. Time: 0:00:15 ⌝ # Computing specializations.. Time: 0:00:16 ⌟ # Computing specializations.. Time: 0:00:17 ⌞ # Computing specializations.. Time: 0:00:18 ⌜ # Computing specializations.. Time: 0:00:19 ⌝ # Computing specializations.. Time: 0:00:20 ⌟ # Computing specializations.. Time: 0:00:21 ⌞ # Computing specializations.. Time: 0:00:22 ⌜ # Computing specializations.. Time: 0:00:23 ⌝ # Computing specializations.. Time: 0:00:24 ⌟ # Computing specializations.. Time: 0:00:25 ⌞ # Computing specializations.. Time: 0:00:26 ⌜ # Computing specializations.. Time: 0:00:27 ⌝ # Computing specializations.. Time: 0:00:28 ⌟ # Computing specializations.. Time: 0:00:29 ⌞ # Computing specializations.. Time: 0:00:30 ⌜ # Computing specializations.. Time: 0:00:31 ⌝ # Computing specializations.. Time: 0:00:32 ⌟ # Computing specializations.. Time: 0:00:33 ⌞ # Computing specializations.. Time: 0:00:34 ⌜ # Computing specializations.. Time: 0:00:35 ⌝ # Computing specializations.. Time: 0:00:37 ⌟ # Computing specializations.. Time: 0:00:38 ⌞ # Computing specializations.. Time: 0:00:39 ⌜ # Computing specializations.. Time: 0:00:40 ⌝ # Computing specializations.. Time: 0:00:41 ⌟ # Computing specializations.. Time: 0:00:42 ⌞ # Computing specializations.. Time: 0:00:43 ⌜ # Computing specializations.. Time: 0:00:44 ⌝ # Computing specializations.. Time: 0:00:45 ⌟ # Computing specializations.. Time: 0:00:46 ⌞ # Computing specializations.. Time: 0:00:47 ⌜ # Computing specializations.. Time: 0:00:48 ⌝ # Computing specializations.. Time: 0:00:49 ⌟ # Computing specializations.. Time: 0:00:50 ⌞ # Computing specializations.. Time: 0:00:51 ⌜ # Computing specializations.. Time: 0:00:52 ⌝ # Computing specializations.. Time: 0:00:53 ⌟ # Computing specializations.. Time: 0:00:54 ⌞ # Computing specializations.. Time: 0:00:55 ⌜ # Computing specializations.. Time: 0:00:56 ⌝ # Computing specializations.. Time: 0:00:57 ⌟ # Computing specializations.. Time: 0:00:57 ⌞ # Computing specializations.. Time: 0:00:58 ⌜ # Computing specializations.. Time: 0:00:59 ⌝ # Computing specializations.. Time: 0:01:00 ⌟ # Computing specializations.. Time: 0:01:01 ⌞ # Computing specializations.. Time: 0:01:02 ⌜ # Computing specializations.. Time: 0:01:03 ⌝ # Computing specializations.. Time: 0:01:04 ⌟ # Computing specializations.. Time: 0:01:05 ⌞ # Computing specializations.. Time: 0:01:06 ⌜ # Computing specializations.. Time: 0:01:07 ⌝ # Computing specializations.. Time: 0:01:09 ⌟ # Computing specializations.. Time: 0:01:10 ⌞ # Computing specializations.. Time: 0:01:11 ⌜ # Computing specializations.. Time: 0:01:12 ⌝ # Computing specializations.. Time: 0:01:13 ⌟ # Computing specializations.. Time: 0:01:14 ⌞ # Computing specializations.. Time: 0:01:15 ⌜ # Computing specializations.. Time: 0:01:16 ⌝ # Computing specializations.. Time: 0:01:17 ⌟ # Computing specializations.. Time: 0:01:18 ⌞ # Computing specializations.. Time: 0:01:19 ⌜ # Computing specializations.. Time: 0:01:20 ⌝ # Computing specializations.. Time: 0:01:21 ⌟ # Computing specializations.. Time: 0:01:22 ⌞ # Computing specializations.. Time: 0:01:23 ⌜ # Computing specializations.. Time: 0:01:24 ⌝ # Computing specializations.. Time: 0:01:25 ⌟ # Computing specializations.. Time: 0:01:26 ⌞ # Computing specializations.. Time: 0:01:27 ⌜ # Computing specializations.. Time: 0:01:28 ⌝ # Computing specializations.. Time: 0:01:29 ⌟ # Computing specializations.. Time: 0:01:30 ⌞ # Computing specializations.. Time: 0:01:31 ⌜ # Computing specializations.. Time: 0:01:32 ⌝ # Computing specializations.. Time: 0:01:33 ⌟ # Computing specializations.. Time: 0:01:34 ⌞ # Computing specializations.. Time: 0:01:35 ⌜ # Computing specializations.. Time: 0:01:36 ⌝ # Computing specializations.. Time: 0:01:37 ⌟ # Computing specializations.. Time: 0:01:38 ⌞ # Computing specializations.. Time: 0:01:39 ⌜ # Computing specializations.. Time: 0:01:41 ⌝ # Computing specializations.. Time: 0:01:42 ⌟ # Computing specializations.. Time: 0:01:43 ⌞ # Computing specializations.. Time: 0:01:44 ⌜ # Computing specializations.. Time: 0:01:45 ⌝ # Computing specializations.. Time: 0:01:46 ⌟ # Computing specializations.. Time: 0:01:47 ⌞ # Computing specializations.. Time: 0:01:48 ⌜ # Computing specializations.. Time: 0:01:49 ⌝ # Computing specializations.. Time: 0:01:50 ⌟ # Computing specializations.. Time: 0:01:51 ⌞ # Computing specializations.. Time: 0:01:52 ⌜ # Computing specializations.. Time: 0:01:53 ⌝ # Computing specializations.. Time: 0:01:54 ⌟ # Computing specializations.. Time: 0:01:55 ⌞ # Computing specializations.. Time: 0:01:56 ⌜ # Computing specializations.. Time: 0:01:57 ⌝ # Computing specializations.. Time: 0:01:58 ⌟ # Computing specializations.. Time: 0:01:59 ⌞ # Computing specializations.. Time: 0:02:00 ⌜ # Computing specializations.. Time: 0:02:01 ⌝ # Computing specializations.. Time: 0:02:02 ⌟ # Computing specializations.. Time: 0:02:03 ⌞ # Computing specializations.. Time: 0:02:04 ⌜ # Computing specializations.. Time: 0:02:05 ⌝ # Computing specializations.. Time: 0:02:06 ⌟ # Computing specializations.. Time: 0:02:07 ⌞ # Computing specializations.. Time: 0:02:08 ⌜ # Computing specializations.. Time: 0:02:09 ⌝ # Computing specializations.. Time: 0:02:10 ⌟ # Computing specializations.. Time: 0:02:11 ⌞ # Computing specializations.. Time: 0:02:12 ⌜ # Computing specializations.. Time: 0:02:13 ⌝ # Computing specializations.. Time: 0:02:16 ⌟ # Computing specializations.. Time: 0:02:17 ⌞ # Computing specializations.. Time: 0:02:18 ⌜ # Computing specializations.. Time: 0:02:19 ⌝ # Computing specializations.. Time: 0:02:20 ⌟ # Computing specializations.. Time: 0:02:20 ⌞ # Computing specializations.. Time: 0:02:22 ⌜ # Computing specializations.. Time: 0:02:23 ⌝ # Computing specializations.. Time: 0:02:24 ⌟ # Computing specializations.. Time: 0:02:25 ⌞ # Computing specializations.. Time: 0:02:25 ⌜ # Computing specializations.. Time: 0:02:26 ⌝ # Computing specializations.. Time: 0:02:27 ⌟ # Computing specializations.. Time: 0:02:28 ⌞ # Computing specializations.. Time: 0:02:29 ⌜ # Computing specializations.. Time: 0:02:30 ⌝ # Computing specializations.. Time: 0:02:31 ⌟ # Computing specializations.. Time: 0:02:32 ⌞ # Computing specializations.. Time: 0:02:33 ⌜ # Computing specializations.. Time: 0:02:34 ⌝ # Computing specializations.. Time: 0:02:35 ⌟ # Computing specializations.. Time: 0:02:36 ⌞ # Computing specializations.. Time: 0:02:37 ⌜ # Computing specializations.. Time: 0:02:38 ⌝ # Computing specializations.. Time: 0:02:39 ⌟ # Computing specializations.. Time: 0:02:40 ⌞ # Computing specializations.. Time: 0:02:41 ⌜ # Computing specializations.. Time: 0:02:42 ⌝ # Computing specializations.. Time: 0:02:43 ⌟ # Computing specializations.. Time: 0:02:44 ⌞ # Computing specializations.. Time: 0:02:45 ⌜ # Computing specializations.. Time: 0:02:46 ⌝ # Computing specializations.. Time: 0:02:47 ⌟ # Computing specializations.. Time: 0:02:48 ⌞ # Computing specializations.. Time: 0:02:49 ⌜ # Computing specializations.. Time: 0:02:50 ⌝ # Computing specializations.. Time: 0:02:51 ⌟ # Computing specializations.. Time: 0:02:52 ⌞ # Computing specializations.. Time: 0:02:53 ⌜ # Computing specializations.. Time: 0:02:54 ⌝ # Computing specializations.. Time: 0:02:55 ⌟ # Computing specializations.. Time: 0:02:56 ⌞ # Computing specializations.. Time: 0:02:57 ⌜ # Computing specializations.. Time: 0:02:58 ⌝ # Computing specializations.. Time: 0:02:59 ⌟ # Computing specializations.. Time: 0:03:00 ⌞ # Computing specializations.. Time: 0:03:01 ⌜ # Computing specializations.. Time: 0:03:02 ⌝ # Computing specializations.. Time: 0:03:03 ⌟ # Computing specializations.. Time: 0:03:04 ⌞ # Computing specializations.. Time: 0:03:05 ⌜ # Computing specializations.. Time: 0:03:06 ⌝ # Computing specializations.. Time: 0:03:07 ⌟ # Computing specializations.. Time: 0:03:08 ⌞ # Computing specializations.. Time: 0:03:09 ⌜ # Computing specializations.. Time: 0:03:10 ⌝ # Computing specializations.. Time: 0:03:11 ⌟ # Computing specializations.. Time: 0:03:11 ⌞ # Computing specializations.. Time: 0:03:13 ⌜ # Computing specializations.. Time: 0:03:14 ⌝ # Computing specializations.. Time: 0:03:15 ⌟ # Computing specializations.. Time: 0:03:16 ⌞ # Computing specializations.. Time: 0:03:17 ⌜ # Computing specializations.. Time: 0:03:17 ⌝ # Computing specializations.. Time: 0:03:18 ⌟ # Computing specializations.. Time: 0:03:19 ⌞ # Computing specializations.. Time: 0:03:20 ⌜ # Computing specializations.. Time: 0:03:21 ⌝ # Computing specializations.. Time: 0:03:22 ⌟ # Computing specializations.. Time: 0:03:23 ⌞ # Computing specializations.. Time: 0:03:24 ⌜ # Computing specializations.. Time: 0:03:25 ⌝ # Computing specializations.. Time: 0:03:26 ⌟ # Computing specializations.. Time: 0:03:27 ⌞ # Computing specializations.. Time: 0:03:28 ⌜ # Computing specializations.. Time: 0:03:29 ⌝ # Computing specializations.. Time: 0:03:30 ⌟ # Computing specializations.. Time: 0:03:31 ⌞ # Computing specializations.. Time: 0:03:32 ⌜ # Computing specializations.. Time: 0:03:33 ⌝ # Computing specializations.. Time: 0:03:34 ⌟ # Computing specializations.. Time: 0:03:35 ⌞ # Computing specializations.. Time: 0:03:36 ⌜ # Computing specializations.. Time: 0:03:37 ⌝ # Computing specializations.. Time: 0:03:38 ⌟ # Computing specializations.. Time: 0:03:39 ⌞ # Computing specializations.. Time: 0:03:40 ⌜ # Computing specializations.. Time: 0:03:41 ⌝ # Computing specializations.. Time: 0:03:42 ⌟ # Computing specializations.. Time: 0:03:43 ⌞ # Computing specializations.. Time: 0:03:44 ⌜ # Computing specializations.. Time: 0:03:45 ⌝ # Computing specializations.. Time: 0:03:46 ⌟ # Computing specializations.. Time: 0:03:47 ⌞ # Computing specializations.. Time: 0:03:48 ⌜ # Computing specializations.. Time: 0:03:49 ⌝ # Computing specializations.. Time: 0:03:50 ⌟ # Computing specializations.. Time: 0:03:51 ⌞ # Computing specializations.. Time: 0:03:52 ⌜ # Computing specializations.. Time: 0:03:53 ⌝ # Computing specializations.. Time: 0:03:54 ⌟ # Computing specializations.. Time: 0:03:56 ⌞ # Computing specializations.. Time: 0:03:57 ⌜ # Computing specializations.. Time: 0:03:58 ⌝ # Computing specializations.. Time: 0:03:59 ⌟ # Computing specializations.. Time: 0:04:00 ⌞ # Computing specializations.. Time: 0:04:01 ⌜ # Computing specializations.. Time: 0:04:02 ⌝ # Computing specializations.. Time: 0:04:03 ⌟ # Computing specializations.. Time: 0:04:04 ⌞ # Computing specializations.. Time: 0:04:05 ⌜ # Computing specializations.. Time: 0:04:06 ⌝ # Computing specializations.. Time: 0:04:07 ⌟ # Computing specializations.. Time: 0:04:09 ⌞ # Computing specializations.. Time: 0:04:10 ⌜ # Computing specializations.. Time: 0:04:12 ⌝ # Computing specializations.. Time: 0:04:13 ⌟ # Computing specializations.. Time: 0:04:14 ⌞ # Computing specializations.. Time: 0:04:15 ⌜ # Computing specializations.. Time: 0:04:16 ⌝ # Computing specializations.. Time: 0:04:17 ⌟ # Computing specializations.. Time: 0:04:18 ⌞ # Computing specializations.. Time: 0:04:19 ⌜ # Computing specializations.. Time: 0:04:20 ⌝ # Computing specializations.. Time: 0:04:21 ⌟ # Computing specializations.. Time: 0:04:22 ⌞ # Computing specializations.. Time: 0:04:23 ⌜ # Computing specializations.. Time: 0:04:24 ✓ # Computing specializations.. Time: 0:04:28 - ⌜ # Computing specializations.. Time: 0:00:02 - Points: 2  ⌝ # Computing specializations.. Time: 0:00:03 - Points: 3  ⌟ # Computing specializations.. Time: 0:00:04 - Points: 4  ⌞ # Computing specializations.. Time: 0:00:05 - Points: 5  ⌜ # Computing specializations.. Time: 0:00:06 - Points: 6  ⌝ # Computing specializations.. Time: 0:00:07 - Points: 7  ⌟ # Computing specializations.. Time: 0:00:08 - Points: 8  ⌞ # Computing specializations.. Time: 0:00:09 - Points: 9  ⌜ # Computing specializations.. Time: 0:00:09 - Points: 10  ⌝ # Computing specializations.. Time: 0:00:10 - Points: 11  ⌟ # Computing specializations.. Time: 0:00:11 - Points: 12  ⌞ # Computing specializations.. Time: 0:00:12 - Points: 13  ⌜ # Computing specializations.. Time: 0:00:13 - Points: 14  ⌝ # Computing specializations.. Time: 0:00:14 - Points: 15  ⌟ # Computing specializations.. Time: 0:00:15 - Points: 16  ⌞ # Computing specializations.. Time: 0:00:17 - Points: 17  ⌜ # Computing specializations.. Time: 0:00:18 - Points: 18  ⌝ # Computing specializations.. Time: 0:00:19 - Points: 19  ⌟ # Computing specializations.. Time: 0:00:20 - Points: 20  ⌞ # Computing specializations.. Time: 0:00:21 - Points: 21  ⌜ # Computing specializations.. Time: 0:00:22 - Points: 22  ⌝ # Computing specializations.. Time: 0:00:23 - Points: 23  ⌟ # Computing specializations.. Time: 0:00:24 - Points: 24  ⌞ # Computing specializations.. Time: 0:00:25 - Points: 25  ⌜ # Computing specializations.. Time: 0:00:26 - Points: 26  ⌝ # Computing specializations.. Time: 0:00:27 - Points: 27  ⌟ # Computing specializations.. Time: 0:00:28 - Points: 28  ⌞ # Computing specializations.. Time: 0:00:29 - Points: 29  ⌜ # Computing specializations.. Time: 0:00:30 - Points: 30  ⌝ # Computing specializations.. Time: 0:00:31 - Points: 31  ⌟ # Computing specializations.. Time: 0:00:32 - Points: 32  ⌞ # Computing specializations.. Time: 0:00:33 - Points: 33  ⌜ # Computing specializations.. Time: 0:00:34 - Points: 34  ⌝ # Computing specializations.. Time: 0:00:35 - Points: 35  ⌟ # Computing specializations.. Time: 0:00:36 - Points: 36  ⌞ # Computing specializations.. Time: 0:00:37 - Points: 37  ⌜ # Computing specializations.. Time: 0:00:38 - Points: 38  ⌝ # Computing specializations.. Time: 0:00:39 - Points: 39  ⌟ # Computing specializations.. Time: 0:00:40 - Points: 40  ⌞ # Computing specializations.. Time: 0:00:41 - Points: 41  ⌜ # Computing specializations.. Time: 0:00:42 - Points: 42  ⌝ # Computing specializations.. Time: 0:00:43 - Points: 43  ⌟ # Computing specializations.. Time: 0:00:44 - Points: 44  ⌞ # Computing specializations.. Time: 0:00:45 - Points: 45  ⌜ # Computing specializations.. Time: 0:00:46 - Points: 46  ⌝ # Computing specializations.. Time: 0:00:47 - Points: 47  ⌟ # Computing specializations.. Time: 0:00:48 - Points: 48  ⌞ # Computing specializations.. Time: 0:00:49 - Points: 49  ⌜ # Computing specializations.. Time: 0:00:50 - Points: 50  ⌝ # Computing specializations.. Time: 0:00:51 - Points: 51  ⌟ # Computing specializations.. Time: 0:00:52 - Points: 52  ⌞ # Computing specializations.. Time: 0:00:53 - Points: 53  ⌜ # Computing specializations.. Time: 0:00:54 - Points: 54  ⌝ # Computing specializations.. Time: 0:00:55 - Points: 55  ⌟ # Computing specializations.. Time: 0:00:56 - Points: 56  ⌞ # Computing specializations.. Time: 0:00:57 - Points: 57  ⌜ # Computing specializations.. Time: 0:00:58 - Points: 58  ⌝ # Computing specializations.. Time: 0:00:59 - Points: 59  ⌟ # Computing specializations.. Time: 0:01:00 - Points: 60  ⌞ # Computing specializations.. Time: 0:01:01 - Points: 61  ⌜ # Computing specializations.. Time: 0:01:02 - Points: 62  ⌝ # Computing specializations.. Time: 0:01:03 - Points: 63  ⌟ # Computing specializations.. Time: 0:01:04 - Points: 64  ⌞ # Computing specializations.. Time: 0:01:05 - Points: 65  ⌜ # Computing specializations.. Time: 0:01:06 - Points: 66  ⌝ # Computing specializations.. Time: 0:01:07 - Points: 67  ⌟ # Computing specializations.. Time: 0:01:08 - Points: 68  ⌞ # Computing specializations.. Time: 0:01:09 - Points: 69  ⌜ # Computing specializations.. Time: 0:01:10 - Points: 70  ⌝ # Computing specializations.. Time: 0:01:11 - Points: 71  ⌟ # Computing specializations.. Time: 0:01:12 - Points: 72  ⌞ # Computing specializations.. Time: 0:01:13 - Points: 73  ⌜ # Computing specializations.. Time: 0:01:14 - Points: 74  ⌝ # Computing specializations.. Time: 0:01:15 - Points: 75  ⌟ # Computing specializations.. Time: 0:01:16 - Points: 76  ⌞ # Computing specializations.. Time: 0:01:17 - Points: 77  ⌜ # Computing specializations.. Time: 0:01:18 - Points: 78  ⌝ # Computing specializations.. Time: 0:01:19 - Points: 79  ⌟ # Computing specializations.. Time: 0:01:20 - Points: 80  ⌞ # Computing specializations.. Time: 0:01:21 - Points: 81  ⌜ # Computing specializations.. Time: 0:01:22 - Points: 82  ⌝ # Computing specializations.. Time: 0:01:23 - Points: 83  ⌟ # Computing specializations.. Time: 0:01:24 - Points: 84  ⌞ # Computing specializations.. Time: 0:01:25 - Points: 85  ⌜ # Computing specializations.. Time: 0:01:26 - Points: 86  ⌝ # Computing specializations.. Time: 0:01:28 - Points: 87  ⌟ # Computing specializations.. Time: 0:01:29 - Points: 88  ⌞ # Computing specializations.. Time: 0:01:30 - Points: 89  ⌜ # Computing specializations.. Time: 0:01:31 - Points: 90  ⌝ # Computing specializations.. Time: 0:01:32 - Points: 91  ⌟ # Computing specializations.. Time: 0:01:33 - Points: 92  ⌞ # Computing specializations.. Time: 0:01:34 - Points: 93  ⌜ # Computing specializations.. Time: 0:01:35 - Points: 94  ⌝ # Computing specializations.. Time: 0:01:36 - Points: 95  ⌟ # Computing specializations.. Time: 0:01:37 - Points: 96  ⌞ # Computing specializations.. Time: 0:01:38 - Points: 97  ⌜ # Computing specializations.. Time: 0:01:39 - Points: 98  ⌝ # Computing specializations.. Time: 0:01:40 - Points: 99  ⌟ # Computing specializations.. Time: 0:01:41 - Points: 100  ⌞ # Computing specializations.. Time: 0:01:42 - Points: 101  ⌜ # Computing specializations.. Time: 0:01:43 - Points: 102  ⌝ # Computing specializations.. Time: 0:01:44 - Points: 103  ⌟ # Computing specializations.. Time: 0:01:45 - Points: 104  ⌞ # Computing specializations.. Time: 0:01:46 - Points: 105  ⌜ # Computing specializations.. Time: 0:01:47 - Points: 106  ⌝ # Computing specializations.. Time: 0:01:48 - Points: 107  ⌟ # Computing specializations.. Time: 0:01:49 - Points: 108  ⌞ # Computing specializations.. Time: 0:01:50 - Points: 109  ⌜ # Computing specializations.. Time: 0:01:51 - Points: 110  ⌝ # Computing specializations.. Time: 0:01:52 - Points: 111  ⌟ # Computing specializations.. Time: 0:01:53 - Points: 112  ⌞ # Computing specializations.. Time: 0:01:55 - Points: 113  ⌜ # Computing specializations.. Time: 0:01:56 - Points: 114  ⌝ # Computing specializations.. Time: 0:01:57 - Points: 115  ⌟ # Computing specializations.. Time: 0:01:58 - Points: 116  ⌞ # Computing specializations.. Time: 0:01:59 - Points: 117  ⌜ # Computing specializations.. Time: 0:02:00 - Points: 118  ⌝ # Computing specializations.. Time: 0:02:01 - Points: 119  ⌟ # Computing specializations.. Time: 0:02:02 - Points: 120  ⌞ # Computing specializations.. Time: 0:02:03 - Points: 121  ⌜ # Computing specializations.. Time: 0:02:04 - Points: 122  ⌝ # Computing specializations.. Time: 0:02:05 - Points: 123  ⌟ # Computing specializations.. Time: 0:02:06 - Points: 124  ⌞ # Computing specializations.. Time: 0:02:07 - Points: 125  ⌜ # Computing specializations.. Time: 0:02:08 - Points: 126  ⌝ # Computing specializations.. Time: 0:02:09 - Points: 127  ⌟ # Computing specializations.. Time: 0:02:10 - Points: 128  ✓ # Computing specializations.. Time: 0:02:11 - -[2551093] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_new_array at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/array.c:188 [inlined] -ijl_alloc_array_1d at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/array.c:436 -Array at ./boot.jl:477 [inlined] -Array at ./boot.jl:486 [inlined] -Array at ./boot.jl:494 [inlined] -similar at ./abstractarray.jl:882 [inlined] -similar at ./abstractarray.jl:881 [inlined] -similar at ./broadcast.jl:212 [inlined] -similar at ./broadcast.jl:211 [inlined] -copy at ./broadcast.jl:898 [inlined] -materialize at ./broadcast.jl:873 [inlined] -monom_isless at /home/demin/Groebner.jl/src/monomials/exponentvector.jl:108 -monom_isless at /home/demin/Groebner.jl/src/monomials/exponentvector.jl:209 [inlined] -cmp at /home/demin/Groebner.jl/src/f4/sorting.jl:248 [inlined] -#280 at /home/demin/Groebner.jl/src/f4/sorting.jl:251 [inlined] -#1 at ./ordering.jl:133 [inlined] -lt at ./ordering.jl:120 [inlined] -partition! at ./sort.jl:1010 -#_sort!#25 at ./sort.jl:1041 -_sort! at ./sort.jl:1027 -#_sort!#25 at ./sort.jl:1062 -_sort! at ./sort.jl:1027 -#_sort!#25 at ./sort.jl:1062 -_sort! at ./sort.jl:1027 -#_sort!#25 at ./sort.jl:1062 -_sort! at ./sort.jl:1027 -#_sort!#25 at ./sort.jl:1062 -_sort! at ./sort.jl:1027 [inlined] -#_sort!#25 at ./sort.jl:1058 -_sort! at ./sort.jl:1027 [inlined] -_sort! at ./sort.jl:1095 [inlined] -_sort! at ./sort.jl:693 [inlined] -_sort! at ./sort.jl:644 [inlined] -_sort! at ./sort.jl:715 -_sort! at ./sort.jl:660 [inlined] -_sort! at ./sort.jl:596 [inlined] -#sort!#28 at ./sort.jl:1374 [inlined] -sort! at ./sort.jl:1367 [inlined] -sort_columns_by_labels! at /home/demin/Groebner.jl/src/f4/sorting.jl:253 [inlined] -column_to_monom_mapping! at /home/demin/Groebner.jl/src/f4/matrix.jl:1368 -reduction_learn! at /home/demin/Groebner.jl/src/f4/learn-apply.jl:383 -unknown function (ip: 0x7f9a87336b6a) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -f4_learn! at /home/demin/Groebner.jl/src/f4/learn-apply.jl:536 -_groebner_learn at /home/demin/Groebner.jl/src/groebner/learn-apply.jl:74 -unknown function (ip: 0x7f9a8732d0c8) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_groebner_learn at /home/demin/Groebner.jl/src/groebner/learn-apply.jl:39 -_groebner_learn at /home/demin/Groebner.jl/src/groebner/learn-apply.jl:13 -#groebner_learn#577 at /home/demin/Groebner.jl/src/interface.jl:106 [inlined] -groebner_learn at /home/demin/Groebner.jl/src/interface.jl:105 -unknown function (ip: 0x7f9a873163f6) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -#discover_shape!#118 at /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:151 -discover_shape! at /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:133 [inlined] -_paramgb at /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:96 -#paramgb#115 at /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:70 -paramgb at /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:46 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#groebner_basis_coeffs#477 at /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:322 -groebner_basis_coeffs at /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:301 -unknown function (ip: 0x7f9a873121e6) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -#generating_sets_fan#478 at /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:392 -generating_sets_fan at /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:365 -unknown function (ip: 0x7f9a873094a0) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -#simplified_generating_set#480 at /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:525 -simplified_generating_set at /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:440 -unknown function (ip: 0x7f9a88f103e6) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:65 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7f9cbdf8a616) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7f9a873677cf) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7f9cd529d1c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 387501109 (Pool: 386223397; Big: 1277712); GC: 1700 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 40 functions in Rational Field(e, rR, dr, d, g, r, a, T, Dd)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 130 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0), (1, 0), (0, 0), (0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2)], [(0, 0), (0, 0), (2, 1), (4, 2), (4, 2), (4, 2), (4, 1)], [(0, 0), (0, 1), (0, 1), (0, 0), (0, 0), (0, 1), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 1), (0, 1), (0, 0), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 0), (2, 1), (2, 1)], [(0, 0), (2, 3), (0, 1), (2, 3), (0, 0), (0, 0), (0, 1), (0, 0), (6, 5), (4, 3), (6, 5)], [(0, 0), (2, 2), (0, 0), (2, 2), (1, 0), (1, 0), (0, 0), (1, 0), (4, 3), (2, 1), (5, 3)], [(0, 0), (3, 2), (1, 0), (3, 2), (2, 0), (2, 0), (1, 0), (2, 0), (3, 1), (7, 4), (5, 2), (7, 4), (5, 1)], [(0, 0), (0, 1), (4, 3), (2, 2), (2, 1), (4, 3), (7, 5), (7, 5), (7, 5)], [(0, 0), (1, 0), (4, 2), (2, 1), (6, 4), (6, 4), (3, 1), (5, 3), (7, 4), (7, 4), (3, 1), (6, 4), (7, 4), (4, 1), (8, 4), (8, 4), (5, 1), (4, 1), (8, 4), (6, 1)], [(0, 0), (0, 0), (3, 2), (4, 2), (5, 4), (5, 4), (4, 3), (6, 4), (6, 4), (4, 2), (5, 4), (6, 4), (9, 6), (9, 6), (9, 6)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (3, 6), (17, 20), (2, 6), (3, 6), (4, 6), (4, 6), (3, 6), (21, 23), (23, 24), (6, 7), (19, 20), (4, 6), (6, 7), (23, 23)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (3, 6), (17, 20), (2, 6), (3, 6), (4, 6), (4, 6), (3, 6), (21, 23), (23, 24), (6, 7), (19, 20), (4, 6), (6, 7), (23, 23)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (17, 20), (3, 6), (4, 6), (21, 23), (23, 24), (4, 5), (19, 20), (3, 6), (6, 7), (23, 23)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (15, 18), (14, 18), (17, 19), (17, 19), (16, 19), (19, 20), (18, 19), (18, 20), (20, 21), (21, 21), (3, 3), (20, 20), (2, 3), (22, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (15, 18), (14, 18), (17, 19), (17, 19), (16, 19), (19, 20), (18, 19), (18, 20), (20, 21), (21, 21), (20, 20), (22, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (16, 18), (15, 18), (7, 3), (7, 3), (7, 3), (18, 19), (18, 19), (17, 19), (20, 20), (19, 19), (19, 20), (21, 21), (22, 21), (4, 3), (21, 20), (3, 3), (23, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (16, 18), (15, 18), (6, 3), (7, 3), (6, 3), (18, 19), (18, 19), (17, 19), (20, 20), (19, 19), (19, 20), (21, 21), (22, 21), (21, 20), (23, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (4, 1), (5, 1), (5, 1), (4, 1), (17, 18), (16, 18), (7, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (19, 19), (19, 19), (18, 19), (10, 4), (10, 4), (10, 4), (21, 20), (20, 19), (20, 20), (22, 21), (23, 21), (5, 3), (22, 20), (4, 3), (24, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (17, 18), (16, 18), (6, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (19, 19), (19, 19), (18, 19), (10, 4), (10, 4), (10, 4), (21, 20), (20, 19), (20, 20), (22, 21), (23, 21), (22, 20), (24, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (4, 1), (5, 1), (5, 1), (4, 1), (5, 1), (6, 1), (6, 1), (5, 1), (18, 18), (17, 18), (7, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (8, 2), (8, 2), (7, 2), (8, 2), (20, 19), (20, 19), (19, 19), (10, 4), (10, 4), (9, 3), (11, 4), (11, 4), (10, 4), (11, 4), (22, 20), (21, 19), (21, 20), (13, 5), (13, 5), (13, 5), (23, 21), (24, 21), (6, 3), (23, 20), (5, 3), (25, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (18, 18), (17, 18), (6, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (8, 2), (8, 2), (7, 2), (20, 19), (20, 19), (19, 19), (10, 4), (10, 4), (9, 3), (11, 4), (11, 4), (10, 4), (11, 4), (22, 20), (21, 19), (21, 20), (13, 5), (13, 5), (13, 5), (23, 21), (24, 21), (23, 20), (25, 21)], [(0, 0), (4, 3), (2, 1), (4, 2), (15, 18), (14, 18), (8, 6), (6, 4), (7, 4), (7, 4), (8, 5), (7, 4), (17, 19), (17, 19), (16, 19), (12, 9), (10, 7), (11, 7), (11, 7), (12, 8), (11, 7), (19, 20), (19, 20), (18, 20), (16, 11), (14, 10), (15, 10), (15, 10), (16, 11), (15, 10), (21, 21), (20, 20), (20, 21), (19, 13), (19, 13), (19, 13), (22, 22), (23, 22), (5, 4), (22, 21), (4, 4), (24, 22)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 7 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 6.766292057 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.602813314 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 40 functions in Rational Field(e, rR, dr, d, g, r, a, T, Dd)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 130 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0), (1, 0), (0, 0), (0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2)], [(0, 0), (0, 0), (2, 1), (4, 2), (4, 2), (4, 2), (4, 1)], [(0, 0), (0, 1), (0, 1), (0, 0), (0, 0), (0, 1), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 1), (0, 1), (0, 0), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 0), (2, 1), (2, 1)], [(0, 0), (2, 3), (0, 1), (2, 3), (0, 0), (0, 0), (0, 1), (0, 0), (6, 5), (4, 3), (6, 5)], [(0, 0), (2, 2), (0, 0), (2, 2), (1, 0), (1, 0), (0, 0), (1, 0), (4, 3), (2, 1), (5, 3)], [(0, 0), (3, 2), (1, 0), (3, 2), (2, 0), (2, 0), (1, 0), (2, 0), (3, 1), (7, 4), (5, 2), (7, 4), (5, 1)], [(0, 0), (0, 1), (4, 3), (2, 2), (2, 1), (4, 3), (7, 5), (7, 5), (7, 5)], [(0, 0), (1, 0), (4, 2), (2, 1), (6, 4), (6, 4), (3, 1), (5, 3), (7, 4), (7, 4), (3, 1), (6, 4), (7, 4), (4, 1), (8, 4), (8, 4), (5, 1), (4, 1), (8, 4), (6, 1)], [(0, 0), (0, 0), (3, 2), (4, 2), (5, 4), (5, 4), (4, 3), (6, 4), (6, 4), (4, 2), (5, 4), (6, 4), (9, 6), (9, 6), (9, 6)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (3, 6), (17, 20), (2, 6), (3, 6), (4, 6), (4, 6), (3, 6), (21, 23), (23, 24), (6, 7), (19, 20), (4, 6), (6, 7), (23, 23)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (3, 6), (17, 20), (2, 6), (3, 6), (4, 6), (4, 6), (3, 6), (21, 23), (23, 24), (6, 7), (19, 20), (4, 6), (6, 7), (23, 23)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (17, 20), (3, 6), (4, 6), (21, 23), (23, 24), (4, 5), (19, 20), (3, 6), (6, 7), (23, 23)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (15, 18), (14, 18), (17, 19), (17, 19), (16, 19), (19, 20), (18, 19), (18, 20), (20, 21), (21, 21), (3, 3), (20, 20), (2, 3), (22, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (15, 18), (14, 18), (17, 19), (17, 19), (16, 19), (19, 20), (18, 19), (18, 20), (20, 21), (21, 21), (20, 20), (22, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (16, 18), (15, 18), (7, 3), (7, 3), (7, 3), (18, 19), (18, 19), (17, 19), (20, 20), (19, 19), (19, 20), (21, 21), (22, 21), (4, 3), (21, 20), (3, 3), (23, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (16, 18), (15, 18), (6, 3), (7, 3), (6, 3), (18, 19), (18, 19), (17, 19), (20, 20), (19, 19), (19, 20), (21, 21), (22, 21), (21, 20), (23, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (4, 1), (5, 1), (5, 1), (4, 1), (17, 18), (16, 18), (7, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (19, 19), (19, 19), (18, 19), (10, 4), (10, 4), (10, 4), (21, 20), (20, 19), (20, 20), (22, 21), (23, 21), (5, 3), (22, 20), (4, 3), (24, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (17, 18), (16, 18), (6, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (19, 19), (19, 19), (18, 19), (10, 4), (10, 4), (10, 4), (21, 20), (20, 19), (20, 20), (22, 21), (23, 21), (22, 20), (24, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (4, 1), (5, 1), (5, 1), (4, 1), (5, 1), (6, 1), (6, 1), (5, 1), (18, 18), (17, 18), (7, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (8, 2), (8, 2), (7, 2), (8, 2), (20, 19), (20, 19), (19, 19), (10, 4), (10, 4), (9, 3), (11, 4), (11, 4), (10, 4), (11, 4), (22, 20), (21, 19), (21, 20), (13, 5), (13, 5), (13, 5), (23, 21), (24, 21), (6, 3), (23, 20), (5, 3), (25, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (18, 18), (17, 18), (6, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (8, 2), (8, 2), (7, 2), (20, 19), (20, 19), (19, 19), (10, 4), (10, 4), (9, 3), (11, 4), (11, 4), (10, 4), (11, 4), (22, 20), (21, 19), (21, 20), (13, 5), (13, 5), (13, 5), (23, 21), (24, 21), (23, 20), (25, 21)], [(0, 0), (4, 3), (2, 1), (4, 2), (15, 18), (14, 18), (8, 6), (6, 4), (7, 4), (7, 4), (8, 5), (7, 4), (17, 19), (17, 19), (16, 19), (12, 9), (10, 7), (11, 7), (11, 7), (12, 8), (11, 7), (19, 20), (19, 20), (18, 20), (16, 11), (14, 10), (15, 10), (15, 10), (16, 11), (15, 10), (21, 21), (20, 20), (20, 21), (19, 13), (19, 13), (19, 13), (22, 22), (23, 22), (5, 4), (22, 21), (4, 4), (24, 22)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 768 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 21 for num. and 20 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 18.457855272 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.572317779 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 77 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (9 in total): Nemo.fmpq_mpoly[e, rR, dr, d, g, r, a, T, Dd] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 210 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 172 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 210 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 172 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 210 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 172 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y3, t, y9, y7], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y5, y8, y1, y2], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(e, rR, dr, d, g, r, a, T, Dd)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 258 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 1), (2, 3), (2, 3), (0, 0), (0, 0), (0, 1), (2, 3), (0, 0), (0, 1), (2, 2), (4, 4), (2, 1), (4, 4), (5, 4), (2, 1), (4, 4), (4, 2), (7, 5), (4, 2), (6, 4), (8, 5)], [(0, 1), (0, 0), (3, 3), (3, 3), (3, 2), (4, 3), (4, 3), (4, 3), (2, 1), (4, 3), (4, 3), (4, 3), (6, 4), (6, 4), (5, 3), (6, 4), (6, 4), (4, 2), (6, 4), (7, 4), (8, 5), (7, 4), (7, 4), (9, 5)], [(0, 2), (2, 4), (0, 2), (0, 1), (2, 3), (0, 0), (0, 2), (2, 4), (0, 2), (3, 3), (6, 6), (6, 6), (3, 2), (6, 5), (2, 1), (4, 4), (4, 4), (6, 6), (3, 2), (4, 4), (4, 4), (4, 4), (5, 3), (9, 7), (9, 7), (5, 3), (8, 6), (4, 2), (7, 5), (9, 7), (5, 3), (7, 5), (10, 7), (11, 8), (10, 7), (10, 7), (12, 8)], [(0, 0), (2, 2), (2, 2), (1, 0), (0, 0), (2, 2), (0, 0), (3, 2), (5, 4), (4, 2), (4, 2), (6, 4), (6, 4), (3, 1), (4, 2), (4, 2), (6, 4), (4, 2), (6, 3), (8, 5), (6, 3), (8, 5), (8, 5), (6, 3), (8, 5), (7, 3), (10, 6), (8, 4), (9, 5), (11, 6)], [(0, 2), (0, 2), (0, 1), (0, 0), (4, 5), (2, 3), (4, 4), (3, 3), (6, 6), (6, 6), (2, 2), (4, 3), (2, 1), (4, 4), (6, 6), (4, 4), (7, 6), (7, 6), (7, 5), (9, 7), (9, 7), (6, 4), (9, 7), (9, 6), (11, 8), (9, 6), (10, 7), (12, 8)], [(0, 2), (2, 4), (2, 4), (2, 3), (0, 0), (0, 2), (2, 4), (0, 2), (2, 3), (4, 5), (2, 3), (4, 4), (2, 1), (4, 5), (5, 5), (5, 5), (5, 4), (5, 4), (2, 1), (5, 5), (5, 5), (3, 3), (4, 3), (7, 6), (7, 6), (5, 3), (7, 5), (4, 2), (8, 6), (8, 6), (7, 5), (8, 6), (9, 6), (10, 7), (9, 6), (9, 6), (11, 7)], [(2, 2), (4, 4), (4, 4), (3, 2), (0, 0), (2, 2), (4, 4), (0, 0), (0, 0), (5, 4), (7, 6), (6, 4), (6, 4), (8, 6), (8, 6), (5, 3), (6, 4), (6, 4), (8, 6), (4, 2), (8, 5), (10, 7), (8, 5), (10, 7), (10, 7), (8, 5), (10, 7), (9, 5), (12, 8), (10, 6), (11, 7), (13, 8)], [(2, 4), (4, 6), (6, 8), (6, 7), (2, 4), (4, 6), (2, 4), (3, 4), (7, 8), (0, 0), (7, 7), (6, 6), (8, 8), (7, 7), (6, 6), (0, 0), (7, 7), (5, 4), (10, 9), (9, 8), (9, 8), (9, 8), (11, 9)], [(2, 5), (2, 4), (3, 5), (3, 4), (4, 5), (4, 4), (3, 4), (0, 0), (6, 6), (6, 5), (6, 5), (6, 5), (8, 6)], [(4, 7), (6, 9), (6, 9), (4, 6), (1, 2), (4, 7), (6, 9), (4, 7), (3, 5), (7, 9), (7, 8), (0, 0), (8, 9), (8, 9), (6, 6), (8, 9), (7, 8), (0, 0), (7, 7), (10, 10), (10, 9), (10, 9), (9, 8), (12, 10)], [(0, 1), (4, 4), (4, 4), (4, 4), (4, 3), (4, 4), (4, 4), (4, 4), (0, 0), (6, 5), (7, 6), (7, 5), (8, 6), (8, 6), (6, 4), (8, 6), (7, 5), (7, 5), (10, 7), (9, 6), (9, 6), (9, 6), (11, 7)], [(0, 0), (1, 0)], [(20, 22), (18, 20), (20, 21), (0, 1), (20, 22), (0, 0), (24, 24), (24, 24), (24, 23), (21, 20), (21, 20), (25, 24), (2, 1), (21, 19), (21, 18), (21, 20), (21, 20), (21, 20), (27, 30), (28, 30), (27, 25), (27, 25), (27, 24), (24, 21), (28, 25), (24, 20), (24, 21), (29, 31), (30, 31), (28, 29), (29, 30), (31, 31), (28, 29), (30, 31), (29, 25), (30, 26), (30, 25), (30, 25), (32, 32), (33, 32), (33, 32), (33, 32), (32, 26), (34, 32)], [(3, 4), (20, 21), (18, 19), (4, 4), (21, 21), (0, 0), (2, 2), (4, 4), (20, 21), (0, 0), (2, 2), (3, 4), (0, 0), (6, 5), (24, 23), (24, 23), (6, 5), (25, 23), (23, 21), (25, 23), (25, 23), (21, 18), (22, 18), (23, 21), (25, 23), (21, 19), (30, 32), (31, 32), (7, 5), (27, 24), (27, 24), (8, 6), (28, 24), (28, 24), (28, 24), (24, 19), (28, 24), (32, 33), (33, 33), (29, 29), (32, 32), (34, 33), (29, 29), (33, 33), (29, 24), (30, 25), (31, 25), (30, 24), (35, 34), (36, 34), (36, 34), (36, 34), (32, 25), (37, 34)], [(4, 8), (23, 27), (21, 25), (4, 7), (23, 26), (4, 8), (24, 27), (0, 0), (4, 8), (7, 9), (27, 29), (27, 29), (7, 8), (27, 28), (2, 2), (24, 25), (28, 29), (28, 29), (20, 20), (20, 19), (24, 25), (28, 29), (24, 25), (4, 9), (6, 11), (30, 35), (31, 35), (6, 9), (4, 9), (6, 11), (4, 9), (9, 9), (30, 30), (30, 30), (10, 9), (30, 29), (6, 4), (31, 30), (31, 30), (24, 22), (31, 30), (5, 9), (32, 36), (31, 34), (33, 36), (32, 35), (34, 36), (33, 36), (31, 34), (32, 30), (33, 31), (33, 30), (33, 30), (8, 10), (35, 37), (34, 35), (36, 37), (34, 35), (35, 31), (37, 37)], [(0, 0), (4, 11), (6, 13), (6, 13), (4, 11), (7, 13), (7, 11), (4, 11), (6, 13), (4, 11), (3, 9), (3, 9), (10, 16), (8, 14), (4, 9), (4, 9), (11, 16), (5, 9), (6, 9), (14, 19), (16, 21), (23, 28), (8, 13), (22, 26), (10, 13), (14, 19), (16, 21), (14, 19), (7, 11), (15, 19), (24, 28), (8, 11), (25, 28), (9, 11), (25, 28), (25, 28), (24, 26), (25, 28), (20, 23), (19, 21), (27, 29), (28, 29), (28, 29), (23, 24), (29, 29)], [(0, 0), (20, 18), (20, 18), (21, 18), (20, 18), (23, 19), (23, 19), (24, 19), (24, 19), (24, 19), (24, 19), (25, 19), (26, 19), (24, 19), (24, 19), (24, 19), (28, 27), (29, 27), (26, 20), (26, 20), (27, 20), (27, 20), (27, 20), (28, 20), (27, 20), (31, 29), (32, 29), (30, 27), (34, 31), (32, 28), (30, 27), (32, 29), (28, 20), (29, 21), (30, 21), (29, 20), (34, 30), (35, 30), (37, 32), (35, 30), (31, 21), (36, 30)], [(0, 0), (20, 18), (21, 19), (21, 18), (4, 2), (21, 19), (4, 2), (23, 19), (24, 20), (24, 19), (24, 19), (27, 22), (27, 22), (27, 21), (26, 19), (24, 19), (27, 22), (24, 19), (10, 9), (12, 11), (34, 33), (11, 9), (33, 31), (10, 9), (12, 11), (10, 9), (26, 20), (29, 23), (27, 20), (30, 23), (30, 23), (30, 22), (30, 23), (12, 10), (37, 35), (36, 33), (36, 33), (38, 35), (37, 33), (36, 33), (34, 31), (28, 20), (32, 24), (30, 21), (32, 23), (14, 10), (40, 36), (39, 34), (41, 36), (37, 32), (34, 24), (42, 36)], [(0, 0), (19, 18), (20, 19), (20, 18), (4, 2), (21, 19), (4, 2), (22, 19), (23, 20), (23, 19), (23, 19), (26, 22), (26, 22), (26, 21), (25, 19), (23, 19), (26, 22), (23, 19), (10, 9), (12, 11), (34, 33), (11, 9), (33, 31), (10, 9), (12, 11), (10, 9), (25, 20), (28, 23), (26, 20), (29, 23), (29, 23), (29, 22), (29, 23), (12, 10), (36, 34), (35, 32), (35, 33), (38, 35), (36, 33), (36, 33), (32, 30), (27, 20), (31, 24), (29, 21), (31, 23), (14, 10), (40, 36), (38, 34), (40, 36), (36, 32), (33, 24), (41, 36)], [(0, 0), (20, 19), (20, 19), (20, 18), (20, 19), (23, 20), (23, 20), (23, 19), (24, 20), (24, 20), (24, 20), (24, 19), (25, 19), (24, 20), (24, 20), (24, 20), (27, 27), (28, 27), (26, 21), (26, 21), (26, 20), (27, 21), (27, 21), (27, 20), (27, 21), (30, 29), (31, 29), (29, 27), (33, 31), (31, 28), (29, 27), (31, 29), (28, 21), (29, 22), (29, 21), (29, 21), (35, 32), (34, 30), (36, 32), (34, 30), (31, 22), (37, 32)], [(0, 0), (0, 0), (4, 2), (23, 21), (21, 19), (5, 2), (24, 21), (4, 2), (23, 21), (4, 2), (7, 3), (27, 23), (27, 23), (8, 3), (28, 23), (8, 2), (26, 21), (28, 23), (28, 23), (27, 21), (26, 19), (26, 21), (28, 23), (26, 21), (10, 9), (12, 11), (34, 33), (11, 9), (33, 31), (10, 9), (12, 11), (10, 9), (9, 3), (30, 24), (30, 24), (11, 4), (31, 24), (12, 4), (31, 24), (31, 24), (31, 23), (31, 24), (12, 10), (36, 34), (35, 32), (36, 33), (38, 35), (37, 33), (36, 33), (33, 30), (32, 24), (33, 25), (34, 25), (33, 24), (15, 11), (40, 36), (39, 34), (41, 36), (37, 32), (35, 25), (42, 36)], [(0, 0), (4, 3), (23, 22), (21, 20), (4, 2), (23, 21), (4, 3), (23, 22), (4, 3), (7, 4), (27, 24), (27, 24), (7, 3), (27, 23), (7, 2), (26, 22), (28, 24), (28, 24), (26, 21), (25, 19), (26, 22), (28, 24), (26, 22), (9, 9), (11, 11), (33, 33), (10, 9), (32, 31), (9, 9), (11, 11), (9, 9), (9, 4), (30, 25), (30, 25), (10, 4), (30, 24), (11, 4), (31, 25), (31, 25), (30, 23), (31, 25), (11, 10), (36, 35), (35, 33), (35, 33), (37, 35), (36, 33), (35, 33), (33, 31), (32, 25), (33, 26), (33, 25), (33, 25), (14, 11), (39, 36), (38, 34), (40, 36), (36, 32), (35, 26), (41, 36)], [(0, 0), (0, 0), (4, 2), (23, 21), (21, 19), (5, 2), (24, 21), (4, 2), (23, 21), (4, 2), (7, 3), (27, 23), (27, 23), (8, 3), (28, 23), (8, 2), (26, 21), (28, 23), (28, 23), (27, 21), (26, 19), (26, 21), (28, 23), (26, 21), (10, 9), (12, 11), (34, 33), (11, 9), (33, 31), (10, 9), (12, 11), (10, 9), (9, 3), (30, 24), (30, 24), (11, 4), (31, 24), (12, 4), (31, 24), (31, 24), (31, 23), (31, 24), (12, 10), (36, 34), (35, 32), (36, 33), (38, 35), (37, 33), (36, 33), (33, 30), (32, 24), (33, 25), (34, 25), (33, 24), (15, 11), (40, 36), (39, 34), (41, 36), (37, 32), (35, 25), (42, 36)], [(0, 1), (0, 0), (4, 3), (23, 22), (21, 20), (3, 1), (4, 2), (23, 21), (4, 1), (5, 1), (4, 3), (4, 3), (23, 22), (4, 3), (4, 3), (7, 4), (27, 24), (27, 24), (5, 1), (7, 3), (27, 23), (7, 2), (7, 2), (8, 2), (26, 22), (28, 24), (28, 24), (6, 2), (24, 19), (25, 19), (26, 22), (28, 24), (26, 22), (5, 6), (7, 8), (5, 6), (6, 6), (8, 8), (7, 6), (10, 10), (14, 14), (38, 38), (37, 36), (7, 5), (10, 10), (14, 14), (10, 10), (9, 4), (30, 25), (30, 25), (10, 4), (30, 24), (11, 4), (31, 25), (31, 25), (28, 21), (31, 25), (8, 7), (12, 11), (41, 40), (9, 7), (42, 40), (10, 7), (42, 40), (41, 39), (41, 38), (42, 40), (40, 38), (32, 25), (33, 26), (33, 25), (33, 25), (18, 15), (44, 41), (45, 41), (45, 41), (43, 39), (35, 26), (46, 41)], [(0, 0), (0, 0), (0, 0), (3, 1), (4, 2), (23, 21), (21, 19), (4, 1), (5, 2), (24, 21), (5, 1), (6, 1), (3, 1), (6, 4), (23, 21), (3, 1), (6, 4), (5, 1), (7, 3), (27, 23), (27, 23), (7, 2), (8, 3), (28, 23), (8, 2), (8, 2), (9, 2), (26, 21), (28, 23), (28, 23), (7, 2), (27, 21), (26, 19), (26, 21), (28, 23), (26, 21), (6, 6), (8, 8), (6, 6), (7, 6), (9, 8), (8, 6), (15, 14), (19, 18), (39, 38), (11, 9), (38, 36), (8, 5), (15, 14), (19, 18), (15, 14), (9, 3), (30, 24), (30, 24), (11, 4), (31, 24), (12, 4), (31, 24), (31, 24), (31, 23), (31, 24), (9, 7), (19, 17), (42, 40), (10, 7), (43, 40), (11, 7), (43, 40), (43, 40), (42, 38), (43, 40), (41, 38), (32, 24), (33, 25), (34, 25), (33, 24), (24, 20), (45, 41), (46, 41), (46, 41), (44, 39), (35, 25), (47, 41)], [(4, 8), (4, 7), (5, 8), (5, 7), (2, 4), (6, 8), (5, 7), (2, 4), (5, 7), (7, 8), (0, 0), (7, 7), (7, 8), (7, 7), (9, 8)], [(4, 7), (5, 7), (5, 7), (6, 7), (2, 3), (6, 7), (6, 7), (2, 3), (6, 7), (0, 0), (7, 7), (7, 7), (7, 7), (0, 0), (7, 7), (8, 7)], [(4, 7), (6, 9), (6, 9), (4, 6), (1, 2), (4, 7), (6, 9), (4, 7), (3, 5), (7, 9), (7, 8), (0, 0), (8, 9), (8, 9), (6, 6), (8, 9), (7, 8), (0, 0), (7, 7), (10, 10), (10, 9), (10, 9), (10, 9), (12, 10)], [(17, 24), (17, 24), (17, 23), (17, 24), (19, 24), (19, 24), (19, 23), (16, 20), (18, 22), (22, 26), (18, 21), (17, 19), (16, 20), (18, 22), (16, 20), (30, 38), (31, 38), (21, 24), (23, 26), (21, 23), (20, 22), (24, 26), (20, 21), (20, 22), (32, 39), (33, 39), (29, 35), (32, 38), (34, 39), (29, 35), (33, 39), (23, 24), (25, 26), (23, 23), (26, 26), (0, 0), (34, 39), (35, 39), (35, 39), (35, 39), (27, 26), (36, 39)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 8 for num. and 6 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 412.256367468 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.015600559 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 25 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y1, y3, y4, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y8, y9, y2, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(e, rR, dr, d, g, r, a, T, Dd)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 diff --git a/benchmarking/IdentifiableFunctions/systems/St/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/St/logs_(:hybrid,)_with_states deleted file mode 100644 index 2742df666..000000000 --- a/benchmarking/IdentifiableFunctions/systems/St/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,754 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing St -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 4.986760233 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 4.986760233 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.116564258 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.116564258 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [34, 2] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 8.6657e-5 seconds -│ :rank_time = rank_time -│ rank_times = 8.6657e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:03 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 14  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 33  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 52  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 71  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 91  ⌝ # Computing specializations.. Time: 0:00:01 - Points: 111  ✓ # Computing specializations.. Time: 0:00:02 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:00 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ⌞ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:03 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 17  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 36  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 54  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 72  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 91  ⌝ # Computing specializations.. Time: 0:00:01 - Points: 110  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 130  ⌞ # Computing specializations.. Time: 0:00:02 - Points: 150  ⌜ # Computing specializations.. Time: 0:00:02 - Points: 170  ⌝ # Computing specializations.. Time: 0:00:03 - Points: 190  ⌟ # Computing specializations.. Time: 0:00:03 - Points: 208  ⌞ # Computing specializations.. Time: 0:00:03 - Points: 228  ⌜ # Computing specializations.. Time: 0:00:04 - Points: 247  ⌝ # Computing specializations.. Time: 0:00:04 - Points: 266  ⌟ # Computing specializations.. Time: 0:00:04 - Points: 285  ⌞ # Computing specializations.. Time: 0:00:04 - Points: 304  ⌜ # Computing specializations.. Time: 0:00:05 - Points: 323  ⌝ # Computing specializations.. Time: 0:00:05 - Points: 342  ⌟ # Computing specializations.. Time: 0:00:05 - Points: 361  ⌞ # Computing specializations.. Time: 0:00:06 - Points: 381  ⌜ # Computing specializations.. Time: 0:00:06 - Points: 399  ⌝ # Computing specializations.. Time: 0:00:07 - Points: 419  ⌟ # Computing specializations.. Time: 0:00:07 - Points: 439  ⌞ # Computing specializations.. Time: 0:00:07 - Points: 459  ⌜ # Computing specializations.. Time: 0:00:08 - Points: 479  ⌝ # Computing specializations.. Time: 0:00:08 - Points: 499  ⌟ # Computing specializations.. Time: 0:00:08 - Points: 519  ⌞ # Computing specializations.. Time: 0:00:08 - Points: 538  ⌜ # Computing specializations.. Time: 0:00:09 - Points: 558  ⌝ # Computing specializations.. Time: 0:00:09 - Points: 577  ⌟ # Computing specializations.. Time: 0:00:09 - Points: 597  ⌞ # Computing specializations.. Time: 0:00:10 - Points: 617  ⌜ # Computing specializations.. Time: 0:00:10 - Points: 637  ⌝ # Computing specializations.. Time: 0:00:10 - Points: 657  ⌟ # Computing specializations.. Time: 0:00:11 - Points: 676  ⌞ # Computing specializations.. Time: 0:00:11 - Points: 696  ⌜ # Computing specializations.. Time: 0:00:11 - Points: 716  ⌝ # Computing specializations.. Time: 0:00:12 - Points: 736  ⌟ # Computing specializations.. Time: 0:00:12 - Points: 756  ✓ # Computing specializations.. Time: 0:00:13 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 17  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 34  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 50  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 66  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 85  ⌝ # Computing specializations.. Time: 0:00:01 - Points: 103  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 120  ✓ # Computing specializations.. Time: 0:00:02 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 11  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 29  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 47  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 65  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 83  ⌝ # Computing specializations.. Time: 0:00:01 - Points: 100  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 118  ⌞ # Computing specializations.. Time: 0:00:02 - Points: 136  ⌜ # Computing specializations.. Time: 0:00:02 - Points: 154  ⌝ # Computing specializations.. Time: 0:00:03 - Points: 172  ⌟ # Computing specializations.. Time: 0:00:03 - Points: 190  ⌞ # Computing specializations.. Time: 0:00:03 - Points: 207  ⌜ # Computing specializations.. Time: 0:00:04 - Points: 225  ⌝ # Computing specializations.. Time: 0:00:04 - Points: 243  ⌟ # Computing specializations.. Time: 0:00:04 - Points: 261  ⌞ # Computing specializations.. Time: 0:00:05 - Points: 279  ⌜ # Computing specializations.. Time: 0:00:05 - Points: 297  ⌝ # Computing specializations.. Time: 0:00:05 - Points: 315  ⌟ # Computing specializations.. Time: 0:00:05 - Points: 333  ⌞ # Computing specializations.. Time: 0:00:06 - Points: 350  ⌜ # Computing specializations.. Time: 0:00:06 - Points: 368  ⌝ # Computing specializations.. Time: 0:00:06 - Points: 386  ⌟ # Computing specializations.. Time: 0:00:07 - Points: 401  ⌞ # Computing specializations.. Time: 0:00:07 - Points: 417  ⌜ # Computing specializations.. Time: 0:00:07 - Points: 433  ⌝ # Computing specializations.. Time: 0:00:08 - Points: 450  ⌟ # Computing specializations.. Time: 0:00:08 - Points: 468  ⌞ # Computing specializations.. Time: 0:00:08 - Points: 487  ⌜ # Computing specializations.. Time: 0:00:09 - Points: 505  ⌝ # Computing specializations.. Time: 0:00:09 - Points: 523  ⌟ # Computing specializations.. Time: 0:00:09 - Points: 541  ⌞ # Computing specializations.. Time: 0:00:10 - Points: 559  ⌜ # Computing specializations.. Time: 0:00:10 - Points: 577  ⌝ # Computing specializations.. Time: 0:00:10 - Points: 595  ⌟ # Computing specializations.. Time: 0:00:10 - Points: 614  ⌞ # Computing specializations.. Time: 0:00:11 - Points: 633  ⌜ # Computing specializations.. Time: 0:00:11 - Points: 651  ⌝ # Computing specializations.. Time: 0:00:11 - Points: 669  ⌟ # Computing specializations.. Time: 0:00:12 - Points: 687  ⌞ # Computing specializations.. Time: 0:00:12 - Points: 704  ⌜ # Computing specializations.. Time: 0:00:12 - Points: 722  ⌝ # Computing specializations.. Time: 0:00:13 - Points: 740  ⌟ # Computing specializations.. Time: 0:00:13 - Points: 758  ✓ # Computing specializations.. Time: 0:00:14 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:02 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 40 functions in Rational Field(e, rR, dr, d, g, r, a, T, Dd, S, R, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 130 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0), (1, 0), (0, 0), (0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2)], [(0, 0), (0, 0), (2, 1), (4, 2), (4, 2), (4, 2), (4, 1)], [(0, 0), (0, 1), (0, 1), (0, 0), (0, 0), (0, 1), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 1), (0, 1), (0, 0), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 0), (2, 1), (2, 1)], [(0, 0), (2, 3), (0, 1), (2, 3), (0, 0), (0, 0), (0, 1), (0, 0), (6, 5), (4, 3), (6, 5)], [(0, 0), (2, 2), (0, 0), (2, 2), (1, 0), (1, 0), (0, 0), (1, 0), (4, 3), (2, 1), (5, 3)], [(0, 0), (3, 2), (1, 0), (3, 2), (2, 0), (2, 0), (1, 0), (2, 0), (3, 1), (7, 4), (5, 2), (7, 4), (5, 1)], [(0, 0), (0, 1), (4, 3), (2, 2), (2, 1), (4, 3), (7, 5), (7, 5), (7, 5)], [(0, 0), (1, 0), (4, 2), (2, 1), (6, 4), (6, 4), (3, 1), (5, 3), (7, 4), (7, 4), (3, 1), (6, 4), (7, 4), (4, 1), (8, 4), (8, 4), (5, 1), (4, 1), (8, 4), (6, 1)], [(0, 0), (0, 0), (3, 2), (4, 2), (5, 4), (5, 4), (4, 3), (6, 4), (6, 4), (4, 2), (5, 4), (6, 4), (9, 6), (9, 6), (9, 6)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (3, 6), (17, 20), (2, 6), (3, 6), (4, 6), (4, 6), (3, 6), (21, 23), (23, 24), (6, 7), (19, 20), (4, 6), (6, 7), (23, 23)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (3, 6), (17, 20), (2, 6), (3, 6), (4, 6), (4, 6), (3, 6), (21, 23), (23, 24), (6, 7), (19, 20), (4, 6), (6, 7), (23, 23)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (17, 20), (3, 6), (4, 6), (21, 23), (23, 24), (4, 5), (19, 20), (3, 6), (6, 7), (23, 23)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (15, 18), (14, 18), (17, 19), (17, 19), (16, 19), (19, 20), (18, 19), (18, 20), (20, 21), (21, 21), (3, 3), (20, 20), (2, 3), (22, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (15, 18), (14, 18), (17, 19), (17, 19), (16, 19), (19, 20), (18, 19), (18, 20), (20, 21), (21, 21), (20, 20), (22, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (16, 18), (15, 18), (7, 3), (7, 3), (7, 3), (18, 19), (18, 19), (17, 19), (20, 20), (19, 19), (19, 20), (21, 21), (22, 21), (4, 3), (21, 20), (3, 3), (23, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (16, 18), (15, 18), (6, 3), (7, 3), (6, 3), (18, 19), (18, 19), (17, 19), (20, 20), (19, 19), (19, 20), (21, 21), (22, 21), (21, 20), (23, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (4, 1), (5, 1), (5, 1), (4, 1), (17, 18), (16, 18), (7, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (19, 19), (19, 19), (18, 19), (10, 4), (10, 4), (10, 4), (21, 20), (20, 19), (20, 20), (22, 21), (23, 21), (5, 3), (22, 20), (4, 3), (24, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (17, 18), (16, 18), (6, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (19, 19), (19, 19), (18, 19), (10, 4), (10, 4), (10, 4), (21, 20), (20, 19), (20, 20), (22, 21), (23, 21), (22, 20), (24, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (4, 1), (5, 1), (5, 1), (4, 1), (5, 1), (6, 1), (6, 1), (5, 1), (18, 18), (17, 18), (7, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (8, 2), (8, 2), (7, 2), (8, 2), (20, 19), (20, 19), (19, 19), (10, 4), (10, 4), (9, 3), (11, 4), (11, 4), (10, 4), (11, 4), (22, 20), (21, 19), (21, 20), (13, 5), (13, 5), (13, 5), (23, 21), (24, 21), (6, 3), (23, 20), (5, 3), (25, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (18, 18), (17, 18), (6, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (8, 2), (8, 2), (7, 2), (20, 19), (20, 19), (19, 19), (10, 4), (10, 4), (9, 3), (11, 4), (11, 4), (10, 4), (11, 4), (22, 20), (21, 19), (21, 20), (13, 5), (13, 5), (13, 5), (23, 21), (24, 21), (23, 20), (25, 21)], [(0, 0), (4, 3), (2, 1), (4, 2), (15, 18), (14, 18), (8, 6), (6, 4), (7, 4), (7, 4), (8, 5), (7, 4), (17, 19), (17, 19), (16, 19), (12, 9), (10, 7), (11, 7), (11, 7), (12, 8), (11, 7), (19, 20), (19, 20), (18, 20), (16, 11), (14, 10), (15, 10), (15, 10), (16, 11), (15, 10), (21, 21), (20, 20), (20, 21), (19, 13), (19, 13), (19, 13), (22, 22), (23, 22), (5, 4), (22, 21), (4, 4), (24, 22)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 7 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 6.786905832 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.684743701 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 40 functions in Rational Field(e, rR, dr, d, g, r, a, T, Dd, S, R, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 130 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0), (1, 0), (0, 0), (0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2)], [(0, 0), (0, 0), (2, 1), (4, 2), (4, 2), (4, 2), (4, 1)], [(0, 0), (0, 1), (0, 1), (0, 0), (0, 0), (0, 1), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 1), (0, 1), (0, 0), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 0), (2, 1), (2, 1)], [(0, 0), (2, 3), (0, 1), (2, 3), (0, 0), (0, 0), (0, 1), (0, 0), (6, 5), (4, 3), (6, 5)], [(0, 0), (2, 2), (0, 0), (2, 2), (1, 0), (1, 0), (0, 0), (1, 0), (4, 3), (2, 1), (5, 3)], [(0, 0), (3, 2), (1, 0), (3, 2), (2, 0), (2, 0), (1, 0), (2, 0), (3, 1), (7, 4), (5, 2), (7, 4), (5, 1)], [(0, 0), (0, 1), (4, 3), (2, 2), (2, 1), (4, 3), (7, 5), (7, 5), (7, 5)], [(0, 0), (1, 0), (4, 2), (2, 1), (6, 4), (6, 4), (3, 1), (5, 3), (7, 4), (7, 4), (3, 1), (6, 4), (7, 4), (4, 1), (8, 4), (8, 4), (5, 1), (4, 1), (8, 4), (6, 1)], [(0, 0), (0, 0), (3, 2), (4, 2), (5, 4), (5, 4), (4, 3), (6, 4), (6, 4), (4, 2), (5, 4), (6, 4), (9, 6), (9, 6), (9, 6)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (3, 6), (17, 20), (2, 6), (3, 6), (4, 6), (4, 6), (3, 6), (21, 23), (23, 24), (6, 7), (19, 20), (4, 6), (6, 7), (23, 23)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (3, 6), (17, 20), (2, 6), (3, 6), (4, 6), (4, 6), (3, 6), (21, 23), (23, 24), (6, 7), (19, 20), (4, 6), (6, 7), (23, 23)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (17, 20), (3, 6), (4, 6), (21, 23), (23, 24), (4, 5), (19, 20), (3, 6), (6, 7), (23, 23)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (15, 18), (14, 18), (17, 19), (17, 19), (16, 19), (19, 20), (18, 19), (18, 20), (20, 21), (21, 21), (3, 3), (20, 20), (2, 3), (22, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (15, 18), (14, 18), (17, 19), (17, 19), (16, 19), (19, 20), (18, 19), (18, 20), (20, 21), (21, 21), (20, 20), (22, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (16, 18), (15, 18), (7, 3), (7, 3), (7, 3), (18, 19), (18, 19), (17, 19), (20, 20), (19, 19), (19, 20), (21, 21), (22, 21), (4, 3), (21, 20), (3, 3), (23, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (16, 18), (15, 18), (6, 3), (7, 3), (6, 3), (18, 19), (18, 19), (17, 19), (20, 20), (19, 19), (19, 20), (21, 21), (22, 21), (21, 20), (23, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (4, 1), (5, 1), (5, 1), (4, 1), (17, 18), (16, 18), (7, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (19, 19), (19, 19), (18, 19), (10, 4), (10, 4), (10, 4), (21, 20), (20, 19), (20, 20), (22, 21), (23, 21), (5, 3), (22, 20), (4, 3), (24, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (17, 18), (16, 18), (6, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (19, 19), (19, 19), (18, 19), (10, 4), (10, 4), (10, 4), (21, 20), (20, 19), (20, 20), (22, 21), (23, 21), (22, 20), (24, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (4, 1), (5, 1), (5, 1), (4, 1), (5, 1), (6, 1), (6, 1), (5, 1), (18, 18), (17, 18), (7, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (8, 2), (8, 2), (7, 2), (8, 2), (20, 19), (20, 19), (19, 19), (10, 4), (10, 4), (9, 3), (11, 4), (11, 4), (10, 4), (11, 4), (22, 20), (21, 19), (21, 20), (13, 5), (13, 5), (13, 5), (23, 21), (24, 21), (6, 3), (23, 20), (5, 3), (25, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (18, 18), (17, 18), (6, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (8, 2), (8, 2), (7, 2), (20, 19), (20, 19), (19, 19), (10, 4), (10, 4), (9, 3), (11, 4), (11, 4), (10, 4), (11, 4), (22, 20), (21, 19), (21, 20), (13, 5), (13, 5), (13, 5), (23, 21), (24, 21), (23, 20), (25, 21)], [(0, 0), (4, 3), (2, 1), (4, 2), (15, 18), (14, 18), (8, 6), (6, 4), (7, 4), (7, 4), (8, 5), (7, 4), (17, 19), (17, 19), (16, 19), (12, 9), (10, 7), (11, 7), (11, 7), (12, 8), (11, 7), (19, 20), (19, 20), (18, 20), (16, 11), (14, 10), (15, 10), (15, 10), (16, 11), (15, 10), (21, 21), (20, 20), (20, 21), (19, 13), (19, 13), (19, 13), (22, 22), (23, 22), (5, 4), (22, 21), (4, 4), (24, 22)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 768 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 21 for num. and 20 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 16.980708823 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.489269021 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 77 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 4.949411197 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 39 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 20503 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(e, rR, dr, d, g, r, a, T, Dd, S, R, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0), (1, 0), (0, 0), (0, 0), (1, 0), (2, 0)], [(0, 0), (2, 2), (3, 2), (3, 2), (2, 2), (1, 0), (4, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (2, 2), (3, 2), (3, 2)], [(0, 0), (0, 1), (1, 1), (1, 0), (1, 0), (5, 4), (1, 1), (5, 4), (6, 4)], [(0, 0), (0, 1), (1, 1), (2, 1), (2, 1), (5, 4), (1, 1), (2, 1), (5, 4), (6, 4)], [(0, 0), (0, 0), (3, 1), (3, 1), (1, 0), (3, 1), (3, 0)], [(0, 0), (5, 6), (5, 5), (6, 6), (7, 6), (7, 6), (4, 3), (6, 6), (7, 6), (7, 6), (8, 6)], [(0, 0), (5, 5), (6, 5), (6, 5), (8, 6), (8, 6), (4, 2), (6, 5), (8, 6), (7, 5), (8, 5)], [(0, 0), (4, 4), (4, 4), (5, 4), (5, 4), (6, 4)], [(0, 0), (5, 6), (5, 5), (6, 6), (7, 6), (7, 6), (7, 6), (6, 6), (7, 6), (10, 9), (11, 9)], [(0, 0), (5, 6), (5, 5), (6, 6), (7, 6), (7, 6), (7, 6), (6, 6), (7, 6), (10, 9), (11, 9)], [(0, 0), (5, 5), (6, 5), (6, 5), (8, 6), (8, 6), (4, 2), (6, 5), (8, 6), (7, 5), (8, 5)], [(0, 0), (0, 1), (0, 1), (0, 0), (0, 0), (0, 1), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 1), (0, 1), (0, 0), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 0), (2, 1), (2, 1)], [(0, 0), (2, 3), (0, 1), (2, 3), (0, 0), (0, 0), (0, 1), (0, 0), (6, 5), (4, 3), (6, 5)], [(0, 0), (2, 2), (0, 0), (2, 2), (1, 0), (1, 0), (0, 0), (1, 0), (4, 3), (2, 1), (5, 3)], [(0, 0), (3, 2), (1, 0), (3, 2), (2, 0), (2, 0), (1, 0), (2, 0), (3, 1), (7, 4), (5, 2), (7, 4), (5, 1)], [(0, 0), (2, 2), (2, 2), (3, 2), (3, 2), (2, 2), (3, 2), (1, 4), (5, 3), (5, 3), (5, 3), (2, 4), (3, 4)], [(0, 0), (1, 0), (6, 0), (6, 0), (2, 0), (3, 0)], [(0, 0), (7, 3), (7, 3), (7, 2), (7, 2), (7, 3), (7, 2), (1, 0), (3, 2), (10, 4), (10, 4), (10, 4), (2, 0), (4, 2), (5, 2)], [(0, 0), (9, 4), (9, 4), (9, 3), (9, 3), (9, 4), (9, 3), (3, 2), (5, 3), (12, 5), (12, 5), (12, 5), (7, 4), (6, 4), (8, 5), (11, 7)], [(0, 0), (8, 4), (8, 4), (8, 3), (8, 3), (8, 4), (8, 3), (1, 0), (4, 3), (11, 5), (11, 5), (11, 5), (2, 0), (5, 3), (6, 3)], [(0, 0), (9, 4), (9, 4), (9, 3), (9, 3), (9, 4), (9, 3), (3, 2), (5, 3), (12, 5), (12, 5), (12, 5), (6, 4), (7, 4), (8, 5), (11, 7)], [(0, 0), (1, 0), (1, 0), (5, 3), (1, 0), (5, 3), (2, 0), (6, 3), (2, 0), (6, 3), (6, 3), (7, 3)], [(0, 0), (1, 0), (4, 2), (1, 0), (5, 3), (5, 3), (1, 0), (4, 2), (6, 3), (6, 3), (5, 3), (6, 3), (3, 1), (3, 1), (3, 0), (7, 3), (7, 3), (4, 1), (8, 4), (5, 1), (6, 1)], [(0, 0), (2, 8), (2, 8), (5, 10), (5, 9), (5, 9), (5, 10), (5, 9), (6, 9), (6, 9), (5, 9), (4, 8), (4, 7), (4, 8), (5, 8), (7, 10), (8, 10), (8, 10), (5, 7), (7, 10), (8, 10), (6, 8), (10, 12), (13, 14)], [(0, 0), (2, 8), (2, 8), (5, 10), (5, 9), (5, 9), (5, 10), (5, 9), (6, 9), (6, 9), (5, 9), (3, 8), (4, 7), (4, 8), (5, 8), (6, 10), (8, 10), (8, 10), (5, 7), (7, 10), (8, 10), (6, 8), (10, 12), (13, 14)], [(0, 0), (2, 8), (5, 10), (5, 9), (5, 9), (6, 9), (4, 8), (4, 7), (3, 8), (5, 8), (7, 10), (8, 10), (4, 6), (5, 7), (6, 10), (8, 10), (6, 8), (10, 12), (13, 14)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (2, 5), (5, 7), (2, 5), (6, 8), (5, 7), (5, 6), (5, 6), (6, 7), (5, 7), (7, 8), (9, 10), (12, 12)], [(0, 0), (0, 0), (0, 0), (5, 3), (5, 3), (7, 4), (7, 4), (5, 3), (7, 4), (3, 5), (6, 7), (3, 5), (7, 8), (5, 6), (8, 4), (8, 4), (8, 4), (6, 7), (6, 6), (6, 6), (7, 7), (6, 7), (8, 8), (13, 13), (16, 15)], [(0, 0), (1, 0), (1, 0), (4, 3), (4, 2), (5, 7), (6, 8), (5, 3), (6, 3), (6, 3), (5, 3), (6, 3), (8, 6), (8, 5), (6, 7), (7, 8), (4, 6), (6, 7), (4, 6), (7, 8), (9, 6), (10, 6), (10, 6), (13, 9), (9, 6), (10, 6), (13, 9), (7, 8), (7, 7), (7, 7), (7, 7), (7, 8), (8, 8), (10, 10), (14, 9), (13, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 7 for num. and 4 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.557962419 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.28757545 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(e, rR, dr, d, g, r, a, T, Dd, S, R, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0), (1, 0), (0, 0), (0, 0), (1, 0), (2, 0)], [(0, 0), (2, 2), (3, 2), (3, 2), (2, 2), (1, 0), (4, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (2, 2), (3, 2), (3, 2)], [(0, 0), (0, 1), (1, 1), (1, 0), (1, 0), (5, 4), (1, 1), (5, 4), (6, 4)], [(0, 0), (0, 1), (1, 1), (2, 1), (2, 1), (5, 4), (1, 1), (2, 1), (5, 4), (6, 4)], [(0, 0), (0, 0), (3, 1), (3, 1), (1, 0), (3, 1), (3, 0)], [(0, 0), (5, 6), (5, 5), (6, 6), (7, 6), (7, 6), (4, 3), (6, 6), (7, 6), (7, 6), (8, 6)], [(0, 0), (5, 5), (6, 5), (6, 5), (8, 6), (8, 6), (4, 2), (6, 5), (8, 6), (7, 5), (8, 5)], [(0, 0), (4, 4), (4, 4), (5, 4), (5, 4), (6, 4)], [(0, 0), (5, 6), (5, 5), (6, 6), (7, 6), (7, 6), (7, 6), (6, 6), (7, 6), (10, 9), (11, 9)], [(0, 0), (5, 6), (5, 5), (6, 6), (7, 6), (7, 6), (7, 6), (6, 6), (7, 6), (10, 9), (11, 9)], [(0, 0), (5, 5), (6, 5), (6, 5), (8, 6), (8, 6), (4, 2), (6, 5), (8, 6), (7, 5), (8, 5)], [(0, 0), (0, 1), (0, 1), (0, 0), (0, 0), (0, 1), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 1), (0, 1), (0, 0), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 0), (2, 1), (2, 1)], [(0, 0), (2, 3), (0, 1), (2, 3), (0, 0), (0, 0), (0, 1), (0, 0), (6, 5), (4, 3), (6, 5)], [(0, 0), (2, 2), (0, 0), (2, 2), (1, 0), (1, 0), (0, 0), (1, 0), (4, 3), (2, 1), (5, 3)], [(0, 0), (3, 2), (1, 0), (3, 2), (2, 0), (2, 0), (1, 0), (2, 0), (3, 1), (7, 4), (5, 2), (7, 4), (5, 1)], [(0, 0), (2, 2), (2, 2), (3, 2), (3, 2), (2, 2), (3, 2), (1, 4), (5, 3), (5, 3), (5, 3), (2, 4), (3, 4)], [(0, 0), (1, 0), (6, 0), (6, 0), (2, 0), (3, 0)], [(0, 0), (7, 3), (7, 3), (7, 2), (7, 2), (7, 3), (7, 2), (1, 0), (3, 2), (10, 4), (10, 4), (10, 4), (2, 0), (4, 2), (5, 2)], [(0, 0), (9, 4), (9, 4), (9, 3), (9, 3), (9, 4), (9, 3), (3, 2), (5, 3), (12, 5), (12, 5), (12, 5), (7, 4), (6, 4), (8, 5), (11, 7)], [(0, 0), (8, 4), (8, 4), (8, 3), (8, 3), (8, 4), (8, 3), (1, 0), (4, 3), (11, 5), (11, 5), (11, 5), (2, 0), (5, 3), (6, 3)], [(0, 0), (9, 4), (9, 4), (9, 3), (9, 3), (9, 4), (9, 3), (3, 2), (5, 3), (12, 5), (12, 5), (12, 5), (6, 4), (7, 4), (8, 5), (11, 7)], [(0, 0), (1, 0), (1, 0), (5, 3), (1, 0), (5, 3), (2, 0), (6, 3), (2, 0), (6, 3), (6, 3), (7, 3)], [(0, 0), (1, 0), (4, 2), (1, 0), (5, 3), (5, 3), (1, 0), (4, 2), (6, 3), (6, 3), (5, 3), (6, 3), (3, 1), (3, 1), (3, 0), (7, 3), (7, 3), (4, 1), (8, 4), (5, 1), (6, 1)], [(0, 0), (2, 8), (2, 8), (5, 10), (5, 9), (5, 9), (5, 10), (5, 9), (6, 9), (6, 9), (5, 9), (4, 8), (4, 7), (4, 8), (5, 8), (7, 10), (8, 10), (8, 10), (5, 7), (7, 10), (8, 10), (6, 8), (10, 12), (13, 14)], [(0, 0), (2, 8), (2, 8), (5, 10), (5, 9), (5, 9), (5, 10), (5, 9), (6, 9), (6, 9), (5, 9), (3, 8), (4, 7), (4, 8), (5, 8), (6, 10), (8, 10), (8, 10), (5, 7), (7, 10), (8, 10), (6, 8), (10, 12), (13, 14)], [(0, 0), (2, 8), (5, 10), (5, 9), (5, 9), (6, 9), (4, 8), (4, 7), (3, 8), (5, 8), (7, 10), (8, 10), (4, 6), (5, 7), (6, 10), (8, 10), (6, 8), (10, 12), (13, 14)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (2, 5), (5, 7), (2, 5), (6, 8), (5, 7), (5, 6), (5, 6), (6, 7), (5, 7), (7, 8), (9, 10), (12, 12)], [(0, 0), (0, 0), (0, 0), (5, 3), (5, 3), (7, 4), (7, 4), (5, 3), (7, 4), (3, 5), (6, 7), (3, 5), (7, 8), (5, 6), (8, 4), (8, 4), (8, 4), (6, 7), (6, 6), (6, 6), (7, 7), (6, 7), (8, 8), (13, 13), (16, 15)], [(0, 0), (1, 0), (1, 0), (4, 3), (4, 2), (5, 7), (6, 8), (5, 3), (6, 3), (6, 3), (5, 3), (6, 3), (8, 6), (8, 5), (6, 7), (7, 8), (4, 6), (6, 7), (4, 6), (7, 8), (9, 6), (10, 6), (10, 6), (13, 9), (9, 6), (10, 6), (13, 9), (7, 8), (7, 7), (7, 7), (7, 7), (7, 8), (8, 8), (10, 10), (14, 9), (13, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 768 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 22 for num. and 12 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 16.824810585 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.157058529 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 64 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (12 in total): Nemo.fmpq_mpoly[e, rR, dr, d, g, r, a, T, Dd, S, R, W] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 445 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 391 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 445 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 391 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 6 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 445 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 391 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 6 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y4, y12, y9, y11, y7], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, t, y3, y6, y8, y5, y10], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(e, rR, dr, d, g, r, a, T, Dd, S, R, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 130 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 16  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 38  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 62  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 86  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 110  ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:20 ⌝ # Computing specializations.. Time: 0:00:21 ✓ # Computing specializations.. Time: 0:00:21 - ⌜ # Computing specializations.. Time: 0:00:01 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:03 ⌞ # Computing specializations.. Time: 0:00:04 ⌜ # Computing specializations.. Time: 0:00:05 ⌝ # Computing specializations.. Time: 0:00:06 ⌟ # Computing specializations.. Time: 0:00:07 ⌞ # Computing specializations.. Time: 0:00:08 ⌜ # Computing specializations.. Time: 0:00:09 ⌝ # Computing specializations.. Time: 0:00:10 ⌟ # Computing specializations.. Time: 0:00:11 ⌞ # Computing specializations.. Time: 0:00:12 ⌜ # Computing specializations.. Time: 0:00:13 ⌝ # Computing specializations.. Time: 0:00:14 ⌟ # Computing specializations.. Time: 0:00:15 ⌞ # Computing specializations.. Time: 0:00:16 ⌜ # Computing specializations.. Time: 0:00:17 ⌝ # Computing specializations.. Time: 0:00:18 ⌟ # Computing specializations.. Time: 0:00:19 ⌞ # Computing specializations.. Time: 0:00:20 ⌜ # Computing specializations.. Time: 0:00:21 ⌝ # Computing specializations.. Time: 0:00:22 ⌟ # Computing specializations.. Time: 0:00:23 ⌞ # Computing specializations.. Time: 0:00:24 ⌜ # Computing specializations.. Time: 0:00:25 ⌝ # Computing specializations.. Time: 0:00:26 ⌟ # Computing specializations.. Time: 0:00:27 ⌞ # Computing specializations.. Time: 0:00:28 ⌜ # Computing specializations.. Time: 0:00:29 ⌝ # Computing specializations.. Time: 0:00:30 ⌟ # Computing specializations.. Time: 0:00:31 ⌞ # Computing specializations.. Time: 0:00:31 ⌜ # Computing specializations.. Time: 0:00:32 ⌝ # Computing specializations.. Time: 0:00:34 ⌟ # Computing specializations.. Time: 0:00:35 ⌞ # Computing specializations.. Time: 0:00:36 ⌜ # Computing specializations.. Time: 0:00:37 ⌝ # Computing specializations.. Time: 0:00:37 ⌟ # Computing specializations.. Time: 0:00:38 ⌞ # Computing specializations.. Time: 0:00:39 ⌜ # Computing specializations.. Time: 0:00:40 ⌝ # Computing specializations.. Time: 0:00:41 ⌟ # Computing specializations.. Time: 0:00:42 ⌞ # Computing specializations.. Time: 0:00:43 ⌜ # Computing specializations.. Time: 0:00:44 ⌝ # Computing specializations.. Time: 0:00:45 ⌟ # Computing specializations.. Time: 0:00:45 ⌞ # Computing specializations.. Time: 0:00:46 ⌜ # Computing specializations.. Time: 0:00:47 ⌝ # Computing specializations.. Time: 0:00:48 ⌟ # Computing specializations.. Time: 0:00:49 ⌞ # Computing specializations.. Time: 0:00:50 ⌜ # Computing specializations.. Time: 0:00:51 ⌝ # Computing specializations.. Time: 0:00:51 ⌟ # Computing specializations.. Time: 0:00:52 ⌞ # Computing specializations.. Time: 0:00:53 ⌜ # Computing specializations.. Time: 0:00:54 ⌝ # Computing specializations.. Time: 0:00:55 ⌟ # Computing specializations.. Time: 0:00:56 ⌞ # Computing specializations.. Time: 0:00:57 ⌜ # Computing specializations.. Time: 0:00:58 ⌝ # Computing specializations.. Time: 0:00:59 ⌟ # Computing specializations.. Time: 0:00:59 ⌞ # Computing specializations.. Time: 0:01:00 ⌜ # Computing specializations.. Time: 0:01:01 ⌝ # Computing specializations.. Time: 0:01:03 ⌟ # Computing specializations.. Time: 0:01:04 ⌞ # Computing specializations.. Time: 0:01:05 ⌜ # Computing specializations.. Time: 0:01:06 ⌝ # Computing specializations.. Time: 0:01:06 ⌟ # Computing specializations.. Time: 0:01:07 ⌞ # Computing specializations.. Time: 0:01:08 ⌜ # Computing specializations.. Time: 0:01:09 ⌝ # Computing specializations.. Time: 0:01:10 ⌟ # Computing specializations.. Time: 0:01:11 ⌞ # Computing specializations.. Time: 0:01:12 ⌜ # Computing specializations.. Time: 0:01:13 ⌝ # Computing specializations.. Time: 0:01:14 ⌟ # Computing specializations.. Time: 0:01:15 ⌞ # Computing specializations.. Time: 0:01:16 ⌜ # Computing specializations.. Time: 0:01:17 ⌝ # Computing specializations.. Time: 0:01:18 ⌟ # Computing specializations.. Time: 0:01:18 ⌞ # Computing specializations.. Time: 0:01:19 ⌜ # Computing specializations.. Time: 0:01:20 ⌝ # Computing specializations.. Time: 0:01:21 ⌟ # Computing specializations.. Time: 0:01:22 ⌞ # Computing specializations.. Time: 0:01:23 ⌜ # Computing specializations.. Time: 0:01:24 ⌝ # Computing specializations.. Time: 0:01:25 ⌟ # Computing specializations.. Time: 0:01:26 ⌞ # Computing specializations.. Time: 0:01:27 ⌜ # Computing specializations.. Time: 0:01:28 ⌝ # Computing specializations.. Time: 0:01:29 ⌟ # Computing specializations.. Time: 0:01:30 ⌞ # Computing specializations.. Time: 0:01:31 ⌜ # Computing specializations.. Time: 0:01:31 ⌝ # Computing specializations.. Time: 0:01:32 ⌟ # Computing specializations.. Time: 0:01:33 ⌞ # Computing specializations.. Time: 0:01:34 ⌜ # Computing specializations.. Time: 0:01:35 ⌝ # Computing specializations.. Time: 0:01:36 ⌟ # Computing specializations.. Time: 0:01:37 ⌞ # Computing specializations.. Time: 0:01:38 ⌜ # Computing specializations.. Time: 0:01:39 ⌝ # Computing specializations.. Time: 0:01:39 ⌟ # Computing specializations.. Time: 0:01:40 ⌞ # Computing specializations.. Time: 0:01:41 ⌜ # Computing specializations.. Time: 0:01:42 ⌝ # Computing specializations.. Time: 0:01:43 ⌟ # Computing specializations.. Time: 0:01:44 ⌞ # Computing specializations.. Time: 0:01:45 ⌜ # Computing specializations.. Time: 0:01:46 ⌝ # Computing specializations.. Time: 0:01:47 ⌟ # Computing specializations.. Time: 0:01:47 ⌞ # Computing specializations.. Time: 0:01:48 ⌜ # Computing specializations.. Time: 0:01:49 ⌝ # Computing specializations.. Time: 0:01:50 ⌟ # Computing specializations.. Time: 0:01:51 ⌞ # Computing specializations.. Time: 0:01:52 ⌜ # Computing specializations.. Time: 0:01:53 ⌝ # Computing specializations.. Time: 0:01:54 ⌟ # Computing specializations.. Time: 0:01:55 ⌞ # Computing specializations.. Time: 0:01:56 ⌜ # Computing specializations.. Time: 0:01:56 ⌝ # Computing specializations.. Time: 0:01:57 ⌟ # Computing specializations.. Time: 0:01:58 ⌞ # Computing specializations.. Time: 0:01:59 ⌜ # Computing specializations.. Time: 0:02:00 ✓ # Computing specializations.. Time: 0:02:02 - ⌜ # Computing specializations.. Time: 0:00:01 - Points: 2  ⌝ # Computing specializations.. Time: 0:00:03 - Points: 3  ⌟ # Computing specializations.. Time: 0:00:04 - Points: 4  ⌞ # Computing specializations.. Time: 0:00:05 - Points: 5  ⌜ # Computing specializations.. Time: 0:00:06 - Points: 6  ⌝ # Computing specializations.. Time: 0:00:07 - Points: 7  ⌟ # Computing specializations.. Time: 0:00:07 - Points: 8  ⌞ # Computing specializations.. Time: 0:00:08 - Points: 9  ⌜ # Computing specializations.. Time: 0:00:09 - Points: 10  ⌝ # Computing specializations.. Time: 0:00:10 - Points: 11  ⌟ # Computing specializations.. Time: 0:00:11 - Points: 12  ⌞ # Computing specializations.. Time: 0:00:12 - Points: 13  ⌜ # Computing specializations.. Time: 0:00:13 - Points: 14  ⌝ # Computing specializations.. Time: 0:00:14 - Points: 15  ⌟ # Computing specializations.. Time: 0:00:15 - Points: 16  ⌞ # Computing specializations.. Time: 0:00:16 - Points: 17  ⌜ # Computing specializations.. Time: 0:00:17 - Points: 18  ⌝ # Computing specializations.. Time: 0:00:18 - Points: 19  ⌟ # Computing specializations.. Time: 0:00:19 - Points: 20  ⌞ # Computing specializations.. Time: 0:00:20 - Points: 21  ⌜ # Computing specializations.. Time: 0:00:21 - Points: 22  ⌝ # Computing specializations.. Time: 0:00:22 - Points: 23  ⌟ # Computing specializations.. Time: 0:00:22 - Points: 24  ⌞ # Computing specializations.. Time: 0:00:23 - Points: 25  ⌜ # Computing specializations.. Time: 0:00:24 - Points: 26  ⌝ # Computing specializations.. Time: 0:00:25 - Points: 27  ⌟ # Computing specializations.. Time: 0:00:26 - Points: 28  ⌞ # Computing specializations.. Time: 0:00:27 - Points: 29  ⌜ # Computing specializations.. Time: 0:00:28 - Points: 30  ⌝ # Computing specializations.. Time: 0:00:29 - Points: 31  ⌟ # Computing specializations.. Time: 0:00:30 - Points: 32  ⌞ # Computing specializations.. Time: 0:00:31 - Points: 33  ⌜ # Computing specializations.. Time: 0:00:32 - Points: 34  ⌝ # Computing specializations.. Time: 0:00:32 - Points: 35  ⌟ # Computing specializations.. Time: 0:00:33 - Points: 36  ⌞ # Computing specializations.. Time: 0:00:34 - Points: 37  ⌜ # Computing specializations.. Time: 0:00:35 - Points: 38  ⌝ # Computing specializations.. Time: 0:00:36 - Points: 39  ⌟ # Computing specializations.. Time: 0:00:37 - Points: 40  ⌞ # Computing specializations.. Time: 0:00:38 - Points: 41  ⌜ # Computing specializations.. Time: 0:00:39 - Points: 42  ⌝ # Computing specializations.. Time: 0:00:40 - Points: 43  ⌟ # Computing specializations.. Time: 0:00:41 - Points: 44  ⌞ # Computing specializations.. Time: 0:00:42 - Points: 45  ⌜ # Computing specializations.. Time: 0:00:42 - Points: 46  ⌝ # Computing specializations.. Time: 0:00:43 - Points: 47  ⌟ # Computing specializations.. Time: 0:00:44 - Points: 48  ⌞ # Computing specializations.. Time: 0:00:45 - Points: 49  ⌜ # Computing specializations.. Time: 0:00:47 - Points: 50  ⌝ # Computing specializations.. Time: 0:00:48 - Points: 51  ⌟ # Computing specializations.. Time: 0:00:49 - Points: 52  ⌞ # Computing specializations.. Time: 0:00:50 - Points: 53  ⌜ # Computing specializations.. Time: 0:00:51 - Points: 54  ⌝ # Computing specializations.. Time: 0:00:52 - Points: 55  ⌟ # Computing specializations.. Time: 0:00:52 - Points: 56  ⌞ # Computing specializations.. Time: 0:00:53 - Points: 57  ⌜ # Computing specializations.. Time: 0:00:54 - Points: 58  ⌝ # Computing specializations.. Time: 0:00:55 - Points: 59  ⌟ # Computing specializations.. Time: 0:00:56 - Points: 60  ⌞ # Computing specializations.. Time: 0:00:57 - Points: 61  ⌜ # Computing specializations.. Time: 0:00:58 - Points: 62  ⌝ # Computing specializations.. Time: 0:00:59 - Points: 63  ⌟ # Computing specializations.. Time: 0:01:00 - Points: 64  ⌞ # Computing specializations.. Time: 0:01:00 - Points: 65  ⌜ # Computing specializations.. Time: 0:01:01 - Points: 66  ⌝ # Computing specializations.. Time: 0:01:02 - Points: 67  ⌟ # Computing specializations.. Time: 0:01:03 - Points: 68  ⌞ # Computing specializations.. Time: 0:01:04 - Points: 69  ⌜ # Computing specializations.. Time: 0:01:05 - Points: 70  ⌝ # Computing specializations.. Time: 0:01:06 - Points: 71  ⌟ # Computing specializations.. Time: 0:01:07 - Points: 72  ⌞ # Computing specializations.. Time: 0:01:08 - Points: 73  ⌜ # Computing specializations.. Time: 0:01:09 - Points: 74  ⌝ # Computing specializations.. Time: 0:01:10 - Points: 75  ⌟ # Computing specializations.. Time: 0:01:11 - Points: 76  ⌞ # Computing specializations.. Time: 0:01:12 - Points: 77  ⌜ # Computing specializations.. Time: 0:01:13 - Points: 78  ⌝ # Computing specializations.. Time: 0:01:14 - Points: 79  ⌟ # Computing specializations.. Time: 0:01:14 - Points: 80  ⌞ # Computing specializations.. Time: 0:01:15 - Points: 81  ⌜ # Computing specializations.. Time: 0:01:16 - Points: 82  ⌝ # Computing specializations.. Time: 0:01:17 - Points: 83  ⌟ # Computing specializations.. Time: 0:01:18 - Points: 84  ⌞ # Computing specializations.. Time: 0:01:19 - Points: 85  ⌜ # Computing specializations.. Time: 0:01:20 - Points: 86  ⌝ # Computing specializations.. Time: 0:01:21 - Points: 87  ⌟ # Computing specializations.. Time: 0:01:22 - Points: 88  ⌞ # Computing specializations.. Time: 0:01:23 - Points: 89  ⌜ # Computing specializations.. Time: 0:01:24 - Points: 90  ⌝ # Computing specializations.. Time: 0:01:25 - Points: 91  ⌟ # Computing specializations.. Time: 0:01:25 - Points: 92  ⌞ # Computing specializations.. Time: 0:01:26 - Points: 93  ⌜ # Computing specializations.. Time: 0:01:27 - Points: 94  ⌝ # Computing specializations.. Time: 0:01:28 - Points: 95  ⌟ # Computing specializations.. Time: 0:01:29 - Points: 96  ⌞ # Computing specializations.. Time: 0:01:30 - Points: 97  ⌜ # Computing specializations.. Time: 0:01:31 - Points: 98  ⌝ # Computing specializations.. Time: 0:01:32 - Points: 99  ⌟ # Computing specializations.. Time: 0:01:32 - Points: 100  ⌞ # Computing specializations.. Time: 0:01:33 - Points: 101  ⌜ # Computing specializations.. Time: 0:01:34 - Points: 102  ⌝ # Computing specializations.. Time: 0:01:35 - Points: 103  ⌟ # Computing specializations.. Time: 0:01:36 - Points: 104  ⌞ # Computing specializations.. Time: 0:01:37 - Points: 105  ⌜ # Computing specializations.. Time: 0:01:38 - Points: 106  ⌝ # Computing specializations.. Time: 0:01:39 - Points: 107  ⌟ # Computing specializations.. Time: 0:01:39 - Points: 108  ⌞ # Computing specializations.. Time: 0:01:40 - Points: 109  ⌜ # Computing specializations.. Time: 0:01:41 - Points: 110  ⌝ # Computing specializations.. Time: 0:01:42 - Points: 111  ⌟ # Computing specializations.. Time: 0:01:43 - Points: 112  ⌞ # Computing specializations.. Time: 0:01:44 - Points: 113  ⌜ # Computing specializations.. Time: 0:01:45 - Points: 114  ⌝ # Computing specializations.. Time: 0:01:46 - Points: 115  ⌟ # Computing specializations.. Time: 0:01:47 - Points: 116  ⌞ # Computing specializations.. Time: 0:01:47 - Points: 117  ⌜ # Computing specializations.. Time: 0:01:48 - Points: 118  ⌝ # Computing specializations.. Time: 0:01:49 - Points: 119  ⌟ # Computing specializations.. Time: 0:01:50 - Points: 120  ⌞ # Computing specializations.. Time: 0:01:51 - Points: 121  ⌜ # Computing specializations.. Time: 0:01:52 - Points: 122  ⌝ # Computing specializations.. Time: 0:01:53 - Points: 123  ⌟ # Computing specializations.. Time: 0:01:54 - Points: 124  ⌞ # Computing specializations.. Time: 0:01:55 - Points: 125  ⌜ # Computing specializations.. Time: 0:01:56 - Points: 126  ⌝ # Computing specializations.. Time: 0:01:57 - Points: 127  ⌟ # Computing specializations.. Time: 0:01:59 - Points: 128  ✓ # Computing specializations.. Time: 0:02:00 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 99  ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:02 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0), (5, 3), (5, 3)], [(0, 0), (4, 4), (4, 4)], [(0, 0), (0, 1), (3, 3), (3, 4), (3, 3), (4, 3), (5, 4), (5, 4)], [(0, 0), (0, 0), (4, 3), (3, 3), (3, 2), (8, 6), (8, 6), (5, 3)], [(0, 0), (1, 0), (4, 3), (4, 4), (5, 4), (3, 1), (9, 7), (9, 7), (7, 4)], [(0, 0), (2, 0), (5, 3), (4, 3), (5, 3), (4, 1), (9, 6), (9, 6), (7, 3)], [(0, 0), (0, 1), (6, 6), (3, 2), (5, 4), (6, 6), (5, 4), (4, 3), (8, 6), (8, 6), (5, 3)], [(0, 0), (6, 11), (7, 12)], [(0, 0), (5, 7), (2, 1), (5, 4), (8, 10), (5, 3), (5, 4), (5, 6), (10, 10), (7, 5), (8, 6), (9, 8), (13, 13), (7, 4), (8, 5), (10, 9), (8, 6), (15, 13), (7, 7), (10, 7), (13, 10), (16, 14), (10, 6), (13, 10), (11, 7), (18, 14), (13, 10), (15, 11), (19, 15), (7, 11), (8, 12), (17, 12), (15, 9), (21, 15), (16, 11), (21, 15), (2, 5), (8, 11), (19, 12)], [(0, 0), (3, 3), (7, 2), (6, 2), (5, 2), (3, 2), (4, 2), (10, 5), (9, 5), (8, 5), (7, 5), (9, 3), (11, 5), (10, 5), (8, 5), (7, 3), (9, 5), (5, 3), (12, 6), (12, 6), (13, 8), (12, 8), (12, 5), (12, 5), (13, 8), (12, 6), (14, 8), (10, 5), (14, 7), (16, 9), (15, 9), (14, 6), (16, 9), (15, 7), (17, 9), (15, 8), (18, 10), (18, 10), (14, 14), (15, 15), (19, 10), (18, 8), (20, 10), (18, 9), (20, 10), (11, 10), (12, 11), (21, 10)], [(0, 0), (6, 2), (5, 2), (4, 2), (5, 3), (5, 3), (8, 2), (7, 2), (6, 2), (8, 5), (11, 5), (10, 5), (9, 5), (8, 4), (11, 8), (8, 4), (9, 2), (11, 4), (10, 4), (8, 4), (7, 2), (13, 8), (13, 6), (13, 6), (14, 8), (11, 5), (16, 11), (11, 5), (13, 5), (13, 5), (13, 7), (12, 5), (18, 11), (11, 5), (15, 7), (17, 9), (14, 6), (19, 12), (14, 6), (11, 11), (12, 12), (15, 6), (16, 8), (15, 6), (21, 12), (16, 8), (19, 10), (17, 7), (22, 13), (17, 7), (14, 13), (15, 14), (20, 10), (19, 8), (24, 13), (19, 9), (24, 13), (12, 10), (15, 13), (22, 10)], [(5, 6), (4, 4), (7, 8), (0, 0), (5, 5), (1, 0), (9, 8), (9, 8), (7, 5)], [(5, 6), (0, 0), (5, 5), (8, 9), (6, 6), (2, 1), (10, 9), (10, 9), (8, 6)], [(9, 16), (11, 16), (10, 18), (13, 18), (8, 14), (12, 20), (12, 16), (12, 16), (11, 16), (10, 17), (14, 20), (14, 18), (10, 14), (9, 14), (16, 22), (13, 16), (13, 16), (14, 19), (10, 14), (18, 22), (11, 17), (11, 14), (11, 14), (18, 22), (14, 16), (16, 19), (12, 14), (20, 22), (16, 19), (13, 14), (20, 22), (14, 24), (14, 24), (18, 19), (14, 14), (22, 22), (18, 19), (0, 0), (22, 22), (18, 27), (18, 27), (20, 19), (8, 16)], [(2, 2), (1, 2), (3, 2), (0, 0), (6, 6), (0, 0), (4, 3), (7, 7), (5, 4), (5, 3), (9, 7), (2, 1), (9, 7), (7, 4)], [(1, 2), (1, 3), (2, 2), (0, 1), (6, 8), (0, 0), (4, 4), (6, 7), (9, 11), (5, 4), (7, 8), (11, 11), (3, 2), (9, 8), (12, 12), (9, 9), (8, 6), (13, 12), (9, 8), (6, 4), (13, 12), (11, 9)], [(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(11, 9), (12, 8), (16, 15), (11, 6), (15, 11), (13, 10), (18, 17), (14, 8), (16, 11), (16, 12), (16, 14), (20, 17), (17, 12), (16, 11), (18, 14), (23, 20), (17, 11), (18, 12), (20, 16), (18, 13), (25, 20), (17, 14), (18, 12), (21, 15), (26, 21), (20, 13), (24, 18), (22, 15), (28, 21), (23, 17), (23, 16), (29, 22), (12, 13), (12, 13), (27, 19), (25, 16), (31, 22), (26, 18), (31, 22), (13, 13), (13, 13), (0, 0), (29, 19), (3, 2)], [(1, 2), (1, 3), (2, 3), (0, 0), (0, 0), (6, 6), (0, 0), (6, 6), (4, 3)], [(2, 2), (1, 2), (0, 0), (2, 2), (6, 5), (0, 0), (6, 5), (3, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 6 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 5.115320086 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.09403849 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 16 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y11, y2, y3, y7, y9], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y12, y4, y8, y6, t, y1, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(e, rR, dr, d, g, r, a, T, Dd, S, R, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 130 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (0, 0), (0, 1), (0, 0), (0, 1), (0, 1), (2, 1), (2, 2), (2, 1), (2, 2), (2, 2), (2, 1), (3, 2), (2, 2), (4, 3), (4, 2), (5, 3), (5, 3), (6, 3)], [(0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (1, 0), (2, 1), (3, 1), (2, 1), (3, 1), (4, 1), (3, 1), (4, 1), (5, 1)], [(6, 5), (6, 5), (5, 5), (5, 5), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (7, 5), (7, 5), (7, 5), (6, 5), (7, 5), (5, 3), (6, 5), (2, 0), (2, 0), (8, 5), (8, 5), (6, 3), (8, 5), (4, 0), (10, 5)], [(0, 0), (0, 0), (0, 1), (0, 1), (3, 2), (4, 3), (3, 2), (4, 3), (3, 3), (4, 3), (5, 3), (6, 4), (6, 4), (5, 4), (5, 3), (6, 4), (5, 4), (8, 5), (7, 4), (8, 5), (8, 5), (9, 5)], [(2, 2), (2, 2), (2, 2), (0, 0), (0, 0), (0, 0), (4, 3), (4, 3), (4, 3), (4, 3), (4, 3), (2, 1), (4, 2), (6, 4), (6, 4), (4, 2), (6, 4), (4, 2), (6, 3), (7, 4), (6, 3), (8, 4)], [(2, 4), (0, 0), (2, 4), (2, 4), (0, 2), (0, 2), (4, 5), (3, 3), (6, 6), (4, 3), (6, 6), (5, 6), (6, 6), (2, 3), (4, 4), (5, 4), (8, 7), (5, 3), (9, 7), (7, 7), (5, 4), (8, 7), (7, 7), (10, 8), (7, 5), (11, 8), (10, 8), (12, 8)], [(0, 0), (0, 0), (0, 1), (0, 1), (3, 2), (2, 2), (3, 2), (4, 3), (3, 2), (4, 3), (3, 3), (3, 2), (4, 3), (4, 3), (3, 3), (3, 2), (4, 3), (3, 3), (5, 4), (5, 3), (6, 4), (6, 4), (6, 4), (5, 3), (6, 4), (6, 4), (8, 5), (7, 4), (8, 5), (8, 5), (9, 5)], [(0, 0), (0, 0), (0, 0), (1, 0), (7, 5), (1, 0), (7, 5), (1, 0), (6, 5), (6, 5), (2, 1), (2, 1), (2, 1), (2, 1), (3, 1), (8, 5), (9, 6), (9, 6), (8, 6), (8, 5), (6, 3), (7, 5), (5, 2), (6, 2), (5, 2), (11, 7), (10, 6), (10, 5), (11, 7), (7, 2), (13, 7)], [(0, 0), (0, 2), (3, 3), (2, 1), (4, 3), (4, 4), (4, 3), (4, 4), (3, 4), (3, 3), (2, 1), (4, 4), (4, 4), (3, 4), (3, 3), (4, 4), (3, 4), (5, 5), (6, 4), (4, 2), (6, 5), (7, 5), (6, 5), (6, 4), (7, 5), (6, 5), (8, 6), (8, 5), (9, 6), (9, 6), (10, 6)], [(9, 9), (9, 9), (0, 0), (17, 16), (17, 9), (27, 18), (27, 17), (20, 9), (27, 18), (27, 17), (27, 18), (17, 9), (29, 20), (29, 20), (17, 9), (29, 20), (12, 11), (12, 11), (10, 9), (20, 18), (10, 9), (19, 17), (31, 21), (27, 16), (13, 1), (32, 21), (22, 10), (32, 21), (31, 21), (27, 16), (32, 21), (31, 21), (13, 11), (16, 13), (13, 11), (15, 13), (13, 11), (23, 20), (13, 11), (22, 19), (33, 21), (31, 18), (34, 21), (33, 21), (14, 11), (10, 6), (26, 22), (16, 13), (25, 21), (35, 21), (28, 23)], [(10, 18), (10, 18), (12, 19), (7, 7), (12, 11), (13, 11), (10, 7), (12, 11), (13, 11), (12, 11), (7, 7), (12, 11), (12, 11), (7, 7), (12, 11), (0, 0), (13, 20), (13, 20), (11, 18), (17, 23), (11, 18), (15, 21), (14, 12), (15, 12), (15, 12), (12, 8), (15, 12), (14, 12), (15, 12), (15, 12), (14, 12), (14, 20), (15, 20), (14, 20), (14, 20), (14, 20), (20, 25), (14, 20), (20, 25), (17, 13), (18, 13), (18, 13), (17, 13), (15, 20), (23, 27), (15, 20), (23, 27), (19, 13), (24, 27)], [(9, 18), (9, 18), (12, 20), (7, 8), (0, 0), (12, 12), (12, 11), (9, 7), (12, 12), (12, 11), (12, 12), (7, 8), (0, 0), (12, 12), (12, 12), (7, 8), (0, 0), (12, 12), (12, 20), (12, 20), (10, 18), (17, 24), (10, 18), (14, 21), (14, 13), (14, 12), (15, 13), (11, 8), (15, 13), (14, 13), (14, 12), (15, 13), (14, 13), (13, 20), (14, 20), (13, 20), (13, 20), (13, 20), (20, 26), (13, 20), (19, 25), (17, 14), (17, 13), (18, 14), (17, 14), (14, 20), (23, 28), (14, 20), (22, 27), (19, 14), (23, 27)], [(12, 23), (12, 23), (2, 14), (15, 25), (9, 12), (0, 0), (16, 18), (16, 17), (12, 12), (16, 18), (16, 17), (16, 18), (9, 12), (18, 20), (18, 20), (9, 12), (18, 20), (8, 18), (9, 18), (8, 18), (7, 18), (7, 18), (7, 18), (15, 25), (15, 25), (5, 16), (13, 23), (21, 30), (13, 23), (17, 26), (20, 21), (16, 16), (21, 21), (15, 14), (21, 21), (20, 21), (16, 16), (21, 21), (20, 21), (7, 16), (8, 16), (18, 27), (17, 25), (18, 27), (8, 18), (7, 16), (16, 25), (16, 25), (24, 32), (16, 25), (23, 31), (23, 22), (21, 19), (24, 22), (23, 22), (19, 27), (11, 18), (27, 34), (19, 27), (26, 33), (25, 22), (29, 35)], [(3, 3), (4, 4), (4, 4), (3, 3), (4, 4), (3, 4), (3, 3), (4, 4), (4, 4), (4, 4), (3, 4), (3, 3), (4, 4), (3, 4), (0, 0), (4, 4), (0, 1), (5, 5), (6, 5), (6, 5), (7, 6), (6, 5), (7, 6), (7, 6), (6, 5), (7, 6), (7, 6), (7, 6), (6, 5), (7, 6), (7, 6), (9, 7), (8, 6), (9, 7), (9, 7), (9, 7), (8, 6), (9, 7), (9, 7), (11, 8), (10, 7), (11, 8), (11, 8), (12, 8)], [(3, 4), (0, 0), (4, 5), (4, 5), (3, 4), (4, 5), (3, 5), (3, 4), (0, 0), (4, 5), (4, 5), (4, 5), (3, 5), (3, 4), (0, 0), (4, 5), (3, 5), (4, 5), (0, 2), (5, 6), (6, 6), (2, 1), (6, 6), (3, 2), (7, 7), (7, 6), (7, 7), (7, 7), (7, 6), (2, 1), (7, 7), (7, 7), (7, 7), (7, 6), (7, 7), (7, 7), (9, 8), (9, 7), (4, 2), (9, 8), (10, 8), (9, 8), (9, 7), (10, 8), (10, 8), (11, 9), (11, 8), (12, 9), (12, 9), (13, 9)], [(7, 6), (0, 0), (17, 8), (17, 7), (13, 2), (17, 8), (17, 7), (17, 8), (19, 10), (19, 10), (19, 10), (8, 6), (3, 2), (9, 7), (21, 11), (17, 6), (13, 1), (22, 11), (16, 4), (22, 11), (21, 11), (17, 6), (22, 11), (21, 11), (9, 6), (6, 4), (12, 9), (24, 12), (22, 9), (25, 12), (24, 12), (10, 6), (10, 6), (9, 6), (15, 11), (26, 12), (18, 13)], [(5, 5), (0, 0), (12, 4), (14, 5), (12, 4), (14, 5), (12, 4), (14, 6), (14, 6), (14, 6), (6, 5), (6, 5), (15, 6), (15, 5), (16, 6), (16, 6), (15, 6), (15, 5), (16, 6), (15, 6), (7, 5), (7, 5), (17, 6), (17, 5), (17, 6), (17, 6), (8, 5), (8, 5), (19, 6), (9, 5)], [(0, 0), (1, 0), (3, 2), (14, 5), (14, 5), (14, 5), (2, 0), (4, 2), (5, 3), (16, 6), (17, 6), (15, 3), (17, 6), (16, 6), (17, 6), (16, 6), (3, 0), (5, 2), (6, 3), (19, 7), (17, 4), (20, 7), (19, 7), (6, 2), (7, 3), (21, 7), (8, 3)], [(8, 16), (8, 16), (0, 0), (0, 0), (0, 0), (0, 0), (11, 18), (11, 18), (17, 24), (18, 24), (18, 24), (9, 8), (16, 14), (17, 14), (14, 10), (16, 14), (17, 14), (16, 14), (9, 8), (19, 17), (19, 17), (9, 8), (19, 17), (12, 18), (13, 18), (12, 18), (12, 18), (20, 26), (21, 26), (19, 25), (28, 33), (19, 25), (20, 25), (21, 18), (17, 13), (7, 2), (22, 18), (16, 11), (22, 18), (21, 18), (17, 13), (22, 18), (21, 18), (21, 26), (17, 21), (24, 28), (16, 21), (22, 27), (31, 35), (22, 27), (29, 33), (24, 19), (23, 17), (25, 19), (24, 19), (23, 27), (11, 14), (34, 37), (25, 29), (32, 35), (26, 19), (35, 37)], [(8, 16), (8, 16), (0, 0), (0, 0), (0, 0), (11, 18), (11, 18), (17, 24), (18, 24), (18, 24), (9, 8), (16, 14), (17, 14), (14, 10), (16, 14), (17, 14), (16, 14), (9, 8), (19, 17), (19, 17), (9, 8), (19, 17), (12, 18), (13, 18), (12, 18), (12, 18), (20, 26), (21, 26), (19, 25), (28, 33), (19, 25), (20, 25), (21, 18), (17, 13), (7, 2), (22, 18), (16, 11), (22, 18), (21, 18), (17, 13), (22, 18), (21, 18), (21, 26), (17, 21), (24, 28), (16, 21), (22, 27), (31, 35), (22, 27), (29, 33), (24, 19), (23, 17), (25, 19), (24, 19), (23, 27), (11, 14), (34, 37), (25, 29), (32, 35), (26, 19), (35, 37)], [(8, 16), (8, 16), (2, 2), (2, 2), (2, 2), (0, 0), (0, 0), (0, 0), (11, 18), (11, 18), (17, 24), (18, 24), (18, 24), (9, 8), (18, 16), (17, 14), (14, 10), (18, 16), (17, 14), (18, 16), (9, 8), (21, 19), (21, 19), (9, 8), (19, 17), (12, 18), (13, 18), (12, 18), (12, 18), (20, 26), (21, 26), (19, 25), (28, 33), (19, 25), (20, 25), (23, 20), (17, 13), (7, 2), (24, 20), (16, 11), (24, 20), (23, 20), (17, 13), (24, 20), (23, 20), (21, 26), (17, 21), (24, 28), (16, 21), (22, 27), (31, 35), (22, 27), (29, 33), (26, 21), (23, 17), (27, 21), (26, 21), (23, 27), (11, 14), (34, 37), (25, 29), (32, 35), (28, 21), (35, 37)], [(8, 16), (8, 16), (0, 0), (2, 2), (2, 2), (2, 2), (0, 0), (0, 0), (0, 0), (0, 0), (11, 18), (11, 18), (4, 11), (18, 24), (18, 24), (4, 11), (22, 27), (10, 8), (4, 1), (5, 1), (22, 19), (21, 17), (15, 10), (22, 19), (21, 17), (22, 19), (10, 8), (4, 1), (5, 1), (23, 20), (23, 20), (10, 8), (21, 18), (11, 16), (12, 18), (16, 21), (12, 18), (10, 16), (15, 21), (7, 13), (21, 26), (21, 26), (7, 13), (20, 25), (32, 36), (20, 25), (24, 28), (25, 21), (21, 16), (8, 2), (26, 21), (17, 11), (26, 21), (25, 21), (21, 16), (26, 21), (25, 21), (8, 13), (12, 16), (27, 31), (18, 21), (27, 31), (13, 18), (12, 16), (20, 24), (11, 16), (23, 27), (35, 38), (23, 27), (33, 36), (28, 22), (27, 20), (29, 22), (28, 22), (29, 32), (15, 17), (38, 40), (29, 32), (36, 38), (30, 22), (39, 40)], [(8, 16), (8, 16), (11, 18), (0, 0), (10, 9), (11, 9), (5, 2), (10, 9), (11, 9), (10, 9), (0, 0), (12, 11), (12, 11), (0, 0), (12, 11), (17, 33), (15, 23), (15, 23), (15, 23), (17, 25), (17, 25), (17, 25), (11, 18), (11, 18), (10, 17), (21, 27), (10, 17), (13, 19), (14, 12), (11, 8), (15, 12), (7, 3), (15, 12), (14, 12), (11, 8), (15, 12), (14, 12), (18, 33), (19, 34), (18, 25), (21, 27), (13, 18), (21, 27), (18, 25), (19, 25), (18, 25), (13, 19), (24, 29), (13, 19), (22, 27), (17, 13), (16, 11), (18, 13), (17, 13), (19, 33), (20, 34), (23, 28), (17, 21), (31, 35), (23, 28), (25, 29), (19, 13), (20, 33), (21, 34), (32, 35), (22, 34)], [(0, 0), (1, 0)], [(9, 13), (9, 13), (21, 24), (18, 14), (28, 23), (28, 22), (21, 14), (28, 23), (28, 22), (28, 23), (18, 14), (30, 25), (30, 25), (18, 14), (30, 25), (9, 12), (9, 12), (11, 14), (22, 24), (11, 14), (23, 25), (32, 26), (28, 21), (33, 26), (24, 16), (33, 26), (32, 26), (28, 21), (33, 26), (32, 26), (9, 11), (6, 7), (9, 11), (6, 8), (11, 13), (22, 23), (11, 13), (23, 24), (35, 27), (33, 24), (36, 27), (35, 27), (11, 12), (0, 0), (22, 22), (11, 12), (0, 0), (23, 23), (37, 27), (23, 22)], [(9, 13), (9, 13), (21, 24), (18, 14), (28, 23), (28, 22), (21, 14), (28, 23), (28, 22), (28, 23), (18, 14), (30, 25), (30, 25), (18, 14), (30, 25), (4, 7), (4, 7), (4, 8), (4, 8), (9, 12), (9, 12), (11, 14), (22, 24), (11, 14), (23, 25), (32, 26), (28, 21), (33, 26), (24, 16), (33, 26), (32, 26), (28, 21), (33, 26), (32, 26), (5, 7), (16, 18), (6, 7), (16, 18), (5, 8), (5, 7), (11, 13), (5, 8), (11, 13), (22, 23), (11, 13), (23, 24), (35, 27), (33, 24), (36, 27), (35, 27), (18, 19), (0, 0), (6, 7), (24, 24), (18, 19), (23, 23), (37, 27), (27, 26)], [(5, 7), (5, 7), (4, 7), (4, 7), (6, 7), (6, 7), (6, 7), (5, 7), (6, 7), (4, 5), (5, 7), (7, 7), (0, 0), (7, 7), (5, 5), (7, 7), (8, 7)], [(12, 16), (12, 16), (18, 21), (17, 13), (25, 20), (25, 19), (18, 11), (25, 20), (25, 19), (25, 20), (17, 13), (27, 22), (27, 22), (17, 13), (27, 22), (12, 15), (12, 15), (14, 17), (23, 25), (14, 17), (20, 22), (29, 23), (27, 20), (30, 23), (21, 13), (30, 23), (29, 23), (27, 20), (30, 23), (29, 23), (12, 14), (8, 9), (12, 14), (7, 9), (14, 16), (23, 24), (14, 16), (24, 25), (32, 24), (30, 21), (33, 24), (32, 24), (14, 15), (25, 25), (14, 15), (0, 0), (24, 24), (34, 24), (24, 23)], [(12, 16), (12, 16), (18, 21), (17, 13), (25, 20), (25, 19), (18, 11), (25, 20), (25, 19), (25, 20), (17, 13), (27, 22), (27, 22), (17, 13), (27, 22), (12, 15), (12, 15), (14, 17), (23, 25), (14, 17), (20, 22), (29, 23), (27, 20), (30, 23), (21, 13), (30, 23), (29, 23), (27, 20), (30, 23), (29, 23), (12, 14), (8, 9), (12, 14), (7, 9), (14, 16), (23, 24), (14, 16), (24, 25), (32, 24), (30, 21), (33, 24), (32, 24), (14, 15), (25, 25), (14, 15), (0, 0), (24, 24), (34, 24), (24, 23)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 8 for num. and 6 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 263.534561685 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.075137022 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 39 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y12, y5, y9, t, y1, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y11, y4, y6, y2, y3, y7], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(e, rR, dr, d, g, r, a, T, Dd, S, R, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 130 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0), (4, 2), (4, 2), (4, 2)], [(0, 0), (0, 1), (0, 1), (0, 0), (4, 3), (4, 3), (4, 3)], [(0, 0), (2, 0), (3, 1), (5, 2), (5, 2), (5, 2), (5, 1)], [(0, 0), (0, 0), (2, 1), (2, 1)], [(1, 0), (2, 2), (0, 0), (2, 2), (1, 0), (1, 0), (0, 0), (1, 0), (6, 4), (4, 2), (6, 4)], [(0, 0), (0, 0), (3, 1), (3, 1), (1, 0), (3, 1), (3, 0)], [(0, 0), (0, 0), (2, 3), (2, 3), (0, 0), (0, 0), (6, 5), (4, 3), (6, 5)], [(0, 0), (0, 0), (2, 1), (2, 1), (2, 1)], [(0, 0), (1, 0), (1, 0), (2, 0), (4, 2), (4, 2), (6, 3), (6, 3), (6, 3)], [(0, 0), (0, 0), (2, 2), (4, 3), (4, 4), (4, 4), (4, 3), (4, 3), (4, 3), (8, 6), (8, 6), (8, 6)], [(2, 0), (3, 2), (0, 0), (4, 2), (0, 0), (1, 0), (1, 0), (6, 3), (3, 1), (3, 1), (7, 4), (5, 2), (2, 1), (5, 2), (5, 1), (5, 1)], [(0, 0), (1, 0)], [(3, 5), (4, 5), (0, 0), (5, 5), (6, 5), (1, 0), (0, 0), (1, 0), (5, 5), (7, 5)], [(0, 0), (12, 20), (13, 22), (4, 16), (4, 16), (14, 22), (7, 16), (5, 16), (5, 16), (8, 16), (6, 16), (7, 16), (6, 16), (7, 16), (8, 16), (7, 16), (8, 16), (16, 23), (11, 19), (6, 16), (6, 16), (16, 23), (7, 16), (11, 19), (7, 16), (13, 21), (12, 19), (8, 15), (8, 16), (10, 17), (14, 20), (8, 16), (9, 16), (8, 16), (13, 20), (14, 20), (8, 14), (9, 16), (16, 22), (6, 13), (7, 13), (13, 19), (15, 20), (6, 11), (10, 16), (16, 21), (9, 14), (16, 20)], [(0, 0), (8, 16), (11, 20), (4, 16), (12, 20), (7, 16), (5, 16), (8, 16), (6, 16), (7, 16), (7, 16), (8, 16), (14, 21), (9, 17), (6, 16), (5, 16), (13, 20), (7, 16), (9, 17), (6, 16), (11, 19), (12, 19), (8, 15), (7, 16), (10, 17), (12, 18), (8, 16), (7, 14), (8, 16), (11, 18), (11, 17), (6, 12), (9, 16), (13, 19), (6, 13), (7, 13), (13, 19), (13, 18), (8, 13), (10, 16), (14, 19), (9, 14), (16, 20)], [(0, 0), (12, 20), (13, 22), (4, 16), (4, 16), (14, 22), (7, 16), (5, 16), (5, 16), (8, 16), (6, 16), (7, 16), (6, 16), (7, 16), (8, 16), (7, 16), (8, 16), (16, 23), (11, 19), (6, 16), (6, 16), (16, 23), (7, 16), (11, 19), (7, 16), (13, 21), (12, 19), (8, 15), (8, 16), (10, 17), (14, 20), (8, 16), (9, 16), (8, 16), (13, 20), (14, 20), (10, 16), (9, 16), (16, 22), (6, 13), (7, 13), (13, 19), (15, 20), (8, 13), (10, 16), (16, 21), (9, 14), (16, 20)], [(0, 0), (6, 13), (5, 13), (3, 13), (6, 13), (4, 13), (5, 13), (5, 13), (6, 13), (9, 15), (6, 14), (5, 12), (6, 14), (7, 14), (10, 16), (6, 12), (7, 14), (8, 14), (6, 13), (7, 13), (11, 17), (11, 16), (6, 11), (8, 14), (10, 15), (9, 14), (14, 18)], [(0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (7, 12), (5, 12), (6, 12), (5, 12), (6, 12), (7, 12), (6, 12), (7, 12), (7, 13), (8, 13), (10, 15), (12, 16), (5, 9), (7, 12), (9, 13), (10, 14), (13, 16)], [(0, 0), (4, 12), (5, 12), (5, 12), (6, 12), (6, 13), (7, 13), (9, 15), (11, 16), (6, 11), (6, 12), (8, 13), (9, 14), (12, 16)], [(0, 0), (4, 2), (4, 3), (4, 3), (4, 2), (4, 2), (4, 2), (8, 5), (8, 5), (8, 5), (7, 13), (6, 13), (4, 13), (7, 13), (5, 13), (6, 13), (6, 13), (7, 13), (10, 15), (7, 14), (6, 12), (7, 14), (8, 14), (10, 15), (7, 12), (8, 14), (9, 14), (7, 13), (8, 13), (12, 17), (12, 16), (7, 11), (9, 14), (11, 15), (10, 14), (15, 18)], [(0, 0), (6, 13), (7, 13), (7, 13), (8, 13), (9, 14), (10, 14)], [(0, 0), (4, 2), (4, 3), (4, 2), (4, 3), (4, 3), (8, 5), (8, 6), (8, 6), (8, 5), (8, 5), (8, 5), (12, 8), (12, 8), (12, 8), (5, 12), (6, 12), (6, 12), (7, 12), (7, 13), (8, 13), (10, 15), (12, 16), (7, 11), (7, 12), (9, 13), (10, 14), (13, 16)], [(0, 0), (6, 13), (7, 13), (7, 13), (8, 13), (9, 14), (10, 14)], [(0, 0), (4, 2), (4, 3), (4, 2), (4, 3), (4, 2), (8, 5), (8, 6), (8, 5), (8, 6), (8, 6), (8, 5), (8, 5), (8, 5), (12, 8), (12, 9), (12, 9), (12, 8), (12, 8), (12, 8), (7, 13), (8, 13), (16, 11), (16, 11), (16, 11), (8, 13), (9, 13), (10, 14), (11, 14)], [(0, 0), (1, 0)], [(3, 5), (4, 5), (4, 5), (5, 5), (0, 0), (5, 5), (6, 5)], [(10, 4), (12, 7), (12, 6), (10, 5), (10, 4), (16, 9), (14, 8), (16, 9), (14, 8), (14, 8), (14, 7), (12, 5), (12, 5), (18, 10), (16, 9), (16, 9), (18, 10), (16, 8), (18, 10), (20, 11), (18, 9), (20, 11), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 6 for num. and 6 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 2.3632061 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.09541775 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 18 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y8, y12, y11, t, y10], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y9, y1, y5, y4, y2, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(e, rR, dr, d, g, r, a, T, Dd, S, R, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 130 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 37  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 81  ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:01:16 ⌝ # Computing specializations.. Time: 0:01:18 ✓ # Computing specializations.. Time: 0:01:18 - ⌜ # Computing specializations.. Time: 0:00:04 ⌝ # Computing specializations.. Time: 0:00:06 ⌟ # Computing specializations.. Time: 0:00:08 ⌞ # Computing specializations.. Time: 0:00:10 ⌜ # Computing specializations.. Time: 0:00:12 ⌝ # Computing specializations.. Time: 0:00:14 ⌟ # Computing specializations.. Time: 0:00:16 ⌞ # Computing specializations.. Time: 0:00:18 ⌜ # Computing specializations.. Time: 0:00:20 ⌝ # Computing specializations.. Time: 0:00:23 ⌟ # Computing specializations.. Time: 0:00:25 ⌞ # Computing specializations.. Time: 0:00:28 ⌜ # Computing specializations.. Time: 0:00:30 ⌝ # Computing specializations.. Time: 0:00:32 ⌟ # Computing specializations.. Time: 0:00:34 ⌞ # Computing specializations.. Time: 0:00:37 ⌜ # Computing specializations.. Time: 0:00:39 ⌝ # Computing specializations.. Time: 0:00:41 ⌟ # Computing specializations.. Time: 0:00:43 ⌞ # Computing specializations.. Time: 0:00:45 ⌜ # Computing specializations.. Time: 0:00:47 ⌝ # Computing specializations.. Time: 0:00:49 ⌟ # Computing specializations.. Time: 0:00:51 ⌞ # Computing specializations.. Time: 0:00:53 ⌜ # Computing specializations.. Time: 0:00:55 ⌝ # Computing specializations.. Time: 0:00:57 ⌟ # Computing specializations.. Time: 0:01:00 ⌞ # Computing specializations.. Time: 0:01:03 ⌜ # Computing specializations.. Time: 0:01:05 ⌝ # Computing specializations.. Time: 0:01:07 ⌟ # Computing specializations.. Time: 0:01:09 ⌞ # Computing specializations.. Time: 0:01:11 ⌜ # Computing specializations.. Time: 0:01:13 ⌝ # Computing specializations.. Time: 0:01:15 ⌟ # Computing specializations.. Time: 0:01:17 ⌞ # Computing specializations.. Time: 0:01:19 ⌜ # Computing specializations.. Time: 0:01:21 ⌝ # Computing specializations.. Time: 0:01:24 -[2541177] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -+ at ./int.jl:87 [inlined] -insert_multiplied_poly_in_hash_table! at /home/demin/Groebner.jl/src/f4/hashtable.jl:523 -multiplied_poly_to_matrix_row! at /home/demin/Groebner.jl/src/f4/hashtable.jl:566 [inlined] -symbolic_preprocessing! at /home/demin/Groebner.jl/src/f4/learn-apply.jl:125 -unknown function (ip: 0x7f17e036676d) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -f4_apply! at /home/demin/Groebner.jl/src/f4/learn-apply.jl:321 -_groebner_apply! at /home/demin/Groebner.jl/src/groebner/learn-apply.jl:83 -unknown function (ip: 0x7f17e0364eff) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_groebner_apply! at /home/demin/Groebner.jl/src/groebner/learn-apply.jl:57 -unknown function (ip: 0x7f17e036195e) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -#groebner_apply!#578 at /home/demin/Groebner.jl/src/interface.jl:134 -groebner_apply! at /home/demin/Groebner.jl/src/interface.jl:133 -unknown function (ip: 0x7f17e03610fe) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -discover_param_total_degrees! at /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:241 -_paramgb at /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:99 -#paramgb#115 at /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:70 -paramgb at /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:46 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#groebner_basis_coeffs#477 at /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:322 -groebner_basis_coeffs at /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:301 -unknown function (ip: 0x7f17e0339d56) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -#generating_sets_fan#478 at /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:392 -generating_sets_fan at /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:365 -unknown function (ip: 0x7f17e0331010) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -#simplified_generating_set#480 at /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:525 -simplified_generating_set at /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:440 -unknown function (ip: 0x7f17e030e4b6) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:65 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7f1a16f877c6) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7f17e036aa3f) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7f1a2df181c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 948386629 (Pool: 946951289; Big: 1435340); GC: 2050 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0), (4, 3), (4, 3), (3, 1), (4, 3), (4, 3), (6, 3)], [(0, 0), (2, 0), (4, 2), (4, 2), (4, 1), (4, 2), (4, 2), (6, 2)], [(0, 0), (0, 0), (2, 1), (2, 1)], [(0, 0), (1, 0), (0, 0), (1, 0), (0, 0), (1, 0), (4, 2), (4, 2), (3, 1), (4, 2), (4, 2), (5, 2)], [(0, 0), (0, 0), (3, 3), (3, 3), (2, 1), (3, 3), (3, 3), (5, 3)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2), (3, 2), (4, 2)], [(0, 0), (0, 0), (3, 2), (2, 0), (1, 0), (0, 0), (0, 0), (3, 2), (0, 0), (0, 0), (3, 2), (1, 0), (4, 2), (4, 2), (6, 3), (3, 1), (4, 2), (4, 2), (6, 2)], [(0, 0), (0, 0), (3, 2), (2, 0), (1, 0), (0, 0), (0, 0), (3, 2), (0, 0), (3, 2), (1, 0), (0, 0), (4, 2), (4, 2), (6, 3), (3, 1), (4, 2), (4, 2), (6, 2)], [(1, 0), (0, 0), (2, 1), (4, 3), (3, 1), (4, 3), (4, 3), (4, 3), (7, 6), (7, 6), (6, 4), (7, 4), (7, 6), (7, 6), (9, 6)], [(0, 0), (1, 0), (0, 0), (1, 0), (4, 2), (4, 2), (3, 1), (4, 2), (7, 4), (7, 4), (7, 4), (7, 4), (8, 4)], [(0, 0), (3, 2), (4, 2), (0, 0), (3, 2), (0, 0), (2, 1), (6, 4), (7, 4), (4, 2), (2, 1), (2, 1), (6, 3), (2, 1), (5, 3), (4, 2), (7, 4), (7, 4), (8, 4), (6, 3), (8, 4), (7, 4), (9, 4)], [(0, 0), (3, 2), (2, 0), (1, 0), (4, 2), (2, 0), (0, 0), (3, 2), (0, 0), (4, 2), (7, 4), (3, 1), (7, 4), (4, 1), (3, 2), (7, 5), (8, 4), (7, 5), (6, 2), (6, 2), (7, 5), (7, 5), (7, 5), (11, 8), (11, 8), (9, 6), (10, 6), (11, 8), (11, 8), (13, 8)], [(4, 6), (5, 6), (6, 6), (0, 0)], [(0, 0), (7, 14), (8, 14), (10, 15)], [(0, 0), (7, 14), (8, 14), (1, 7), (2, 7), (10, 15), (6, 10)], [(0, 0), (0, 0), (4, 3), (4, 2), (4, 3), (4, 2), (4, 2), (4, 3), (8, 6), (8, 5), (8, 6), (8, 5), (8, 6), (6, 3), (8, 6), (8, 6), (8, 6), (12, 9), (12, 8), (12, 9), (11, 7), (11, 7), (12, 9), (12, 9), (12, 9), (8, 14), (9, 14), (16, 12), (16, 12), (14, 10), (15, 10), (16, 12), (16, 12), (2, 7), (3, 7), (11, 15), (18, 12), (7, 10)], [(0, 0), (4, 12), (5, 12), (6, 12), (9, 16), (10, 16), (5, 12), (7, 13), (7, 13), (7, 12), (4, 9), (13, 18), (5, 11), (9, 13)], [(0, 0), (0, 0), (3, 3), (3, 2), (4, 3), (4, 2), (4, 3), (4, 2), (4, 3), (4, 3), (7, 6), (7, 5), (8, 6), (8, 5), (8, 6), (7, 4), (8, 6), (8, 6), (8, 6), (11, 9), (11, 8), (12, 9), (10, 7), (11, 7), (12, 9), (12, 9), (12, 9), (5, 12), (6, 12), (7, 12), (10, 16), (11, 16), (6, 12), (15, 12), (15, 12), (14, 10), (15, 10), (15, 12), (15, 12), (8, 13), (8, 13), (8, 12), (5, 9), (14, 18), (6, 11), (17, 12), (10, 13)], [(0, 0), (3, 13), (4, 13), (5, 13), (6, 13), (5, 13), (6, 13), (6, 13), (4, 13), (7, 15), (3, 13), (4, 13), (5, 13), (6, 14), (6, 14), (7, 14), (10, 16), (4, 11), (10, 16), (6, 12), (4, 12), (9, 16), (12, 18), (6, 14), (7, 14), (5, 12), (9, 15), (9, 15), (9, 14), (7, 12), (13, 18), (6, 13), (11, 15)], [(0, 0), (0, 0), (3, 3), (3, 2), (3, 3), (3, 2), (4, 3), (4, 2), (4, 3), (3, 1), (4, 3), (4, 3), (4, 3), (7, 6), (7, 5), (7, 6), (7, 5), (8, 6), (6, 4), (7, 4), (8, 6), (8, 6), (8, 6), (4, 13), (5, 13), (6, 13), (7, 13), (6, 13), (7, 13), (7, 13), (5, 13), (8, 15), (4, 13), (5, 13), (6, 13), (11, 9), (11, 8), (11, 9), (10, 7), (11, 7), (11, 9), (11, 9), (11, 9), (7, 14), (6, 13), (8, 14), (11, 16), (5, 11), (11, 16), (7, 12), (5, 12), (10, 16), (13, 18), (7, 14), (8, 14), (6, 12), (15, 12), (15, 12), (13, 10), (14, 10), (15, 12), (15, 12), (10, 15), (10, 15), (10, 14), (8, 12), (14, 18), (8, 13), (17, 12), (12, 15)], [(0, 0), (4, 16), (5, 16), (11, 20), (8, 16), (6, 16), (7, 16), (10, 18), (7, 16), (8, 16), (8, 16), (8, 18), (11, 20), (5, 16), (8, 18), (4, 16), (5, 16), (7, 16), (5, 16), (6, 16), (7, 16), (11, 19), (14, 21), (11, 19), (14, 21), (7, 15), (11, 18), (8, 17), (11, 19), (5, 15), (5, 15), (8, 17), (7, 17), (9, 17), (7, 15), (8, 16), (8, 16), (13, 20), (14, 20), (9, 16), (13, 19), (9, 15), (8, 16), (13, 20), (18, 24), (8, 16), (13, 20), (9, 16), (13, 19), (13, 19), (15, 20), (11, 16), (17, 22), (11, 17), (15, 19)], [(0, 0), (0, 0), (0, 0), (3, 3), (3, 2), (3, 3), (3, 2), (3, 3), (3, 2), (4, 3), (2, 1), (4, 3), (4, 3), (4, 3), (7, 6), (7, 5), (7, 6), (7, 5), (7, 6), (6, 4), (7, 4), (7, 6), (7, 6), (7, 6), (11, 9), (11, 8), (11, 9), (10, 7), (10, 7), (11, 9), (11, 9), (11, 9), (5, 12), (5, 12), (6, 12), (7, 12), (6, 12), (7, 12), (7, 12), (5, 12), (10, 16), (11, 16), (5, 12), (6, 12), (15, 12), (15, 12), (13, 10), (14, 10), (15, 12), (15, 12), (8, 13), (8, 13), (7, 12), (7, 12), (14, 18), (8, 13), (17, 12), (9, 13)], [(0, 0), (4, 16), (4, 16), (5, 16), (13, 22), (12, 20), (5, 16), (6, 16), (7, 16), (14, 22), (6, 16), (7, 16), (8, 16), (7, 16), (8, 16), (8, 16), (10, 20), (13, 22), (7, 18), (10, 20), (4, 16), (4, 16), (7, 18), (4, 16), (7, 16), (6, 16), (6, 16), (7, 16), (13, 21), (16, 23), (7, 16), (13, 21), (16, 23), (9, 17), (11, 18), (8, 16), (10, 19), (13, 21), (7, 17), (7, 17), (10, 19), (7, 17), (13, 21), (7, 15), (8, 16), (8, 16), (15, 22), (16, 22), (13, 20), (15, 21), (11, 17), (10, 18), (15, 22), (20, 26), (10, 18), (15, 22), (11, 18), (15, 21), (15, 21), (17, 22), (15, 20), (21, 26), (15, 21), (17, 21)], [(0, 0), (0, 0), (0, 0), (4, 3), (3, 1), (4, 3), (4, 3), (4, 3), (7, 6), (7, 5), (7, 6), (7, 5), (7, 6), (6, 4), (7, 4), (7, 6), (7, 6), (7, 6), (4, 13), (4, 13), (5, 13), (10, 17), (9, 15), (5, 13), (6, 13), (11, 17), (6, 13), (7, 13), (7, 13), (7, 15), (10, 17), (4, 13), (4, 13), (7, 15), (4, 13), (6, 13), (11, 9), (11, 8), (11, 9), (10, 7), (10, 7), (11, 9), (11, 9), (11, 9), (7, 14), (7, 14), (10, 16), (13, 18), (10, 16), (13, 18), (9, 14), (7, 14), (12, 18), (15, 20), (7, 14), (10, 16), (8, 14), (15, 12), (15, 12), (13, 10), (14, 10), (15, 12), (15, 12), (12, 17), (12, 17), (12, 16), (12, 16), (18, 22), (12, 17), (17, 12), (14, 17)], [(4, 6), (5, 6), (6, 6), (0, 0), (1, 0)], [(10, 5), (8, 2), (10, 5), (10, 4), (10, 4), (14, 8), (14, 7), (14, 7), (12, 6), (13, 6), (13, 8), (12, 6), (12, 6), (16, 9), (18, 10), (16, 9), (17, 9), (15, 7), (16, 9), (16, 9), (16, 9), (20, 12), (20, 12), (18, 10), (19, 10), (20, 12), (20, 12), (0, 0), (22, 12), (1, 0)], [(0, 0), (1, 0)], [(0, 1), (0, 1), (0, 0), (0, 0), (0, 1), (0, 1), (0, 0), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 8 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.33381328 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.025828351 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 20 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y5, y3, y1, y7, y10], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, t, y11, y8, y9, y6, y12], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(e, rR, dr, d, g, r, a, T, Dd, S, R, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 diff --git a/benchmarking/IdentifiableFunctions/systems/St/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/St/logs_(:normalforms, 2) deleted file mode 100644 index 15fb86f2b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/St/logs_(:normalforms, 2) +++ /dev/null @@ -1,200 +0,0 @@ -┌ Info: Processing St -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 5.044292792 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 5.044292792 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.111848608 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.111848608 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [34, 2] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 9.336e-5 seconds -│ :rank_time = rank_time -│ rank_times = 9.336e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:00 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:03 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 16  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 35  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 55  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 74  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 94  ⌝ # Computing specializations.. Time: 0:00:01 - Points: 114  ✓ # Computing specializations.. Time: 0:00:02 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:00 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:03 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 14  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 33  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 52  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 72  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 92  ⌝ # Computing specializations.. Time: 0:00:01 - Points: 111  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 131  ⌞ # Computing specializations.. Time: 0:00:02 - Points: 151  ⌜ # Computing specializations.. Time: 0:00:02 - Points: 169  ⌝ # Computing specializations.. Time: 0:00:03 - Points: 189  ⌟ # Computing specializations.. Time: 0:00:03 - Points: 209  ⌞ # Computing specializations.. Time: 0:00:03 - Points: 227  ⌜ # Computing specializations.. Time: 0:00:04 - Points: 248  ⌝ # Computing specializations.. Time: 0:00:04 - Points: 269  ⌟ # Computing specializations.. Time: 0:00:04 - Points: 289  ⌞ # Computing specializations.. Time: 0:00:05 - Points: 309  ⌜ # Computing specializations.. Time: 0:00:05 - Points: 329  ⌝ # Computing specializations.. Time: 0:00:05 - Points: 349  ⌟ # Computing specializations.. Time: 0:00:05 - Points: 369  ⌞ # Computing specializations.. Time: 0:00:06 - Points: 389  ⌜ # Computing specializations.. Time: 0:00:06 - Points: 408  ⌝ # Computing specializations.. Time: 0:00:07 - Points: 428  ⌟ # Computing specializations.. Time: 0:00:07 - Points: 448  ⌞ # Computing specializations.. Time: 0:00:07 - Points: 468  ⌜ # Computing specializations.. Time: 0:00:08 - Points: 488  ⌝ # Computing specializations.. Time: 0:00:08 - Points: 508  ⌟ # Computing specializations.. Time: 0:00:08 - Points: 528  ⌞ # Computing specializations.. Time: 0:00:08 - Points: 548  ⌜ # Computing specializations.. Time: 0:00:09 - Points: 568  ⌝ # Computing specializations.. Time: 0:00:09 - Points: 588  ⌟ # Computing specializations.. Time: 0:00:09 - Points: 608  ⌞ # Computing specializations.. Time: 0:00:10 - Points: 628  ⌜ # Computing specializations.. Time: 0:00:10 - Points: 648  ⌝ # Computing specializations.. Time: 0:00:10 - Points: 668  ⌟ # Computing specializations.. Time: 0:00:11 - Points: 688  ⌞ # Computing specializations.. Time: 0:00:11 - Points: 708  ⌜ # Computing specializations.. Time: 0:00:11 - Points: 728  ⌝ # Computing specializations.. Time: 0:00:12 - Points: 748  ⌟ # Computing specializations.. Time: 0:00:12 - Points: 768  ✓ # Computing specializations.. Time: 0:00:13 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 40 functions in Rational Field(e, rR, dr, d, g, r, a, T, Dd)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 130 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0), (1, 0), (0, 0), (0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2)], [(0, 0), (0, 0), (2, 1), (4, 2), (4, 2), (4, 2), (4, 1)], [(0, 0), (0, 1), (0, 1), (0, 0), (0, 0), (0, 1), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 1), (0, 1), (0, 0), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 0), (2, 1), (2, 1)], [(0, 0), (2, 3), (0, 1), (2, 3), (0, 0), (0, 0), (0, 1), (0, 0), (6, 5), (4, 3), (6, 5)], [(0, 0), (2, 2), (0, 0), (2, 2), (1, 0), (1, 0), (0, 0), (1, 0), (4, 3), (2, 1), (5, 3)], [(0, 0), (3, 2), (1, 0), (3, 2), (2, 0), (2, 0), (1, 0), (2, 0), (3, 1), (7, 4), (5, 2), (7, 4), (5, 1)], [(0, 0), (0, 1), (4, 3), (2, 2), (2, 1), (4, 3), (7, 5), (7, 5), (7, 5)], [(0, 0), (1, 0), (4, 2), (2, 1), (6, 4), (6, 4), (3, 1), (5, 3), (7, 4), (7, 4), (3, 1), (6, 4), (7, 4), (4, 1), (8, 4), (8, 4), (5, 1), (4, 1), (8, 4), (6, 1)], [(0, 0), (0, 0), (3, 2), (4, 2), (5, 4), (5, 4), (4, 3), (6, 4), (6, 4), (4, 2), (5, 4), (6, 4), (9, 6), (9, 6), (9, 6)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (3, 6), (17, 20), (2, 6), (3, 6), (4, 6), (4, 6), (3, 6), (21, 23), (23, 24), (6, 7), (19, 20), (4, 6), (6, 7), (23, 23)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (3, 6), (17, 20), (2, 6), (3, 6), (4, 6), (4, 6), (3, 6), (21, 23), (23, 24), (6, 7), (19, 20), (4, 6), (6, 7), (23, 23)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (17, 20), (3, 6), (4, 6), (21, 23), (23, 24), (4, 5), (19, 20), (3, 6), (6, 7), (23, 23)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (15, 18), (14, 18), (17, 19), (17, 19), (16, 19), (19, 20), (18, 19), (18, 20), (20, 21), (21, 21), (3, 3), (20, 20), (2, 3), (22, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (15, 18), (14, 18), (17, 19), (17, 19), (16, 19), (19, 20), (18, 19), (18, 20), (20, 21), (21, 21), (20, 20), (22, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (16, 18), (15, 18), (7, 3), (7, 3), (7, 3), (18, 19), (18, 19), (17, 19), (20, 20), (19, 19), (19, 20), (21, 21), (22, 21), (4, 3), (21, 20), (3, 3), (23, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (16, 18), (15, 18), (6, 3), (7, 3), (6, 3), (18, 19), (18, 19), (17, 19), (20, 20), (19, 19), (19, 20), (21, 21), (22, 21), (21, 20), (23, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (4, 1), (5, 1), (5, 1), (4, 1), (17, 18), (16, 18), (7, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (19, 19), (19, 19), (18, 19), (10, 4), (10, 4), (10, 4), (21, 20), (20, 19), (20, 20), (22, 21), (23, 21), (5, 3), (22, 20), (4, 3), (24, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (17, 18), (16, 18), (6, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (19, 19), (19, 19), (18, 19), (10, 4), (10, 4), (10, 4), (21, 20), (20, 19), (20, 20), (22, 21), (23, 21), (22, 20), (24, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (4, 1), (5, 1), (5, 1), (4, 1), (5, 1), (6, 1), (6, 1), (5, 1), (18, 18), (17, 18), (7, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (8, 2), (8, 2), (7, 2), (8, 2), (20, 19), (20, 19), (19, 19), (10, 4), (10, 4), (9, 3), (11, 4), (11, 4), (10, 4), (11, 4), (22, 20), (21, 19), (21, 20), (13, 5), (13, 5), (13, 5), (23, 21), (24, 21), (6, 3), (23, 20), (5, 3), (25, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (18, 18), (17, 18), (6, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (8, 2), (8, 2), (7, 2), (20, 19), (20, 19), (19, 19), (10, 4), (10, 4), (9, 3), (11, 4), (11, 4), (10, 4), (11, 4), (22, 20), (21, 19), (21, 20), (13, 5), (13, 5), (13, 5), (23, 21), (24, 21), (23, 20), (25, 21)], [(0, 0), (4, 3), (2, 1), (4, 2), (15, 18), (14, 18), (8, 6), (6, 4), (7, 4), (7, 4), (8, 5), (7, 4), (17, 19), (17, 19), (16, 19), (12, 9), (10, 7), (11, 7), (11, 7), (12, 8), (11, 7), (19, 20), (19, 20), (18, 20), (16, 11), (14, 10), (15, 10), (15, 10), (16, 11), (15, 10), (21, 21), (20, 20), (20, 21), (19, 13), (19, 13), (19, 13), (22, 22), (23, 22), (5, 4), (22, 21), (4, 4), (24, 22)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 7 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 6.547858157 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.527849466 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 40 functions in Rational Field(e, rR, dr, d, g, r, a, T, Dd)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 130 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0), (1, 0), (0, 0), (0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2)], [(0, 0), (0, 0), (2, 1), (4, 2), (4, 2), (4, 2), (4, 1)], [(0, 0), (0, 1), (0, 1), (0, 0), (0, 0), (0, 1), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 1), (0, 1), (0, 0), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 0), (2, 1), (2, 1)], [(0, 0), (2, 3), (0, 1), (2, 3), (0, 0), (0, 0), (0, 1), (0, 0), (6, 5), (4, 3), (6, 5)], [(0, 0), (2, 2), (0, 0), (2, 2), (1, 0), (1, 0), (0, 0), (1, 0), (4, 3), (2, 1), (5, 3)], [(0, 0), (3, 2), (1, 0), (3, 2), (2, 0), (2, 0), (1, 0), (2, 0), (3, 1), (7, 4), (5, 2), (7, 4), (5, 1)], [(0, 0), (0, 1), (4, 3), (2, 2), (2, 1), (4, 3), (7, 5), (7, 5), (7, 5)], [(0, 0), (1, 0), (4, 2), (2, 1), (6, 4), (6, 4), (3, 1), (5, 3), (7, 4), (7, 4), (3, 1), (6, 4), (7, 4), (4, 1), (8, 4), (8, 4), (5, 1), (4, 1), (8, 4), (6, 1)], [(0, 0), (0, 0), (3, 2), (4, 2), (5, 4), (5, 4), (4, 3), (6, 4), (6, 4), (4, 2), (5, 4), (6, 4), (9, 6), (9, 6), (9, 6)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (3, 6), (17, 20), (2, 6), (3, 6), (4, 6), (4, 6), (3, 6), (21, 23), (23, 24), (6, 7), (19, 20), (4, 6), (6, 7), (23, 23)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (3, 6), (17, 20), (2, 6), (3, 6), (4, 6), (4, 6), (3, 6), (21, 23), (23, 24), (6, 7), (19, 20), (4, 6), (6, 7), (23, 23)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (17, 20), (3, 6), (4, 6), (21, 23), (23, 24), (4, 5), (19, 20), (3, 6), (6, 7), (23, 23)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (15, 18), (14, 18), (17, 19), (17, 19), (16, 19), (19, 20), (18, 19), (18, 20), (20, 21), (21, 21), (3, 3), (20, 20), (2, 3), (22, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (15, 18), (14, 18), (17, 19), (17, 19), (16, 19), (19, 20), (18, 19), (18, 20), (20, 21), (21, 21), (20, 20), (22, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (16, 18), (15, 18), (7, 3), (7, 3), (7, 3), (18, 19), (18, 19), (17, 19), (20, 20), (19, 19), (19, 20), (21, 21), (22, 21), (4, 3), (21, 20), (3, 3), (23, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (16, 18), (15, 18), (6, 3), (7, 3), (6, 3), (18, 19), (18, 19), (17, 19), (20, 20), (19, 19), (19, 20), (21, 21), (22, 21), (21, 20), (23, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (4, 1), (5, 1), (5, 1), (4, 1), (17, 18), (16, 18), (7, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (19, 19), (19, 19), (18, 19), (10, 4), (10, 4), (10, 4), (21, 20), (20, 19), (20, 20), (22, 21), (23, 21), (5, 3), (22, 20), (4, 3), (24, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (17, 18), (16, 18), (6, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (19, 19), (19, 19), (18, 19), (10, 4), (10, 4), (10, 4), (21, 20), (20, 19), (20, 20), (22, 21), (23, 21), (22, 20), (24, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (4, 1), (5, 1), (5, 1), (4, 1), (5, 1), (6, 1), (6, 1), (5, 1), (18, 18), (17, 18), (7, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (8, 2), (8, 2), (7, 2), (8, 2), (20, 19), (20, 19), (19, 19), (10, 4), (10, 4), (9, 3), (11, 4), (11, 4), (10, 4), (11, 4), (22, 20), (21, 19), (21, 20), (13, 5), (13, 5), (13, 5), (23, 21), (24, 21), (6, 3), (23, 20), (5, 3), (25, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (18, 18), (17, 18), (6, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (8, 2), (8, 2), (7, 2), (20, 19), (20, 19), (19, 19), (10, 4), (10, 4), (9, 3), (11, 4), (11, 4), (10, 4), (11, 4), (22, 20), (21, 19), (21, 20), (13, 5), (13, 5), (13, 5), (23, 21), (24, 21), (23, 20), (25, 21)], [(0, 0), (4, 3), (2, 1), (4, 2), (15, 18), (14, 18), (8, 6), (6, 4), (7, 4), (7, 4), (8, 5), (7, 4), (17, 19), (17, 19), (16, 19), (12, 9), (10, 7), (11, 7), (11, 7), (12, 8), (11, 7), (19, 20), (19, 20), (18, 20), (16, 11), (14, 10), (15, 10), (15, 10), (16, 11), (15, 10), (21, 21), (20, 20), (20, 21), (19, 13), (19, 13), (19, 13), (22, 22), (23, 22), (5, 4), (22, 21), (4, 4), (24, 22)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 768 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 21 for num. and 20 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 16.815835657 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.610728427 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 77 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (9 in total): Nemo.fmpq_mpoly[e, rR, dr, d, g, r, a, T, Dd] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 49 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 30 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 49 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 30 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 49 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 30 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 5.072512255 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 39 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 20503 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 36.027232722 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[Dd, T, e - rR + dr*T + d*T + g - r + a*T, (rR*d - dr*r)//(dr - d), (dr^2 + d^2 + 2*d*a + a^2)//(dr*d + dr*a), (e*dr - e*d + rR*a + dr*g - d*g - r*a)//(dr - d), (e*dr^2 - e*dr*d + rR*dr*a + dr*d*g - dr*r*a - d^2*g)//(dr^2 + dr*a - d^2 - d*a)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/St/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/St/logs_(:normalforms, 2)_with_states deleted file mode 100644 index 1f409d282..000000000 --- a/benchmarking/IdentifiableFunctions/systems/St/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,349 +0,0 @@ -┌ Info: Processing St -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 4.317399081 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 4.317399081 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.125868406 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.125868406 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [34, 2] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 9.2398e-5 seconds -│ :rank_time = rank_time -│ rank_times = 9.2398e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:03 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 13  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 30  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 48  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 66  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 85  ⌝ # Computing specializations.. Time: 0:00:01 - Points: 103  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 121  ✓ # Computing specializations.. Time: 0:00:02 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:03 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 15  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 33  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 51  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 69  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 88  ⌝ # Computing specializations.. Time: 0:00:01 - Points: 106  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 124  ⌞ # Computing specializations.. Time: 0:00:02 - Points: 142  ⌜ # Computing specializations.. Time: 0:00:02 - Points: 160  ⌝ # Computing specializations.. Time: 0:00:03 - Points: 178  ⌟ # Computing specializations.. Time: 0:00:03 - Points: 196  ⌞ # Computing specializations.. Time: 0:00:03 - Points: 215  ⌜ # Computing specializations.. Time: 0:00:04 - Points: 234  ⌝ # Computing specializations.. Time: 0:00:04 - Points: 253  ⌟ # Computing specializations.. Time: 0:00:04 - Points: 271  ⌞ # Computing specializations.. Time: 0:00:04 - Points: 289  ⌜ # Computing specializations.. Time: 0:00:05 - Points: 307  ⌝ # Computing specializations.. Time: 0:00:05 - Points: 325  ⌟ # Computing specializations.. Time: 0:00:05 - Points: 344  ⌞ # Computing specializations.. Time: 0:00:06 - Points: 362  ⌜ # Computing specializations.. Time: 0:00:06 - Points: 380  ⌝ # Computing specializations.. Time: 0:00:07 - Points: 398  ⌟ # Computing specializations.. Time: 0:00:07 - Points: 416  ⌞ # Computing specializations.. Time: 0:00:07 - Points: 434  ⌜ # Computing specializations.. Time: 0:00:07 - Points: 453  ⌝ # Computing specializations.. Time: 0:00:08 - Points: 471  ⌟ # Computing specializations.. Time: 0:00:08 - Points: 489  ⌞ # Computing specializations.. Time: 0:00:08 - Points: 506  ⌜ # Computing specializations.. Time: 0:00:09 - Points: 525  ⌝ # Computing specializations.. Time: 0:00:09 - Points: 543  ⌟ # Computing specializations.. Time: 0:00:09 - Points: 560  ⌞ # Computing specializations.. Time: 0:00:10 - Points: 578  ⌜ # Computing specializations.. Time: 0:00:10 - Points: 597  ⌝ # Computing specializations.. Time: 0:00:10 - Points: 615  ⌟ # Computing specializations.. Time: 0:00:11 - Points: 633  ⌞ # Computing specializations.. Time: 0:00:11 - Points: 651  ⌜ # Computing specializations.. Time: 0:00:11 - Points: 669  ⌝ # Computing specializations.. Time: 0:00:12 - Points: 688  ⌟ # Computing specializations.. Time: 0:00:12 - Points: 705  ⌞ # Computing specializations.. Time: 0:00:12 - Points: 723  ⌜ # Computing specializations.. Time: 0:00:13 - Points: 741  ⌝ # Computing specializations.. Time: 0:00:13 - Points: 759  ✓ # Computing specializations.. Time: 0:00:14 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:00 ⌞ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 14  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 31  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 48  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 66  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 83  ⌝ # Computing specializations.. Time: 0:00:01 - Points: 101  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 119  ✓ # Computing specializations.. Time: 0:00:02 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:00 ⌞ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 13  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 30  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 47  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 64  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 81  ⌝ # Computing specializations.. Time: 0:00:01 - Points: 98  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 115  ⌞ # Computing specializations.. Time: 0:00:02 - Points: 132  ⌜ # Computing specializations.. Time: 0:00:02 - Points: 150  ⌝ # Computing specializations.. Time: 0:00:03 - Points: 168  ⌟ # Computing specializations.. Time: 0:00:03 - Points: 185  ⌞ # Computing specializations.. Time: 0:00:03 - Points: 202  ⌜ # Computing specializations.. Time: 0:00:04 - Points: 220  ⌝ # Computing specializations.. Time: 0:00:04 - Points: 238  ⌟ # Computing specializations.. Time: 0:00:04 - Points: 256  ⌞ # Computing specializations.. Time: 0:00:05 - Points: 273  ⌜ # Computing specializations.. Time: 0:00:05 - Points: 291  ⌝ # Computing specializations.. Time: 0:00:05 - Points: 308  ⌟ # Computing specializations.. Time: 0:00:05 - Points: 325  ⌞ # Computing specializations.. Time: 0:00:06 - Points: 339  ⌜ # Computing specializations.. Time: 0:00:06 - Points: 357  ⌝ # Computing specializations.. Time: 0:00:06 - Points: 375  ⌟ # Computing specializations.. Time: 0:00:07 - Points: 393  ⌞ # Computing specializations.. Time: 0:00:07 - Points: 411  ⌜ # Computing specializations.. Time: 0:00:08 - Points: 429  ⌝ # Computing specializations.. Time: 0:00:08 - Points: 447  ⌟ # Computing specializations.. Time: 0:00:08 - Points: 465  ⌞ # Computing specializations.. Time: 0:00:08 - Points: 481  ⌜ # Computing specializations.. Time: 0:00:09 - Points: 499  ⌝ # Computing specializations.. Time: 0:00:09 - Points: 517  ⌟ # Computing specializations.. Time: 0:00:10 - Points: 534  ⌞ # Computing specializations.. Time: 0:00:10 - Points: 552  ⌜ # Computing specializations.. Time: 0:00:10 - Points: 569  ⌝ # Computing specializations.. Time: 0:00:10 - Points: 587  ⌟ # Computing specializations.. Time: 0:00:11 - Points: 604  ⌞ # Computing specializations.. Time: 0:00:11 - Points: 622  ⌜ # Computing specializations.. Time: 0:00:11 - Points: 639  ⌝ # Computing specializations.. Time: 0:00:12 - Points: 657  ⌟ # Computing specializations.. Time: 0:00:12 - Points: 674  ⌞ # Computing specializations.. Time: 0:00:12 - Points: 691  ⌜ # Computing specializations.. Time: 0:00:13 - Points: 709  ⌝ # Computing specializations.. Time: 0:00:13 - Points: 727  ⌟ # Computing specializations.. Time: 0:00:13 - Points: 745  ⌞ # Computing specializations.. Time: 0:00:14 - Points: 763  ✓ # Computing specializations.. Time: 0:00:15 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 40 functions in Rational Field(e, rR, dr, d, g, r, a, T, Dd, S, R, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 130 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0), (1, 0), (0, 0), (0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2)], [(0, 0), (0, 0), (2, 1), (4, 2), (4, 2), (4, 2), (4, 1)], [(0, 0), (0, 1), (0, 1), (0, 0), (0, 0), (0, 1), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 1), (0, 1), (0, 0), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 0), (2, 1), (2, 1)], [(0, 0), (2, 3), (0, 1), (2, 3), (0, 0), (0, 0), (0, 1), (0, 0), (6, 5), (4, 3), (6, 5)], [(0, 0), (2, 2), (0, 0), (2, 2), (1, 0), (1, 0), (0, 0), (1, 0), (4, 3), (2, 1), (5, 3)], [(0, 0), (3, 2), (1, 0), (3, 2), (2, 0), (2, 0), (1, 0), (2, 0), (3, 1), (7, 4), (5, 2), (7, 4), (5, 1)], [(0, 0), (0, 1), (4, 3), (2, 2), (2, 1), (4, 3), (7, 5), (7, 5), (7, 5)], [(0, 0), (1, 0), (4, 2), (2, 1), (6, 4), (6, 4), (3, 1), (5, 3), (7, 4), (7, 4), (3, 1), (6, 4), (7, 4), (4, 1), (8, 4), (8, 4), (5, 1), (4, 1), (8, 4), (6, 1)], [(0, 0), (0, 0), (3, 2), (4, 2), (5, 4), (5, 4), (4, 3), (6, 4), (6, 4), (4, 2), (5, 4), (6, 4), (9, 6), (9, 6), (9, 6)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (3, 6), (17, 20), (2, 6), (3, 6), (4, 6), (4, 6), (3, 6), (21, 23), (23, 24), (6, 7), (19, 20), (4, 6), (6, 7), (23, 23)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (3, 6), (17, 20), (2, 6), (3, 6), (4, 6), (4, 6), (3, 6), (21, 23), (23, 24), (6, 7), (19, 20), (4, 6), (6, 7), (23, 23)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (17, 20), (3, 6), (4, 6), (21, 23), (23, 24), (4, 5), (19, 20), (3, 6), (6, 7), (23, 23)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (15, 18), (14, 18), (17, 19), (17, 19), (16, 19), (19, 20), (18, 19), (18, 20), (20, 21), (21, 21), (3, 3), (20, 20), (2, 3), (22, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (15, 18), (14, 18), (17, 19), (17, 19), (16, 19), (19, 20), (18, 19), (18, 20), (20, 21), (21, 21), (20, 20), (22, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (16, 18), (15, 18), (7, 3), (7, 3), (7, 3), (18, 19), (18, 19), (17, 19), (20, 20), (19, 19), (19, 20), (21, 21), (22, 21), (4, 3), (21, 20), (3, 3), (23, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (16, 18), (15, 18), (6, 3), (7, 3), (6, 3), (18, 19), (18, 19), (17, 19), (20, 20), (19, 19), (19, 20), (21, 21), (22, 21), (21, 20), (23, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (4, 1), (5, 1), (5, 1), (4, 1), (17, 18), (16, 18), (7, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (19, 19), (19, 19), (18, 19), (10, 4), (10, 4), (10, 4), (21, 20), (20, 19), (20, 20), (22, 21), (23, 21), (5, 3), (22, 20), (4, 3), (24, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (17, 18), (16, 18), (6, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (19, 19), (19, 19), (18, 19), (10, 4), (10, 4), (10, 4), (21, 20), (20, 19), (20, 20), (22, 21), (23, 21), (22, 20), (24, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (4, 1), (5, 1), (5, 1), (4, 1), (5, 1), (6, 1), (6, 1), (5, 1), (18, 18), (17, 18), (7, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (8, 2), (8, 2), (7, 2), (8, 2), (20, 19), (20, 19), (19, 19), (10, 4), (10, 4), (9, 3), (11, 4), (11, 4), (10, 4), (11, 4), (22, 20), (21, 19), (21, 20), (13, 5), (13, 5), (13, 5), (23, 21), (24, 21), (6, 3), (23, 20), (5, 3), (25, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (18, 18), (17, 18), (6, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (8, 2), (8, 2), (7, 2), (20, 19), (20, 19), (19, 19), (10, 4), (10, 4), (9, 3), (11, 4), (11, 4), (10, 4), (11, 4), (22, 20), (21, 19), (21, 20), (13, 5), (13, 5), (13, 5), (23, 21), (24, 21), (23, 20), (25, 21)], [(0, 0), (4, 3), (2, 1), (4, 2), (15, 18), (14, 18), (8, 6), (6, 4), (7, 4), (7, 4), (8, 5), (7, 4), (17, 19), (17, 19), (16, 19), (12, 9), (10, 7), (11, 7), (11, 7), (12, 8), (11, 7), (19, 20), (19, 20), (18, 20), (16, 11), (14, 10), (15, 10), (15, 10), (16, 11), (15, 10), (21, 21), (20, 20), (20, 21), (19, 13), (19, 13), (19, 13), (22, 22), (23, 22), (5, 4), (22, 21), (4, 4), (24, 22)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 7 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 6.907254086 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.568801552 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 40 functions in Rational Field(e, rR, dr, d, g, r, a, T, Dd, S, R, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 130 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0), (1, 0), (0, 0), (0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2)], [(0, 0), (0, 0), (2, 1), (4, 2), (4, 2), (4, 2), (4, 1)], [(0, 0), (0, 1), (0, 1), (0, 0), (0, 0), (0, 1), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 1), (0, 1), (0, 0), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 0), (2, 1), (2, 1)], [(0, 0), (2, 3), (0, 1), (2, 3), (0, 0), (0, 0), (0, 1), (0, 0), (6, 5), (4, 3), (6, 5)], [(0, 0), (2, 2), (0, 0), (2, 2), (1, 0), (1, 0), (0, 0), (1, 0), (4, 3), (2, 1), (5, 3)], [(0, 0), (3, 2), (1, 0), (3, 2), (2, 0), (2, 0), (1, 0), (2, 0), (3, 1), (7, 4), (5, 2), (7, 4), (5, 1)], [(0, 0), (0, 1), (4, 3), (2, 2), (2, 1), (4, 3), (7, 5), (7, 5), (7, 5)], [(0, 0), (1, 0), (4, 2), (2, 1), (6, 4), (6, 4), (3, 1), (5, 3), (7, 4), (7, 4), (3, 1), (6, 4), (7, 4), (4, 1), (8, 4), (8, 4), (5, 1), (4, 1), (8, 4), (6, 1)], [(0, 0), (0, 0), (3, 2), (4, 2), (5, 4), (5, 4), (4, 3), (6, 4), (6, 4), (4, 2), (5, 4), (6, 4), (9, 6), (9, 6), (9, 6)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (3, 6), (17, 20), (2, 6), (3, 6), (4, 6), (4, 6), (3, 6), (21, 23), (23, 24), (6, 7), (19, 20), (4, 6), (6, 7), (23, 23)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (3, 6), (17, 20), (2, 6), (3, 6), (4, 6), (4, 6), (3, 6), (21, 23), (23, 24), (6, 7), (19, 20), (4, 6), (6, 7), (23, 23)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (17, 20), (3, 6), (4, 6), (21, 23), (23, 24), (4, 5), (19, 20), (3, 6), (6, 7), (23, 23)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (15, 18), (14, 18), (17, 19), (17, 19), (16, 19), (19, 20), (18, 19), (18, 20), (20, 21), (21, 21), (3, 3), (20, 20), (2, 3), (22, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (15, 18), (14, 18), (17, 19), (17, 19), (16, 19), (19, 20), (18, 19), (18, 20), (20, 21), (21, 21), (20, 20), (22, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (16, 18), (15, 18), (7, 3), (7, 3), (7, 3), (18, 19), (18, 19), (17, 19), (20, 20), (19, 19), (19, 20), (21, 21), (22, 21), (4, 3), (21, 20), (3, 3), (23, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (16, 18), (15, 18), (6, 3), (7, 3), (6, 3), (18, 19), (18, 19), (17, 19), (20, 20), (19, 19), (19, 20), (21, 21), (22, 21), (21, 20), (23, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (4, 1), (5, 1), (5, 1), (4, 1), (17, 18), (16, 18), (7, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (19, 19), (19, 19), (18, 19), (10, 4), (10, 4), (10, 4), (21, 20), (20, 19), (20, 20), (22, 21), (23, 21), (5, 3), (22, 20), (4, 3), (24, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (17, 18), (16, 18), (6, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (19, 19), (19, 19), (18, 19), (10, 4), (10, 4), (10, 4), (21, 20), (20, 19), (20, 20), (22, 21), (23, 21), (22, 20), (24, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (4, 1), (5, 1), (5, 1), (4, 1), (5, 1), (6, 1), (6, 1), (5, 1), (18, 18), (17, 18), (7, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (8, 2), (8, 2), (7, 2), (8, 2), (20, 19), (20, 19), (19, 19), (10, 4), (10, 4), (9, 3), (11, 4), (11, 4), (10, 4), (11, 4), (22, 20), (21, 19), (21, 20), (13, 5), (13, 5), (13, 5), (23, 21), (24, 21), (6, 3), (23, 20), (5, 3), (25, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (18, 18), (17, 18), (6, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (8, 2), (8, 2), (7, 2), (20, 19), (20, 19), (19, 19), (10, 4), (10, 4), (9, 3), (11, 4), (11, 4), (10, 4), (11, 4), (22, 20), (21, 19), (21, 20), (13, 5), (13, 5), (13, 5), (23, 21), (24, 21), (23, 20), (25, 21)], [(0, 0), (4, 3), (2, 1), (4, 2), (15, 18), (14, 18), (8, 6), (6, 4), (7, 4), (7, 4), (8, 5), (7, 4), (17, 19), (17, 19), (16, 19), (12, 9), (10, 7), (11, 7), (11, 7), (12, 8), (11, 7), (19, 20), (19, 20), (18, 20), (16, 11), (14, 10), (15, 10), (15, 10), (16, 11), (15, 10), (21, 21), (20, 20), (20, 21), (19, 13), (19, 13), (19, 13), (22, 22), (23, 22), (5, 4), (22, 21), (4, 4), (24, 22)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 768 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 21 for num. and 20 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 18.097596784 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.536124096 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 77 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 4.90183678 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 39 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 20503 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(e, rR, dr, d, g, r, a, T, Dd, S, R, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0), (1, 0), (0, 0), (0, 0), (1, 0), (2, 0)], [(0, 0), (2, 2), (3, 2), (3, 2), (2, 2), (1, 0), (4, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (2, 2), (3, 2), (3, 2)], [(0, 0), (0, 1), (1, 1), (1, 0), (1, 0), (5, 4), (1, 1), (5, 4), (6, 4)], [(0, 0), (0, 1), (1, 1), (2, 1), (2, 1), (5, 4), (1, 1), (2, 1), (5, 4), (6, 4)], [(0, 0), (0, 0), (3, 1), (3, 1), (1, 0), (3, 1), (3, 0)], [(0, 0), (5, 6), (5, 5), (6, 6), (7, 6), (7, 6), (4, 3), (6, 6), (7, 6), (7, 6), (8, 6)], [(0, 0), (5, 5), (6, 5), (6, 5), (8, 6), (8, 6), (4, 2), (6, 5), (8, 6), (7, 5), (8, 5)], [(0, 0), (4, 4), (4, 4), (5, 4), (5, 4), (6, 4)], [(0, 0), (5, 6), (5, 5), (6, 6), (7, 6), (7, 6), (7, 6), (6, 6), (7, 6), (10, 9), (11, 9)], [(0, 0), (5, 6), (5, 5), (6, 6), (7, 6), (7, 6), (7, 6), (6, 6), (7, 6), (10, 9), (11, 9)], [(0, 0), (5, 5), (6, 5), (6, 5), (8, 6), (8, 6), (4, 2), (6, 5), (8, 6), (7, 5), (8, 5)], [(0, 0), (0, 1), (0, 1), (0, 0), (0, 0), (0, 1), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 1), (0, 1), (0, 0), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 0), (2, 1), (2, 1)], [(0, 0), (2, 3), (0, 1), (2, 3), (0, 0), (0, 0), (0, 1), (0, 0), (6, 5), (4, 3), (6, 5)], [(0, 0), (2, 2), (0, 0), (2, 2), (1, 0), (1, 0), (0, 0), (1, 0), (4, 3), (2, 1), (5, 3)], [(0, 0), (3, 2), (1, 0), (3, 2), (2, 0), (2, 0), (1, 0), (2, 0), (3, 1), (7, 4), (5, 2), (7, 4), (5, 1)], [(0, 0), (2, 2), (2, 2), (3, 2), (3, 2), (2, 2), (3, 2), (1, 4), (5, 3), (5, 3), (5, 3), (2, 4), (3, 4)], [(0, 0), (1, 0), (6, 0), (6, 0), (2, 0), (3, 0)], [(0, 0), (7, 3), (7, 3), (7, 2), (7, 2), (7, 3), (7, 2), (1, 0), (3, 2), (10, 4), (10, 4), (10, 4), (2, 0), (4, 2), (5, 2)], [(0, 0), (9, 4), (9, 4), (9, 3), (9, 3), (9, 4), (9, 3), (3, 2), (5, 3), (12, 5), (12, 5), (12, 5), (7, 4), (6, 4), (8, 5), (11, 7)], [(0, 0), (8, 4), (8, 4), (8, 3), (8, 3), (8, 4), (8, 3), (1, 0), (4, 3), (11, 5), (11, 5), (11, 5), (2, 0), (5, 3), (6, 3)], [(0, 0), (9, 4), (9, 4), (9, 3), (9, 3), (9, 4), (9, 3), (3, 2), (5, 3), (12, 5), (12, 5), (12, 5), (6, 4), (7, 4), (8, 5), (11, 7)], [(0, 0), (1, 0), (1, 0), (5, 3), (1, 0), (5, 3), (2, 0), (6, 3), (2, 0), (6, 3), (6, 3), (7, 3)], [(0, 0), (1, 0), (4, 2), (1, 0), (5, 3), (5, 3), (1, 0), (4, 2), (6, 3), (6, 3), (5, 3), (6, 3), (3, 1), (3, 1), (3, 0), (7, 3), (7, 3), (4, 1), (8, 4), (5, 1), (6, 1)], [(0, 0), (2, 8), (2, 8), (5, 10), (5, 9), (5, 9), (5, 10), (5, 9), (6, 9), (6, 9), (5, 9), (4, 8), (4, 7), (4, 8), (5, 8), (7, 10), (8, 10), (8, 10), (5, 7), (7, 10), (8, 10), (6, 8), (10, 12), (13, 14)], [(0, 0), (2, 8), (2, 8), (5, 10), (5, 9), (5, 9), (5, 10), (5, 9), (6, 9), (6, 9), (5, 9), (3, 8), (4, 7), (4, 8), (5, 8), (6, 10), (8, 10), (8, 10), (5, 7), (7, 10), (8, 10), (6, 8), (10, 12), (13, 14)], [(0, 0), (2, 8), (5, 10), (5, 9), (5, 9), (6, 9), (4, 8), (4, 7), (3, 8), (5, 8), (7, 10), (8, 10), (4, 6), (5, 7), (6, 10), (8, 10), (6, 8), (10, 12), (13, 14)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (2, 5), (5, 7), (2, 5), (6, 8), (5, 7), (5, 6), (5, 6), (6, 7), (5, 7), (7, 8), (9, 10), (12, 12)], [(0, 0), (0, 0), (0, 0), (5, 3), (5, 3), (7, 4), (7, 4), (5, 3), (7, 4), (3, 5), (6, 7), (3, 5), (7, 8), (5, 6), (8, 4), (8, 4), (8, 4), (6, 7), (6, 6), (6, 6), (7, 7), (6, 7), (8, 8), (13, 13), (16, 15)], [(0, 0), (1, 0), (1, 0), (4, 3), (4, 2), (5, 7), (6, 8), (5, 3), (6, 3), (6, 3), (5, 3), (6, 3), (8, 6), (8, 5), (6, 7), (7, 8), (4, 6), (6, 7), (4, 6), (7, 8), (9, 6), (10, 6), (10, 6), (13, 9), (9, 6), (10, 6), (13, 9), (7, 8), (7, 7), (7, 7), (7, 7), (7, 8), (8, 8), (10, 10), (14, 9), (13, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 7 for num. and 4 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.390413114 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.311862094 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(e, rR, dr, d, g, r, a, T, Dd, S, R, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0), (1, 0), (0, 0), (0, 0), (1, 0), (2, 0)], [(0, 0), (2, 2), (3, 2), (3, 2), (2, 2), (1, 0), (4, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (2, 2), (3, 2), (3, 2)], [(0, 0), (0, 1), (1, 1), (1, 0), (1, 0), (5, 4), (1, 1), (5, 4), (6, 4)], [(0, 0), (0, 1), (1, 1), (2, 1), (2, 1), (5, 4), (1, 1), (2, 1), (5, 4), (6, 4)], [(0, 0), (0, 0), (3, 1), (3, 1), (1, 0), (3, 1), (3, 0)], [(0, 0), (5, 6), (5, 5), (6, 6), (7, 6), (7, 6), (4, 3), (6, 6), (7, 6), (7, 6), (8, 6)], [(0, 0), (5, 5), (6, 5), (6, 5), (8, 6), (8, 6), (4, 2), (6, 5), (8, 6), (7, 5), (8, 5)], [(0, 0), (4, 4), (4, 4), (5, 4), (5, 4), (6, 4)], [(0, 0), (5, 6), (5, 5), (6, 6), (7, 6), (7, 6), (7, 6), (6, 6), (7, 6), (10, 9), (11, 9)], [(0, 0), (5, 6), (5, 5), (6, 6), (7, 6), (7, 6), (7, 6), (6, 6), (7, 6), (10, 9), (11, 9)], [(0, 0), (5, 5), (6, 5), (6, 5), (8, 6), (8, 6), (4, 2), (6, 5), (8, 6), (7, 5), (8, 5)], [(0, 0), (0, 1), (0, 1), (0, 0), (0, 0), (0, 1), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 1), (0, 1), (0, 0), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 0), (2, 1), (2, 1)], [(0, 0), (2, 3), (0, 1), (2, 3), (0, 0), (0, 0), (0, 1), (0, 0), (6, 5), (4, 3), (6, 5)], [(0, 0), (2, 2), (0, 0), (2, 2), (1, 0), (1, 0), (0, 0), (1, 0), (4, 3), (2, 1), (5, 3)], [(0, 0), (3, 2), (1, 0), (3, 2), (2, 0), (2, 0), (1, 0), (2, 0), (3, 1), (7, 4), (5, 2), (7, 4), (5, 1)], [(0, 0), (2, 2), (2, 2), (3, 2), (3, 2), (2, 2), (3, 2), (1, 4), (5, 3), (5, 3), (5, 3), (2, 4), (3, 4)], [(0, 0), (1, 0), (6, 0), (6, 0), (2, 0), (3, 0)], [(0, 0), (7, 3), (7, 3), (7, 2), (7, 2), (7, 3), (7, 2), (1, 0), (3, 2), (10, 4), (10, 4), (10, 4), (2, 0), (4, 2), (5, 2)], [(0, 0), (9, 4), (9, 4), (9, 3), (9, 3), (9, 4), (9, 3), (3, 2), (5, 3), (12, 5), (12, 5), (12, 5), (7, 4), (6, 4), (8, 5), (11, 7)], [(0, 0), (8, 4), (8, 4), (8, 3), (8, 3), (8, 4), (8, 3), (1, 0), (4, 3), (11, 5), (11, 5), (11, 5), (2, 0), (5, 3), (6, 3)], [(0, 0), (9, 4), (9, 4), (9, 3), (9, 3), (9, 4), (9, 3), (3, 2), (5, 3), (12, 5), (12, 5), (12, 5), (6, 4), (7, 4), (8, 5), (11, 7)], [(0, 0), (1, 0), (1, 0), (5, 3), (1, 0), (5, 3), (2, 0), (6, 3), (2, 0), (6, 3), (6, 3), (7, 3)], [(0, 0), (1, 0), (4, 2), (1, 0), (5, 3), (5, 3), (1, 0), (4, 2), (6, 3), (6, 3), (5, 3), (6, 3), (3, 1), (3, 1), (3, 0), (7, 3), (7, 3), (4, 1), (8, 4), (5, 1), (6, 1)], [(0, 0), (2, 8), (2, 8), (5, 10), (5, 9), (5, 9), (5, 10), (5, 9), (6, 9), (6, 9), (5, 9), (4, 8), (4, 7), (4, 8), (5, 8), (7, 10), (8, 10), (8, 10), (5, 7), (7, 10), (8, 10), (6, 8), (10, 12), (13, 14)], [(0, 0), (2, 8), (2, 8), (5, 10), (5, 9), (5, 9), (5, 10), (5, 9), (6, 9), (6, 9), (5, 9), (3, 8), (4, 7), (4, 8), (5, 8), (6, 10), (8, 10), (8, 10), (5, 7), (7, 10), (8, 10), (6, 8), (10, 12), (13, 14)], [(0, 0), (2, 8), (5, 10), (5, 9), (5, 9), (6, 9), (4, 8), (4, 7), (3, 8), (5, 8), (7, 10), (8, 10), (4, 6), (5, 7), (6, 10), (8, 10), (6, 8), (10, 12), (13, 14)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (2, 5), (5, 7), (2, 5), (6, 8), (5, 7), (5, 6), (5, 6), (6, 7), (5, 7), (7, 8), (9, 10), (12, 12)], [(0, 0), (0, 0), (0, 0), (5, 3), (5, 3), (7, 4), (7, 4), (5, 3), (7, 4), (3, 5), (6, 7), (3, 5), (7, 8), (5, 6), (8, 4), (8, 4), (8, 4), (6, 7), (6, 6), (6, 6), (7, 7), (6, 7), (8, 8), (13, 13), (16, 15)], [(0, 0), (1, 0), (1, 0), (4, 3), (4, 2), (5, 7), (6, 8), (5, 3), (6, 3), (6, 3), (5, 3), (6, 3), (8, 6), (8, 5), (6, 7), (7, 8), (4, 6), (6, 7), (4, 6), (7, 8), (9, 6), (10, 6), (10, 6), (13, 9), (9, 6), (10, 6), (13, 9), (7, 8), (7, 7), (7, 7), (7, 7), (7, 8), (8, 8), (10, 10), (14, 9), (13, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 768 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 22 for num. and 12 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 17.057663066 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.231482504 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 64 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (12 in total): Nemo.fmpq_mpoly[e, rR, dr, d, g, r, a, T, Dd, S, R, W] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 85 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 59 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 85 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 59 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 85 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 59 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 4.474640448 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 11 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 1880402 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 64.058846731 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[Dd, T, S + R, rR*R - dr*T*R - d*T*S + r*S, e - rR + dr*T + d*T + g - r + a*T, (rR*d - dr*r)//(dr - d), (dr*R + d*S)//(dr + d + a), (dr*d + dr*a)//(dr^2 + d^2 + 2*d*a + a^2), (dr*T - dr*W - d*T + d*W)//(rR - dr*T + d*T - r), (e*dr^2*g - 2*e*dr*d*g - e*dr*g*a + e*d^2*g + e*d*g*a + rR*dr*g*a - rR*d*g*a - rR*g*a^2 - dr*g^2*a - dr*g*r*a + d*g^2*a + d*g*r*a + g*r*a^2)//(dr^2*S*R - 2*dr*d*S*R - dr*a*S^2 - dr*a*S*R + d^2*S*R + d*a*S^2 + d*a*S*R), (e*dr^2*S - 2*e*dr*d*S - e*dr*a*S + e*d^2*S + e*d*a*S + rR*dr*a*S - rR*d*a*S - rR*a^2*S + dr^2*g*R - 2*dr*d*g*R - 2*dr*g*a*S - dr*g*a*R - dr*r*a*S + d^2*g*R + 2*d*g*a*S + d*g*a*R + d*r*a*S + r*a^2*S)//(dr^2*S*R - 2*dr*d*S*R - dr*a*S^2 - dr*a*S*R + d^2*S*R + d*a*S^2 + d*a*S*R)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/St/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/St/logs_(:normalforms, 3) deleted file mode 100644 index e6eb2e5ad..000000000 --- a/benchmarking/IdentifiableFunctions/systems/St/logs_(:normalforms, 3) +++ /dev/null @@ -1,200 +0,0 @@ -┌ Info: Processing St -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 5.356898893 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 5.356898893 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.098280942 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.098280942 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [34, 2] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000119446 seconds -│ :rank_time = rank_time -│ rank_times = 0.000119446 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:03 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 17  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 36  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 56  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 75  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 95  ⌝ # Computing specializations.. Time: 0:00:01 - Points: 115  ✓ # Computing specializations.. Time: 0:00:02 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:00 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:03 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 15  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 34  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 53  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 73  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 93  ⌝ # Computing specializations.. Time: 0:00:01 - Points: 111  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 131  ⌞ # Computing specializations.. Time: 0:00:02 - Points: 151  ⌜ # Computing specializations.. Time: 0:00:02 - Points: 171  ⌝ # Computing specializations.. Time: 0:00:03 - Points: 191  ⌟ # Computing specializations.. Time: 0:00:03 - Points: 209  ⌞ # Computing specializations.. Time: 0:00:03 - Points: 229  ⌜ # Computing specializations.. Time: 0:00:04 - Points: 247  ⌝ # Computing specializations.. Time: 0:00:04 - Points: 267  ⌟ # Computing specializations.. Time: 0:00:04 - Points: 287  ⌞ # Computing specializations.. Time: 0:00:05 - Points: 305  ⌜ # Computing specializations.. Time: 0:00:05 - Points: 325  ⌝ # Computing specializations.. Time: 0:00:05 - Points: 345  ⌟ # Computing specializations.. Time: 0:00:06 - Points: 365  ⌞ # Computing specializations.. Time: 0:00:06 - Points: 385  ⌜ # Computing specializations.. Time: 0:00:06 - Points: 400  ⌝ # Computing specializations.. Time: 0:00:07 - Points: 420  ⌟ # Computing specializations.. Time: 0:00:07 - Points: 440  ⌞ # Computing specializations.. Time: 0:00:07 - Points: 460  ⌜ # Computing specializations.. Time: 0:00:08 - Points: 479  ⌝ # Computing specializations.. Time: 0:00:08 - Points: 499  ⌟ # Computing specializations.. Time: 0:00:08 - Points: 519  ⌞ # Computing specializations.. Time: 0:00:09 - Points: 539  ⌜ # Computing specializations.. Time: 0:00:09 - Points: 559  ⌝ # Computing specializations.. Time: 0:00:09 - Points: 578  ⌟ # Computing specializations.. Time: 0:00:09 - Points: 598  ⌞ # Computing specializations.. Time: 0:00:10 - Points: 618  ⌜ # Computing specializations.. Time: 0:00:10 - Points: 638  ⌝ # Computing specializations.. Time: 0:00:10 - Points: 658  ⌟ # Computing specializations.. Time: 0:00:11 - Points: 678  ⌞ # Computing specializations.. Time: 0:00:11 - Points: 698  ⌜ # Computing specializations.. Time: 0:00:11 - Points: 718  ⌝ # Computing specializations.. Time: 0:00:12 - Points: 738  ⌟ # Computing specializations.. Time: 0:00:12 - Points: 758  ✓ # Computing specializations.. Time: 0:00:13 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 40 functions in Rational Field(e, rR, dr, d, g, r, a, T, Dd)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 130 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0), (1, 0), (0, 0), (0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2)], [(0, 0), (0, 0), (2, 1), (4, 2), (4, 2), (4, 2), (4, 1)], [(0, 0), (0, 1), (0, 1), (0, 0), (0, 0), (0, 1), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 1), (0, 1), (0, 0), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 0), (2, 1), (2, 1)], [(0, 0), (2, 3), (0, 1), (2, 3), (0, 0), (0, 0), (0, 1), (0, 0), (6, 5), (4, 3), (6, 5)], [(0, 0), (2, 2), (0, 0), (2, 2), (1, 0), (1, 0), (0, 0), (1, 0), (4, 3), (2, 1), (5, 3)], [(0, 0), (3, 2), (1, 0), (3, 2), (2, 0), (2, 0), (1, 0), (2, 0), (3, 1), (7, 4), (5, 2), (7, 4), (5, 1)], [(0, 0), (0, 1), (4, 3), (2, 2), (2, 1), (4, 3), (7, 5), (7, 5), (7, 5)], [(0, 0), (1, 0), (4, 2), (2, 1), (6, 4), (6, 4), (3, 1), (5, 3), (7, 4), (7, 4), (3, 1), (6, 4), (7, 4), (4, 1), (8, 4), (8, 4), (5, 1), (4, 1), (8, 4), (6, 1)], [(0, 0), (0, 0), (3, 2), (4, 2), (5, 4), (5, 4), (4, 3), (6, 4), (6, 4), (4, 2), (5, 4), (6, 4), (9, 6), (9, 6), (9, 6)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (3, 6), (17, 20), (2, 6), (3, 6), (4, 6), (4, 6), (3, 6), (21, 23), (23, 24), (6, 7), (19, 20), (4, 6), (6, 7), (23, 23)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (3, 6), (17, 20), (2, 6), (3, 6), (4, 6), (4, 6), (3, 6), (21, 23), (23, 24), (6, 7), (19, 20), (4, 6), (6, 7), (23, 23)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (17, 20), (3, 6), (4, 6), (21, 23), (23, 24), (4, 5), (19, 20), (3, 6), (6, 7), (23, 23)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (15, 18), (14, 18), (17, 19), (17, 19), (16, 19), (19, 20), (18, 19), (18, 20), (20, 21), (21, 21), (3, 3), (20, 20), (2, 3), (22, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (15, 18), (14, 18), (17, 19), (17, 19), (16, 19), (19, 20), (18, 19), (18, 20), (20, 21), (21, 21), (20, 20), (22, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (16, 18), (15, 18), (7, 3), (7, 3), (7, 3), (18, 19), (18, 19), (17, 19), (20, 20), (19, 19), (19, 20), (21, 21), (22, 21), (4, 3), (21, 20), (3, 3), (23, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (16, 18), (15, 18), (6, 3), (7, 3), (6, 3), (18, 19), (18, 19), (17, 19), (20, 20), (19, 19), (19, 20), (21, 21), (22, 21), (21, 20), (23, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (4, 1), (5, 1), (5, 1), (4, 1), (17, 18), (16, 18), (7, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (19, 19), (19, 19), (18, 19), (10, 4), (10, 4), (10, 4), (21, 20), (20, 19), (20, 20), (22, 21), (23, 21), (5, 3), (22, 20), (4, 3), (24, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (17, 18), (16, 18), (6, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (19, 19), (19, 19), (18, 19), (10, 4), (10, 4), (10, 4), (21, 20), (20, 19), (20, 20), (22, 21), (23, 21), (22, 20), (24, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (4, 1), (5, 1), (5, 1), (4, 1), (5, 1), (6, 1), (6, 1), (5, 1), (18, 18), (17, 18), (7, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (8, 2), (8, 2), (7, 2), (8, 2), (20, 19), (20, 19), (19, 19), (10, 4), (10, 4), (9, 3), (11, 4), (11, 4), (10, 4), (11, 4), (22, 20), (21, 19), (21, 20), (13, 5), (13, 5), (13, 5), (23, 21), (24, 21), (6, 3), (23, 20), (5, 3), (25, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (18, 18), (17, 18), (6, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (8, 2), (8, 2), (7, 2), (20, 19), (20, 19), (19, 19), (10, 4), (10, 4), (9, 3), (11, 4), (11, 4), (10, 4), (11, 4), (22, 20), (21, 19), (21, 20), (13, 5), (13, 5), (13, 5), (23, 21), (24, 21), (23, 20), (25, 21)], [(0, 0), (4, 3), (2, 1), (4, 2), (15, 18), (14, 18), (8, 6), (6, 4), (7, 4), (7, 4), (8, 5), (7, 4), (17, 19), (17, 19), (16, 19), (12, 9), (10, 7), (11, 7), (11, 7), (12, 8), (11, 7), (19, 20), (19, 20), (18, 20), (16, 11), (14, 10), (15, 10), (15, 10), (16, 11), (15, 10), (21, 21), (20, 20), (20, 21), (19, 13), (19, 13), (19, 13), (22, 22), (23, 22), (5, 4), (22, 21), (4, 4), (24, 22)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 7 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 6.555294859 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.513571849 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 40 functions in Rational Field(e, rR, dr, d, g, r, a, T, Dd)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 130 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0), (1, 0), (0, 0), (0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2)], [(0, 0), (0, 0), (2, 1), (4, 2), (4, 2), (4, 2), (4, 1)], [(0, 0), (0, 1), (0, 1), (0, 0), (0, 0), (0, 1), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 1), (0, 1), (0, 0), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 0), (2, 1), (2, 1)], [(0, 0), (2, 3), (0, 1), (2, 3), (0, 0), (0, 0), (0, 1), (0, 0), (6, 5), (4, 3), (6, 5)], [(0, 0), (2, 2), (0, 0), (2, 2), (1, 0), (1, 0), (0, 0), (1, 0), (4, 3), (2, 1), (5, 3)], [(0, 0), (3, 2), (1, 0), (3, 2), (2, 0), (2, 0), (1, 0), (2, 0), (3, 1), (7, 4), (5, 2), (7, 4), (5, 1)], [(0, 0), (0, 1), (4, 3), (2, 2), (2, 1), (4, 3), (7, 5), (7, 5), (7, 5)], [(0, 0), (1, 0), (4, 2), (2, 1), (6, 4), (6, 4), (3, 1), (5, 3), (7, 4), (7, 4), (3, 1), (6, 4), (7, 4), (4, 1), (8, 4), (8, 4), (5, 1), (4, 1), (8, 4), (6, 1)], [(0, 0), (0, 0), (3, 2), (4, 2), (5, 4), (5, 4), (4, 3), (6, 4), (6, 4), (4, 2), (5, 4), (6, 4), (9, 6), (9, 6), (9, 6)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (3, 6), (17, 20), (2, 6), (3, 6), (4, 6), (4, 6), (3, 6), (21, 23), (23, 24), (6, 7), (19, 20), (4, 6), (6, 7), (23, 23)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (3, 6), (17, 20), (2, 6), (3, 6), (4, 6), (4, 6), (3, 6), (21, 23), (23, 24), (6, 7), (19, 20), (4, 6), (6, 7), (23, 23)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (17, 20), (3, 6), (4, 6), (21, 23), (23, 24), (4, 5), (19, 20), (3, 6), (6, 7), (23, 23)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (15, 18), (14, 18), (17, 19), (17, 19), (16, 19), (19, 20), (18, 19), (18, 20), (20, 21), (21, 21), (3, 3), (20, 20), (2, 3), (22, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (15, 18), (14, 18), (17, 19), (17, 19), (16, 19), (19, 20), (18, 19), (18, 20), (20, 21), (21, 21), (20, 20), (22, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (16, 18), (15, 18), (7, 3), (7, 3), (7, 3), (18, 19), (18, 19), (17, 19), (20, 20), (19, 19), (19, 20), (21, 21), (22, 21), (4, 3), (21, 20), (3, 3), (23, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (16, 18), (15, 18), (6, 3), (7, 3), (6, 3), (18, 19), (18, 19), (17, 19), (20, 20), (19, 19), (19, 20), (21, 21), (22, 21), (21, 20), (23, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (4, 1), (5, 1), (5, 1), (4, 1), (17, 18), (16, 18), (7, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (19, 19), (19, 19), (18, 19), (10, 4), (10, 4), (10, 4), (21, 20), (20, 19), (20, 20), (22, 21), (23, 21), (5, 3), (22, 20), (4, 3), (24, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (17, 18), (16, 18), (6, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (19, 19), (19, 19), (18, 19), (10, 4), (10, 4), (10, 4), (21, 20), (20, 19), (20, 20), (22, 21), (23, 21), (22, 20), (24, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (4, 1), (5, 1), (5, 1), (4, 1), (5, 1), (6, 1), (6, 1), (5, 1), (18, 18), (17, 18), (7, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (8, 2), (8, 2), (7, 2), (8, 2), (20, 19), (20, 19), (19, 19), (10, 4), (10, 4), (9, 3), (11, 4), (11, 4), (10, 4), (11, 4), (22, 20), (21, 19), (21, 20), (13, 5), (13, 5), (13, 5), (23, 21), (24, 21), (6, 3), (23, 20), (5, 3), (25, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (18, 18), (17, 18), (6, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (8, 2), (8, 2), (7, 2), (20, 19), (20, 19), (19, 19), (10, 4), (10, 4), (9, 3), (11, 4), (11, 4), (10, 4), (11, 4), (22, 20), (21, 19), (21, 20), (13, 5), (13, 5), (13, 5), (23, 21), (24, 21), (23, 20), (25, 21)], [(0, 0), (4, 3), (2, 1), (4, 2), (15, 18), (14, 18), (8, 6), (6, 4), (7, 4), (7, 4), (8, 5), (7, 4), (17, 19), (17, 19), (16, 19), (12, 9), (10, 7), (11, 7), (11, 7), (12, 8), (11, 7), (19, 20), (19, 20), (18, 20), (16, 11), (14, 10), (15, 10), (15, 10), (16, 11), (15, 10), (21, 21), (20, 20), (20, 21), (19, 13), (19, 13), (19, 13), (22, 22), (23, 22), (5, 4), (22, 21), (4, 4), (24, 22)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 768 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 21 for num. and 20 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 16.915563443 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.541885386 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 77 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (9 in total): Nemo.fmpq_mpoly[e, rR, dr, d, g, r, a, T, Dd] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 210 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 172 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 210 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 172 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 210 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 172 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 5.090484641 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 39 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 20503 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 36.401344357 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[Dd, T, e - rR + dr*T + d*T + g - r + a*T, (rR*d - dr*r)//(dr - d), (dr^2 + d^2 + 2*d*a + a^2)//(dr*d + dr*a), (e*dr - e*d + rR*a + dr*g - d*g - r*a)//(dr - d), (e*dr^2 - e*dr*d + rR*dr*a + dr*d*g - dr*r*a - d^2*g)//(dr^2 + dr*a - d^2 - d*a)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/St/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/St/logs_(:normalforms, 3)_with_states deleted file mode 100644 index 6a15014bb..000000000 --- a/benchmarking/IdentifiableFunctions/systems/St/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,350 +0,0 @@ -┌ Info: Processing St -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 4.51819724 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 4.51819724 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.118866358 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.118866358 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [34, 2] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.00011285 seconds -│ :rank_time = rank_time -│ rank_times = 0.00011285 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ⌞ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:03 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 11  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 27  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 46  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 64  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 82  ⌝ # Computing specializations.. Time: 0:00:01 - Points: 100  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 118  ✓ # Computing specializations.. Time: 0:00:02 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:01 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:03 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 15  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 33  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 49  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 66  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 84  ⌝ # Computing specializations.. Time: 0:00:01 - Points: 100  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 118  ⌞ # Computing specializations.. Time: 0:00:02 - Points: 136  ⌜ # Computing specializations.. Time: 0:00:02 - Points: 154  ⌝ # Computing specializations.. Time: 0:00:03 - Points: 172  ⌟ # Computing specializations.. Time: 0:00:03 - Points: 190  ⌞ # Computing specializations.. Time: 0:00:03 - Points: 208  ⌜ # Computing specializations.. Time: 0:00:04 - Points: 225  ⌝ # Computing specializations.. Time: 0:00:04 - Points: 241  ⌟ # Computing specializations.. Time: 0:00:04 - Points: 259  ⌞ # Computing specializations.. Time: 0:00:05 - Points: 277  ⌜ # Computing specializations.. Time: 0:00:05 - Points: 295  ⌝ # Computing specializations.. Time: 0:00:05 - Points: 313  ⌟ # Computing specializations.. Time: 0:00:06 - Points: 332  ⌞ # Computing specializations.. Time: 0:00:06 - Points: 350  ⌜ # Computing specializations.. Time: 0:00:06 - Points: 368  ⌝ # Computing specializations.. Time: 0:00:07 - Points: 385  ⌟ # Computing specializations.. Time: 0:00:07 - Points: 400  ⌞ # Computing specializations.. Time: 0:00:07 - Points: 418  ⌜ # Computing specializations.. Time: 0:00:08 - Points: 436  ⌝ # Computing specializations.. Time: 0:00:08 - Points: 454  ⌟ # Computing specializations.. Time: 0:00:08 - Points: 473  ⌞ # Computing specializations.. Time: 0:00:09 - Points: 492  ⌜ # Computing specializations.. Time: 0:00:09 - Points: 510  ⌝ # Computing specializations.. Time: 0:00:09 - Points: 528  ⌟ # Computing specializations.. Time: 0:00:10 - Points: 546  ⌞ # Computing specializations.. Time: 0:00:10 - Points: 564  ⌜ # Computing specializations.. Time: 0:00:10 - Points: 583  ⌝ # Computing specializations.. Time: 0:00:10 - Points: 601  ⌟ # Computing specializations.. Time: 0:00:11 - Points: 619  ⌞ # Computing specializations.. Time: 0:00:11 - Points: 637  ⌜ # Computing specializations.. Time: 0:00:11 - Points: 655  ⌝ # Computing specializations.. Time: 0:00:12 - Points: 674  ⌟ # Computing specializations.. Time: 0:00:12 - Points: 692  ⌞ # Computing specializations.. Time: 0:00:12 - Points: 710  ⌜ # Computing specializations.. Time: 0:00:13 - Points: 728  ⌝ # Computing specializations.. Time: 0:00:13 - Points: 746  ⌟ # Computing specializations.. Time: 0:00:13 - Points: 764  ✓ # Computing specializations.. Time: 0:00:14 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 12  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 30  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 48  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 66  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 84  ⌝ # Computing specializations.. Time: 0:00:01 - Points: 102  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 120  ✓ # Computing specializations.. Time: 0:00:02 - ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ⌞ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 - ⌜ # Computing specializations.. Time: 0:00:00 - Points: 12  ⌝ # Computing specializations.. Time: 0:00:00 - Points: 30  ⌟ # Computing specializations.. Time: 0:00:00 - Points: 47  ⌞ # Computing specializations.. Time: 0:00:01 - Points: 64  ⌜ # Computing specializations.. Time: 0:00:01 - Points: 81  ⌝ # Computing specializations.. Time: 0:00:01 - Points: 97  ⌟ # Computing specializations.. Time: 0:00:02 - Points: 114  ⌞ # Computing specializations.. Time: 0:00:02 - Points: 131  ⌜ # Computing specializations.. Time: 0:00:02 - Points: 148  ⌝ # Computing specializations.. Time: 0:00:03 - Points: 165  ⌟ # Computing specializations.. Time: 0:00:03 - Points: 182  ⌞ # Computing specializations.. Time: 0:00:03 - Points: 197  ⌜ # Computing specializations.. Time: 0:00:04 - Points: 213  ⌝ # Computing specializations.. Time: 0:00:04 - Points: 230  ⌟ # Computing specializations.. Time: 0:00:04 - Points: 247  ⌞ # Computing specializations.. Time: 0:00:05 - Points: 262  ⌜ # Computing specializations.. Time: 0:00:05 - Points: 280  ⌝ # Computing specializations.. Time: 0:00:05 - Points: 298  ⌟ # Computing specializations.. Time: 0:00:06 - Points: 316  ⌞ # Computing specializations.. Time: 0:00:06 - Points: 334  ⌜ # Computing specializations.. Time: 0:00:06 - Points: 352  ⌝ # Computing specializations.. Time: 0:00:06 - Points: 370  ⌟ # Computing specializations.. Time: 0:00:07 - Points: 388  ⌞ # Computing specializations.. Time: 0:00:07 - Points: 405  ⌜ # Computing specializations.. Time: 0:00:07 - Points: 423  ⌝ # Computing specializations.. Time: 0:00:08 - Points: 441  ⌟ # Computing specializations.. Time: 0:00:08 - Points: 459  ⌞ # Computing specializations.. Time: 0:00:08 - Points: 477  ⌜ # Computing specializations.. Time: 0:00:09 - Points: 495  ⌝ # Computing specializations.. Time: 0:00:09 - Points: 513  ⌟ # Computing specializations.. Time: 0:00:09 - Points: 531  ⌞ # Computing specializations.. Time: 0:00:10 - Points: 549  ⌜ # Computing specializations.. Time: 0:00:10 - Points: 567  ⌝ # Computing specializations.. Time: 0:00:10 - Points: 584  ⌟ # Computing specializations.. Time: 0:00:11 - Points: 600  ⌞ # Computing specializations.. Time: 0:00:11 - Points: 617  ⌜ # Computing specializations.. Time: 0:00:11 - Points: 634  ⌝ # Computing specializations.. Time: 0:00:12 - Points: 650  ⌟ # Computing specializations.. Time: 0:00:12 - Points: 667  ⌞ # Computing specializations.. Time: 0:00:12 - Points: 685  ⌜ # Computing specializations.. Time: 0:00:13 - Points: 702  ⌝ # Computing specializations.. Time: 0:00:13 - Points: 719  ⌟ # Computing specializations.. Time: 0:00:13 - Points: 736  ⌞ # Computing specializations.. Time: 0:00:13 - Points: 753  ✓ # Computing specializations.. Time: 0:00:15 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 40 functions in Rational Field(e, rR, dr, d, g, r, a, T, Dd, S, R, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 130 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0), (1, 0), (0, 0), (0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2)], [(0, 0), (0, 0), (2, 1), (4, 2), (4, 2), (4, 2), (4, 1)], [(0, 0), (0, 1), (0, 1), (0, 0), (0, 0), (0, 1), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 1), (0, 1), (0, 0), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 0), (2, 1), (2, 1)], [(0, 0), (2, 3), (0, 1), (2, 3), (0, 0), (0, 0), (0, 1), (0, 0), (6, 5), (4, 3), (6, 5)], [(0, 0), (2, 2), (0, 0), (2, 2), (1, 0), (1, 0), (0, 0), (1, 0), (4, 3), (2, 1), (5, 3)], [(0, 0), (3, 2), (1, 0), (3, 2), (2, 0), (2, 0), (1, 0), (2, 0), (3, 1), (7, 4), (5, 2), (7, 4), (5, 1)], [(0, 0), (0, 1), (4, 3), (2, 2), (2, 1), (4, 3), (7, 5), (7, 5), (7, 5)], [(0, 0), (1, 0), (4, 2), (2, 1), (6, 4), (6, 4), (3, 1), (5, 3), (7, 4), (7, 4), (3, 1), (6, 4), (7, 4), (4, 1), (8, 4), (8, 4), (5, 1), (4, 1), (8, 4), (6, 1)], [(0, 0), (0, 0), (3, 2), (4, 2), (5, 4), (5, 4), (4, 3), (6, 4), (6, 4), (4, 2), (5, 4), (6, 4), (9, 6), (9, 6), (9, 6)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (3, 6), (17, 20), (2, 6), (3, 6), (4, 6), (4, 6), (3, 6), (21, 23), (23, 24), (6, 7), (19, 20), (4, 6), (6, 7), (23, 23)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (3, 6), (17, 20), (2, 6), (3, 6), (4, 6), (4, 6), (3, 6), (21, 23), (23, 24), (6, 7), (19, 20), (4, 6), (6, 7), (23, 23)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (17, 20), (3, 6), (4, 6), (21, 23), (23, 24), (4, 5), (19, 20), (3, 6), (6, 7), (23, 23)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (15, 18), (14, 18), (17, 19), (17, 19), (16, 19), (19, 20), (18, 19), (18, 20), (20, 21), (21, 21), (3, 3), (20, 20), (2, 3), (22, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (15, 18), (14, 18), (17, 19), (17, 19), (16, 19), (19, 20), (18, 19), (18, 20), (20, 21), (21, 21), (20, 20), (22, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (16, 18), (15, 18), (7, 3), (7, 3), (7, 3), (18, 19), (18, 19), (17, 19), (20, 20), (19, 19), (19, 20), (21, 21), (22, 21), (4, 3), (21, 20), (3, 3), (23, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (16, 18), (15, 18), (6, 3), (7, 3), (6, 3), (18, 19), (18, 19), (17, 19), (20, 20), (19, 19), (19, 20), (21, 21), (22, 21), (21, 20), (23, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (4, 1), (5, 1), (5, 1), (4, 1), (17, 18), (16, 18), (7, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (19, 19), (19, 19), (18, 19), (10, 4), (10, 4), (10, 4), (21, 20), (20, 19), (20, 20), (22, 21), (23, 21), (5, 3), (22, 20), (4, 3), (24, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (17, 18), (16, 18), (6, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (19, 19), (19, 19), (18, 19), (10, 4), (10, 4), (10, 4), (21, 20), (20, 19), (20, 20), (22, 21), (23, 21), (22, 20), (24, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (4, 1), (5, 1), (5, 1), (4, 1), (5, 1), (6, 1), (6, 1), (5, 1), (18, 18), (17, 18), (7, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (8, 2), (8, 2), (7, 2), (8, 2), (20, 19), (20, 19), (19, 19), (10, 4), (10, 4), (9, 3), (11, 4), (11, 4), (10, 4), (11, 4), (22, 20), (21, 19), (21, 20), (13, 5), (13, 5), (13, 5), (23, 21), (24, 21), (6, 3), (23, 20), (5, 3), (25, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (18, 18), (17, 18), (6, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (8, 2), (8, 2), (7, 2), (20, 19), (20, 19), (19, 19), (10, 4), (10, 4), (9, 3), (11, 4), (11, 4), (10, 4), (11, 4), (22, 20), (21, 19), (21, 20), (13, 5), (13, 5), (13, 5), (23, 21), (24, 21), (23, 20), (25, 21)], [(0, 0), (4, 3), (2, 1), (4, 2), (15, 18), (14, 18), (8, 6), (6, 4), (7, 4), (7, 4), (8, 5), (7, 4), (17, 19), (17, 19), (16, 19), (12, 9), (10, 7), (11, 7), (11, 7), (12, 8), (11, 7), (19, 20), (19, 20), (18, 20), (16, 11), (14, 10), (15, 10), (15, 10), (16, 11), (15, 10), (21, 21), (20, 20), (20, 21), (19, 13), (19, 13), (19, 13), (22, 22), (23, 22), (5, 4), (22, 21), (4, 4), (24, 22)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 7 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 7.254239202 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.583221443 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 40 functions in Rational Field(e, rR, dr, d, g, r, a, T, Dd, S, R, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 130 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0), (1, 0), (0, 0), (0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (3, 2), (3, 2), (3, 2)], [(0, 0), (0, 0), (2, 1), (4, 2), (4, 2), (4, 2), (4, 1)], [(0, 0), (0, 1), (0, 1), (0, 0), (0, 0), (0, 1), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 1), (0, 1), (0, 0), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 0), (2, 1), (2, 1)], [(0, 0), (2, 3), (0, 1), (2, 3), (0, 0), (0, 0), (0, 1), (0, 0), (6, 5), (4, 3), (6, 5)], [(0, 0), (2, 2), (0, 0), (2, 2), (1, 0), (1, 0), (0, 0), (1, 0), (4, 3), (2, 1), (5, 3)], [(0, 0), (3, 2), (1, 0), (3, 2), (2, 0), (2, 0), (1, 0), (2, 0), (3, 1), (7, 4), (5, 2), (7, 4), (5, 1)], [(0, 0), (0, 1), (4, 3), (2, 2), (2, 1), (4, 3), (7, 5), (7, 5), (7, 5)], [(0, 0), (1, 0), (4, 2), (2, 1), (6, 4), (6, 4), (3, 1), (5, 3), (7, 4), (7, 4), (3, 1), (6, 4), (7, 4), (4, 1), (8, 4), (8, 4), (5, 1), (4, 1), (8, 4), (6, 1)], [(0, 0), (0, 0), (3, 2), (4, 2), (5, 4), (5, 4), (4, 3), (6, 4), (6, 4), (4, 2), (5, 4), (6, 4), (9, 6), (9, 6), (9, 6)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (3, 6), (17, 20), (2, 6), (3, 6), (4, 6), (4, 6), (3, 6), (21, 23), (23, 24), (6, 7), (19, 20), (4, 6), (6, 7), (23, 23)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (3, 6), (17, 20), (2, 6), (3, 6), (4, 6), (4, 6), (3, 6), (21, 23), (23, 24), (6, 7), (19, 20), (4, 6), (6, 7), (23, 23)], [(0, 0), (14, 18), (13, 18), (16, 19), (16, 19), (15, 19), (18, 20), (17, 19), (2, 6), (3, 6), (17, 20), (3, 6), (4, 6), (21, 23), (23, 24), (4, 5), (19, 20), (3, 6), (6, 7), (23, 23)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (15, 18), (14, 18), (17, 19), (17, 19), (16, 19), (19, 20), (18, 19), (18, 20), (20, 21), (21, 21), (3, 3), (20, 20), (2, 3), (22, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (15, 18), (14, 18), (17, 19), (17, 19), (16, 19), (19, 20), (18, 19), (18, 20), (20, 21), (21, 21), (20, 20), (22, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (16, 18), (15, 18), (7, 3), (7, 3), (7, 3), (18, 19), (18, 19), (17, 19), (20, 20), (19, 19), (19, 20), (21, 21), (22, 21), (4, 3), (21, 20), (3, 3), (23, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (16, 18), (15, 18), (6, 3), (7, 3), (6, 3), (18, 19), (18, 19), (17, 19), (20, 20), (19, 19), (19, 20), (21, 21), (22, 21), (21, 20), (23, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (4, 1), (5, 1), (5, 1), (4, 1), (17, 18), (16, 18), (7, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (19, 19), (19, 19), (18, 19), (10, 4), (10, 4), (10, 4), (21, 20), (20, 19), (20, 20), (22, 21), (23, 21), (5, 3), (22, 20), (4, 3), (24, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (17, 18), (16, 18), (6, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (19, 19), (19, 19), (18, 19), (10, 4), (10, 4), (10, 4), (21, 20), (20, 19), (20, 20), (22, 21), (23, 21), (22, 20), (24, 21)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (3, 1), (4, 1), (4, 1), (4, 2), (4, 1), (5, 1), (5, 1), (4, 1), (5, 1), (6, 1), (6, 1), (5, 1), (18, 18), (17, 18), (7, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (8, 2), (8, 2), (7, 2), (8, 2), (20, 19), (20, 19), (19, 19), (10, 4), (10, 4), (9, 3), (11, 4), (11, 4), (10, 4), (11, 4), (22, 20), (21, 19), (21, 20), (13, 5), (13, 5), (13, 5), (23, 21), (24, 21), (6, 3), (23, 20), (5, 3), (25, 21)], [(0, 0), (0, 0), (4, 2), (4, 2), (2, 1), (4, 2), (18, 18), (17, 18), (6, 3), (7, 3), (6, 2), (7, 2), (7, 2), (7, 3), (7, 2), (8, 2), (8, 2), (7, 2), (20, 19), (20, 19), (19, 19), (10, 4), (10, 4), (9, 3), (11, 4), (11, 4), (10, 4), (11, 4), (22, 20), (21, 19), (21, 20), (13, 5), (13, 5), (13, 5), (23, 21), (24, 21), (23, 20), (25, 21)], [(0, 0), (4, 3), (2, 1), (4, 2), (15, 18), (14, 18), (8, 6), (6, 4), (7, 4), (7, 4), (8, 5), (7, 4), (17, 19), (17, 19), (16, 19), (12, 9), (10, 7), (11, 7), (11, 7), (12, 8), (11, 7), (19, 20), (19, 20), (18, 20), (16, 11), (14, 10), (15, 10), (15, 10), (16, 11), (15, 10), (21, 21), (20, 20), (20, 21), (19, 13), (19, 13), (19, 13), (22, 22), (23, 22), (5, 4), (22, 21), (4, 4), (24, 22)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 768 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 21 for num. and 20 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 18.517239501 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.55741663 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 77 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 5.392659305 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 39 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 20503 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(e, rR, dr, d, g, r, a, T, Dd, S, R, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0), (1, 0), (0, 0), (0, 0), (1, 0), (2, 0)], [(0, 0), (2, 2), (3, 2), (3, 2), (2, 2), (1, 0), (4, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (2, 2), (3, 2), (3, 2)], [(0, 0), (0, 1), (1, 1), (1, 0), (1, 0), (5, 4), (1, 1), (5, 4), (6, 4)], [(0, 0), (0, 1), (1, 1), (2, 1), (2, 1), (5, 4), (1, 1), (2, 1), (5, 4), (6, 4)], [(0, 0), (0, 0), (3, 1), (3, 1), (1, 0), (3, 1), (3, 0)], [(0, 0), (5, 6), (5, 5), (6, 6), (7, 6), (7, 6), (4, 3), (6, 6), (7, 6), (7, 6), (8, 6)], [(0, 0), (5, 5), (6, 5), (6, 5), (8, 6), (8, 6), (4, 2), (6, 5), (8, 6), (7, 5), (8, 5)], [(0, 0), (4, 4), (4, 4), (5, 4), (5, 4), (6, 4)], [(0, 0), (5, 6), (5, 5), (6, 6), (7, 6), (7, 6), (7, 6), (6, 6), (7, 6), (10, 9), (11, 9)], [(0, 0), (5, 6), (5, 5), (6, 6), (7, 6), (7, 6), (7, 6), (6, 6), (7, 6), (10, 9), (11, 9)], [(0, 0), (5, 5), (6, 5), (6, 5), (8, 6), (8, 6), (4, 2), (6, 5), (8, 6), (7, 5), (8, 5)], [(0, 0), (0, 1), (0, 1), (0, 0), (0, 0), (0, 1), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 1), (0, 1), (0, 0), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 0), (2, 1), (2, 1)], [(0, 0), (2, 3), (0, 1), (2, 3), (0, 0), (0, 0), (0, 1), (0, 0), (6, 5), (4, 3), (6, 5)], [(0, 0), (2, 2), (0, 0), (2, 2), (1, 0), (1, 0), (0, 0), (1, 0), (4, 3), (2, 1), (5, 3)], [(0, 0), (3, 2), (1, 0), (3, 2), (2, 0), (2, 0), (1, 0), (2, 0), (3, 1), (7, 4), (5, 2), (7, 4), (5, 1)], [(0, 0), (2, 2), (2, 2), (3, 2), (3, 2), (2, 2), (3, 2), (1, 4), (5, 3), (5, 3), (5, 3), (2, 4), (3, 4)], [(0, 0), (1, 0), (6, 0), (6, 0), (2, 0), (3, 0)], [(0, 0), (7, 3), (7, 3), (7, 2), (7, 2), (7, 3), (7, 2), (1, 0), (3, 2), (10, 4), (10, 4), (10, 4), (2, 0), (4, 2), (5, 2)], [(0, 0), (9, 4), (9, 4), (9, 3), (9, 3), (9, 4), (9, 3), (3, 2), (5, 3), (12, 5), (12, 5), (12, 5), (7, 4), (6, 4), (8, 5), (11, 7)], [(0, 0), (8, 4), (8, 4), (8, 3), (8, 3), (8, 4), (8, 3), (1, 0), (4, 3), (11, 5), (11, 5), (11, 5), (2, 0), (5, 3), (6, 3)], [(0, 0), (9, 4), (9, 4), (9, 3), (9, 3), (9, 4), (9, 3), (3, 2), (5, 3), (12, 5), (12, 5), (12, 5), (6, 4), (7, 4), (8, 5), (11, 7)], [(0, 0), (1, 0), (1, 0), (5, 3), (1, 0), (5, 3), (2, 0), (6, 3), (2, 0), (6, 3), (6, 3), (7, 3)], [(0, 0), (1, 0), (4, 2), (1, 0), (5, 3), (5, 3), (1, 0), (4, 2), (6, 3), (6, 3), (5, 3), (6, 3), (3, 1), (3, 1), (3, 0), (7, 3), (7, 3), (4, 1), (8, 4), (5, 1), (6, 1)], [(0, 0), (2, 8), (2, 8), (5, 10), (5, 9), (5, 9), (5, 10), (5, 9), (6, 9), (6, 9), (5, 9), (4, 8), (4, 7), (4, 8), (5, 8), (7, 10), (8, 10), (8, 10), (5, 7), (7, 10), (8, 10), (6, 8), (10, 12), (13, 14)], [(0, 0), (2, 8), (2, 8), (5, 10), (5, 9), (5, 9), (5, 10), (5, 9), (6, 9), (6, 9), (5, 9), (3, 8), (4, 7), (4, 8), (5, 8), (6, 10), (8, 10), (8, 10), (5, 7), (7, 10), (8, 10), (6, 8), (10, 12), (13, 14)], [(0, 0), (2, 8), (5, 10), (5, 9), (5, 9), (6, 9), (4, 8), (4, 7), (3, 8), (5, 8), (7, 10), (8, 10), (4, 6), (5, 7), (6, 10), (8, 10), (6, 8), (10, 12), (13, 14)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (2, 5), (5, 7), (2, 5), (6, 8), (5, 7), (5, 6), (5, 6), (6, 7), (5, 7), (7, 8), (9, 10), (12, 12)], [(0, 0), (0, 0), (0, 0), (5, 3), (5, 3), (7, 4), (7, 4), (5, 3), (7, 4), (3, 5), (6, 7), (3, 5), (7, 8), (5, 6), (8, 4), (8, 4), (8, 4), (6, 7), (6, 6), (6, 6), (7, 7), (6, 7), (8, 8), (13, 13), (16, 15)], [(0, 0), (1, 0), (1, 0), (4, 3), (4, 2), (5, 7), (6, 8), (5, 3), (6, 3), (6, 3), (5, 3), (6, 3), (8, 6), (8, 5), (6, 7), (7, 8), (4, 6), (6, 7), (4, 6), (7, 8), (9, 6), (10, 6), (10, 6), (13, 9), (9, 6), (10, 6), (13, 9), (7, 8), (7, 7), (7, 7), (7, 7), (7, 8), (8, 8), (10, 10), (14, 9), (13, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 128 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 7 for num. and 4 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.602667353 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.239178708 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(e, rR, dr, d, g, r, a, T, Dd, S, R, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (1, 0), (1, 0), (0, 0), (0, 0), (1, 0), (2, 0)], [(0, 0), (2, 2), (3, 2), (3, 2), (2, 2), (1, 0), (4, 2)], [(0, 0), (3, 2), (2, 2), (3, 2)], [(0, 0), (2, 2), (3, 2), (3, 2)], [(0, 0), (0, 1), (1, 1), (1, 0), (1, 0), (5, 4), (1, 1), (5, 4), (6, 4)], [(0, 0), (0, 1), (1, 1), (2, 1), (2, 1), (5, 4), (1, 1), (2, 1), (5, 4), (6, 4)], [(0, 0), (0, 0), (3, 1), (3, 1), (1, 0), (3, 1), (3, 0)], [(0, 0), (5, 6), (5, 5), (6, 6), (7, 6), (7, 6), (4, 3), (6, 6), (7, 6), (7, 6), (8, 6)], [(0, 0), (5, 5), (6, 5), (6, 5), (8, 6), (8, 6), (4, 2), (6, 5), (8, 6), (7, 5), (8, 5)], [(0, 0), (4, 4), (4, 4), (5, 4), (5, 4), (6, 4)], [(0, 0), (5, 6), (5, 5), (6, 6), (7, 6), (7, 6), (7, 6), (6, 6), (7, 6), (10, 9), (11, 9)], [(0, 0), (5, 6), (5, 5), (6, 6), (7, 6), (7, 6), (7, 6), (6, 6), (7, 6), (10, 9), (11, 9)], [(0, 0), (5, 5), (6, 5), (6, 5), (8, 6), (8, 6), (4, 2), (6, 5), (8, 6), (7, 5), (8, 5)], [(0, 0), (0, 1), (0, 1), (0, 0), (0, 0), (0, 1), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 1), (0, 1), (0, 0), (4, 3), (4, 3), (4, 3)], [(0, 0), (0, 0), (2, 1), (2, 1)], [(0, 0), (2, 3), (0, 1), (2, 3), (0, 0), (0, 0), (0, 1), (0, 0), (6, 5), (4, 3), (6, 5)], [(0, 0), (2, 2), (0, 0), (2, 2), (1, 0), (1, 0), (0, 0), (1, 0), (4, 3), (2, 1), (5, 3)], [(0, 0), (3, 2), (1, 0), (3, 2), (2, 0), (2, 0), (1, 0), (2, 0), (3, 1), (7, 4), (5, 2), (7, 4), (5, 1)], [(0, 0), (2, 2), (2, 2), (3, 2), (3, 2), (2, 2), (3, 2), (1, 4), (5, 3), (5, 3), (5, 3), (2, 4), (3, 4)], [(0, 0), (1, 0), (6, 0), (6, 0), (2, 0), (3, 0)], [(0, 0), (7, 3), (7, 3), (7, 2), (7, 2), (7, 3), (7, 2), (1, 0), (3, 2), (10, 4), (10, 4), (10, 4), (2, 0), (4, 2), (5, 2)], [(0, 0), (9, 4), (9, 4), (9, 3), (9, 3), (9, 4), (9, 3), (3, 2), (5, 3), (12, 5), (12, 5), (12, 5), (7, 4), (6, 4), (8, 5), (11, 7)], [(0, 0), (8, 4), (8, 4), (8, 3), (8, 3), (8, 4), (8, 3), (1, 0), (4, 3), (11, 5), (11, 5), (11, 5), (2, 0), (5, 3), (6, 3)], [(0, 0), (9, 4), (9, 4), (9, 3), (9, 3), (9, 4), (9, 3), (3, 2), (5, 3), (12, 5), (12, 5), (12, 5), (6, 4), (7, 4), (8, 5), (11, 7)], [(0, 0), (1, 0), (1, 0), (5, 3), (1, 0), (5, 3), (2, 0), (6, 3), (2, 0), (6, 3), (6, 3), (7, 3)], [(0, 0), (1, 0), (4, 2), (1, 0), (5, 3), (5, 3), (1, 0), (4, 2), (6, 3), (6, 3), (5, 3), (6, 3), (3, 1), (3, 1), (3, 0), (7, 3), (7, 3), (4, 1), (8, 4), (5, 1), (6, 1)], [(0, 0), (2, 8), (2, 8), (5, 10), (5, 9), (5, 9), (5, 10), (5, 9), (6, 9), (6, 9), (5, 9), (4, 8), (4, 7), (4, 8), (5, 8), (7, 10), (8, 10), (8, 10), (5, 7), (7, 10), (8, 10), (6, 8), (10, 12), (13, 14)], [(0, 0), (2, 8), (2, 8), (5, 10), (5, 9), (5, 9), (5, 10), (5, 9), (6, 9), (6, 9), (5, 9), (3, 8), (4, 7), (4, 8), (5, 8), (6, 10), (8, 10), (8, 10), (5, 7), (7, 10), (8, 10), (6, 8), (10, 12), (13, 14)], [(0, 0), (2, 8), (5, 10), (5, 9), (5, 9), (6, 9), (4, 8), (4, 7), (3, 8), (5, 8), (7, 10), (8, 10), (4, 6), (5, 7), (6, 10), (8, 10), (6, 8), (10, 12), (13, 14)], [(0, 0), (0, 0), (0, 0), (4, 2), (4, 2), (4, 2), (2, 5), (5, 7), (2, 5), (6, 8), (5, 7), (5, 6), (5, 6), (6, 7), (5, 7), (7, 8), (9, 10), (12, 12)], [(0, 0), (0, 0), (0, 0), (5, 3), (5, 3), (7, 4), (7, 4), (5, 3), (7, 4), (3, 5), (6, 7), (3, 5), (7, 8), (5, 6), (8, 4), (8, 4), (8, 4), (6, 7), (6, 6), (6, 6), (7, 7), (6, 7), (8, 8), (13, 13), (16, 15)], [(0, 0), (1, 0), (1, 0), (4, 3), (4, 2), (5, 7), (6, 8), (5, 3), (6, 3), (6, 3), (5, 3), (6, 3), (8, 6), (8, 5), (6, 7), (7, 8), (4, 6), (6, 7), (4, 6), (7, 8), (9, 6), (10, 6), (10, 6), (13, 9), (9, 6), (10, 6), (13, 9), (7, 8), (7, 7), (7, 7), (7, 7), (7, 8), (8, 8), (10, 10), (14, 9), (13, 12)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 768 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 22 for num. and 12 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 17.485951044 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.258554688 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 64 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (12 in total): Nemo.fmpq_mpoly[e, rR, dr, d, g, r, a, T, Dd, S, R, W] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 445 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 391 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 445 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 391 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 6 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 445 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 391 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 6 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 4.585626485 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 11 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 1880402 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 66.673686232 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[Dd, T, S + R, rR*R - dr*T*R - d*T*S + r*S, e - rR + dr*T + d*T + g - r + a*T, (rR*d - dr*r)//(dr - d), (dr*R + d*S)//(dr + d + a), (dr*d + dr*a)//(dr^2 + d^2 + 2*d*a + a^2), (dr*T - dr*W - d*T + d*W)//(rR - dr*T + d*T - r), (e*dr^2*g - 2*e*dr*d*g - e*dr*g*a + e*d^2*g + e*d*g*a + rR*dr*g*a - rR*d*g*a - rR*g*a^2 - dr*g^2*a - dr*g*r*a + d*g^2*a + d*g*r*a + g*r*a^2)//(dr^2*S*R - 2*dr*d*S*R - dr*a*S^2 - dr*a*S*R + d^2*S*R + d*a*S^2 + d*a*S*R), (e*dr^2*S - 2*e*dr*d*S - e*dr*a*S + e*d^2*S + e*d*a*S + rR*dr*a*S - rR*d*a*S - rR*a^2*S + dr^2*g*R - 2*dr*d*g*R - 2*dr*g*a*S - dr*g*a*R - dr*r*a*S + d^2*g*R + 2*d*g*a*S + d*g*a*R + d*r*a*S + r*a^2*S)//(dr^2*S*R - 2*dr*d*S*R - dr*a*S^2 - dr*a*S*R + d^2*S*R + d*a*S^2 + d*a*S*R)] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/St/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/St/timings_(:gb,) deleted file mode 100644 index 90525293a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/St/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -St -id_total, 34.658718777 diff --git a/benchmarking/IdentifiableFunctions/systems/St/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/St/timings_(:gb,)_with_states deleted file mode 100644 index 8aa495a07..000000000 --- a/benchmarking/IdentifiableFunctions/systems/St/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -St -id_total, 62.670267842 diff --git a/benchmarking/IdentifiableFunctions/systems/St/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/St/timings_(:normalforms, 2) deleted file mode 100644 index cc4a91374..000000000 --- a/benchmarking/IdentifiableFunctions/systems/St/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -St -id_total, 36.027232722 diff --git a/benchmarking/IdentifiableFunctions/systems/St/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/St/timings_(:normalforms, 2)_with_states deleted file mode 100644 index 736350d60..000000000 --- a/benchmarking/IdentifiableFunctions/systems/St/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -St -id_total, 64.058846731 diff --git a/benchmarking/IdentifiableFunctions/systems/St/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/St/timings_(:normalforms, 3) deleted file mode 100644 index 71d427f6f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/St/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -St -id_total, 36.401344357 diff --git a/benchmarking/IdentifiableFunctions/systems/St/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/St/timings_(:normalforms, 3)_with_states deleted file mode 100644 index 137cec5b7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/St/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -St -id_total, 66.673686232 diff --git a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Transfection_4State/id_funcs_(:gb,) deleted file mode 100644 index 652f6fe00..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/id_funcs_(:gb,) +++ /dev/null @@ -1,4 +0,0 @@ -[d3, -d1, -b, -d2//kTL] diff --git a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Transfection_4State/id_funcs_(:gb,)_with_states deleted file mode 100644 index 39d65b0df..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,8 +0,0 @@ -[GFP, -d3, -d1, -b, -kTL*mRNA, -kTL*enz, -kTL*mRNAenz, -d2//kTL] diff --git a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Transfection_4State/id_funcs_(:hybrid,) deleted file mode 100644 index 652f6fe00..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/id_funcs_(:hybrid,) +++ /dev/null @@ -1,4 +0,0 @@ -[d3, -d1, -b, -d2//kTL] diff --git a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Transfection_4State/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index a5ec20978..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,8 +0,0 @@ -[GFP, -d3, -d1, -b, -d2*mRNA, -d2*enz, -d2*mRNAenz, -kTL*mRNA] diff --git a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Transfection_4State/id_funcs_(:normalforms, 2) deleted file mode 100644 index 652f6fe00..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,4 +0,0 @@ -[d3, -d1, -b, -d2//kTL] diff --git a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Transfection_4State/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index a5ec20978..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,8 +0,0 @@ -[GFP, -d3, -d1, -b, -d2*mRNA, -d2*enz, -d2*mRNAenz, -kTL*mRNA] diff --git a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Transfection_4State/id_funcs_(:normalforms, 3) deleted file mode 100644 index 652f6fe00..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,4 +0,0 @@ -[d3, -d1, -b, -d2//kTL] diff --git a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Transfection_4State/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index a5ec20978..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,8 +0,0 @@ -[GFP, -d3, -d1, -b, -d2*mRNA, -d2*enz, -d2*mRNAenz, -kTL*mRNA] diff --git a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Transfection_4State/logs_(:gb,) deleted file mode 100644 index 507b37ef1..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/logs_(:gb,) +++ /dev/null @@ -1,84 +0,0 @@ -┌ Info: Processing Transfection_4State -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.01072211 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.01072211 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.009720766 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.009720766 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [18] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.9538e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.9538e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 28 functions in Rational Field(b, kTL, d2, d1, d3)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.241907671 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.130111132 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.927128124 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 27 initial generators there are 4 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 37 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 7.42105372 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[d3, d1, b, d2//kTL] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Transfection_4State/logs_(:gb,)_with_states deleted file mode 100644 index bc73a759e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/logs_(:gb,)_with_states +++ /dev/null @@ -1,135 +0,0 @@ -┌ Info: Processing Transfection_4State -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.010776091 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.010776091 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.009075646 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.009075646 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [18] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.89e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.89e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 28 functions in Rational Field(b, kTL, d2, d1, d3, mRNAenz, enz, GFP, mRNA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.857513729 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002827636 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002768414 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 27 initial generators there are 4 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 37 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, kTL, d2, d1, d3, mRNAenz, enz, GFP, mRNA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.015774312 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.041227254 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.004577606 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 9 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 72 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 1.101186896 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[GFP, d3, d1, b, kTL*mRNA, kTL*enz, kTL*mRNAenz, d2//kTL] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Transfection_4State/logs_(:hybrid,) deleted file mode 100644 index d8ca932b9..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/logs_(:hybrid,) +++ /dev/null @@ -1,549 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing Transfection_4State -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.010982593 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.010982593 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.010195039 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.010195039 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [18] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 6.0158e-5 seconds -│ :rank_time = rank_time -│ rank_times = 6.0158e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 28 functions in Rational Field(b, kTL, d2, d1, d3)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.375507666 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.334065694 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (5 in total): Nemo.fmpq_mpoly[b, kTL, d2, d1, d3] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 36 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 33 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 36 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 33 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 36 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 33 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y2, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(b, kTL, d2, d1, d3)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.008978063 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001177134 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t, y4], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y2, y3], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(b, kTL, d2, d1, d3)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.008436198 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001721386 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y3, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y1, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(b, kTL, d2, d1, d3)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.007820261 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001769436 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y5, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, t, y3], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(b, kTL, d2, d1, d3)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.008436804 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001605221 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, t, y1], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y2, y5], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(b, kTL, d2, d1, d3)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.007664001 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001621533 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y1, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y4, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(b, kTL, d2, d1, d3)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.007731121 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001649411 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y4, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y5, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(b, kTL, d2, d1, d3)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.01049877 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001505199 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y2, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y5, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(b, kTL, d2, d1, d3)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009717893 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001621726 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y4, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y2, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(b, kTL, d2, d1, d3)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.100714724 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00118291 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y4, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(b, kTL, d2, d1, d3)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.008876285 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001187524 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.864570935 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 27 initial generators there are 4 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 37 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 8.583632401 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[d3, d1, b, d2//kTL] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Transfection_4State/logs_(:hybrid,)_with_states deleted file mode 100644 index b015b176c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,600 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing Transfection_4State -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.010779532 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.010779532 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.009273673 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.009273673 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [18] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 7.9596e-5 seconds -│ :rank_time = rank_time -│ rank_times = 7.9596e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 28 functions in Rational Field(b, kTL, d2, d1, d3, mRNAenz, enz, GFP, mRNA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.777267083 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002208148 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002920972 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 27 initial generators there are 4 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 37 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, kTL, d2, d1, d3, mRNAenz, enz, GFP, mRNA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.016188219 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002318759 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (9 in total): Nemo.fmpq_mpoly[b, kTL, d2, d1, d3, mRNAenz, enz, GFP, mRNA] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 185 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 179 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 185 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 179 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 30 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 185 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 179 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 30 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, t, y5, y4, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y1, y8, y6, y9], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(b, kTL, d2, d1, d3, mRNAenz, enz, GFP, mRNA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.01496943 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002245126 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y4, y6, y1, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y7, y9, y3, y5], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(b, kTL, d2, d1, d3, mRNAenz, enz, GFP, mRNA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 2), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.014615162 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001804486 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y6, y1, y3, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, t, y9, y5, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(b, kTL, d2, d1, d3, mRNAenz, enz, GFP, mRNA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.066273031 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002004551 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y6, y7, y3, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y1, y2, y8, y9], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(b, kTL, d2, d1, d3, mRNAenz, enz, GFP, mRNA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 2), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.014698848 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001846226 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y9, y3, y4, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y6, y7, y2, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(b, kTL, d2, d1, d3, mRNAenz, enz, GFP, mRNA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013517336 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001893513 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y3, y9, y7, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y4, t, y1, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(b, kTL, d2, d1, d3, mRNAenz, enz, GFP, mRNA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.061710203 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00187065 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y6, y5, y3, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y2, y8, y9, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(b, kTL, d2, d1, d3, mRNAenz, enz, GFP, mRNA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 2), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013451421 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001811765 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y3, y5, y4, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y9, t, y1, y2], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(b, kTL, d2, d1, d3, mRNAenz, enz, GFP, mRNA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.012686331 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001755321 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y7, y5, y6, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y2, y3, y1, y8], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(b, kTL, d2, d1, d3, mRNAenz, enz, GFP, mRNA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.059677602 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002563214 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, t, y7, y9, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y5, y3, y1, y2], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(b, kTL, d2, d1, d3, mRNAenz, enz, GFP, mRNA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 1)], [(0, 2), (0, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.016366322 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002212805 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.003044102 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 9 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 46 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 2.00963986 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[GFP, d3, d1, b, d2*mRNA, d2*enz, d2*mRNAenz, kTL*mRNA] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Transfection_4State/logs_(:normalforms, 2) deleted file mode 100644 index 5b5f8c228..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/logs_(:normalforms, 2) +++ /dev/null @@ -1,113 +0,0 @@ -┌ Info: Processing Transfection_4State -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.010026787 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.010026787 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.009459365 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.009459365 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [18] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.8491e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.8491e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 28 functions in Rational Field(b, kTL, d2, d1, d3)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 3.976486737 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.135967565 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (5 in total): Nemo.fmpq_mpoly[b, kTL, d2, d1, d3] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 11 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 9 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 11 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 9 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 11 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 9 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.680952402 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 27 initial generators there are 4 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 37 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 7.487224705 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[d3, d1, b, d2//kTL] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Transfection_4State/logs_(:normalforms, 2)_with_states deleted file mode 100644 index 6c43fe749..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,164 +0,0 @@ -┌ Info: Processing Transfection_4State -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.010261059 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.010261059 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.00958054 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.00958054 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [18] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.6656e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.6656e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 28 functions in Rational Field(b, kTL, d2, d1, d3, mRNAenz, enz, GFP, mRNA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.814205904 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002630708 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.003344582 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 27 initial generators there are 4 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 37 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, kTL, d2, d1, d3, mRNAenz, enz, GFP, mRNA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.054884057 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002349564 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (9 in total): Nemo.fmpq_mpoly[b, kTL, d2, d1, d3, mRNAenz, enz, GFP, mRNA] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 40 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 36 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 40 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 36 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 6 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 40 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 36 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 6 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.024105483 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 9 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 46 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 1.273388802 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[GFP, d3, d1, b, d2*mRNA, d2*enz, d2*mRNAenz, kTL*mRNA] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Transfection_4State/logs_(:normalforms, 3) deleted file mode 100644 index 6ba5fd913..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/logs_(:normalforms, 3) +++ /dev/null @@ -1,113 +0,0 @@ -┌ Info: Processing Transfection_4State -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.009869029 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.009869029 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.009283594 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.009283594 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [18] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.9222e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.9222e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 28 functions in Rational Field(b, kTL, d2, d1, d3)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.211622569 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.185222145 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (5 in total): Nemo.fmpq_mpoly[b, kTL, d2, d1, d3] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 36 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 33 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 36 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 33 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 36 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 33 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.744501669 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 27 initial generators there are 4 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 37 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 7.863583179 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[d3, d1, b, d2//kTL] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Transfection_4State/logs_(:normalforms, 3)_with_states deleted file mode 100644 index 256a00dc2..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,164 +0,0 @@ -┌ Info: Processing Transfection_4State -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.060123342 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.060123342 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.009719594 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.009719594 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [18] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 6.2435e-5 seconds -│ :rank_time = rank_time -│ rank_times = 6.2435e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 28 functions in Rational Field(b, kTL, d2, d1, d3, mRNAenz, enz, GFP, mRNA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.775671233 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.071499038 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.003187643 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 27 initial generators there are 4 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 37 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, kTL, d2, d1, d3, mRNAenz, enz, GFP, mRNA)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.061052322 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002484433 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (9 in total): Nemo.fmpq_mpoly[b, kTL, d2, d1, d3, mRNAenz, enz, GFP, mRNA] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 185 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 179 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 185 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 179 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 30 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 185 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 179 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 30 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.003641778 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 9 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 46 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 1.455657056 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[GFP, d3, d1, b, d2*mRNA, d2*enz, d2*mRNAenz, kTL*mRNA] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Transfection_4State/timings_(:gb,) deleted file mode 100644 index 9724eaadd..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -Transfection_4State -id_total, 7.42105372 diff --git a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Transfection_4State/timings_(:gb,)_with_states deleted file mode 100644 index 368c42d5a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Transfection_4State -id_total, 1.101186896 diff --git a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Transfection_4State/timings_(:hybrid,) deleted file mode 100644 index b51fcc678..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -Transfection_4State -id_total, 8.583632401 diff --git a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Transfection_4State/timings_(:hybrid,)_with_states deleted file mode 100644 index 38a0573dc..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Transfection_4State -id_total, 2.00963986 diff --git a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Transfection_4State/timings_(:normalforms, 2) deleted file mode 100644 index e54f57854..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -Transfection_4State -id_total, 7.487224705 diff --git a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Transfection_4State/timings_(:normalforms, 2)_with_states deleted file mode 100644 index f7466bc95..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Transfection_4State -id_total, 1.273388802 diff --git a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Transfection_4State/timings_(:normalforms, 3) deleted file mode 100644 index 4880bbe7e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -Transfection_4State -id_total, 7.863583179 diff --git a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Transfection_4State/timings_(:normalforms, 3)_with_states deleted file mode 100644 index fc1ef9358..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Transfection_4State/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Transfection_4State -id_total, 1.455657056 diff --git a/benchmarking/IdentifiableFunctions/systems/Treatment_io/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Treatment_io/id_funcs_(:gb,) deleted file mode 100644 index bd6adaad5..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Treatment_io/id_funcs_(:gb,) +++ /dev/null @@ -1,4 +0,0 @@ -[nu + d*g, -nu*g + nu*a, -nu + g + a, -b//g] diff --git a/benchmarking/IdentifiableFunctions/systems/Treatment_io/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Treatment_io/id_funcs_(:gb,)_with_states deleted file mode 100644 index 79a990aec..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Treatment_io/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,8 +0,0 @@ -[N, -Tr, -g*N^2*S, -nu*g + nu*a, -nu + g + a, -g*Tr + g*In + a*Tr, -b//g, -(d*g*Tr*N^2 + g*N^2*In)//Tr] diff --git a/benchmarking/IdentifiableFunctions/systems/Treatment_io/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Treatment_io/id_funcs_(:hybrid,) deleted file mode 100644 index e1a4df212..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Treatment_io/id_funcs_(:hybrid,) +++ /dev/null @@ -1,4 +0,0 @@ -[nu + d*g, -nu*g + nu*a, -nu + g + a, -g//b] diff --git a/benchmarking/IdentifiableFunctions/systems/Treatment_io/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Treatment_io/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index c6d08e745..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Treatment_io/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,8 +0,0 @@ -[N, -Tr, -g*S, -b*S, -nu + d*g, -nu*Tr - g*In, -nu*g + nu*a, -nu + g + a] diff --git a/benchmarking/IdentifiableFunctions/systems/Treatment_io/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Treatment_io/id_funcs_(:normalforms, 2) deleted file mode 100644 index bd6adaad5..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Treatment_io/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,4 +0,0 @@ -[nu + d*g, -nu*g + nu*a, -nu + g + a, -b//g] diff --git a/benchmarking/IdentifiableFunctions/systems/Treatment_io/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Treatment_io/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index f8fa8075a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Treatment_io/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,8 +0,0 @@ -[N, -Tr, -g*S, -b*S, -nu*g + nu*a, -nu + g + a, -g*Tr + g*In + a*Tr, -(d*g*Tr*N^2 + g*N^2*In)//Tr] diff --git a/benchmarking/IdentifiableFunctions/systems/Treatment_io/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Treatment_io/id_funcs_(:normalforms, 3) deleted file mode 100644 index bd6adaad5..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Treatment_io/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,4 +0,0 @@ -[nu + d*g, -nu*g + nu*a, -nu + g + a, -b//g] diff --git a/benchmarking/IdentifiableFunctions/systems/Treatment_io/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Treatment_io/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index f8fa8075a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Treatment_io/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,8 +0,0 @@ -[N, -Tr, -g*S, -b*S, -nu*g + nu*a, -nu + g + a, -g*Tr + g*In + a*Tr, -(d*g*Tr*N^2 + g*N^2*In)//Tr] diff --git a/benchmarking/IdentifiableFunctions/systems/Treatment_io/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Treatment_io/logs_(:gb,) deleted file mode 100644 index e073340cf..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Treatment_io/logs_(:gb,) +++ /dev/null @@ -1,84 +0,0 @@ -┌ Info: Processing Treatment_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.282285741 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.282285741 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.014242895 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.014242895 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [10, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.7974e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.7974e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(b, nu, d, g, a)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 0), (2, 0), (0, 0)], [(0, 0), (0, 0)], [(0, 0), (2, 0), (0, 0), (0, 0), (4, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (2, 0)], [(0, 0), (2, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 4 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.096719203 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.131172161 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.034562504 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 4 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 62 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 9.705872242 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[nu + d*g, nu*g + nu*a, nu + g + a, b//g] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Treatment_io/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Treatment_io/logs_(:gb,)_with_states deleted file mode 100644 index 9954b6aef..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Treatment_io/logs_(:gb,)_with_states +++ /dev/null @@ -1,211 +0,0 @@ -┌ Info: Processing Treatment_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.343677008 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.343677008 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.015855489 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.015855489 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [10, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.3843e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.3843e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(b, nu, d, g, a, Tr, N, S, In)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 0), (2, 0), (0, 0)], [(0, 0), (0, 0)], [(0, 0), (2, 0), (0, 0), (0, 0), (4, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (2, 0)], [(0, 0), (2, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 4 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.949249968 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003814865 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.007121842 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 4 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 62 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, nu, d, g, a, Tr, N, S, In)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 1), (5, 1)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 3), (2, 1), (0, 2)], [(0, 0), (0, 2)], [(0, 0), (4, 0), (8, 0)], [(0, 0), (1, 0), (1, 0), (2, 1), (6, 1), (2, 0)], [(0, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.068432929 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.078223601 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, nu, d, g, a, Tr, N, S, In)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 1), (5, 1)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 3), (2, 1), (0, 2)], [(0, 0), (0, 2)], [(0, 0), (4, 0), (8, 0)], [(0, 0), (1, 0), (1, 0), (2, 1), (6, 1), (2, 0)], [(0, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 80 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 4 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.08045657 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.083574566 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (8, 8) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, nu, d, g, a, Tr, N, S, In)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 1), (5, 1)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 3), (2, 1), (0, 2)], [(0, 0), (0, 2)], [(0, 0), (4, 0), (8, 0)], [(0, 0), (1, 0), (1, 0), (2, 1), (6, 1), (2, 0)], [(0, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 8, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 104 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 8 for num. and 3 for den. -│ Maximal number of interpolated terms are: 4 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.149371355 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003755534 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 21 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.036153947 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 9 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 182 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.071315332 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[N, Tr, g*N^2*S, nu*g + nu*a, nu + g + a, g*Tr + g*In + a*Tr, b//g, (d*g*Tr*N^2 + g*N^2*In)//Tr] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Treatment_io/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Treatment_io/logs_(:hybrid,) deleted file mode 100644 index b3a8e5bcd..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Treatment_io/logs_(:hybrid,) +++ /dev/null @@ -1,549 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing Treatment_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.426618115 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.426618115 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.015188663 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.015188663 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [10, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 6.5847e-5 seconds -│ :rank_time = rank_time -│ rank_times = 6.5847e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(b, nu, d, g, a)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 0), (2, 0), (0, 0)], [(0, 0), (0, 0)], [(0, 0), (2, 0), (0, 0), (0, 0), (4, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (2, 0)], [(0, 0), (2, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 4 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.138888186 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.186921152 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (5 in total): Nemo.fmpq_mpoly[b, nu, d, g, a] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 55 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 27 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 55 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 27 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 2 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 55 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 27 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 2 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y5, y3], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y1, y4], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(b, nu, d, g, a)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 4), (2, 4), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 56 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.027203193 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001513911 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y4, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(b, nu, d, g, a)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (2, 0), (0, 0)], [(0, 4), (2, 4), (0, 0)], [(0, 0), (2, 0), (4, 0), (2, 0), (4, 0)], [(0, 0), (0, 0), (2, 0), (4, 0), (2, 0)], [(0, 0), (2, 0), (0, 0), (0, 0), (4, 0), (2, 0)], [(1, 1), (0, 0), (3, 1), (1, 1), (4, 0), (3, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 4 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.043066099 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.084654234 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y1, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y5, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(b, nu, d, g, a)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (2, 0)], [(0, 0), (1, 1)], [(0, 4), (2, 4), (0, 4), (0, 4), (0, 0), (2, 4)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 56 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.032461726 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001486702 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y2, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y4, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(b, nu, d, g, a)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (0, 0)], [(0, 0), (0, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (2, 0)], [(0, 0), (2, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 4 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.02573417 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001307622 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 6 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y4, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(b, nu, d, g, a)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (2, 0)], [(0, 0), (2, 0), (4, 0)], [(0, 0), (2, 0), (4, 0)], [(0, 0), (0, 0), (2, 0), (0, 0)], [(0, 0), (0, 0), (2, 0), (4, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1), (1, 1), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 4 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.032989476 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001558866 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y5, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y1, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(b, nu, d, g, a)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (2, 0), (4, 0)], [(1, 1), (0, 0)], [(1, 1), (1, 1), (0, 0), (2, 0)], [(1, 1), (0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 4 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.120794977 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001387983 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y5, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y3, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(b, nu, d, g, a)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (2, 0), (4, 0)], [(1, 1), (0, 0), (2, 0)], [(1, 1), (1, 1), (0, 0), (2, 0)], [(1, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 4 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.026272697 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001408555 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y2, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y4, y1], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(b, nu, d, g, a)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(1, 1), (0, 0)], [(0, 0), (3, 1), (5, 1)], [(1, 1), (1, 1), (0, 0), (2, 0)], [(1, 1), (0, 0), (2, 0)], [(0, 4), (2, 4), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.029332167 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001480985 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 5 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, t, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y1, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(b, nu, d, g, a)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(1, 1), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1), (2, 2), (2, 1), (3, 2), (4, 2)], [(0, 0), (0, 0), (1, 1), (3, 1)], [(0, 0), (1, 1), (1, 0), (0, 0), (3, 1), (2, 0), (2, 0), (3, 0)], [(0, 4), (0, 4), (2, 4), (0, 4), (0, 0), (2, 4)], [(1, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.130510233 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001808031 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y3, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y1, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 5 functions in Rational Field(b, nu, d, g, a)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1), (2, 2), (2, 1), (3, 2), (4, 2)], [(0, 0), (1, 1)], [(0, 0), (1, 0), (1, 1), (0, 0), (2, 0), (1, 0)], [(1, 1), (0, 0), (0, 0), (1, 0)], [(0, 0), (0, 0), (2, 0), (0, 0)], [(1, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 56 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.038352146 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001941578 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 12 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.845260406 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 4 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 62 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.984763736 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[nu + d*g, nu*g + nu*a, nu + g + a, g//b] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Treatment_io/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Treatment_io/logs_(:hybrid,)_with_states deleted file mode 100644 index 750928da7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Treatment_io/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,676 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing Treatment_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.151658975 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.151658975 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.013771263 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.013771263 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [10, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.8685e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.8685e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(b, nu, d, g, a, Tr, N, S, In)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 0), (2, 0), (0, 0)], [(0, 0), (0, 0)], [(0, 0), (2, 0), (0, 0), (0, 0), (4, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (2, 0)], [(0, 0), (2, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 4 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.838249458 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003032463 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.005878626 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 4 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 62 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, nu, d, g, a, Tr, N, S, In)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 1), (5, 1)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 3), (2, 1), (0, 2)], [(0, 0), (0, 2)], [(0, 0), (4, 0), (8, 0)], [(0, 0), (1, 0), (1, 0), (2, 1), (6, 1), (2, 0)], [(0, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.064679414 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.082778897 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, nu, d, g, a, Tr, N, S, In)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 1), (5, 1)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 3), (2, 1), (0, 2)], [(0, 0), (0, 2)], [(0, 0), (4, 0), (8, 0)], [(0, 0), (1, 0), (1, 0), (2, 1), (6, 1), (2, 0)], [(0, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 80 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 4 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.161111857 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003454209 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (8, 8) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, nu, d, g, a, Tr, N, S, In)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 1), (5, 1)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 3), (2, 1), (0, 2)], [(0, 0), (0, 2)], [(0, 0), (4, 0), (8, 0)], [(0, 0), (1, 0), (1, 0), (2, 1), (6, 1), (2, 0)], [(0, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 8, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 104 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 8 for num. and 3 for den. -│ Maximal number of interpolated terms are: 4 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.216818952 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003587965 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 21 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (9 in total): Nemo.fmpq_mpoly[b, nu, d, g, a, Tr, N, S, In] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 210 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 198 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 210 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 198 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 7 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 210 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 198 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 7 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y1, y3, y7, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y8, y4, y9, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, nu, d, g, a, Tr, N, S, In)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (3, 2), (2, 1)], [(0, 0), (2, 0)], [(0, 0), (3, 3), (3, 3)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (1, 0), (2, 0)], [(0, 3), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2), (0, 1)], [(0, 0), (1, 1)], [(0, 0), (0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.053386073 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002648394 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y2, y8, y1, y9], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y4, y5, t, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, nu, d, g, a, Tr, N, S, In)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 1), (2, 0), (0, 1)], [(0, 0), (0, 1)], [(0, 0), (2, 0), (0, 0), (0, 0), (5, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (2, 0)], [(0, 0), (3, 0), (6, 0)], [(1, 0), (0, 0), (4, 0)], [(0, 0), (1, 1)], [(0, 0), (3, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.19839662 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004824404 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y9, y3, y4, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y1, y5, y7, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, nu, d, g, a, Tr, N, S, In)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 1), (1, 1), (2, 1)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (1, 0), (0, 1)], [(0, 0), (3, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(1, 0), (0, 0), (3, 0)], [(2, 0), (0, 0), (3, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.121144956 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002285145 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y3, y1, y9, y7], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y5, y8, t, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, nu, d, g, a, Tr, N, S, In)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (3, 0)], [(0, 0), (0, 1)], [(0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (1, 0), (0, 1), (0, 1), (2, 0), (1, 1)], [(0, 0), (1, 0)], [(2, 0), (0, 0), (3, 0), (1, 0)], [(0, 0), (1, 1)], [(1, 0), (0, 0), (3, 0), (0, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.050948072 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.071526775 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y5, y7, y6, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y3, y8, y9, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, nu, d, g, a, Tr, N, S, In)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 2), (0, 1)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (3, 2), (2, 1)], [(0, 0), (2, 1), (2, 1)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (3, 3), (3, 3)], [(0, 0), (2, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 3), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.140800857 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003041129 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y3, t, y8, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y5, y4, y2, y9], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, nu, d, g, a, Tr, N, S, In)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (1, 0)], [(2, 3), (0, 0), (3, 3)], [(0, 4), (2, 5), (0, 0)], [(2, 3), (0, 0), (3, 3)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.095860139 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002325856 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, t, y3, y6, y9], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y4, y7, y8, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, nu, d, g, a, Tr, N, S, In)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (2, 0)], [(1, 2), (2, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0), (2, 2)], [(0, 3), (0, 0)], [(0, 0), (0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 56 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.103519856 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002442195 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y4, y3, t, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y9, y7, y2, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, nu, d, g, a, Tr, N, S, In)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (1, 0), (1, 0), (2, 0)], [(2, 3), (0, 0), (3, 3)], [(0, 4), (2, 5), (0, 0)], [(2, 3), (0, 0), (3, 3)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1), (1, 1), (2, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.061782574 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.060924023 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y9, y5, y7, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y8, y6, y1, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, nu, d, g, a, Tr, N, S, In)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 1), (3, 1)], [(0, 0), (2, 0), (3, 1)], [(0, 0), (2, 0)], [(3, 3), (3, 3), (0, 0)], [(0, 0), (2, 0), (2, 0)], [(0, 0), (1, 0), (2, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0), (0, 0), (1, 0)], [(1, 0), (2, 1), (0, 0)], [(0, 3), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.07539375 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003686689 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 14 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y8, y6, y4, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y7, y1, y3, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, nu, d, g, a, Tr, N, S, In)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0), (2, 0)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (3, 2), (3, 2)], [(0, 0), (1, 1), (3, 1)], [(0, 0), (2, 1), (3, 1)], [(3, 3), (3, 3), (0, 0)], [(0, 3), (0, 4), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(2, 2), (0, 0), (1, 2)], [(1, 1), (0, 0), (0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.111606195 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002370536 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 11 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.009040782 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 9 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 79 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 5.687387192 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[N, Tr, g*S, b*S, nu + d*g, nu*Tr - g*In, nu*g + nu*a, nu + g + a] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Treatment_io/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Treatment_io/logs_(:normalforms, 2) deleted file mode 100644 index 453e08801..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Treatment_io/logs_(:normalforms, 2) +++ /dev/null @@ -1,113 +0,0 @@ -┌ Info: Processing Treatment_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.255409895 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.255409895 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.014342196 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.014342196 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [10, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 6.5187e-5 seconds -│ :rank_time = rank_time -│ rank_times = 6.5187e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(b, nu, d, g, a)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 0), (2, 0), (0, 0)], [(0, 0), (0, 0)], [(0, 0), (2, 0), (0, 0), (0, 0), (4, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (2, 0)], [(0, 0), (2, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 4 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.200715826 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.173729427 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (5 in total): Nemo.fmpq_mpoly[b, nu, d, g, a] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 20 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 12 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 20 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 12 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 2 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 20 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 12 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 2 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.94996623 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 4 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 62 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.186484918 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[nu + d*g, nu*g + nu*a, nu + g + a, b//g] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Treatment_io/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Treatment_io/logs_(:normalforms, 2)_with_states deleted file mode 100644 index fdb0f337d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Treatment_io/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,240 +0,0 @@ -┌ Info: Processing Treatment_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.188866884 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.188866884 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.061564797 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.061564797 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [10, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.9889e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.9889e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(b, nu, d, g, a, Tr, N, S, In)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 0), (2, 0), (0, 0)], [(0, 0), (0, 0)], [(0, 0), (2, 0), (0, 0), (0, 0), (4, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (2, 0)], [(0, 0), (2, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 4 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.883248306 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00292197 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.006621853 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 4 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 62 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, nu, d, g, a, Tr, N, S, In)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 1), (5, 1)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 3), (2, 1), (0, 2)], [(0, 0), (0, 2)], [(0, 0), (4, 0), (8, 0)], [(0, 0), (1, 0), (1, 0), (2, 1), (6, 1), (2, 0)], [(0, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.134075422 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003374066 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, nu, d, g, a, Tr, N, S, In)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 1), (5, 1)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 3), (2, 1), (0, 2)], [(0, 0), (0, 2)], [(0, 0), (4, 0), (8, 0)], [(0, 0), (1, 0), (1, 0), (2, 1), (6, 1), (2, 0)], [(0, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 80 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 4 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.160636172 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003440641 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (8, 8) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, nu, d, g, a, Tr, N, S, In)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 1), (5, 1)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 3), (2, 1), (0, 2)], [(0, 0), (0, 2)], [(0, 0), (4, 0), (8, 0)], [(0, 0), (1, 0), (1, 0), (2, 1), (6, 1), (2, 0)], [(0, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 8, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 104 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 8 for num. and 3 for den. -│ Maximal number of interpolated terms are: 4 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.171865445 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00376784 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 21 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (9 in total): Nemo.fmpq_mpoly[b, nu, d, g, a, Tr, N, S, In] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 49 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 41 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 49 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 41 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 49 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 41 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.009821299 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 9 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 111 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.168560204 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[N, Tr, g*S, b*S, nu*g + nu*a, nu + g + a, g*Tr + g*In + a*Tr, (d*g*Tr*N^2 + g*N^2*In)//Tr] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Treatment_io/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Treatment_io/logs_(:normalforms, 3) deleted file mode 100644 index fa8cc0a53..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Treatment_io/logs_(:normalforms, 3) +++ /dev/null @@ -1,113 +0,0 @@ -┌ Info: Processing Treatment_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.374743845 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.374743845 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.014967685 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.014967685 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [10, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.7062e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.7062e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(b, nu, d, g, a)[y1, y2, y3, y4, y5, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 0), (2, 0), (0, 0)], [(0, 0), (0, 0)], [(0, 0), (2, 0), (0, 0), (0, 0), (4, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (2, 0)], [(0, 0), (2, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 4 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.331753013 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.561193082 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (5 in total): Nemo.fmpq_mpoly[b, nu, d, g, a] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 55 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 27 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 55 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 27 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 2 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 55 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 27 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 2 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.791312079 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 4 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 62 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.698656975 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[nu + d*g, nu*g + nu*a, nu + g + a, b//g] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Treatment_io/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Treatment_io/logs_(:normalforms, 3)_with_states deleted file mode 100644 index 6feee3432..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Treatment_io/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,240 +0,0 @@ -┌ Info: Processing Treatment_io -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.251835308 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.251835308 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.01555176 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.01555176 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [10, 1] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.8903e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.8903e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 13 functions in Rational Field(b, nu, d, g, a, Tr, N, S, In)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 0), (2, 0), (0, 0)], [(0, 0), (0, 0)], [(0, 0), (2, 0), (0, 0), (0, 0), (4, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (2, 0)], [(0, 0), (2, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 48 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 4 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.818945432 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003755085 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.006708228 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 12 initial generators there are 4 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 62 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, nu, d, g, a, Tr, N, S, In)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 1), (5, 1)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 3), (2, 1), (0, 2)], [(0, 0), (0, 2)], [(0, 0), (4, 0), (8, 0)], [(0, 0), (1, 0), (1, 0), (2, 1), (6, 1), (2, 0)], [(0, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 64 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 3 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.142979984 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003264774 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, nu, d, g, a, Tr, N, S, In)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 1), (5, 1)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 3), (2, 1), (0, 2)], [(0, 0), (0, 2)], [(0, 0), (4, 0), (8, 0)], [(0, 0), (1, 0), (1, 0), (2, 1), (6, 1), (2, 0)], [(0, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 5, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 80 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 3 for den. -│ Maximal number of interpolated terms are: 4 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.15629359 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003441326 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (8, 8) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 10 functions in Rational Field(b, nu, d, g, a, Tr, N, S, In)[y1, y2, y3, y4, y5, y6, y7, y8, y9, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 1), (5, 1)], [(0, 0), (0, 0), (0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 3), (2, 1), (0, 2)], [(0, 0), (0, 2)], [(0, 0), (4, 0), (8, 0)], [(0, 0), (1, 0), (1, 0), (2, 1), (6, 1), (2, 0)], [(0, 0), (1, 0), (1, 0), (2, 0)], [(0, 0), (0, 0), (0, 0), (1, 0), (1, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 8, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 104 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 8 for num. and 3 for den. -│ Maximal number of interpolated terms are: 4 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.17138401 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003787225 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 21 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (9 in total): Nemo.fmpq_mpoly[b, nu, d, g, a, Tr, N, S, In] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 210 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 198 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 210 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 198 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 7 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 210 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 198 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 7 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.010272086 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 9 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 111 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.259908855 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[N, Tr, g*S, b*S, nu*g + nu*a, nu + g + a, g*Tr + g*In + a*Tr, (d*g*Tr*N^2 + g*N^2*In)//Tr] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/Treatment_io/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/Treatment_io/timings_(:gb,) deleted file mode 100644 index 611dcf95b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Treatment_io/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -Treatment_io -id_total, 9.705872242 diff --git a/benchmarking/IdentifiableFunctions/systems/Treatment_io/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/Treatment_io/timings_(:gb,)_with_states deleted file mode 100644 index 59689d601..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Treatment_io/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Treatment_io -id_total, 4.071315332 diff --git a/benchmarking/IdentifiableFunctions/systems/Treatment_io/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/Treatment_io/timings_(:hybrid,) deleted file mode 100644 index 1a3b6cc8c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Treatment_io/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -Treatment_io -id_total, 10.984763736 diff --git a/benchmarking/IdentifiableFunctions/systems/Treatment_io/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/Treatment_io/timings_(:hybrid,)_with_states deleted file mode 100644 index 1c8013542..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Treatment_io/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Treatment_io -id_total, 5.687387192 diff --git a/benchmarking/IdentifiableFunctions/systems/Treatment_io/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/Treatment_io/timings_(:normalforms, 2) deleted file mode 100644 index 5992a5389..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Treatment_io/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -Treatment_io -id_total, 10.186484918 diff --git a/benchmarking/IdentifiableFunctions/systems/Treatment_io/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/Treatment_io/timings_(:normalforms, 2)_with_states deleted file mode 100644 index 62034ad3c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Treatment_io/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Treatment_io -id_total, 4.168560204 diff --git a/benchmarking/IdentifiableFunctions/systems/Treatment_io/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/Treatment_io/timings_(:normalforms, 3) deleted file mode 100644 index ac06fec0e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Treatment_io/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -Treatment_io -id_total, 10.698656975 diff --git a/benchmarking/IdentifiableFunctions/systems/Treatment_io/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/Treatment_io/timings_(:normalforms, 3)_with_states deleted file mode 100644 index 36ac6071d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/Treatment_io/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -Treatment_io -id_total, 4.259908855 diff --git a/benchmarking/IdentifiableFunctions/systems/TumorHu2019/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/TumorHu2019/logs_(:gb,) deleted file mode 100644 index 1b8b6b9f5..000000000 --- a/benchmarking/IdentifiableFunctions/systems/TumorHu2019/logs_(:gb,) +++ /dev/null @@ -1,170 +0,0 @@ -┌ Info: Processing TumorHu2019 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2599902] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -unknown function (ip: 0x7f9e392a6620) -__libc_calloc at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -_unchecked_calloc at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:3934 [inlined] -ijl_calloc at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:3945 -flint_calloc at /workspace/srcdir/flint2/memory_manager.c:166 -fmpz_mpoly_realloc at /workspace/srcdir/flint2/fmpz_mpoly/realloc.c:60 -fmpz_mpoly_set at /workspace/srcdir/flint2/fmpz_mpoly/set.c:39 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:740 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:177 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:185 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:185 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:185 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:177 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:177 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:185 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:185 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:185 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:177 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:177 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:185 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:177 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:185 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:185 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:185 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:185 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -fmpq_mpoly_gcd at /workspace/srcdir/flint2/fmpq_mpoly/gcd.c:38 -gcd at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:478 -unknown function (ip: 0x7f9e22115686) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -uncertain_factorization at /home/demin/StructuralIdentifiability.jl/src/util.jl:252 -fast_factor at /home/demin/StructuralIdentifiability.jl/src/util.jl:286 -unknown function (ip: 0x7f9e221906a2) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -eliminate_var at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:405 -unknown function (ip: 0x7f9beb517982) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -find_ioprojections at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:187 -#find_ioequations#383 at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:374 -find_ioequations at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:358 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:89 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7f9e22187816) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7f9beb50ca3f) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7f9e392361c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 240931435 (Pool: 240872458; Big: 58977); GC: 2724 diff --git a/benchmarking/IdentifiableFunctions/systems/TumorHu2019/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/TumorHu2019/logs_(:gb,)_with_states deleted file mode 100644 index 6f4c90e48..000000000 --- a/benchmarking/IdentifiableFunctions/systems/TumorHu2019/logs_(:gb,)_with_states +++ /dev/null @@ -1,100 +0,0 @@ -┌ Info: Processing TumorHu2019 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2591372] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -mpoly_get_monomial_ui_sp at /workspace/srcdir/flint2/mpoly/get_monomial.c:110 -mpoly_get_monomial_ui at /workspace/srcdir/flint2/mpoly.h:1137 [inlined] -mpoly_gcd_info_limits at /workspace/srcdir/flint2/mpoly/gcd_info.c:91 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1471 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:185 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:177 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:185 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:185 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -fmpq_mpoly_gcd at /workspace/srcdir/flint2/fmpq_mpoly/gcd.c:38 -gcd at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:478 -unknown function (ip: 0x7fa76db14d86) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -uncertain_factorization at /home/demin/StructuralIdentifiability.jl/src/util.jl:252 -fast_factor at /home/demin/StructuralIdentifiability.jl/src/util.jl:286 -unknown function (ip: 0x7fa76db90bc2) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -eliminate_var at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:405 -unknown function (ip: 0x7fa536f1bd62) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -find_ioprojections at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:187 -#find_ioequations#383 at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:374 -find_ioequations at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:358 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:89 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7fa76db87d36) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7fa536f1009f) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7fa784b9d1c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 241480427 (Pool: 241420749; Big: 59678); GC: 2468 diff --git a/benchmarking/IdentifiableFunctions/systems/TumorHu2019/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/TumorHu2019/logs_(:hybrid,) deleted file mode 100644 index f742fbe3d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/TumorHu2019/logs_(:hybrid,) +++ /dev/null @@ -1,19 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing TumorHu2019 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2550417] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_nmod_poly_gcd_euclidean at /workspace/srcdir/flint2/nmod_poly/gcd_euclidean.c:18 -unknown function (ip: 0x936fd4f) -unknown function (ip: (nil)) -Allocations: 249282972 (Pool: 249219078; Big: 63894); GC: 2429 diff --git a/benchmarking/IdentifiableFunctions/systems/TumorHu2019/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/TumorHu2019/logs_(:hybrid,)_with_states deleted file mode 100644 index a4f058c7d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/TumorHu2019/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,171 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing TumorHu2019 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2541006] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -n_urandint at /workspace/srcdir/flint2/ulong_extras/randint.c:44 -_set_estimates at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:299 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1610 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:177 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:185 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:185 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:185 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:177 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:177 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:185 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:185 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:185 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:185 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:177 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:177 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:185 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:177 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:185 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:185 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:185 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:185 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -fmpq_mpoly_gcd at /workspace/srcdir/flint2/fmpq_mpoly/gcd.c:38 -gcd at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:478 -unknown function (ip: 0x7f65334e9026) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -uncertain_factorization at /home/demin/StructuralIdentifiability.jl/src/util.jl:252 -fast_factor at /home/demin/StructuralIdentifiability.jl/src/util.jl:286 -unknown function (ip: 0x7f6533563af2) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -eliminate_var at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:405 -unknown function (ip: 0x7f62fc974132) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -find_ioprojections at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:187 -#find_ioequations#383 at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:374 -find_ioequations at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:358 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:89 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7f653355ac66) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7f62fc96ac7f) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7f654a59e1c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 251030570 (Pool: 250965632; Big: 64938); GC: 2735 diff --git a/benchmarking/IdentifiableFunctions/systems/TumorHu2019/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/TumorHu2019/logs_(:normalforms, 2) deleted file mode 100644 index faf612b65..000000000 --- a/benchmarking/IdentifiableFunctions/systems/TumorHu2019/logs_(:normalforms, 2) +++ /dev/null @@ -1,95 +0,0 @@ -┌ Warning: One of the Wronskians has corank greater than one, so the results of the algorithm will be valid only for multiexperiment identifiability. If you still would like to assess single-experiment identifiability, we recommend using SIAN (https://github.com/alexeyovchinnikov/SIAN-Julia) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:110 -┌ Info: Processing TumorHu2019 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2582963] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -mpoly_gcd_info_limits at /workspace/srcdir/flint2/mpoly/gcd_info.c:110 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1471 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:185 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:185 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:185 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -fmpq_mpoly_gcd at /workspace/srcdir/flint2/fmpq_mpoly/gcd.c:38 -gcd at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:478 -unknown function (ip: 0x7f743f1156c6) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -uncertain_factorization at /home/demin/StructuralIdentifiability.jl/src/util.jl:252 -fast_factor at /home/demin/StructuralIdentifiability.jl/src/util.jl:286 -unknown function (ip: 0x7f743f190712) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -eliminate_var at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:405 -unknown function (ip: 0x7f720853de72) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -find_ioprojections at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:187 -#find_ioequations#383 at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:374 -find_ioequations at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:358 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:89 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7f743f187886) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7f7208534bef) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7f74562441c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 244504191 (Pool: 244443272; Big: 60919); GC: 2552 diff --git a/benchmarking/IdentifiableFunctions/systems/TumorHu2019/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/TumorHu2019/logs_(:normalforms, 2)_with_states deleted file mode 100644 index 8bdd2d5a0..000000000 --- a/benchmarking/IdentifiableFunctions/systems/TumorHu2019/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,13 +0,0 @@ -┌ Info: Processing TumorHu2019 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2574556] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 diff --git a/benchmarking/IdentifiableFunctions/systems/TumorHu2019/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/TumorHu2019/logs_(:normalforms, 3) deleted file mode 100644 index 85c9641f9..000000000 --- a/benchmarking/IdentifiableFunctions/systems/TumorHu2019/logs_(:normalforms, 3) +++ /dev/null @@ -1,13 +0,0 @@ -┌ Info: Processing TumorHu2019 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2566164] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 diff --git a/benchmarking/IdentifiableFunctions/systems/TumorHu2019/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/TumorHu2019/logs_(:normalforms, 3)_with_states deleted file mode 100644 index f4a859d9f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/TumorHu2019/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,90 +0,0 @@ -┌ Info: Processing TumorHu2019 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2558342] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -mpoly_get_monomial_ui_sp at /workspace/srcdir/flint2/mpoly/get_monomial.c:115 -mpoly_get_monomial_ui at /workspace/srcdir/flint2/mpoly.h:1137 [inlined] -mpoly_gcd_info_limits at /workspace/srcdir/flint2/mpoly/gcd_info.c:91 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1471 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:185 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -_fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint2/fmpz_mpoly_factor/mpolyv.c:185 -_try_missing_var at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:745 -_fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1591 -_fmpz_mpoly_gcd_algo at /workspace/srcdir/flint2/fmpz_mpoly_factor/gcd_algo.c:1905 -fmpz_mpoly_gcd at /workspace/srcdir/flint2/fmpz_mpoly/gcd.c:43 -fmpq_mpoly_gcd at /workspace/srcdir/flint2/fmpq_mpoly/gcd.c:38 -gcd at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:478 -unknown function (ip: 0x7fe7f89154b6) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -uncertain_factorization at /home/demin/StructuralIdentifiability.jl/src/util.jl:252 -fast_factor at /home/demin/StructuralIdentifiability.jl/src/util.jl:286 -unknown function (ip: 0x7fe7f89911b2) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -eliminate_var at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:405 -unknown function (ip: 0x7fe5c1d3ed42) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -find_ioprojections at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:187 -#find_ioequations#383 at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:374 -find_ioequations at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:358 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:89 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7fe7f8988326) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7fe5c1d32bef) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7fe80f9451c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 245238070 (Pool: 245176395; Big: 61675); GC: 2441 diff --git a/benchmarking/IdentifiableFunctions/systems/TumorPillis2007/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/TumorPillis2007/logs_(:gb,) deleted file mode 100644 index 9c035c313..000000000 --- a/benchmarking/IdentifiableFunctions/systems/TumorPillis2007/logs_(:gb,) +++ /dev/null @@ -1,88 +0,0 @@ -┌ Info: Processing TumorPillis2007 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2599861] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_mpoly_mul_johnson at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:394 -_fmpz_mpoly_mul_johnson_maxfields at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:551 -fmpz_mpoly_mul at /workspace/srcdir/flint2/fmpz_mpoly/mul.c:354 -* at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:356 -* at ./operators.jl:578 [inlined] -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -unknown function (ip: 0x7f0c579c2656) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -det_minor_expansion at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:43 -eliminate_var at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:400 -find_ioprojections at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:187 -#find_ioequations#383 at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:374 -find_ioequations at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:358 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:89 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7f0c57987af6) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7f0a20d0cc1f) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7f0c6ea1f1c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 94853097 (Pool: 94794137; Big: 58960); GC: 936 - -[2599861] signal (11.1): Segmentation fault -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_demote at /workspace/srcdir/flint2/fmpz.h:98 [inlined] -fmpz_mpoly_clear at /workspace/srcdir/flint2/fmpz_mpoly/clear.c:23 -fmpq_mpoly_clear at /workspace/srcdir/flint2/fmpq_mpoly.h:176 -_fmpq_mpoly_clear_fn at /home/demin/.julia/packages/Nemo/g02iz/src/flint/FlintTypes.jl:1523 -unknown function (ip: 0x7f0c579175e2) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -run_finalizer at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:417 -jl_gc_run_finalizers_in_list at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:507 -run_finalizers at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:553 -ijl_atexit_hook at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/init.c:299 -jl_exit_thread0_cb at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/signals-unix.c:470 -Allocations: 94853097 (Pool: 94794137; Big: 58960); GC: 937 diff --git a/benchmarking/IdentifiableFunctions/systems/TumorPillis2007/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/TumorPillis2007/logs_(:gb,)_with_states deleted file mode 100644 index 38a2f4905..000000000 --- a/benchmarking/IdentifiableFunctions/systems/TumorPillis2007/logs_(:gb,)_with_states +++ /dev/null @@ -1,74 +0,0 @@ -┌ Info: Processing TumorPillis2007 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2591227] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_mpoly_set at /workspace/srcdir/flint2/fmpz_mpoly/set.c:29 -fmpz_mpoly_set at /workspace/srcdir/flint2/fmpz_mpoly/set.c:42 -fmpq_mpoly_set at /workspace/srcdir/flint2/fmpq_mpoly.h:229 [inlined] -fmpq_mpoly_add_fmpq at /workspace/srcdir/flint2/fmpq_mpoly/add_fmpq.c:23 -fmpq_mpoly_add_si at /workspace/srcdir/flint2/fmpq_mpoly/add_fmpq.c:71 -+ at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:373 -+ at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:379 [inlined] -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -unknown function (ip: 0x7f5e449c2af6) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -det_minor_expansion at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:43 -eliminate_var at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:400 -find_ioprojections at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:187 -#find_ioequations#383 at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:374 -find_ioequations at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:358 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:89 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7f5e44987f96) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7f5c0dd107bf) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7f5e5ba381c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 95397703 (Pool: 95338044; Big: 59659); GC: 226 diff --git a/benchmarking/IdentifiableFunctions/systems/TumorPillis2007/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/TumorPillis2007/logs_(:hybrid,) deleted file mode 100644 index e009934b7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/TumorPillis2007/logs_(:hybrid,) +++ /dev/null @@ -1,92 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing TumorPillis2007 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2550383] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -fmpz_set_signed_uiuiui at /workspace/srcdir/flint2/fmpz/set_signed_uiuiui.c:26 -_fmpz_mpoly_mul_johnson at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:447 -_fmpz_mpoly_mul_johnson_maxfields at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:551 -fmpz_mpoly_mul at /workspace/srcdir/flint2/fmpz_mpoly/mul.c:354 -* at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:356 -* at ./operators.jl:578 [inlined] -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -unknown function (ip: 0x7f1cfa5c5606) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -det_minor_expansion at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:43 -eliminate_var at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:400 -find_ioprojections at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:187 -#find_ioequations#383 at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:374 -find_ioequations at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:358 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:89 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7f1cfa58aaa6) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7f1ac396778f) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7f1d118ae1c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 103202691 (Pool: 103138813; Big: 63878); GC: 234 - -[2550383] signal (11.128): Segmentation fault -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_clear_mpz at /workspace/srcdir/flint2/fmpz/fmpz.c:133 -_fmpz_demote at /workspace/srcdir/flint2/fmpz.h:100 [inlined] -fmpz_mpoly_clear at /workspace/srcdir/flint2/fmpz_mpoly/clear.c:23 -fmpq_mpoly_clear at /workspace/srcdir/flint2/fmpq_mpoly.h:176 -_fmpq_mpoly_clear_fn at /home/demin/.julia/packages/Nemo/g02iz/src/flint/FlintTypes.jl:1523 -unknown function (ip: 0x7f1cfa51a5e2) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -run_finalizer at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:417 -jl_gc_run_finalizers_in_list at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:507 -run_finalizers at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:553 -ijl_atexit_hook at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/init.c:299 -jl_exit_thread0_cb at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/signals-unix.c:470 -Allocations: 103202691 (Pool: 103138813; Big: 63878); GC: 235 diff --git a/benchmarking/IdentifiableFunctions/systems/TumorPillis2007/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/TumorPillis2007/logs_(:hybrid,)_with_states deleted file mode 100644 index 6850611a2..000000000 --- a/benchmarking/IdentifiableFunctions/systems/TumorPillis2007/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,12 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing TumorPillis2007 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 diff --git a/benchmarking/IdentifiableFunctions/systems/TumorPillis2007/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/TumorPillis2007/logs_(:normalforms, 2) deleted file mode 100644 index 64000f419..000000000 --- a/benchmarking/IdentifiableFunctions/systems/TumorPillis2007/logs_(:normalforms, 2) +++ /dev/null @@ -1,75 +0,0 @@ -┌ Info: Processing TumorPillis2007 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2582867] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -fmpz_set at /workspace/srcdir/flint2/fmpz/set.c:26 -_fmpz_mpoly_set at /workspace/srcdir/flint2/fmpz_mpoly/set.c:23 -fmpz_mpoly_set at /workspace/srcdir/flint2/fmpz_mpoly/set.c:42 -fmpq_mpoly_set at /workspace/srcdir/flint2/fmpq_mpoly.h:229 [inlined] -fmpq_mpoly_add_fmpq at /workspace/srcdir/flint2/fmpq_mpoly/add_fmpq.c:23 -fmpq_mpoly_add_si at /workspace/srcdir/flint2/fmpq_mpoly/add_fmpq.c:71 -+ at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:373 -+ at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:379 [inlined] -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -unknown function (ip: 0x7f1e97fc26c6) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -det_minor_expansion at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:43 -eliminate_var at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:400 -find_ioprojections at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:187 -#find_ioequations#383 at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:374 -find_ioequations at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:358 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:89 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7f1e97f87b66) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7f1c6132f17f) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7f1eaefc31c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 98426357 (Pool: 98365460; Big: 60897); GC: 224 diff --git a/benchmarking/IdentifiableFunctions/systems/TumorPillis2007/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/TumorPillis2007/logs_(:normalforms, 2)_with_states deleted file mode 100644 index 782a8c0b1..000000000 --- a/benchmarking/IdentifiableFunctions/systems/TumorPillis2007/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,74 +0,0 @@ -┌ Info: Processing TumorPillis2007 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2574423] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_mpoly_set at /workspace/srcdir/flint2/fmpz_mpoly/set.c:29 -fmpz_mpoly_set at /workspace/srcdir/flint2/fmpz_mpoly/set.c:42 -fmpq_mpoly_set at /workspace/srcdir/flint2/fmpq_mpoly.h:229 [inlined] -fmpq_mpoly_add_fmpq at /workspace/srcdir/flint2/fmpq_mpoly/add_fmpq.c:23 -fmpq_mpoly_add_si at /workspace/srcdir/flint2/fmpq_mpoly/add_fmpq.c:71 -+ at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:373 -+ at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:379 [inlined] -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -unknown function (ip: 0x7fac7cfc3126) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -det_minor_expansion at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:43 -eliminate_var at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:400 -find_ioprojections at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:187 -#find_ioequations#383 at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:374 -find_ioequations at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:358 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:89 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7fac7cf885c6) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7faa4633378f) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7fac940431c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 98998944 (Pool: 98937336; Big: 61608); GC: 224 diff --git a/benchmarking/IdentifiableFunctions/systems/TumorPillis2007/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/TumorPillis2007/logs_(:normalforms, 3) deleted file mode 100644 index 23338f27a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/TumorPillis2007/logs_(:normalforms, 3) +++ /dev/null @@ -1,89 +0,0 @@ -┌ Info: Processing TumorPillis2007 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2566024] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -mpoly_monomial_add at /workspace/srcdir/flint2/mpoly.h:298 [inlined] -_fmpz_mpoly_mul_johnson at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:409 -_fmpz_mpoly_mul_johnson_maxfields at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:551 -fmpz_mpoly_mul at /workspace/srcdir/flint2/fmpz_mpoly/mul.c:354 -* at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:356 -* at ./operators.jl:578 [inlined] -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -unknown function (ip: 0x7f75965c26d6) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -det_minor_expansion at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:43 -eliminate_var at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:400 -find_ioprojections at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:187 -#find_ioequations#383 at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:374 -find_ioequations at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:358 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:89 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7f7596587b76) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7f735f92f12f) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7f75ad5be1c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 98462872 (Pool: 98401963; Big: 60909); GC: 941 - -[2566024] signal (11.1): Segmentation fault -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_demote at /workspace/srcdir/flint2/fmpz.h:98 [inlined] -fmpz_mpoly_clear at /workspace/srcdir/flint2/fmpz_mpoly/clear.c:23 -fmpq_mpoly_clear at /workspace/srcdir/flint2/fmpq_mpoly.h:176 -_fmpq_mpoly_clear_fn at /home/demin/.julia/packages/Nemo/g02iz/src/flint/FlintTypes.jl:1523 -unknown function (ip: 0x7f7596517622) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -run_finalizer at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:417 -jl_gc_run_finalizers_in_list at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:507 -run_finalizers at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:553 -ijl_atexit_hook at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/init.c:299 -jl_exit_thread0_cb at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/signals-unix.c:470 -Allocations: 98462872 (Pool: 98401963; Big: 60909); GC: 942 diff --git a/benchmarking/IdentifiableFunctions/systems/TumorPillis2007/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/TumorPillis2007/logs_(:normalforms, 3)_with_states deleted file mode 100644 index 5b3c67598..000000000 --- a/benchmarking/IdentifiableFunctions/systems/TumorPillis2007/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,75 +0,0 @@ -┌ Info: Processing TumorPillis2007 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2558301] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -fmpz_set at /workspace/srcdir/flint2/fmpz/set.c:26 -_fmpz_mpoly_set at /workspace/srcdir/flint2/fmpz_mpoly/set.c:23 -fmpz_mpoly_set at /workspace/srcdir/flint2/fmpz_mpoly/set.c:42 -fmpq_mpoly_set at /workspace/srcdir/flint2/fmpq_mpoly.h:229 [inlined] -fmpq_mpoly_add_fmpq at /workspace/srcdir/flint2/fmpq_mpoly/add_fmpq.c:23 -fmpq_mpoly_add_si at /workspace/srcdir/flint2/fmpq_mpoly/add_fmpq.c:71 -+ at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:373 -+ at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:379 [inlined] -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -unknown function (ip: 0x7fa157196026) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -det_minor_expansion at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:43 -eliminate_var at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:400 -find_ioprojections at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:187 -#find_ioequations#383 at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:374 -find_ioequations at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:358 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:89 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7fa15715b4c6) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7f9f20532daf) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7fa16e1041c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 99155460 (Pool: 99093802; Big: 61658); GC: 226 diff --git a/benchmarking/IdentifiableFunctions/systems/cLV1 (1o)/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/cLV1 (1o)/logs_(:gb,) deleted file mode 100644 index 931dbb57c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cLV1 (1o)/logs_(:gb,) +++ /dev/null @@ -1,95 +0,0 @@ -┌ Info: Processing cLV1 (1o) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2599665] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_mpoly_mul_johnson at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:320 -_fmpz_mpoly_mul_johnson_maxfields at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:551 -fmpz_mpoly_mul at /workspace/srcdir/flint2/fmpz_mpoly/mul.c:354 -* at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:356 -* at ./operators.jl:578 [inlined] -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -unknown function (ip: 0x7fdbb19c5296) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -unknown function (ip: 0x7fdbb19c25a6) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -det_minor_expansion at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:43 -eliminate_var at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:400 -unknown function (ip: 0x7fd97ad183f2) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -find_ioprojections at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:323 -#find_ioequations#383 at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:374 -find_ioequations at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:358 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:89 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7fdbb1987a56) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7fd97ad0d4af) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7fdbc89c81c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 95020176 (Pool: 94961001; Big: 59175); GC: 204 - -[2599665] signal (11.1): Segmentation fault -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_demote at /workspace/srcdir/flint2/fmpz.h:98 [inlined] -fmpz_mpoly_clear at /workspace/srcdir/flint2/fmpz_mpoly/clear.c:23 -fmpq_mpoly_clear at /workspace/srcdir/flint2/fmpq_mpoly.h:176 -_fmpq_mpoly_clear_fn at /home/demin/.julia/packages/Nemo/g02iz/src/flint/FlintTypes.jl:1523 -unknown function (ip: 0x7fdbb19173b2) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -run_finalizer at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:417 -jl_gc_run_finalizers_in_list at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:507 -run_finalizers at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:553 -ijl_atexit_hook at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/init.c:299 -jl_exit_thread0_cb at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/signals-unix.c:470 -Allocations: 95020176 (Pool: 94961001; Big: 59175); GC: 205 diff --git a/benchmarking/IdentifiableFunctions/systems/cLV1 (1o)/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/cLV1 (1o)/logs_(:gb,)_with_states deleted file mode 100644 index 05d88fcb8..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cLV1 (1o)/logs_(:gb,)_with_states +++ /dev/null @@ -1,95 +0,0 @@ -┌ Info: Processing cLV1 (1o) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2591132] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_mpoly_mul_johnson at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:432 -_fmpz_mpoly_mul_johnson_maxfields at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:551 -fmpz_mpoly_mul at /workspace/srcdir/flint2/fmpz_mpoly/mul.c:354 -* at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:356 -* at ./operators.jl:578 [inlined] -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -unknown function (ip: 0x7f15119c8586) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -unknown function (ip: 0x7f15119c5896) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -det_minor_expansion at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:43 -eliminate_var at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:400 -unknown function (ip: 0x7f12db11bc02) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -find_ioprojections at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:323 -#find_ioequations#383 at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:374 -find_ioequations at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:358 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:89 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7f151198ad36) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7f12db10ff2f) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7f1528cb91c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 95567046 (Pool: 95507168; Big: 59878); GC: 204 - -[2591132] signal (11.1): Segmentation fault -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_demote at /workspace/srcdir/flint2/fmpz.h:98 [inlined] -fmpz_mpoly_clear at /workspace/srcdir/flint2/fmpz_mpoly/clear.c:23 -fmpq_mpoly_clear at /workspace/srcdir/flint2/fmpq_mpoly.h:176 -_fmpq_mpoly_clear_fn at /home/demin/.julia/packages/Nemo/g02iz/src/flint/FlintTypes.jl:1523 -unknown function (ip: 0x7f151191a742) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -run_finalizer at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:417 -jl_gc_run_finalizers_in_list at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:507 -run_finalizers at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:553 -ijl_atexit_hook at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/init.c:299 -jl_exit_thread0_cb at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/signals-unix.c:470 -Allocations: 95567046 (Pool: 95507168; Big: 59878); GC: 205 diff --git a/benchmarking/IdentifiableFunctions/systems/cLV1 (1o)/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/cLV1 (1o)/logs_(:hybrid,) deleted file mode 100644 index 598a2804d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cLV1 (1o)/logs_(:hybrid,) +++ /dev/null @@ -1,98 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing cLV1 (1o) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2550176] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -mpoly_monomial_equal at /workspace/srcdir/flint2/mpoly.h:770 [inlined] -_fmpz_mpoly_mul_johnson at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:315 -_fmpz_mpoly_mul_johnson_maxfields at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:551 -fmpz_mpoly_mul at /workspace/srcdir/flint2/fmpz_mpoly/mul.c:354 -* at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:356 -* at ./operators.jl:578 [inlined] -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -unknown function (ip: 0x7f9898398276) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -unknown function (ip: 0x7f9898395586) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -det_minor_expansion at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:43 -eliminate_var at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:400 -unknown function (ip: 0x7f966176fed2) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -find_ioprojections at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:323 -#find_ioequations#383 at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:374 -find_ioequations at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:358 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:89 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7f989835aa66) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7f96617677af) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7f98af2fe1c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 103373128 (Pool: 103309035; Big: 64093); GC: 221 - -[2550176] signal (11.1): Segmentation fault -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_demote at /workspace/srcdir/flint2/fmpz.h:98 [inlined] -fmpz_mpoly_clear at /workspace/srcdir/flint2/fmpz_mpoly/clear.c:23 -fmpq_mpoly_clear at /workspace/srcdir/flint2/fmpq_mpoly.h:176 -_fmpq_mpoly_clear_fn at /home/demin/.julia/packages/Nemo/g02iz/src/flint/FlintTypes.jl:1523 -unknown function (ip: 0x7f98982ea3c2) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -run_finalizer at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:417 -jl_gc_run_finalizers_in_list at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:507 -run_finalizers at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:553 -ijl_atexit_hook at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/init.c:299 -jl_exit_thread0_cb at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/signals-unix.c:470 -Allocations: 103373128 (Pool: 103309035; Big: 64093); GC: 222 diff --git a/benchmarking/IdentifiableFunctions/systems/cLV1 (1o)/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/cLV1 (1o)/logs_(:hybrid,)_with_states deleted file mode 100644 index 1a2fb0454..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cLV1 (1o)/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,97 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing cLV1 (1o) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2540938] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_mpoly_mul_johnson at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:427 -_fmpz_mpoly_mul_johnson_maxfields at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:551 -fmpz_mpoly_mul at /workspace/srcdir/flint2/fmpz_mpoly/mul.c:354 -* at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:356 -* at ./operators.jl:578 [inlined] -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -unknown function (ip: 0x7fe33c3c55e6) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -unknown function (ip: 0x7fe33c3c28f6) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -det_minor_expansion at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:43 -eliminate_var at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:400 -unknown function (ip: 0x7fe105773ea2) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -find_ioprojections at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:323 -#find_ioequations#383 at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:374 -find_ioequations at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:358 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:89 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7fe33c387d96) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7fe10576a9df) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7fe35334d1c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 105085787 (Pool: 105020860; Big: 64927); GC: 225 - -[2540938] signal (11.1): Segmentation fault -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_demote at /workspace/srcdir/flint2/fmpz.h:98 [inlined] -fmpz_mpoly_clear at /workspace/srcdir/flint2/fmpz_mpoly/clear.c:23 -fmpq_mpoly_clear at /workspace/srcdir/flint2/fmpq_mpoly.h:176 -_fmpq_mpoly_clear_fn at /home/demin/.julia/packages/Nemo/g02iz/src/flint/FlintTypes.jl:1523 -unknown function (ip: 0x7fe33c317742) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -run_finalizer at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:417 -jl_gc_run_finalizers_in_list at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:507 -run_finalizers at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:553 -ijl_atexit_hook at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/init.c:299 -jl_exit_thread0_cb at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/signals-unix.c:470 -Allocations: 105085787 (Pool: 105020860; Big: 64927); GC: 226 diff --git a/benchmarking/IdentifiableFunctions/systems/cLV1 (1o)/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/cLV1 (1o)/logs_(:normalforms, 2) deleted file mode 100644 index 850ca356c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cLV1 (1o)/logs_(:normalforms, 2) +++ /dev/null @@ -1,95 +0,0 @@ -┌ Info: Processing cLV1 (1o) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2582695] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_mpoly_mul_johnson at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:413 -_fmpz_mpoly_mul_johnson_maxfields at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:551 -fmpz_mpoly_mul at /workspace/srcdir/flint2/fmpz_mpoly/mul.c:354 -* at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:356 -* at ./operators.jl:578 [inlined] -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -unknown function (ip: 0x7f27585c5356) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -unknown function (ip: 0x7f27585c2666) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -det_minor_expansion at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:43 -eliminate_var at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:400 -unknown function (ip: 0x7f252193abe2) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -find_ioprojections at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:323 -#find_ioequations#383 at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:374 -find_ioequations at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:358 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:89 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7f2758587ab6) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7f252192f12f) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7f276f62a1c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 98593521 (Pool: 98532405; Big: 61116); GC: 207 - -[2582695] signal (11.1): Segmentation fault -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_demote at /workspace/srcdir/flint2/fmpz.h:98 [inlined] -fmpz_mpoly_clear at /workspace/srcdir/flint2/fmpz_mpoly/clear.c:23 -fmpq_mpoly_clear at /workspace/srcdir/flint2/fmpq_mpoly.h:176 -_fmpq_mpoly_clear_fn at /home/demin/.julia/packages/Nemo/g02iz/src/flint/FlintTypes.jl:1523 -unknown function (ip: 0x7f27585173f2) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -run_finalizer at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:417 -jl_gc_run_finalizers_in_list at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:507 -run_finalizers at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:553 -ijl_atexit_hook at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/init.c:299 -jl_exit_thread0_cb at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/signals-unix.c:470 -Allocations: 98593521 (Pool: 98532405; Big: 61116); GC: 208 diff --git a/benchmarking/IdentifiableFunctions/systems/cLV1 (1o)/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/cLV1 (1o)/logs_(:normalforms, 2)_with_states deleted file mode 100644 index 518a9b541..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cLV1 (1o)/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,95 +0,0 @@ -┌ Info: Processing cLV1 (1o) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2574172] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_mpoly_mul_johnson at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:333 -_fmpz_mpoly_mul_johnson_maxfields at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:551 -fmpz_mpoly_mul at /workspace/srcdir/flint2/fmpz_mpoly/mul.c:354 -* at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:356 -* at ./operators.jl:578 [inlined] -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -unknown function (ip: 0x7f14bddc5c36) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -unknown function (ip: 0x7f14bddc2f46) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -det_minor_expansion at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:43 -eliminate_var at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:400 -unknown function (ip: 0x7f128713ed62) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -find_ioprojections at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:323 -#find_ioequations#383 at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:374 -find_ioequations at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:358 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:89 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7f14bdd882f6) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7f1287132bdf) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7f14d4d561c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 99168234 (Pool: 99106411; Big: 61823); GC: 212 - -[2574172] signal (11.1): Segmentation fault -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_demote at /workspace/srcdir/flint2/fmpz.h:98 [inlined] -fmpz_mpoly_clear at /workspace/srcdir/flint2/fmpz_mpoly/clear.c:23 -fmpq_mpoly_clear at /workspace/srcdir/flint2/fmpq_mpoly.h:176 -_fmpq_mpoly_clear_fn at /home/demin/.julia/packages/Nemo/g02iz/src/flint/FlintTypes.jl:1523 -unknown function (ip: 0x7f14bdd88392) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -run_finalizer at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:417 -jl_gc_run_finalizers_in_list at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:507 -run_finalizers at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:553 -ijl_atexit_hook at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/init.c:299 -jl_exit_thread0_cb at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/signals-unix.c:470 -Allocations: 99168234 (Pool: 99106411; Big: 61823); GC: 213 diff --git a/benchmarking/IdentifiableFunctions/systems/cLV1 (1o)/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/cLV1 (1o)/logs_(:normalforms, 3) deleted file mode 100644 index 7b12961e6..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cLV1 (1o)/logs_(:normalforms, 3) +++ /dev/null @@ -1,96 +0,0 @@ -┌ Info: Processing cLV1 (1o) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2565846] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -mpoly_monomial_add at /workspace/srcdir/flint2/mpoly.h:297 [inlined] -_fmpz_mpoly_mul_johnson at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:435 -_fmpz_mpoly_mul_johnson_maxfields at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:551 -fmpz_mpoly_mul at /workspace/srcdir/flint2/fmpz_mpoly/mul.c:354 -* at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:356 -* at ./operators.jl:578 [inlined] -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -unknown function (ip: 0x7f704c5c8306) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -unknown function (ip: 0x7f704c5c5616) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -det_minor_expansion at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:43 -eliminate_var at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:400 -unknown function (ip: 0x7f6e04b3ad22) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -find_ioprojections at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:323 -#find_ioequations#383 at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:374 -find_ioequations at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:358 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:89 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7f704c58aab6) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7f6e04b2f25f) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7f70528941c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 98631221 (Pool: 98570099; Big: 61122); GC: 207 - -[2565846] signal (11.1): Segmentation fault -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_demote at /workspace/srcdir/flint2/fmpz.h:98 [inlined] -fmpz_mpoly_clear at /workspace/srcdir/flint2/fmpz_mpoly/clear.c:23 -fmpq_mpoly_clear at /workspace/srcdir/flint2/fmpq_mpoly.h:176 -_fmpq_mpoly_clear_fn at /home/demin/.julia/packages/Nemo/g02iz/src/flint/FlintTypes.jl:1523 -unknown function (ip: 0x7f704c51a402) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -run_finalizer at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:417 -jl_gc_run_finalizers_in_list at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:507 -run_finalizers at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:553 -ijl_atexit_hook at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/init.c:299 -jl_exit_thread0_cb at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/signals-unix.c:470 -Allocations: 98631221 (Pool: 98570099; Big: 61122); GC: 208 diff --git a/benchmarking/IdentifiableFunctions/systems/cLV1 (1o)/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/cLV1 (1o)/logs_(:normalforms, 3)_with_states deleted file mode 100644 index f5b74b1ff..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cLV1 (1o)/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,95 +0,0 @@ -┌ Info: Processing cLV1 (1o) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 - -[2558207] signal (15): Terminated -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_mpoly_mul_johnson at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:420 -_fmpz_mpoly_mul_johnson_maxfields at /workspace/srcdir/flint2/fmpz_mpoly/mul_johnson.c:551 -fmpz_mpoly_mul at /workspace/srcdir/flint2/fmpz_mpoly/mul.c:354 -* at /home/demin/.julia/packages/Nemo/g02iz/src/flint/fmpq_mpoly.jl:356 -* at ./operators.jl:578 [inlined] -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -unknown function (ip: 0x7f32eb3c5e36) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -unknown function (ip: 0x7f32eb3c3146) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -det_minor_expansion_inner at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:24 -det_minor_expansion at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:43 -eliminate_var at /home/demin/StructuralIdentifiability.jl/src/elimination.jl:400 -unknown function (ip: 0x7f30b473f8e2) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -find_ioprojections at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:323 -#find_ioequations#383 at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:374 -find_ioequations at /home/demin/StructuralIdentifiability.jl/src/io_equation.jl:358 [inlined] -macro expansion at ./timing.jl:393 [inlined] -#initial_identifiable_functions#493 at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:89 -initial_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:81 [inlined] -#find_identifiable_functions#506 at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:58 -find_identifiable_functions at /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:46 -unknown function (ip: 0x7f32eb388596) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -process_system at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:51 -unknown function (ip: 0x7f30b473377f) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -do_call at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:126 -eval_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:226 -eval_stmt_value at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:177 [inlined] -eval_body at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:624 -jl_interpret_toplevel_thunk at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/interpreter.c:762 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:912 -jl_toplevel_eval_flex at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:856 -ijl_toplevel_eval_in at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/toplevel.c:971 -eval at ./boot.jl:370 [inlined] -include_string at ./loading.jl:1903 -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -_include at ./loading.jl:1963 -include at ./Base.jl:457 -jfptr_include_32440.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -exec_options at ./client.jl:307 -_start at ./client.jl:522 -jfptr__start_43375.clone_1 at /home/demin/downloads/julia-1.9.2/lib/julia/sys.so (unknown line) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -jl_apply at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/julia.h:1879 [inlined] -true_main at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:573 -jl_repl_entrypoint at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/jlapi.c:717 -main at julia (unknown line) -unknown function (ip: 0x7f33023fd1c9) -__libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) -unknown function (ip: 0x401098) -unknown function (ip: (nil)) -Allocations: 99333654 (Pool: 99271784; Big: 61870); GC: 211 - -[2558207] signal (11.1): Segmentation fault -in expression starting at /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:115 -_fmpz_demote at /workspace/srcdir/flint2/fmpz.h:98 [inlined] -fmpz_mpoly_clear at /workspace/srcdir/flint2/fmpz_mpoly/clear.c:23 -fmpq_mpoly_clear at /workspace/srcdir/flint2/fmpq_mpoly.h:176 -_fmpq_mpoly_clear_fn at /home/demin/.julia/packages/Nemo/g02iz/src/flint/FlintTypes.jl:1523 -unknown function (ip: 0x7f32eb317e82) -_jl_invoke at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2758 [inlined] -ijl_apply_generic at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gf.c:2940 -run_finalizer at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:417 -jl_gc_run_finalizers_in_list at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:507 -run_finalizers at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/gc.c:553 -ijl_atexit_hook at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/init.c:299 -jl_exit_thread0_cb at /cache/build/default-amdci5-2/julialang/julia-release-1-dot-9/src/signals-unix.c:470 -Allocations: 99333654 (Pool: 99271784; Big: 61870); GC: 212 diff --git a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/id_funcs_(:gb,) deleted file mode 100644 index aee592d01..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/id_funcs_(:gb,) +++ /dev/null @@ -1,14 +0,0 @@ -[A22, -A12, -A32, -B11, -g1, -A31, -g2, -g3, -A11, -A21, -B31, -B21, -A13//A23, -A33//A13] diff --git a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/id_funcs_(:gb,)_with_states deleted file mode 100644 index aba52c88c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,17 +0,0 @@ -[pi2, -pi1, -A22, -A12, -A32, -B11, -g1, -A31, -g2, -g3, -A11, -A21, -B31, -B21, -A13*pi3, -A23*pi3, -A33//A13] diff --git a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/id_funcs_(:hybrid,) deleted file mode 100644 index fde32b1f7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/id_funcs_(:hybrid,) +++ /dev/null @@ -1,14 +0,0 @@ -[A22, -A12, -A32, -B11, -g1, -A31, -g2, -g3, -A11, -A21, -B31, -B21, -A13//A33, -A13//A23] diff --git a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index 617503836..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,17 +0,0 @@ -[pi2, -pi1, -A22, -A12, -A32, -B11, -g1, -A31, -g2, -g3, -A11, -A21, -B31, -B21, -A13*pi3, -A33*pi3, -A23*pi3] diff --git a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/id_funcs_(:normalforms, 2) deleted file mode 100644 index aee592d01..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,14 +0,0 @@ -[A22, -A12, -A32, -B11, -g1, -A31, -g2, -g3, -A11, -A21, -B31, -B21, -A13//A23, -A33//A13] diff --git a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index 617503836..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,17 +0,0 @@ -[pi2, -pi1, -A22, -A12, -A32, -B11, -g1, -A31, -g2, -g3, -A11, -A21, -B31, -B21, -A13*pi3, -A33*pi3, -A23*pi3] diff --git a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/id_funcs_(:normalforms, 3) deleted file mode 100644 index aee592d01..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,14 +0,0 @@ -[A22, -A12, -A32, -B11, -g1, -A31, -g2, -g3, -A11, -A21, -B31, -B21, -A13//A23, -A33//A13] diff --git a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index 617503836..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,17 +0,0 @@ -[pi2, -pi1, -A22, -A12, -A32, -B11, -g1, -A31, -g2, -g3, -A11, -A21, -B31, -B21, -A13*pi3, -A33*pi3, -A23*pi3] diff --git a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/logs_(:gb,) deleted file mode 100644 index aaa9fb845..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/logs_(:gb,) +++ /dev/null @@ -1,84 +0,0 @@ -┌ Info: Processing cLV1 (2o) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.43662959 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.43662959 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.095595528 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.095595528 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [47, 6] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.00014326 seconds -│ :rank_time = rank_time -│ rank_times = 0.00014326 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 102 functions in Rational Field(B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.661782471 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.11004693 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 16 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.984922779 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 101 initial generators there are 14 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 186 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.458628721 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[A22, A12, A32, B11, g1, A31, g2, g3, A11, A21, B31, B21, A13//A23, A33//A13] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/logs_(:gb,)_with_states deleted file mode 100644 index f848e0a62..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/logs_(:gb,)_with_states +++ /dev/null @@ -1,136 +0,0 @@ -┌ Info: Processing cLV1 (2o) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.495874185 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.495874185 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.084373275 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.084373275 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [47, 6] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000143958 seconds -│ :rank_time = rank_time -│ rank_times = 0.000143958 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 102 functions in Rational Field(B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22, pi3, pi1, pi2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.793488789 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.158201155 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 16 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.91763894 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 101 initial generators there are 14 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 186 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 25 functions in Rational Field(B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22, pi3, pi1, pi2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (0, 2)], [(0, 0), (4, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 14 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.044244112 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.0054701 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.009372726 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 24 initial generators there are 17 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 185 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.865579808 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[pi2, pi1, A22, A12, A32, B11, g1, A31, g2, g3, A11, A21, B31, B21, A13*pi3, A23*pi3, A33//A13] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/logs_(:hybrid,) deleted file mode 100644 index 597def37f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/logs_(:hybrid,) +++ /dev/null @@ -1,549 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing cLV1 (2o) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 3.019993543 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 3.019993543 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.061885764 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.061885764 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [47, 6] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000210789 seconds -│ :rank_time = rank_time -│ rank_times = 0.000210789 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 102 functions in Rational Field(B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.715850794 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.135196181 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 16 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (15 in total): Nemo.fmpq_mpoly[B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 361 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 358 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 361 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 358 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 361 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 358 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y13, y5, y14, y1, y12, y8, y10], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, t, y6, y9, y11, y2, y7, y15], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.049008676 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002457721 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 16 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, t, y9, y8, y4, y1, y12, y13], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y11, y10, y6, y15, y5, y3, y14], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.022451108 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002833195 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 16 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y5, y1, y15, y14, y10, y11, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y2, y12, y13, t, y4, y8, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.089165359 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002547842 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 16 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y11, y8, y9, y6, y15, y14, y13], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y12, y3, t, y1, y4, y5, y10], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.021349215 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003543359 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 16 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, t, y13, y4, y10, y7, y14, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y2, y12, y11, y9, y6, y15, y8], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.021163246 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.064252987 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 16 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y14, y6, y15, y10, y1, y8, y7, y13], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y9, y12, y11, y2, y4, y5, t], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.022621583 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002694572 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 16 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y13, y1, y4, y2, y11, t, y8, y5], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y15, y6, y3, y14, y9, y7, y12, y10], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.02051631 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.044269707 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 16 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y12, y11, y14, t, y8, y15, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y6, y5, y13, y7, y2, y10, y3], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(1, 1), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.023781643 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002575406 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 16 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y8, y14, y12, y9, y7, y11, y13], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y15, y4, y2, y10, y3, y1, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.021990928 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002548699 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 16 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y11, y4, y13, y15, y1, y10, y8], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y7, y2, y14, y3, y12, y5, y9], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 15 functions in Rational Field(B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 2)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.073083481 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002443776 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 16 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.727030084 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 101 initial generators there are 14 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 186 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 12.222252189 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[A22, A12, A32, B11, g1, A31, g2, g3, A11, A21, B31, B21, A13//A33, A13//A23] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/logs_(:hybrid,)_with_states deleted file mode 100644 index bb4f6d02e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,601 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing cLV1 (2o) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.352112462 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.352112462 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.035829129 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.035829129 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [47, 6] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000141862 seconds -│ :rank_time = rank_time -│ rank_times = 0.000141862 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 102 functions in Rational Field(B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22, pi3, pi1, pi2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.780365183 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.194792293 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 16 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.909546506 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 101 initial generators there are 14 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 186 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 25 functions in Rational Field(B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22, pi3, pi1, pi2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (0, 2)], [(0, 0), (4, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 14 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.091833398 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005577667 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (18 in total): Nemo.fmpq_mpoly[B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22, pi3, pi1, pi2] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 650 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 644 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 650 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 644 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 45 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 650 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 644 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 45 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y15, y16, y1, y5, y17, y6, t, y4, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y10, y3, y18, y12, y14, y8, y13, y9, y11], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 18 functions in Rational Field(B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22, pi3, pi1, pi2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.053149594 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00303913 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y16, y4, y14, y3, y1, y6, t, y10], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y15, y18, y12, y13, y5, y9, y7, y2, y17], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 18 functions in Rational Field(B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22, pi3, pi1, pi2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.025010122 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002732327 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y12, y2, y17, y6, y7, y16, y5, y3, y11], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y14, y9, y18, y8, y4, y10, y15, y1, t, y13], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 18 functions in Rational Field(B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22, pi3, pi1, pi2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.085856521 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002629085 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y17, y13, y7, y15, y18, t, y14, y5], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y11, y3, y16, y10, y6, y12, y1, y4, y8], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 18 functions in Rational Field(B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22, pi3, pi1, pi2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.025741164 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002572556 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y5, t, y9, y12, y15, y2, y1, y11], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y18, y17, y13, y4, y7, y6, y14, y3, y10, y16], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 18 functions in Rational Field(B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22, pi3, pi1, pi2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.093803627 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003169568 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y12, y18, y11, y2, y10, y7, y14, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y8, t, y13, y17, y9, y15, y16, y3, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 18 functions in Rational Field(B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22, pi3, pi1, pi2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.028802114 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002851759 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y13, y4, t, y10, y14, y9, y1, y17, y16], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y15, y3, y2, y7, y18, y8, y12, y6, y5, y11], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 18 functions in Rational Field(B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22, pi3, pi1, pi2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.080034355 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002801674 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y7, y2, y4, y6, y15, y18, y9, y17], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y13, y14, y10, y1, y12, t, y5, y16, y8, y11], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 18 functions in Rational Field(B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22, pi3, pi1, pi2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.028634914 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003413792 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y6, y17, y16, y3, y10, y2, y18, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y12, y5, y11, y14, y15, y9, y13, y4, y8], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 18 functions in Rational Field(B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22, pi3, pi1, pi2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.092505819 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003278526 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y5, y3, y13, y6, y16, y15, y12, t], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y18, y4, y17, y14, y2, y1, y9, y8, y11, y10], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 18 functions in Rational Field(B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22, pi3, pi1, pi2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.024570513 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002542037 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.008307977 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 24 initial generators there are 17 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 159 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 12.109253089 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[pi2, pi1, A22, A12, A32, B11, g1, A31, g2, g3, A11, A21, B31, B21, A13*pi3, A33*pi3, A23*pi3] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/logs_(:normalforms, 2) deleted file mode 100644 index 5671b995f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/logs_(:normalforms, 2) +++ /dev/null @@ -1,113 +0,0 @@ -┌ Info: Processing cLV1 (2o) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.39817979 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.39817979 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.03818093 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.03818093 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [47, 6] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000140947 seconds -│ :rank_time = rank_time -│ rank_times = 0.000140947 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 102 functions in Rational Field(B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.533920973 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.134987307 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 16 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (15 in total): Nemo.fmpq_mpoly[B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 45 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 43 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 45 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 43 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 45 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 43 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.693046596 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 101 initial generators there are 14 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 186 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.581966709 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[A22, A12, A32, B11, g1, A31, g2, g3, A11, A21, B31, B21, A13//A23, A33//A13] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/logs_(:normalforms, 2)_with_states deleted file mode 100644 index 49400cc1d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,165 +0,0 @@ -┌ Info: Processing cLV1 (2o) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.455438729 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.455438729 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.039122252 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.039122252 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [47, 6] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000144441 seconds -│ :rank_time = rank_time -│ rank_times = 0.000144441 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 102 functions in Rational Field(B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22, pi3, pi1, pi2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.718323059 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.13916629 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 16 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.95615386 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 101 initial generators there are 14 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 186 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 25 functions in Rational Field(B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22, pi3, pi1, pi2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (0, 2)], [(0, 0), (4, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 14 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.044639445 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.070528438 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (18 in total): Nemo.fmpq_mpoly[B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22, pi3, pi1, pi2] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 70 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 66 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 70 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 66 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 70 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 66 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 3 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.008654971 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 24 initial generators there are 17 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 159 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 11.18227433 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[pi2, pi1, A22, A12, A32, B11, g1, A31, g2, g3, A11, A21, B31, B21, A13*pi3, A33*pi3, A23*pi3] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/logs_(:normalforms, 3) deleted file mode 100644 index f79b65322..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/logs_(:normalforms, 3) +++ /dev/null @@ -1,113 +0,0 @@ -┌ Info: Processing cLV1 (2o) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.725034492 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.725034492 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.039354002 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.039354002 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [47, 6] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000147948 seconds -│ :rank_time = rank_time -│ rank_times = 0.000147948 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 102 functions in Rational Field(B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.934301339 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.140587059 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 16 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (15 in total): Nemo.fmpq_mpoly[B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 361 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 358 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 361 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 358 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 361 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 358 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.779369343 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 101 initial generators there are 14 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 186 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 11.407359939 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[A22, A12, A32, B11, g1, A31, g2, g3, A11, A21, B31, B21, A13//A23, A33//A13] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/logs_(:normalforms, 3)_with_states deleted file mode 100644 index 021f16001..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,165 +0,0 @@ -┌ Info: Processing cLV1 (2o) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.420401794 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.420401794 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.04206713 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.04206713 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [47, 6] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000162004 seconds -│ :rank_time = rank_time -│ rank_times = 0.000162004 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 102 functions in Rational Field(B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22, pi3, pi1, pi2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.503056942 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.014020067 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 16 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.854798442 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 101 initial generators there are 14 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 186 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 25 functions in Rational Field(B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22, pi3, pi1, pi2)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (0, 2)], [(0, 0), (4, 0)], [(0, 0), (2, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 14 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.056471936 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.091277106 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 19 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (18 in total): Nemo.fmpq_mpoly[B21, A23, A33, B31, A21, A11, g3, g2, A31, A13, g1, B11, A32, A12, A22, pi3, pi1, pi2] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 650 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 644 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 650 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 644 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 45 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 650 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 644 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 45 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.010562063 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 24 initial generators there are 17 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 159 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 11.029301358 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[pi2, pi1, A22, A12, A32, B11, g1, A31, g2, g3, A11, A21, B31, B21, A13*pi3, A33*pi3, A23*pi3] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/timings_(:gb,) deleted file mode 100644 index 469c4e3fb..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -cLV1 (2o) -id_total, 10.458628721 diff --git a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/timings_(:gb,)_with_states deleted file mode 100644 index c12d17210..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -cLV1 (2o) -id_total, 10.865579808 diff --git a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/timings_(:hybrid,) deleted file mode 100644 index eace7ba72..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -cLV1 (2o) -id_total, 12.222252189 diff --git a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/timings_(:hybrid,)_with_states deleted file mode 100644 index c796ba616..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -cLV1 (2o) -id_total, 12.109253089 diff --git a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/timings_(:normalforms, 2) deleted file mode 100644 index 3d47dcf85..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -cLV1 (2o) -id_total, 10.581966709 diff --git a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/timings_(:normalforms, 2)_with_states deleted file mode 100644 index 40cf6253d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -cLV1 (2o) -id_total, 11.18227433 diff --git a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/timings_(:normalforms, 3) deleted file mode 100644 index 62d8f58b9..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -cLV1 (2o) -id_total, 11.407359939 diff --git a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/timings_(:normalforms, 3)_with_states deleted file mode 100644 index 3c557814c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cLV1 (2o)/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -cLV1 (2o) -id_total, 11.029301358 diff --git a/benchmarking/IdentifiableFunctions/systems/cholera/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/cholera/id_funcs_(:gb,) deleted file mode 100644 index 9cc8b61ab..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cholera/id_funcs_(:gb,) +++ /dev/null @@ -1,7 +0,0 @@ -[a, -xi, -k, -bw, -mu, -gam, -bi] diff --git a/benchmarking/IdentifiableFunctions/systems/cholera/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/cholera/id_funcs_(:gb,)_with_states deleted file mode 100644 index 99e0362d7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cholera/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,11 +0,0 @@ -[W, -S, -I, -R, -a, -xi, -k, -bw, -mu, -gam, -bi] diff --git a/benchmarking/IdentifiableFunctions/systems/cholera/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/cholera/id_funcs_(:hybrid,) deleted file mode 100644 index 9cc8b61ab..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cholera/id_funcs_(:hybrid,) +++ /dev/null @@ -1,7 +0,0 @@ -[a, -xi, -k, -bw, -mu, -gam, -bi] diff --git a/benchmarking/IdentifiableFunctions/systems/cholera/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/cholera/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index 99e0362d7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cholera/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,11 +0,0 @@ -[W, -S, -I, -R, -a, -xi, -k, -bw, -mu, -gam, -bi] diff --git a/benchmarking/IdentifiableFunctions/systems/cholera/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/cholera/id_funcs_(:normalforms, 2) deleted file mode 100644 index 9cc8b61ab..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cholera/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,7 +0,0 @@ -[a, -xi, -k, -bw, -mu, -gam, -bi] diff --git a/benchmarking/IdentifiableFunctions/systems/cholera/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/cholera/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index 99e0362d7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cholera/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,11 +0,0 @@ -[W, -S, -I, -R, -a, -xi, -k, -bw, -mu, -gam, -bi] diff --git a/benchmarking/IdentifiableFunctions/systems/cholera/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/cholera/id_funcs_(:normalforms, 3) deleted file mode 100644 index 9cc8b61ab..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cholera/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,7 +0,0 @@ -[a, -xi, -k, -bw, -mu, -gam, -bi] diff --git a/benchmarking/IdentifiableFunctions/systems/cholera/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/cholera/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index 99e0362d7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cholera/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,11 +0,0 @@ -[W, -S, -I, -R, -a, -xi, -k, -bw, -mu, -gam, -bi] diff --git a/benchmarking/IdentifiableFunctions/systems/cholera/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/cholera/logs_(:gb,) deleted file mode 100644 index 3068c042a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cholera/logs_(:gb,) +++ /dev/null @@ -1,83 +0,0 @@ -┌ Info: Processing cholera -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.981190833 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.981190833 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.112295564 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.112295564 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [2, 123] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000964118 seconds -│ :rank_time = rank_time -│ rank_times = 0.000964118 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 135 functions in Rational Field(bi, gam, mu, bw, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.522627963 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.075991555 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.134642979 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 134 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.935398068 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[a, xi, k, bw, mu, gam, bi] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/cholera/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/cholera/logs_(:gb,)_with_states deleted file mode 100644 index 2ca1df5f3..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cholera/logs_(:gb,)_with_states +++ /dev/null @@ -1,135 +0,0 @@ -┌ Info: Processing cholera -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.940971677 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.940971677 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.094491718 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.094491718 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [2, 123] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000967643 seconds -│ :rank_time = rank_time -│ rank_times = 0.000967643 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 135 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, I, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.559290472 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.095049598 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.142387938 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 134 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 14 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, I, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.023668732 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.006011247 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.004507109 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 13 initial generators there are 11 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 66 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.069024186 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[W, S, I, R, a, xi, k, bw, mu, gam, bi] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/cholera/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/cholera/logs_(:hybrid,) deleted file mode 100644 index df47f901d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cholera/logs_(:hybrid,) +++ /dev/null @@ -1,530 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing cholera -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.939687186 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.939687186 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.056630089 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.056630089 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [2, 123] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000953374 seconds -│ :rank_time = rank_time -│ rank_times = 0.000953374 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 135 functions in Rational Field(bi, gam, mu, bw, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.448815621 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.028265858 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (7 in total): Nemo.fmpq_mpoly[bi, gam, mu, bw, k, xi, a] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y2, y5, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y6, y4, t], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(bi, gam, mu, bw, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010700523 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002655104 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y5, y2, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y1, y4, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(bi, gam, mu, bw, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010347668 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.036719702 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y2, y5, t], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y4, y3, y6], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(bi, gam, mu, bw, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010260476 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001514932 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y1, y7, y2], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y4, t, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(bi, gam, mu, bw, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010335999 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002095547 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y7, y3, t], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y5, y6, y2], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(bi, gam, mu, bw, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010320577 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.042591796 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y2, y6, y7], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t, y4, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(bi, gam, mu, bw, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010385587 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001490912 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y1, y4, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y6, y3, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(bi, gam, mu, bw, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010065169 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002005227 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y2, y1, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, t, y7, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(bi, gam, mu, bw, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010563562 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002162962 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3, y4, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y1, y2, y7], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(bi, gam, mu, bw, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.055565451 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001529213 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y4, y7, y2], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t, y5, y6], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(bi, gam, mu, bw, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010308896 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001744817 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.075686351 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 134 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.304685313 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[a, xi, k, bw, mu, gam, bi] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/cholera/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/cholera/logs_(:hybrid,)_with_states deleted file mode 100644 index 552b74b85..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cholera/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,582 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing cholera -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.662269218 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.662269218 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.052768386 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.052768386 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [2, 123] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000921915 seconds -│ :rank_time = rank_time -│ rank_times = 0.000921915 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 135 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, I, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.427187987 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.026975356 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.097080671 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 134 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 14 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, I, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.09677686 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003049175 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[bi, gam, mu, bw, k, xi, a, R, I, S, W] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y2, y11, y10, y3, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y5, y6, y7, y8, y4], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, I, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013987129 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002129131 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y8, y7, y10, y1, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y6, y9, y4, y2, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, I, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013623332 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001762235 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y9, y8, y7, y4, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y5, y6, y11, y3, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, I, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.078558099 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004254256 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y11, y6, y5, y3, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y2, y1, y4, y9, y7], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, I, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.036442268 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00454112 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y8, y7, y3, y11, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y2, y4, y10, y5, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, I, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.036443988 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002821389 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y5, y8, y2, y10, y9], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y11, y3, y6, t, y1, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, I, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.062236769 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001824475 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y2, y9, y6, y7, y8], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y1, y5, y10, y11, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, I, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013424977 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001730955 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y8, y1, y7, y10, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y2, y5, t, y11, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, I, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.01380785 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.050923694 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y6, y9, y11, y5, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y10, y1, y8, y4, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, I, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013837924 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001797283 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y9, y5, t, y2, y1, y10], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y3, y4, y6, y7, y11], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 12 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, I, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.014168084 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001992888 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.004009781 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 13 initial generators there are 11 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 66 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.379759871 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[W, S, I, R, a, xi, k, bw, mu, gam, bi] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/cholera/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/cholera/logs_(:normalforms, 2) deleted file mode 100644 index 259f3c904..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cholera/logs_(:normalforms, 2) +++ /dev/null @@ -1,94 +0,0 @@ -┌ Info: Processing cholera -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.811229944 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.811229944 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.128480338 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.128480338 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [2, 123] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000965593 seconds -│ :rank_time = rank_time -│ rank_times = 0.000965593 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 135 functions in Rational Field(bi, gam, mu, bw, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.567705419 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.070748805 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (7 in total): Nemo.fmpq_mpoly[bi, gam, mu, bw, k, xi, a] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.097705217 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 134 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.911928681 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[a, xi, k, bw, mu, gam, bi] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/cholera/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/cholera/logs_(:normalforms, 2)_with_states deleted file mode 100644 index 1a169cff4..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cholera/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,146 +0,0 @@ -┌ Info: Processing cholera -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.98262617 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.98262617 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.111687518 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.111687518 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [2, 123] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000968416 seconds -│ :rank_time = rank_time -│ rank_times = 0.000968416 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 135 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, I, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.506815896 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.08504312 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.140221871 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 134 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 14 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, I, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.01971162 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002985477 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[bi, gam, mu, bw, k, xi, a, R, I, S, W] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.007670319 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 13 initial generators there are 11 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 66 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.220228928 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[W, S, I, R, a, xi, k, bw, mu, gam, bi] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/cholera/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/cholera/logs_(:normalforms, 3) deleted file mode 100644 index 1d394e1a1..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cholera/logs_(:normalforms, 3) +++ /dev/null @@ -1,94 +0,0 @@ -┌ Info: Processing cholera -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.857889684 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.857889684 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.059518956 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.059518956 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [2, 123] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000950843 seconds -│ :rank_time = rank_time -│ rank_times = 0.000950843 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 135 functions in Rational Field(bi, gam, mu, bw, k, xi, a)[y1, y2, y3, y4, y5, y6, y7, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.525432266 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.027080838 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (7 in total): Nemo.fmpq_mpoly[bi, gam, mu, bw, k, xi, a] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.12728029 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 134 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.956338062 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[a, xi, k, bw, mu, gam, bi] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/cholera/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/cholera/logs_(:normalforms, 3)_with_states deleted file mode 100644 index 6625f56f5..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cholera/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,146 +0,0 @@ -┌ Info: Processing cholera -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.915060657 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.915060657 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.061394234 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.061394234 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [2, 123] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000941496 seconds -│ :rank_time = rank_time -│ rank_times = 0.000941496 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 135 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, I, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 3)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.590047887 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.030025871 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.125176022 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 134 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 28 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 14 functions in Rational Field(bi, gam, mu, bw, k, xi, a, R, I, S, W)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.020072388 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003656361 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 13 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (11 in total): Nemo.fmpq_mpoly[bi, gam, mu, bw, k, xi, a, R, I, S, W] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.004918527 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 13 initial generators there are 11 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 66 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 4.166392998 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[W, S, I, R, a, xi, k, bw, mu, gam, bi] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/cholera/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/cholera/timings_(:gb,) deleted file mode 100644 index 84d1683f8..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cholera/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -cholera -id_total, 3.935398068 diff --git a/benchmarking/IdentifiableFunctions/systems/cholera/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/cholera/timings_(:gb,)_with_states deleted file mode 100644 index 30dc6aaf7..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cholera/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -cholera -id_total, 4.069024186 diff --git a/benchmarking/IdentifiableFunctions/systems/cholera/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/cholera/timings_(:hybrid,) deleted file mode 100644 index 3176436f8..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cholera/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -cholera -id_total, 4.304685313 diff --git a/benchmarking/IdentifiableFunctions/systems/cholera/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/cholera/timings_(:hybrid,)_with_states deleted file mode 100644 index da5137381..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cholera/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -cholera -id_total, 4.379759871 diff --git a/benchmarking/IdentifiableFunctions/systems/cholera/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/cholera/timings_(:normalforms, 2) deleted file mode 100644 index e700983aa..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cholera/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -cholera -id_total, 3.911928681 diff --git a/benchmarking/IdentifiableFunctions/systems/cholera/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/cholera/timings_(:normalforms, 2)_with_states deleted file mode 100644 index 1f486bc26..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cholera/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -cholera -id_total, 4.220228928 diff --git a/benchmarking/IdentifiableFunctions/systems/cholera/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/cholera/timings_(:normalforms, 3) deleted file mode 100644 index d80072426..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cholera/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -cholera -id_total, 3.956338062 diff --git a/benchmarking/IdentifiableFunctions/systems/cholera/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/cholera/timings_(:normalforms, 3)_with_states deleted file mode 100644 index 692433b7e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/cholera/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -cholera -id_total, 4.166392998 diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/id_funcs_(:gb,) deleted file mode 100644 index d102b52e6..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/id_funcs_(:gb,) +++ /dev/null @@ -1,5 +0,0 @@ -[r2, -beta11, -r1, -beta21, -beta22//beta12] diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/id_funcs_(:gb,)_with_states deleted file mode 100644 index ad8503e80..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,7 +0,0 @@ -[x1, -r2, -beta11, -r1, -beta21, -beta12*x2, -beta22//beta12] diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/id_funcs_(:hybrid,) deleted file mode 100644 index 0022bd32c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/id_funcs_(:hybrid,) +++ /dev/null @@ -1,5 +0,0 @@ -[r2, -beta11, -r1, -beta21, -beta12//beta22] diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index e851ef4c5..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,7 +0,0 @@ -[x1, -r2, -beta11, -r1, -beta21, -beta12*x2, -beta22*x2] diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/id_funcs_(:normalforms, 2) deleted file mode 100644 index d102b52e6..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,5 +0,0 @@ -[r2, -beta11, -r1, -beta21, -beta22//beta12] diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index e851ef4c5..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,7 +0,0 @@ -[x1, -r2, -beta11, -r1, -beta21, -beta12*x2, -beta22*x2] diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/id_funcs_(:normalforms, 3) deleted file mode 100644 index d102b52e6..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,5 +0,0 @@ -[r2, -beta11, -r1, -beta21, -beta22//beta12] diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index e851ef4c5..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,7 +0,0 @@ -[x1, -r2, -beta11, -r1, -beta21, -beta12*x2, -beta22*x2] diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/logs_(:gb,) deleted file mode 100644 index a0d82d7f8..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/logs_(:gb,) +++ /dev/null @@ -1,84 +0,0 @@ -┌ Info: Processing generalizedLoktaVolterra (1o) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.002851264 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.002851264 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.00255779 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.00255779 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [7] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.7862e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.7862e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.216598576 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.234783679 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.954326766 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 42 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 7.474115876 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[r2, beta11, r1, beta21, beta22//beta12] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/logs_(:gb,)_with_states deleted file mode 100644 index 2942fbb8d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/logs_(:gb,)_with_states +++ /dev/null @@ -1,135 +0,0 @@ -┌ Info: Processing generalizedLoktaVolterra (1o) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.002946676 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.002946676 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.00263539 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.00263539 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [7] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 6.1943e-5 seconds -│ :rank_time = rank_time -│ rank_times = 6.1943e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.911475251 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002139886 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002279778 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 42 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.012484543 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.039379568 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002785241 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 8 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 57 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 1.133740781 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x1, r2, beta11, r1, beta21, beta12*x2, beta22//beta12] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/logs_(:hybrid,) deleted file mode 100644 index f1a171e0b..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/logs_(:hybrid,) +++ /dev/null @@ -1,549 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing generalizedLoktaVolterra (1o) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.003373652 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.003373652 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.002841136 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.002841136 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [7] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.6142e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.6142e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.327434634 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.162047564 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (6 in total): Nemo.fmpq_mpoly[beta22, beta21, r1, beta11, beta12, r2] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 49 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 46 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 49 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 46 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 49 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 46 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, t, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y4, y6, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011698038 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001383519 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y4, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t, y5, y1], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009047159 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001253384 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y1, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y6, y4, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.008344959 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001050488 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y2, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y4, t, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.008223597 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001329145 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y6, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t, y5, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009611981 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001317597 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y3, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y5, y1, y6], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010249411 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00120151 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y2, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, t, y3, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010080906 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.0011691 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y6, y2], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t, y5, y4], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.008741863 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.083535959 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y4, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y1, y6, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.00949691 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001160242 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y5, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y6, y4, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 6 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 8 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.008469005 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001155395 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.787132688 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 42 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 8.221343306 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[r2, beta11, r1, beta21, beta12//beta22] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/logs_(:hybrid,)_with_states deleted file mode 100644 index 15cd46552..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,600 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing generalizedLoktaVolterra (1o) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.002956368 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.002956368 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.002805281 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.002805281 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [7] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.4526e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.4526e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.737103274 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001834873 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.001681852 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 42 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.01147764 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002162258 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (8 in total): Nemo.fmpq_mpoly[beta22, beta21, r1, beta11, beta12, r2, x1, x2] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 109 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 103 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 109 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 103 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 12 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 109 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 103 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 12 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y7, y5, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y1, y2, t, y8], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013220058 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002073622 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y8, y6, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y1, y4, y2, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(1, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.012248714 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.042927546 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y3, y8, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y2, y4, y7, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(1, 1), (0, 0)], [(0, 0), (1, 1)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.012265849 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001660761 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y6, y1, y5], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, t, y3, y2, y8], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011726899 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001534767 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y7, y4, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y8, y2, t, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 1)], [(1, 1), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011766924 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.048979499 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y1, y4, y8], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3, y2, y7, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(1, 1), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011839688 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00157453 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t, y7, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y5, y8, y6, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 2), (0, 0)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 2 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 12 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011567234 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003321981 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y5, y1, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y2, t, y4, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(1, 1), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.012574437 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.048599633 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y2, y4, y3], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, t, y6, y1, y5], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 1)], [(0, 0), (1, 0)], [(0, 0), (2, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011601985 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001556482 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y3, y8, y5], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y1, y6, y4, y2], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 8 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(1, 1), (0, 0)], [(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011576609 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001590126 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002136787 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 8 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 31 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 1.704627982 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x1, r2, beta11, r1, beta21, beta12*x2, beta22*x2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/logs_(:normalforms, 2) deleted file mode 100644 index 06a261245..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/logs_(:normalforms, 2) +++ /dev/null @@ -1,113 +0,0 @@ -┌ Info: Processing generalizedLoktaVolterra (1o) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.003133496 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.003133496 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.00267681 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.00267681 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [7] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.7719e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.7719e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.215377306 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.217726597 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (6 in total): Nemo.fmpq_mpoly[beta22, beta21, r1, beta11, beta12, r2] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 13 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 11 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 13 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 11 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 13 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 11 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.798816227 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 42 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 7.901726939 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[r2, beta11, r1, beta21, beta22//beta12] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/logs_(:normalforms, 2)_with_states deleted file mode 100644 index 8b853b9c6..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,164 +0,0 @@ -┌ Info: Processing generalizedLoktaVolterra (1o) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.002910857 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.002910857 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.002561271 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.002561271 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [7] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.6689e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.6689e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.744743494 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.059800025 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.031708319 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 42 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.012355039 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00196494 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (8 in total): Nemo.fmpq_mpoly[beta22, beta21, r1, beta11, beta12, r2, x1, x2] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 24 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 20 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 24 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 20 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 2 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 24 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 20 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 2 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002850009 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 8 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 31 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 1.202274676 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x1, r2, beta11, r1, beta21, beta12*x2, beta22*x2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/logs_(:normalforms, 3) deleted file mode 100644 index c89c83f3c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/logs_(:normalforms, 3) +++ /dev/null @@ -1,113 +0,0 @@ -┌ Info: Processing generalizedLoktaVolterra (1o) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.003418096 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.003418096 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.002935079 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.002935079 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [7] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.1318e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.1318e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.211678465 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.351537526 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (6 in total): Nemo.fmpq_mpoly[beta22, beta21, r1, beta11, beta12, r2] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 49 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 46 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 49 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 46 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 49 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 46 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.798285854 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 42 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 8.082941052 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[r2, beta11, r1, beta21, beta22//beta12] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/logs_(:normalforms, 3)_with_states deleted file mode 100644 index 10f3efd58..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,164 +0,0 @@ -┌ Info: Processing generalizedLoktaVolterra (1o) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 0.006652959 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 0.006652959 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.004731416 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.004731416 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [7] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 7.3132e-5 seconds -│ :rank_time = rank_time -│ rank_times = 7.3132e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (1, 1)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.75228144 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.083430238 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 7 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.003753593 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 5 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 42 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (2, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 1)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 2, Denominator: 1 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.091014681 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00172924 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 9 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (8 in total): Nemo.fmpq_mpoly[beta22, beta21, r1, beta11, beta12, r2, x1, x2] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 109 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 103 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 109 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 103 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 12 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 109 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 103 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 12 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.003363721 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 8 initial generators there are 7 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 31 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 1.382878846 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x1, r2, beta11, r1, beta21, beta12*x2, beta22*x2] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/timings_(:gb,) deleted file mode 100644 index f588a52c5..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -generalizedLoktaVolterra (1o) -id_total, 7.474115876 diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/timings_(:gb,)_with_states deleted file mode 100644 index 6c516edfc..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -generalizedLoktaVolterra (1o) -id_total, 1.133740781 diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/timings_(:hybrid,) deleted file mode 100644 index 6bc4653af..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -generalizedLoktaVolterra (1o) -id_total, 8.221343306 diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/timings_(:hybrid,)_with_states deleted file mode 100644 index f337ec79f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -generalizedLoktaVolterra (1o) -id_total, 1.704627982 diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/timings_(:normalforms, 2) deleted file mode 100644 index fb1482192..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -generalizedLoktaVolterra (1o) -id_total, 7.901726939 diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/timings_(:normalforms, 2)_with_states deleted file mode 100644 index 25c711fa0..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -generalizedLoktaVolterra (1o) -id_total, 1.202274676 diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/timings_(:normalforms, 3) deleted file mode 100644 index b3534b478..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -generalizedLoktaVolterra (1o) -id_total, 8.082941052 diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/timings_(:normalforms, 3)_with_states deleted file mode 100644 index d66ebc5e1..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (1o)/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -generalizedLoktaVolterra (1o) -id_total, 1.382878846 diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/id_funcs_(:gb,) deleted file mode 100644 index 3c2baa509..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/id_funcs_(:gb,) +++ /dev/null @@ -1,6 +0,0 @@ -[r2, -beta12, -beta11, -r1, -beta21, -beta22] diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/id_funcs_(:gb,)_with_states deleted file mode 100644 index ce41a39c3..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,8 +0,0 @@ -[x2, -x1, -r2, -beta12, -beta11, -r1, -beta21, -beta22] diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/id_funcs_(:hybrid,) deleted file mode 100644 index 3c2baa509..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/id_funcs_(:hybrid,) +++ /dev/null @@ -1,6 +0,0 @@ -[r2, -beta12, -beta11, -r1, -beta21, -beta22] diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index ce41a39c3..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,8 +0,0 @@ -[x2, -x1, -r2, -beta12, -beta11, -r1, -beta21, -beta22] diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/id_funcs_(:normalforms, 2) deleted file mode 100644 index 3c2baa509..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,6 +0,0 @@ -[r2, -beta12, -beta11, -r1, -beta21, -beta22] diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index ce41a39c3..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,8 +0,0 @@ -[x2, -x1, -r2, -beta12, -beta11, -r1, -beta21, -beta22] diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/id_funcs_(:normalforms, 3) deleted file mode 100644 index 3c2baa509..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,6 +0,0 @@ -[r2, -beta12, -beta11, -r1, -beta21, -beta22] diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index ce41a39c3..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,8 +0,0 @@ -[x2, -x1, -r2, -beta12, -beta11, -r1, -beta21, -beta22] diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/logs_(:gb,) deleted file mode 100644 index 497dbd723..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/logs_(:gb,) +++ /dev/null @@ -1,84 +0,0 @@ -┌ Info: Processing generalizedLoktaVolterra (2o) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.459465227 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.459465227 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.003376037 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.003376037 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 4] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.075e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.075e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:02 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 3.802823877 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.367711334 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.98936631 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 21 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 9.697724308 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[r2, beta12, beta11, r1, beta21, beta22] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/logs_(:gb,)_with_states deleted file mode 100644 index 4de22d629..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/logs_(:gb,)_with_states +++ /dev/null @@ -1,135 +0,0 @@ -┌ Info: Processing generalizedLoktaVolterra (2o) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.196873691 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.196873691 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.003097631 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.003097631 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 4] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.7861e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.7861e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.797827677 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002373687 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002088497 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 21 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011485806 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003206352 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.00173919 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 10 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 36 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.199714837 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x2, x1, r2, beta12, beta11, r1, beta21, beta22] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/logs_(:hybrid,) deleted file mode 100644 index 7d68546bc..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/logs_(:hybrid,) +++ /dev/null @@ -1,531 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing generalizedLoktaVolterra (2o) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.628608241 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.628608241 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.003138455 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.003138455 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 4] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 6.3485e-5 seconds -│ :rank_time = rank_time -│ rank_times = 6.3485e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 3.797736192 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.552374355 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (6 in total): Nemo.fmpq_mpoly[beta22, beta21, r1, beta11, beta12, r2] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y6, y5, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009773022 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001203793 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, t, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y2, y6, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009273939 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001306414 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y6, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y4, y1, y3], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009612846 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00150898 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y5, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, t, y4, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010063886 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001458634 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y1, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y2, t, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.078530909 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001194013 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y5, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, t, y3, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.00928632 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001143957 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y4, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y2, t, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009559159 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001289366 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, t, y3], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y5, y6, y2], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009191466 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001272245 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, t, y2], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y3, y4, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009182769 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001232463 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y4, y6], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y1, y5, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.009883186 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001191452 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.017178922 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 21 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.963533054 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[r2, beta12, beta11, r1, beta21, beta22] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/logs_(:hybrid,)_with_states deleted file mode 100644 index 5f93c7e0d..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,582 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing generalizedLoktaVolterra (2o) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.136462525 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.136462525 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.002953216 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.002953216 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 4] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.5967e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.5967e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.64578629 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.05581799 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.031524499 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 21 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010918164 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001910048 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (8 in total): Nemo.fmpq_mpoly[beta22, beta21, r1, beta11, beta12, r2, x1, x2] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y8, y6, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y1, y3, y2, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.013645316 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002070574 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y3, y8, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y7, y4, y5, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011397301 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.044191376 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y3, y6, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y7, y8, y4, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011737207 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001603143 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y4, y2, y6], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y1, y5, y8, t], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011777479 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001711757 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y8, y6, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y4, y2, y5, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.012567518 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.059362081 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y4, y2, y3], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y7, y1, t, y8], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011436525 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001749695 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y7, y6, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y8, y3, y5, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010703653 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002027832 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y2, y8, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y6, y4, y1, y7], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010773922 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001900803 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, t, y3, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, y8, y7, y1, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.063257211 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001603528 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y7, y8, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y3, t, y2, y4], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 9 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.010816165 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001508731 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.001556457 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 10 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 36 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.659451399 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x2, x1, r2, beta12, beta11, r1, beta21, beta22] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/logs_(:normalforms, 2) deleted file mode 100644 index 787759000..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/logs_(:normalforms, 2) +++ /dev/null @@ -1,95 +0,0 @@ -┌ Info: Processing generalizedLoktaVolterra (2o) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.243936561 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.243936561 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.003234199 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.003234199 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 4] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.9878e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.9878e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:02 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 3.453646842 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.371547618 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (6 in total): Nemo.fmpq_mpoly[beta22, beta21, r1, beta11, beta12, r2] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.764092903 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 21 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 9.385154007 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[r2, beta12, beta11, r1, beta21, beta22] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/logs_(:normalforms, 2)_with_states deleted file mode 100644 index adc0fbaf8..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,146 +0,0 @@ -┌ Info: Processing generalizedLoktaVolterra (2o) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.211404153 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.211404153 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.002954458 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.002954458 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 4] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.0408e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.0408e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.845237633 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.001833583 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.002185069 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 21 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.011573832 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.038912012 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (8 in total): Nemo.fmpq_mpoly[beta22, beta21, r1, beta11, beta12, r2, x1, x2] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.001684605 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 10 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 36 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.495373953 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x2, x1, r2, beta12, beta11, r1, beta21, beta22] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/logs_(:normalforms, 3) deleted file mode 100644 index 0117c5920..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/logs_(:normalforms, 3) +++ /dev/null @@ -1,95 +0,0 @@ -┌ Info: Processing generalizedLoktaVolterra (2o) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.319089101 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.319089101 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.003006817 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.003006817 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 4] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 5.5923e-5 seconds -│ :rank_time = rank_time -│ rank_times = 5.5923e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:02 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2)[y1, y2, y3, y4, y5, y6, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 3.525896057 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.537587621 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (6 in total): Nemo.fmpq_mpoly[beta22, beta21, r1, beta11, beta12, r2] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.780048636 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 21 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 9.761582037 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[r2, beta12, beta11, r1, beta21, beta22] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/logs_(:normalforms, 3)_with_states deleted file mode 100644 index a3983529f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,146 +0,0 @@ -┌ Info: Processing generalizedLoktaVolterra (2o) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.333545312 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.333545312 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.004498023 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.004498023 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [4, 4] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 4.6002e-5 seconds -│ :rank_time = rank_time -│ rank_times = 4.6002e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 7 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.84171528 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.002035989 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 8 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.00206241 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 6 initial generators there are 6 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 21 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 11 functions in Rational Field(beta22, beta21, r1, beta11, beta12, r2, x1, x2)[y1, y2, y3, y4, y5, y6, y7, y8, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 18 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 1, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 6 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.012762466 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.052467838 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 10 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (8 in total): Nemo.fmpq_mpoly[beta22, beta21, r1, beta11, beta12, r2, x1, x2] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 0 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.001843339 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 10 initial generators there are 8 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 36 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 3.666184493 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x2, x1, r2, beta12, beta11, r1, beta21, beta22] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/timings_(:gb,) deleted file mode 100644 index 279be0ce1..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -generalizedLoktaVolterra (2o) -id_total, 9.697724308 diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/timings_(:gb,)_with_states deleted file mode 100644 index 5b437fedd..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -generalizedLoktaVolterra (2o) -id_total, 3.199714837 diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/timings_(:hybrid,) deleted file mode 100644 index f6854dd38..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -generalizedLoktaVolterra (2o) -id_total, 10.963533054 diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/timings_(:hybrid,)_with_states deleted file mode 100644 index ffba03806..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -generalizedLoktaVolterra (2o) -id_total, 3.659451399 diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/timings_(:normalforms, 2) deleted file mode 100644 index ab6440b25..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -generalizedLoktaVolterra (2o) -id_total, 9.385154007 diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/timings_(:normalforms, 2)_with_states deleted file mode 100644 index ec6f8c900..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -generalizedLoktaVolterra (2o) -id_total, 3.495373953 diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/timings_(:normalforms, 3) deleted file mode 100644 index c796875a2..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -generalizedLoktaVolterra (2o) -id_total, 9.761582037 diff --git a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/timings_(:normalforms, 3)_with_states deleted file mode 100644 index 53e86c140..000000000 --- a/benchmarking/IdentifiableFunctions/systems/generalizedLoktaVolterra (2o)/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -generalizedLoktaVolterra (2o) -id_total, 3.666184493 diff --git a/benchmarking/IdentifiableFunctions/systems/p53/id_funcs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/p53/id_funcs_(:gb,) deleted file mode 100644 index 3288db0b2..000000000 --- a/benchmarking/IdentifiableFunctions/systems/p53/id_funcs_(:gb,) +++ /dev/null @@ -1,23 +0,0 @@ -[p5, -p14, -p24, -p15, -p12, -p6, -p9, -p21, -p17, -p11, -p20, -p16, -p10, -p25, -p3, -p1, -p8, -p23, -p18, -p13, -p4, -p7, -p22^4] diff --git a/benchmarking/IdentifiableFunctions/systems/p53/id_funcs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/p53/id_funcs_(:gb,)_with_states deleted file mode 100644 index f5360d741..000000000 --- a/benchmarking/IdentifiableFunctions/systems/p53/id_funcs_(:gb,)_with_states +++ /dev/null @@ -1,27 +0,0 @@ -[x4, -x1, -x2, -x3, -p5, -p14, -p24, -p15, -p12, -p6, -p9, -p21, -p17, -p11, -p20, -p16, -p10, -p25, -p3, -p1, -p8, -p23, -p18, -p13, -p4, -p7, -p22^4] diff --git a/benchmarking/IdentifiableFunctions/systems/p53/id_funcs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/p53/id_funcs_(:hybrid,) deleted file mode 100644 index 3288db0b2..000000000 --- a/benchmarking/IdentifiableFunctions/systems/p53/id_funcs_(:hybrid,) +++ /dev/null @@ -1,23 +0,0 @@ -[p5, -p14, -p24, -p15, -p12, -p6, -p9, -p21, -p17, -p11, -p20, -p16, -p10, -p25, -p3, -p1, -p8, -p23, -p18, -p13, -p4, -p7, -p22^4] diff --git a/benchmarking/IdentifiableFunctions/systems/p53/id_funcs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/p53/id_funcs_(:hybrid,)_with_states deleted file mode 100644 index f5360d741..000000000 --- a/benchmarking/IdentifiableFunctions/systems/p53/id_funcs_(:hybrid,)_with_states +++ /dev/null @@ -1,27 +0,0 @@ -[x4, -x1, -x2, -x3, -p5, -p14, -p24, -p15, -p12, -p6, -p9, -p21, -p17, -p11, -p20, -p16, -p10, -p25, -p3, -p1, -p8, -p23, -p18, -p13, -p4, -p7, -p22^4] diff --git a/benchmarking/IdentifiableFunctions/systems/p53/id_funcs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/p53/id_funcs_(:normalforms, 2) deleted file mode 100644 index 3288db0b2..000000000 --- a/benchmarking/IdentifiableFunctions/systems/p53/id_funcs_(:normalforms, 2) +++ /dev/null @@ -1,23 +0,0 @@ -[p5, -p14, -p24, -p15, -p12, -p6, -p9, -p21, -p17, -p11, -p20, -p16, -p10, -p25, -p3, -p1, -p8, -p23, -p18, -p13, -p4, -p7, -p22^4] diff --git a/benchmarking/IdentifiableFunctions/systems/p53/id_funcs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/p53/id_funcs_(:normalforms, 2)_with_states deleted file mode 100644 index f5360d741..000000000 --- a/benchmarking/IdentifiableFunctions/systems/p53/id_funcs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,27 +0,0 @@ -[x4, -x1, -x2, -x3, -p5, -p14, -p24, -p15, -p12, -p6, -p9, -p21, -p17, -p11, -p20, -p16, -p10, -p25, -p3, -p1, -p8, -p23, -p18, -p13, -p4, -p7, -p22^4] diff --git a/benchmarking/IdentifiableFunctions/systems/p53/id_funcs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/p53/id_funcs_(:normalforms, 3) deleted file mode 100644 index 3288db0b2..000000000 --- a/benchmarking/IdentifiableFunctions/systems/p53/id_funcs_(:normalforms, 3) +++ /dev/null @@ -1,23 +0,0 @@ -[p5, -p14, -p24, -p15, -p12, -p6, -p9, -p21, -p17, -p11, -p20, -p16, -p10, -p25, -p3, -p1, -p8, -p23, -p18, -p13, -p4, -p7, -p22^4] diff --git a/benchmarking/IdentifiableFunctions/systems/p53/id_funcs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/p53/id_funcs_(:normalforms, 3)_with_states deleted file mode 100644 index f5360d741..000000000 --- a/benchmarking/IdentifiableFunctions/systems/p53/id_funcs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,27 +0,0 @@ -[x4, -x1, -x2, -x3, -p5, -p14, -p24, -p15, -p12, -p6, -p9, -p21, -p17, -p11, -p20, -p16, -p10, -p25, -p3, -p1, -p8, -p23, -p18, -p13, -p4, -p7, -p22^4] diff --git a/benchmarking/IdentifiableFunctions/systems/p53/logs_(:gb,) b/benchmarking/IdentifiableFunctions/systems/p53/logs_(:gb,) deleted file mode 100644 index 76670565f..000000000 --- a/benchmarking/IdentifiableFunctions/systems/p53/logs_(:gb,) +++ /dev/null @@ -1,122 +0,0 @@ -┌ Info: Processing p53 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:gb,),) -│ ID: (:gb,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.52968521 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.52968521 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.039583655 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.039583655 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [14, 12, 7, 12] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 7.6088e-5 seconds -│ :rank_time = rank_time -│ rank_times = 7.6088e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 42 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 4)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 5.057718861 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.219798326 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 42 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 4)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 4 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 40 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.164548174 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005276994 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 25 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.170786189 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 41 initial generators there are 23 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 279 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 11.428196319 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[p5, p14, p24, p15, p12, p6, p9, p21, p17, p11, p20, p16, p10, p25, p3, p1, p8, p23, p18, p13, p4, p7, p22^4] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/p53/logs_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/p53/logs_(:gb,)_with_states deleted file mode 100644 index b0caa4528..000000000 --- a/benchmarking/IdentifiableFunctions/systems/p53/logs_(:gb,)_with_states +++ /dev/null @@ -1,212 +0,0 @@ -┌ Info: Processing p53 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:gb,), with_states = true) -│ ID: (:gb,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.378035719 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.378035719 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.037761379 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.037761379 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [14, 12, 7, 12] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 7.7576e-5 seconds -│ :rank_time = rank_time -│ rank_times = 7.7576e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 42 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5, x3, x2, x1, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 4)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.504872033 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.11055573 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 42 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5, x3, x2, x1, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 4)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 4 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 40 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.167389009 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005476661 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 25 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 2.00682053 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 41 initial generators there are 23 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 279 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 38 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5, x3, x2, x1, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 11)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.175306988 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005921759 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 38 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5, x3, x2, x1, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 11)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 22 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.190197339 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.086349215 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 28 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.020699339 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 37 initial generators there are 27 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 381 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 11.354815227 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x4, x1, x2, x3, p5, p14, p24, p15, p12, p6, p9, p21, p17, p11, p20, p16, p10, p25, p3, p1, p8, p23, p18, p13, p4, p7, p22^4] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/p53/logs_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/p53/logs_(:hybrid,) deleted file mode 100644 index 805477313..000000000 --- a/benchmarking/IdentifiableFunctions/systems/p53/logs_(:hybrid,) +++ /dev/null @@ -1,587 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing p53 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol}}} -│ (strategy = (:hybrid,),) -│ ID: (:hybrid,) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.521241919 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.521241919 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.039781848 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.039781848 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [14, 12, 7, 12] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 7.5539e-5 seconds -│ :rank_time = rank_time -│ rank_times = 7.5539e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 42 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 4)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.092020837 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.11139285 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 42 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 4)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 4 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 40 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.161890937 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004728091 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 25 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (23 in total): Nemo.fmpq_mpoly[p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 300 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 297 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 300 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 297 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 300 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 297 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y14, y11, y15, y9, y8, y2, y17, y3, y20, y4, y21], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y16, y12, y23, y22, y6, y18, y5, y19, y7, y13, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 24 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.050735073 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003846674 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y16, y2, y21, y14, y17, y19, y12, y9, t, y4, y23], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y22, y15, y6, y10, y13, y8, y20, y7, y1, y18, y11], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 24 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.12750552 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003412213 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y19, y11, y23, y13, y1, y2, y16, y20, y6, y15, t, y10], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y14, y8, y17, y7, y4, y12, y22, y21, y18, y9, y5], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 24 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.12087036 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003642964 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y19, y23, y18, y14, y2, y20, y7, y13, t, y3, y5, y11], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y12, y22, y1, y10, y16, y17, y15, y6, y9, y4, y21], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 24 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.050380316 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003859096 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y15, y12, y21, y7, y16, y3, y18, y10, y22, y8, y2, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y11, y17, y14, y20, y13, y9, y5, y1, y4, y23, y19], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 24 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.122797235 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003515587 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y22, y9, y7, y10, y21, y18, y20, y19, y8, y13, y4, y14], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y17, t, y12, y6, y16, y15, y23, y3, y11, y1, y2, y5], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 24 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.114164438 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003512352 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y2, y12, y17, y14, y7, y15, y20, y21, y22, y23, t], true), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y4, y19, y11, y16, y1, y8, y18, y13, y9, y6, y3], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 24 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.050468674 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003383519 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y23, y21, y11, y1, y5, y20, y15, y13, y12, y16, y19], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y17, y9, y8, y18, y3, y10, y14, y4, y7, y2, y22, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 24 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.113348482 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003463511 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y18, y2, y4, t, y10, y19, y14, y20, y17, y13, y9, y1], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y15, y23, y21, y7, y3, y16, y5, y6, y11, y12, y22, y8], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 24 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.115113918 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003546127 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y21, y1, y12, y11, y23, y16, y10, y4, t, y2, y6, y5], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y13, y22, y18, y15, y7, y19, y20, y8, y17, y9, y14], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 24 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.049372892 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003371943 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 24 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.830166344 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 41 initial generators there are 23 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 279 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 12.018368734 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[p5, p14, p24, p15, p12, p6, p9, p21, p17, p11, p20, p16, p10, p25, p3, p1, p8, p23, p18, p13, p4, p7, p22^4] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/p53/logs_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/p53/logs_(:hybrid,)_with_states deleted file mode 100644 index 68b658935..000000000 --- a/benchmarking/IdentifiableFunctions/systems/p53/logs_(:hybrid,)_with_states +++ /dev/null @@ -1,677 +0,0 @@ -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Processing p53 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol}, Bool}} -│ (strategy = (:hybrid,), with_states = true) -│ ID: (:hybrid,)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.194480086 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.194480086 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.040820093 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.040820093 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [14, 12, 7, 12] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 9.4847e-5 seconds -│ :rank_time = rank_time -│ rank_times = 9.4847e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 42 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5, x3, x2, x1, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 4)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 3.98201454 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.108816012 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 42 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5, x3, x2, x1, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 4)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 4 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 40 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.083633295 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.108107345 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 25 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.956526013 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 41 initial generators there are 23 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 279 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 38 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5, x3, x2, x1, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 11)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.284623921 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005647795 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 38 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5, x3, x2, x1, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 11)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 22 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.2709929 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005346455 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 28 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (27 in total): Nemo.fmpq_mpoly[p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5, x3, x2, x1, x4] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 406 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 403 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 406 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 403 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 406 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 403 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Computing 10 Groebner bases for each of the 10 block orderings -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:371 -┌ Warning: Cache hit with (InputOrdering(), (9223372036854775807, 9223372036854775807))! -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:311 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y23, y2, y25, y5, y9, y11, y6, y14, y13, y3, y21, y24, t, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y12, y8, y19, y15, y20, y17, y27, y18, y22, y26, y10, y1, y16], true)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 28 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5, x3, x2, x1, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.120632404 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003910442 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 28 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y18, y2, y19, y12, y27, y5, y10, y15, y9, y24, y1, y13, y25], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y26, y22, y20, y21, y3, y23, t, y16, y6, y8, y7, y14, y11, y17], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 28 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5, x3, x2, x1, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.055010569 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.082172033 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 28 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y3, y16, y14, y10, y23, y20, y12, y22, y6, y15, y8, y9, y21], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y24, t, y1, y18, y19, y2, y17, y13, y11, y25, y4, y5, y27, y26], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 28 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5, x3, x2, x1, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.058346659 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00401352 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 28 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y19, y5, y9, y11, y25, y21, y22, y15, y1, y17, y23, y6, y20, y4], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y2, y27, y13, y3, y24, y18, y12, y16, y8, t, y14, y26, y10], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 28 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5, x3, x2, x1, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.136443913 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003735456 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 28 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y26, y13, y18, y6, y27, y10, y20, y2, y9, y23, y5, y11, y12, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y1, y22, y21, y25, y14, t, y3, y24, y8, y16, y15, y19, y17, y4], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 28 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5, x3, x2, x1, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.126890597 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00380241 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 28 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y10, y9, y23, y11, y12, y20, y1, y26, y7, y19, y25, y21, y4, y15], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y14, y24, y3, y27, t, y13, y8, y22, y2, y16, y5, y17, y6, y18], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 28 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5, x3, x2, x1, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.130190029 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003754657 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 28 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y15, y19, y18, y5, y12, y2, y24, t, y6, y7, y11, y22, y21], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y20, y9, y14, y26, y27, y4, y17, y23, y10, y16, y25, y13, y1], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 28 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5, x3, x2, x1, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.054620124 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.077703584 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 28 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y26, y19, y20, y15, y12, y5, y24, y7, y1, y14, y11, y4, y16, y9], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y18, y17, y25, y13, y27, y10, y22, t, y23, y3, y8, y2, y21, y6], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 28 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5, x3, x2, x1, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.060261017 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.004089809 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 28 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y6, y10, y25, y15, y12, y27, y26, y22, y5, y24, y8, y14, y13, y7], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y17, y11, y4, y20, y18, y2, y19, t, y1, y16, y21, y23, y9], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 28 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5, x3, x2, x1, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.134112929 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003679676 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 28 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing GB for ordering -│ ord = ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y14, y21, y22, y27, y10, y16, y25, y19, y3, y15, y4, y5, y6, t], false), DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y20, y17, y9, y26, y2, y1, y8, y11, y23, y24, y13, y7, y12, y18], false)) -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:391 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / ProductOrdering{DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 28 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5, x3, x2, x1, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)], [(0, 0), (0, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 0 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 10 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.1340836 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.003888801 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 28 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.036782588 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 37 initial generators there are 27 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 381 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 12.812221936 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x4, x1, x2, x3, p5, p14, p24, p15, p12, p6, p9, p21, p17, p11, p20, p16, p10, p25, p3, p1, p8, p23, p18, p13, p4, p7, p22^4] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/p53/logs_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/p53/logs_(:normalforms, 2) deleted file mode 100644 index aff3dae5e..000000000 --- a/benchmarking/IdentifiableFunctions/systems/p53/logs_(:normalforms, 2) +++ /dev/null @@ -1,151 +0,0 @@ -┌ Info: Processing p53 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 2),) -│ ID: (:normalforms, 2) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.286388891 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.286388891 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.095513905 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.095513905 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [14, 12, 7, 12] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 8.0946e-5 seconds -│ :rank_time = rank_time -│ rank_times = 8.0946e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 42 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 4)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.753292455 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.104833893 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 42 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 4)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 4 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 40 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.07681628 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.087238606 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 25 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (23 in total): Nemo.fmpq_mpoly[p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 24 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 22 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 24 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 22 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 24 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 22 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.755672947 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 41 initial generators there are 23 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 279 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 10.973568178 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[p5, p14, p24, p15, p12, p6, p9, p21, p17, p11, p20, p16, p10, p25, p3, p1, p8, p23, p18, p13, p4, p7, p22^4] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/p53/logs_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/p53/logs_(:normalforms, 2)_with_states deleted file mode 100644 index b08ef77ac..000000000 --- a/benchmarking/IdentifiableFunctions/systems/p53/logs_(:normalforms, 2)_with_states +++ /dev/null @@ -1,241 +0,0 @@ -┌ Info: Processing p53 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 2), with_states = true) -│ ID: (:normalforms, 2)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.23392554 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.23392554 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.036417696 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.036417696 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [14, 12, 7, 12] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 7.6681e-5 seconds -│ :rank_time = rank_time -│ rank_times = 7.6681e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 42 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5, x3, x2, x1, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 4)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.523809773 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.127159965 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 42 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5, x3, x2, x1, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 4)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 4 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 40 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.118589965 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.006352436 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 25 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.876016137 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 41 initial generators there are 23 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 279 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 38 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5, x3, x2, x1, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 11)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.155350653 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.088594804 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 38 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5, x3, x2, x1, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 11)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 22 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.273501013 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005446354 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 28 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (27 in total): Nemo.fmpq_mpoly[p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5, x3, x2, x1, x4] -│ Up to degree: 2 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 28 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 26 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 28 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 26 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 28 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 26 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.02075214 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 37 initial generators there are 27 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 381 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 11.593976761 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x4, x1, x2, x3, p5, p14, p24, p15, p12, p6, p9, p21, p17, p11, p20, p16, p10, p25, p3, p1, p8, p23, p18, p13, p4, p7, p22^4] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/p53/logs_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/p53/logs_(:normalforms, 3) deleted file mode 100644 index f4068ba35..000000000 --- a/benchmarking/IdentifiableFunctions/systems/p53/logs_(:normalforms, 3) +++ /dev/null @@ -1,151 +0,0 @@ -┌ Info: Processing p53 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy,), Tuple{Tuple{Symbol, Int64}}} -│ (strategy = (:normalforms, 3),) -│ ID: (:normalforms, 3) -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.418568097 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.418568097 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.116490945 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.116490945 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [14, 12, 7, 12] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 8.1499e-5 seconds -│ :rank_time = rank_time -│ rank_times = 8.1499e-5 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 42 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 4)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.965683217 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.186543925 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 42 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 4)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 4 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 40 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.079027718 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.005704283 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 25 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (23 in total): Nemo.fmpq_mpoly[p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 300 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 297 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 300 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 297 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 300 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 297 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.908702845 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 41 initial generators there are 23 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 279 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 11.686917232 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[p5, p14, p24, p15, p12, p6, p9, p21, p17, p11, p20, p16, p10, p25, p3, p1, p8, p23, p18, p13, p4, p7, p22^4] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/p53/logs_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/p53/logs_(:normalforms, 3)_with_states deleted file mode 100644 index 1ad33a27a..000000000 --- a/benchmarking/IdentifiableFunctions/systems/p53/logs_(:normalforms, 3)_with_states +++ /dev/null @@ -1,241 +0,0 @@ -┌ Info: Processing p53 -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:40 -┌ Info: Averaging over 1 runs. -│ Using keyword arguments: -│ NamedTuple{(:strategy, :with_states), Tuple{Tuple{Symbol, Int64}, Bool}} -│ (strategy = (:normalforms, 3), with_states = true) -│ ID: (:normalforms, 3)_with_states -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:41 -┌ Info: Computing IO-equations -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:88 -┌ Info: Computed in 2.374889619 seconds -│ :ioeq_time = ioeq_time -│ ioeq_time = 2.374889619 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:92 -┌ Info: Computing Wronskians -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:95 -┌ Info: Computed in 0.04526027 seconds -│ :wrnsk_time = wrnsk_time -│ wrnsk_time = 0.04526027 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:97 -┌ Info: Dimensions of the Wronskians [14, 12, 7, 12] -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:101 -┌ Info: Ranks of the Wronskians computed in 0.000104321 seconds -│ :rank_time = rank_time -│ rank_times = 0.000104321 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/global_identifiability.jl:106 - ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 42 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5, x3, x2, x1, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 4)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 4.791867243 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 1.136548923 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 42 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5, x3, x2, x1, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 34 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 4)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 4 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 40 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 4 for den. -│ Maximal number of interpolated terms are: 1 for num. and 2 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.136552672 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.00572283 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 25 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 1.852242016 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 41 initial generators there are 23 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 279 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: Simplifying identifiable functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:451 -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 38 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5, x3, x2, x1, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 11)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 3, Denominator: 3 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 16 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.183858643 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.007223317 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -│ Assess correctness: false -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:63 -┌ Info: Given 38 functions in Rational Field(p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5, x3, x2, x1, x4)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17, y18, y19, y20, y21, y22, y23, y24, y25, y26, y27, t] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/groebnerstate.jl:25 -┌ Info: Specializing at 3 points to guess the shape of the basis.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:135 -┌ Info: Specializing at random points to guess the total degrees in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:184 -┌ Info: Success! 66 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:268 -┌ Info: The total degrees in the coefficients -│ state.param_degrees = [[(0, 0), (0, 11)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (1, 0)], [(0, 0), (4, 0)]] -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:269 -┌ Info: Interpolating the exponents in parameters.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:279 -┌ Info: Interpolating for degrees: -│ Numerator: 4, Denominator: 5 -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:327 -┌ Info: Success! 22 points used. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:405 -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 0 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -│ -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:410 -┌ Info: Recovering the coefficients.. -└ @ ParamPunPam /home/demin/ParamPunPam.jl/src/groebner/paramgb.jl:418 -┌ Info: Groebner basis computed in 0.320973217 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:329 -┌ Info: Checking two-sided inclusion modulo a prime -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:334 -┌ Info: Inclusion checked in 0.006529656 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:344 -┌ Info: The coefficients of the Groebner basis are presented by 28 rational functions -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:348 -┌ Info: Computing normal forms (probabilistic) -│ Parameters (27 in total): Nemo.fmpq_mpoly[p7, p4, p13, p18, p23, p8, p1, p3, p25, p10, p16, p22, p20, p11, p17, p21, p9, p6, p12, p15, p24, p14, p5, x3, x2, x1, x4] -│ Up to degree: 3 -│ Modulo: Galois field with characteristic 1073741827 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:214 -┌ Info: Used specialization points: 1 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 406 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 403 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: Used specialization points: 2 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 406 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 403 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Used specialization points: 3 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:235 -┌ Info: Computing relations of 406 normal forms -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:238 -┌ Info: Obtained 403 local relations over FF -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:244 -┌ Info: There are 0 relations in the intersection -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:252 -┌ Info: Reconstructing relations to rationals -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/normalforms.jl:259 -┌ Info: Final cleaning and simplification of generators -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:530 -┌ Info: Checking inclusion with probability 0.995 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:533 -┌ Info: Inclusion checked in 0.02247735 seconds. Result: true -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:536 -┌ Info: Out of 37 initial generators there are 27 indepdendent -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:541 -┌ Info: The ranking of the new set of generators is 381 -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/RationalFunctionFields/RationalFunctionField.jl:544 -┌ Info: The search for identifiable functions concluded in 12.348421708 seconds -└ @ StructuralIdentifiability /home/demin/StructuralIdentifiability.jl/src/identifiable_functions.jl:75 -┌ Info: Identifiable functions are -│ funcs = AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}[x4, x1, x2, x3, p5, p14, p24, p15, p12, p6, p9, p21, p17, p11, p20, p16, p10, p25, p3, p1, p8, p23, p18, p13, p4, p7, p22^4] -└ @ Main /home/demin/StructuralIdentifiability.jl/benchmarking/IdentifiableFunctions/run_single_benchmark.jl:53 diff --git a/benchmarking/IdentifiableFunctions/systems/p53/timings_(:gb,) b/benchmarking/IdentifiableFunctions/systems/p53/timings_(:gb,) deleted file mode 100644 index 050a91ae9..000000000 --- a/benchmarking/IdentifiableFunctions/systems/p53/timings_(:gb,) +++ /dev/null @@ -1,2 +0,0 @@ -p53 -id_total, 11.428196319 diff --git a/benchmarking/IdentifiableFunctions/systems/p53/timings_(:gb,)_with_states b/benchmarking/IdentifiableFunctions/systems/p53/timings_(:gb,)_with_states deleted file mode 100644 index 1a63fc829..000000000 --- a/benchmarking/IdentifiableFunctions/systems/p53/timings_(:gb,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -p53 -id_total, 11.354815227 diff --git a/benchmarking/IdentifiableFunctions/systems/p53/timings_(:hybrid,) b/benchmarking/IdentifiableFunctions/systems/p53/timings_(:hybrid,) deleted file mode 100644 index 095adb772..000000000 --- a/benchmarking/IdentifiableFunctions/systems/p53/timings_(:hybrid,) +++ /dev/null @@ -1,2 +0,0 @@ -p53 -id_total, 12.018368734 diff --git a/benchmarking/IdentifiableFunctions/systems/p53/timings_(:hybrid,)_with_states b/benchmarking/IdentifiableFunctions/systems/p53/timings_(:hybrid,)_with_states deleted file mode 100644 index 659d78f15..000000000 --- a/benchmarking/IdentifiableFunctions/systems/p53/timings_(:hybrid,)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -p53 -id_total, 12.812221936 diff --git a/benchmarking/IdentifiableFunctions/systems/p53/timings_(:normalforms, 2) b/benchmarking/IdentifiableFunctions/systems/p53/timings_(:normalforms, 2) deleted file mode 100644 index 44e1ef84c..000000000 --- a/benchmarking/IdentifiableFunctions/systems/p53/timings_(:normalforms, 2) +++ /dev/null @@ -1,2 +0,0 @@ -p53 -id_total, 10.973568178 diff --git a/benchmarking/IdentifiableFunctions/systems/p53/timings_(:normalforms, 2)_with_states b/benchmarking/IdentifiableFunctions/systems/p53/timings_(:normalforms, 2)_with_states deleted file mode 100644 index f164b8e85..000000000 --- a/benchmarking/IdentifiableFunctions/systems/p53/timings_(:normalforms, 2)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -p53 -id_total, 11.593976761 diff --git a/benchmarking/IdentifiableFunctions/systems/p53/timings_(:normalforms, 3) b/benchmarking/IdentifiableFunctions/systems/p53/timings_(:normalforms, 3) deleted file mode 100644 index a496e3686..000000000 --- a/benchmarking/IdentifiableFunctions/systems/p53/timings_(:normalforms, 3) +++ /dev/null @@ -1,2 +0,0 @@ -p53 -id_total, 11.686917232 diff --git a/benchmarking/IdentifiableFunctions/systems/p53/timings_(:normalforms, 3)_with_states b/benchmarking/IdentifiableFunctions/systems/p53/timings_(:normalforms, 3)_with_states deleted file mode 100644 index e3b928369..000000000 --- a/benchmarking/IdentifiableFunctions/systems/p53/timings_(:normalforms, 3)_with_states +++ /dev/null @@ -1,2 +0,0 @@ -p53 -id_total, 12.348421708 diff --git a/benchmarking/IdentifiableFunctions/tmp.txt b/benchmarking/IdentifiableFunctions/tmp.txt deleted file mode 100644 index 32f590d4d..000000000 --- a/benchmarking/IdentifiableFunctions/tmp.txt +++ /dev/null @@ -1,555 +0,0 @@ -[ Info: Summary of the model: -[ Info: State variables: R, W, S -[ Info: Parameters: e, rR, dr, d, g, r, a, T, Dd -[ Info: Inputs: -[ Info: Outputs: y1, y2 -[ Info: Summary of the model: -[ Info: State variables: w, y, v, z, x -[ Info: Parameters: b, c, h, lm, d, k, u, q, a, beta -[ Info: Inputs: -[ Info: Outputs: y1, y2 -[ Info: Computing IO-equations -[ Info: IO-equations computed in 8.593349684 seconds -[ Info: Simplifying identifiable functions -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / Groebner.InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -└ Assess correctness: false -[ Info: Given 82 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -[ Info: Specializing at 3 points to guess the shape of the basis.. - -⌜ # Computing specializations.. Time: 0:00:06 -✓ # Computing specializations.. Time: 0:00:06 -[ Info: Specializing at random points to guess the total degrees in parameters.. -[ Info: Success! 34 points used. -┌ Info: The total degrees in the coefficients -│ state.param_degrees = -│ 10-element Vector{Vector{Tuple{Int64, Int64}}}: -│ [(0, 0), (0, 0)] -│ [(0, 0), (1, 0)] -│ [(0, 0), (1, 0)] -│ [(0, 0), (1, 0)] -│ ⋮ -│ [(0, 0), (2, 2)] -│ [(0, 0), (3, 0)] -└ [(0, 0), (4, 1)] -[ Info: Interpolating the exponents in parameters.. -┌ Info: Interpolating for degrees: -└ Numerator: 3, Denominator: 2 -[ Info: Success! 14 points used. -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -└ -[ Info: Recovering the coefficients.. -[ Info: Groebner basis computed in 10.136974499 seconds -[ Info: Checking two-sided inclusion modulo a prime -[ Info: Inclusion checked in 2.554061984 seconds. Result: true -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / Groebner.InputOrdering -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -└ Assess correctness: false -[ Info: Given 82 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -[ Info: Specializing at 3 points to guess the shape of the basis.. -[ Info: Specializing at random points to guess the total degrees in parameters.. -[ Info: Success! 34 points used. -┌ Info: The total degrees in the coefficients -│ state.param_degrees = -│ 10-element Vector{Vector{Tuple{Int64, Int64}}}: -│ [(0, 0), (0, 0)] -│ [(0, 0), (1, 0)] -│ [(0, 0), (1, 0)] -│ [(0, 0), (1, 0)] -│ ⋮ -│ [(0, 0), (2, 2)] -│ [(0, 0), (3, 0)] -└ [(0, 0), (4, 1)] -[ Info: Interpolating the exponents in parameters.. -┌ Info: Interpolating for degrees: -└ Numerator: 4, Denominator: 2 -[ Info: Success! 16 points used. -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -└ -[ Info: Recovering the coefficients.. -[ Info: Groebner basis computed in 0.029077008 seconds -[ Info: Checking two-sided inclusion modulo a prime -[ Info: Inclusion checked in 0.00297521 seconds. Result: true -[ Info: The coefficients of the Groebner basis are presented by 11 rational functions -┌ Info: The pool of fractions: -│ -a, -│ -u, -│ -d, -│ -h, -│ -b, -│ -k*q*beta, -│ -lm//q, -│ (-c*q)//(k*beta), -└ (-k^2*beta^2)//c -[ Info: Computing linear relations of monomials up to degree 3 -[ Info: Computing the normal forms of 285 monomials (variables: 10, degree: 3) -┌ Info: Generators from normal forms -│ generators = -│ 60-element Vector{AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}}: -│ b -│ h -│ d -│ u -│ ⋮ -│ u^2*a -│ u*a^2 -└ a^3 -┌ Info: The pool of fractions: -│ a, -│ a, -│ u, -│ u, -│ d, -│ d, -│ h, -│ h, -│ b, -│ b, -│ a^2, -│ u*a, -│ u^2, -│ d*a, -│ d*u, -│ d^2, -│ h*a, -│ h*u, -│ h*d, -│ h^2, -│ b*a, -│ b*u, -│ b*d, -│ b*h, -│ b^2, -│ a^3, -│ u*a^2, -│ u^2*a, -│ u^3, -│ k*q*beta, -│ k*q*beta, -│ d*a^2, -│ d*u*a, -│ d*u^2, -│ d^2*a, -│ d^2*u, -│ d^3, -│ lm*k*beta, -│ h*a^2, -│ h*u*a, -│ h*u^2, -│ h*d*a, -│ h*d*u, -│ h*d^2, -│ h^2*a, -│ h^2*u, -│ h^2*d, -│ h^3, -│ c*q^2, -│ c*lm*q, -│ c*lm^2, -│ b*a^2, -│ b*u*a, -│ b*u^2, -│ b*d*a, -│ b*d*u, -│ b*d^2, -│ b*h*a, -│ b*h*u, -│ b*h*d, -│ b*h^2, -│ b^2*a, -│ b^2*u, -│ b^2*d, -│ b^2*h, -│ b^3, -│ lm//q, -└ (c*q)//(k*beta) -[ Info: Computing 5 Groebner bases for each of the 5 block orderings -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / Groebner.DegRevLex{Nothing} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -└ Assess correctness: false -[ Info: Given 9 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -[ Info: Specializing at 3 points to guess the shape of the basis.. - -⌜ # Computing specializations.. Time: 0:00:00 -✓ # Computing specializations.. Time: 0:00:00 -[ Info: Specializing at random points to guess the total degrees in parameters.. -[ Info: Success! 34 points used. -┌ Info: The total degrees in the coefficients -│ state.param_degrees = -│ 10-element Vector{Vector{Tuple{Int64, Int64}}}: -│ [(0, 0), (0, 0)] -│ [(0, 0), (1, 0)] -│ [(0, 0), (1, 0)] -│ [(0, 0), (1, 0)] -│ ⋮ -│ [(0, 0), (2, 2)] -│ [(0, 0), (3, 0)] -└ [(0, 0), (4, 1)] -[ Info: Interpolating the exponents in parameters.. -┌ Info: Interpolating for degrees: -└ Numerator: 3, Denominator: 2 -[ Info: Success! 14 points used. -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -└ -[ Info: Recovering the coefficients.. -[ Info: Groebner basis computed in 0.319564471 seconds -[ Info: Checking two-sided inclusion modulo a prime -[ Info: Inclusion checked in 0.001165484 seconds. Result: true -┌ Info: Computing parametric Groebner basis up to degrees (4, 4) -│ Ordering, input / target: degrevlex / Groebner.DegRevLex{Nothing} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -└ Assess correctness: false -[ Info: Given 9 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -[ Info: Specializing at 3 points to guess the shape of the basis.. -[ Info: Specializing at random points to guess the total degrees in parameters.. -[ Info: Success! 34 points used. -┌ Info: The total degrees in the coefficients -│ state.param_degrees = -│ 10-element Vector{Vector{Tuple{Int64, Int64}}}: -│ [(0, 0), (0, 0)] -│ [(0, 0), (1, 0)] -│ [(0, 0), (1, 0)] -│ [(0, 0), (1, 0)] -│ ⋮ -│ [(0, 0), (2, 2)] -│ [(0, 0), (3, 0)] -└ [(0, 0), (4, 1)] -[ Info: Interpolating the exponents in parameters.. -┌ Info: Interpolating for degrees: -└ Numerator: 4, Denominator: 2 -[ Info: Success! 16 points used. -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 4 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -└ -[ Info: Recovering the coefficients.. -[ Info: Groebner basis computed in 0.017503464 seconds -[ Info: Checking two-sided inclusion modulo a prime -[ Info: Inclusion checked in 0.035912084 seconds. Result: true -[ Info: The coefficients of the Groebner basis are presented by 11 rational functions -┌ Info: The pool of fractions: -│ -a, -│ -u, -│ -d, -│ -h, -│ -b, -│ -k*q*beta, -│ -lm//q, -│ (-c*q)//(k*beta), -└ (-k^2*beta^2)//c -┌ Info: Computing GB for ordering -└ ord = Groebner.ProductOrdering{Groebner.DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, Groebner.DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(Groebner.DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y8, y7, t, y10, y6], false), Groebner.DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y1, y2, y9, y4, y3], true)) -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / Groebner.ProductOrdering{Groebner.DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, Groebner.DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -└ Assess correctness: false -[ Info: Given 9 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -[ Info: Specializing at 3 points to guess the shape of the basis.. - -⌜ # Computing specializations.. Time: 0:00:03 -✓ # Computing specializations.. Time: 0:00:03 -[ Info: Specializing at random points to guess the total degrees in parameters.. -[ Info: Success! 34 points used. -┌ Info: The total degrees in the coefficients -│ state.param_degrees = -│ 9-element Vector{Vector{Tuple{Int64, Int64}}}: -│ [(0, 0), (1, 0)] -│ [(0, 0), (1, 0)] -│ [(0, 0), (1, 0)] -│ [(0, 0), (1, 0)] -│ ⋮ -│ [(0, 0), (1, 0)] -│ [(1, 1), (0, 0)] -└ [(2, 2), (0, 0)] -[ Info: Interpolating the exponents in parameters.. -┌ Info: Interpolating for degrees: -└ Numerator: 3, Denominator: 3 -[ Info: Success! 16 points used. -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -└ -[ Info: Recovering the coefficients.. -[ Info: Groebner basis computed in 3.65500494 seconds -[ Info: Checking two-sided inclusion modulo a prime -[ Info: Inclusion checked in 0.031157113 seconds. Result: true -[ Info: The coefficients of the Groebner basis are presented by 8 rational functions -┌ Info: Computing GB for ordering -└ ord = Groebner.ProductOrdering{Groebner.DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, Groebner.DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(Groebner.DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y10, y2, y8, y7], false), Groebner.DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y4, y5, y6, y1, y9, t], false)) -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / Groebner.ProductOrdering{Groebner.DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, Groebner.DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -└ Assess correctness: false -[ Info: Given 9 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -[ Info: Specializing at 3 points to guess the shape of the basis.. -[ Info: Specializing at random points to guess the total degrees in parameters.. -[ Info: Success! 34 points used. -┌ Info: The total degrees in the coefficients -│ state.param_degrees = -│ 9-element Vector{Vector{Tuple{Int64, Int64}}}: -│ [(0, 0), (0, 3)] -│ [(0, 0), (1, 0)] -│ [(0, 0), (1, 0)] -│ [(0, 0), (1, 0)] -│ ⋮ -│ [(0, 0), (3, 0)] -│ [(2, 2), (0, 0)] -└ [(0, 0), (1, 0)] -[ Info: Interpolating the exponents in parameters.. -┌ Info: Interpolating for degrees: -└ Numerator: 3, Denominator: 3 -[ Info: Success! 16 points used. -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -└ -[ Info: Recovering the coefficients.. -[ Info: Groebner basis computed in 0.017617669 seconds -[ Info: Checking two-sided inclusion modulo a prime -[ Info: Inclusion checked in 0.001058422 seconds. Result: true -[ Info: The coefficients of the Groebner basis are presented by 8 rational functions -┌ Info: Computing GB for ordering -└ ord = Groebner.ProductOrdering{Groebner.DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, Groebner.DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(Groebner.DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y2, t, y9, y1, y7], true), Groebner.DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y3, y8, y10, y4, y6], false)) -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / Groebner.ProductOrdering{Groebner.DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, Groebner.DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -└ Assess correctness: false -[ Info: Given 9 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -[ Info: Specializing at 3 points to guess the shape of the basis.. -[ Info: Specializing at random points to guess the total degrees in parameters.. -[ Info: Success! 34 points used. -┌ Info: The total degrees in the coefficients -│ state.param_degrees = -│ 9-element Vector{Vector{Tuple{Int64, Int64}}}: -│ [(1, 1), (0, 0)] -│ [(0, 0), (1, 0)] -│ [(0, 0), (1, 0)] -│ [(0, 0), (3, 0)] -│ ⋮ -│ [(0, 0), (1, 0)] -│ [(0, 0), (0, 3)] -└ [(1, 4), (0, 0)] -[ Info: Interpolating the exponents in parameters.. -┌ Info: Interpolating for degrees: -└ Numerator: 3, Denominator: 3 -[ Info: Success! 16 points used. -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 1 for num. and 1 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -└ -[ Info: Recovering the coefficients.. -[ Info: Groebner basis computed in 0.017889131 seconds -[ Info: Checking two-sided inclusion modulo a prime -[ Info: Inclusion checked in 0.001130037 seconds. Result: true -[ Info: The coefficients of the Groebner basis are presented by 7 rational functions -┌ Info: Computing GB for ordering -└ ord = Groebner.ProductOrdering{Groebner.DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, Groebner.DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(Groebner.DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y5, y9, y4, y8, y3], false), Groebner.DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y7, y6, y10, y1, y2, t], false)) -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / Groebner.ProductOrdering{Groebner.DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, Groebner.DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -└ Assess correctness: false -[ Info: Given 9 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -[ Info: Specializing at 3 points to guess the shape of the basis.. -[ Info: Specializing at random points to guess the total degrees in parameters.. -[ Info: Success! 34 points used. -┌ Info: The total degrees in the coefficients -│ state.param_degrees = -│ 10-element Vector{Vector{Tuple{Int64, Int64}}}: -│ [(0, 0), (0, 3)] -│ [(0, 0), (1, 0)] -│ [(0, 0), (1, 0)] -│ [(0, 0), (4, 1)] -│ ⋮ -│ [(0, 0), (1, 1)] -│ [(0, 0), (1, 0)] -└ [(0, 0), (1, 0)] -[ Info: Interpolating the exponents in parameters.. -┌ Info: Interpolating for degrees: -└ Numerator: 3, Denominator: 3 -[ Info: Success! 16 points used. -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -└ -[ Info: Recovering the coefficients.. -[ Info: Groebner basis computed in 0.050302779 seconds -[ Info: Checking two-sided inclusion modulo a prime -[ Info: Inclusion checked in 0.001051078 seconds. Result: true -[ Info: The coefficients of the Groebner basis are presented by 8 rational functions -┌ Info: Computing GB for ordering -└ ord = Groebner.ProductOrdering{Groebner.DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, Groebner.DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}}(Groebner.DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[y3, y10, y1, y2, y7], false), Groebner.DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}(AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}[t, y9, y5, y6, y8, y4], false)) -┌ Info: Computing parametric Groebner basis up to degrees (2, 2) -│ Ordering, input / target: degrevlex / Groebner.ProductOrdering{Groebner.DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}, Groebner.DegRevLex{AbstractAlgebra.Generic.MPoly{Nemo.fmpq_mpoly}}} -│ Rational interpolator: VanDerHoevenLecerf -│ Polynomial interpolator: PrimesBenOrTiwari -│ Estimate degrees: true -└ Assess correctness: false -[ Info: Given 9 functions in Rational Field(b, c, h, lm, d, k, u, q, a, beta)[y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, t] -[ Info: Specializing at 3 points to guess the shape of the basis.. -[ Info: Specializing at random points to guess the total degrees in parameters.. -[ Info: Success! 34 points used. -┌ Info: The total degrees in the coefficients -│ state.param_degrees = -│ 9-element Vector{Vector{Tuple{Int64, Int64}}}: -│ [(1, 1), (0, 0)] -│ [(0, 0), (1, 0)] -│ [(0, 0), (1, 0)] -│ [(0, 0), (0, 3)] -│ ⋮ -│ [(0, 0), (1, 0)] -│ [(2, 2), (0, 0)] -└ [(0, 0), (1, 0)] -[ Info: Interpolating the exponents in parameters.. -┌ Info: Interpolating for degrees: -└ Numerator: 3, Denominator: 3 -[ Info: Success! 16 points used. -┌ Info: Basis exponents summary: -│ Maximal interpolated degrees are: 2 for num. and 2 for den. -│ Maximal number of interpolated terms are: 1 for num. and 1 for den. -└ -[ Info: Recovering the coefficients.. -[ Info: Groebner basis computed in 0.017005007 seconds -[ Info: Checking two-sided inclusion modulo a prime -[ Info: Inclusion checked in 0.001236196 seconds. Result: true -[ Info: The coefficients of the Groebner basis are presented by 8 rational functions -[ Info: Final cleaning and simplification of generators -┌ Info: The pool of fractions: -│ a, -│ a, -│ a, -│ a, -│ a, -│ a, -│ a, -│ a, -│ u, -│ u, -│ u, -│ u, -│ u, -│ u, -│ u, -│ u, -│ d, -│ d, -│ d, -│ d, -│ d, -│ d, -│ d, -│ d, -│ h, -│ h, -│ h, -│ h, -│ h, -│ h, -│ h, -│ h, -│ b, -│ b, -│ b, -│ b, -│ b, -│ b, -│ b, -│ b, -│ a^2, -│ u*a, -│ u^2, -│ d*a, -│ d*u, -│ d^2, -│ h*a, -│ h*u, -│ h*d, -│ h^2, -│ b*a, -│ b*u, -│ b*d, -│ b*h, -│ b^2, -│ a^3, -│ u*a^2, -│ u^2*a, -│ u^3, -│ k*q*beta, -│ k*q*beta, -│ k*q*beta, -│ d*a^2, -│ d*u*a, -│ d*u^2, -│ d^2*a, -│ d^2*u, -│ d^3, -│ lm*k*beta, -│ h*a^2, -│ h*u*a, -│ h*u^2, -│ h*d*a, -│ h*d*u, -│ h*d^2, -│ h^2*a, -│ h^2*u, -│ h^2*d, -│ h^3, -│ c*q^2, -│ c*lm*q, -│ c*lm^2, -│ b*a^2, -│ b*u*a, -│ b*u^2, -│ b*d*a, -│ b*d*u, -│ b*d^2, -│ b*h*a, -│ b*h*u, -│ b*h*d, -│ b*h^2, -│ b^2*a, -│ b^2*u, -│ b^2*d, -│ b^2*h, -│ b^3, -│ q//lm, -│ q//lm, -│ q//lm, -│ q//lm, -│ lm//q, -│ lm//q, -│ lm//q, -│ (k*beta)//(c*lm), -│ (k*beta)//(c*lm), -│ (k*beta)//(c*lm), -│ (c*q)//(k*beta), -│ (c*q)//(k*beta), -└ (c*q)//(k*beta) -[ Info: Checking inclusion with probability 0.99 -[ Info: Inclusion checked in 2.465174842 seconds. Result: true -[ Info: Out of 81 initial generators there are 8 indepdendent -[ Info: The search for identifiable functions concluded in 39.409351372 seconds diff --git a/benchmarking/IdentifiableFunctions/utils.jl b/benchmarking/IdentifiableFunctions/utils.jl index ad5fd6952..ef454b27e 100644 --- a/benchmarking/IdentifiableFunctions/utils.jl +++ b/benchmarking/IdentifiableFunctions/utils.jl @@ -1,21 +1,26 @@ # shared utilities for benchmarking +using Printf -ID_TIME_CATEGORIES = [ +const BENCHMARK_RESULTS = "results" + +const ID_TIME_CATEGORIES = [ :id_total, - #:id_io_time, - #:id_global_time, - #:id_inclusion_check, - #:id_inclusion_check_mod_p, - #:id_groebner_time, - #:id_beautifulization, - #:id_normalforms_time, - #:id_gbfan_time, - #:id_ranking, + :id_io_time, + :id_global_time, + :id_inclusion_check, + :id_inclusion_check_mod_p, + :id_groebner_time, + :id_beautifulization, + :id_normalforms_time, + :id_gbfan_time, + :id_ranking, ] -ID_DATA_CATEGORIES = [] -ALL_CATEGORIES = union(ID_TIME_CATEGORIES, ID_DATA_CATEGORIES) +const ID_DATA_CATEGORIES = + [:id_npoints_degree, :id_npoints_interpolation, :are_id_funcs_polynomial] +const ALL_CATEGORIES = union(ID_TIME_CATEGORIES, ID_DATA_CATEGORIES) +const ALL_POSSIBLE_CATEGORIES = union(ALL_CATEGORIES, Symbol[]) -HUMAN_READABLE_CATEGORIES = Dict( +const HUMAN_READABLE_CATEGORIES = Dict( :id_io_time => "io", :id_primality_evaluate => "io/primality-evaluate", :id_uncertain_factorization => "io/uncertain-factor", @@ -24,14 +29,38 @@ HUMAN_READABLE_CATEGORIES = Dict( :id_inclusion_check => "inclusion", :id_inclusion_check_mod_p => "inclusion Zp", :id_groebner_time => "ParamPunPam.jl", - :id_total => "total", + :id_total => "Runtime", :id_beautifulization => "beautifulization", :id_normalforms_time => "normal forms", :id_gbfan_time => "GB fan", :id_ranking => "Score", + :implicit_relations => "Algebraic relations", + :dim_before => "Dim. before", + :dim_after => "Dim. after", + :are_id_funcs_polynomial => "Polynomial?", + :id_npoints_degree => "# Points, degree", + :id_npoints_interpolation => "# Points, interpolation", ) +const CATEGORY_FORMAT = Dict() +for cat in ALL_POSSIBLE_CATEGORIES + CATEGORY_FORMAT[cat] = (val) -> if val isa Real + @sprintf("%.2f", val) + else + string(val) + end +end +CATEGORY_FORMAT[:are_id_funcs_polynomial] = (val) -> string(val) == "true" ? "yes" : "no" + function parse_keywords(keywords) + keywords = replace(keywords, "\\:" => ":") + keywords = replace(keywords, "\"" => "") + if isempty(keywords) + return [[]] + end + if isempty(eval(Meta.parse(keywords))) + return [[]] + end sets_of_keywords = map(strip, split(keywords, ";")) @assert !isempty(sets_of_keywords) kws_named_tuples = [] @@ -43,17 +72,54 @@ function parse_keywords(keywords) kws_named_tuples end -function keywords_to_id(keywords) - id = get(keywords, :strategy, :default) +function keywords_to_global_id(keywords) + if isempty(keywords) + return Symbol() + end + id = get(keywords, :strategy, Symbol("")) if haskey(keywords, :with_states) if keywords.with_states - id = Symbol(id, :_with_states) + id = if id !== Symbol("") + Symbol(id, :_with_states) + else + Symbol(id, :with_states) + end end end + if haskey(keywords, :rational_interpolator) + interpolator = keywords.rational_interpolator + id = Symbol(id, :_, interpolator) + end if haskey(keywords, :adjoin_identifiable) if keywords.adjoin_identifiable - id = Symbol(id, :_adjoin_identifiable) + id = if id !== Symbol("") + Symbol(id, :_adjoin_identifiable) + else + Symbol(id, :adjoin_identifiable) + end end end id end + +function timings_filename(kwid) + generic_filename("timings", kwid) +end + +function result_filename(kwid) + generic_filename("result", kwid) +end + +function data_filename(kwid) + generic_filename("data", kwid) +end + +function generic_filename(name, kwid) + str = if kwid === Symbol("") + "$name" + else + "$(name)_$kwid" + end + str = replace(str, ":" => "") + str +end diff --git a/docs/Project.toml b/docs/Project.toml index fda9606fb..6998d3954 100644 --- a/docs/Project.toml +++ b/docs/Project.toml @@ -2,6 +2,7 @@ BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf" Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4" ModelingToolkit = "961ee093-0014-501f-94e3-6117800e7a78" +StructuralIdentifiability = "220ca800-aa68-49bb-acd8-6037fa93a544" [compat] BenchmarkTools = "1.3" diff --git a/docs/pages.jl b/docs/pages.jl index d7346ae8f..2b809b7d2 100644 --- a/docs/pages.jl +++ b/docs/pages.jl @@ -1,10 +1,9 @@ pages = [ "Home" => "index.md", "Tutorials" => Any[ - "tutorials/local_identifiability.md", - "tutorials/global_identifiability.md", + "tutorials/creating_ode.md", + "tutorials/identifiability.md", "tutorials/identifiable_functions.md", - "tutorials/using_modeling_toolkit.md", ], "Basics" => Any["input/input.md", "identifiability/identifiability.md"], "Library" => Any[ diff --git a/docs/src/assets/Project.toml b/docs/src/assets/Project.toml new file mode 100644 index 000000000..6998d3954 --- /dev/null +++ b/docs/src/assets/Project.toml @@ -0,0 +1,10 @@ +[deps] +BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf" +Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4" +ModelingToolkit = "961ee093-0014-501f-94e3-6117800e7a78" +StructuralIdentifiability = "220ca800-aa68-49bb-acd8-6037fa93a544" + +[compat] +BenchmarkTools = "1.3" +Documenter = "0.27" +ModelingToolkit = "8.34" diff --git a/docs/src/index.md b/docs/src/index.md index deec6a5a1..85e3d7cd5 100644 --- a/docs/src/index.md +++ b/docs/src/index.md @@ -2,8 +2,6 @@ `StructuralIdentifiability.jl` is a comprehensive toolbox for assessing identifiability parameters. -This documentation contains information about the functionality of the package as well as examples of use cases. - ## Installation To install StructuralIdentifiability.jl, use the Julia package manager: @@ -36,7 +34,8 @@ Pkg.add("StructuralIdentifiability") - Local identifiability checks - Global identifiability checks - - Assessment of identifiable functions of parameters + - Assessment of identifiable functions of parameters and states + - Model reparametrization (experimental) ## Contributing diff --git a/docs/src/tutorials/creating_ode.md b/docs/src/tutorials/creating_ode.md new file mode 100644 index 000000000..ec7d039ff --- /dev/null +++ b/docs/src/tutorials/creating_ode.md @@ -0,0 +1,88 @@ +# Creating ODE System + +Most of the algorithms in `StructuralIdentifiability.jl` take as input system of ordinary differential equations (ODEs) +in the state space form, that is: + +$\begin{cases} +\mathbf{x}'(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{p}, \mathbf{u}(t)),\\ +\mathbf{y}(t) = \mathbf{g}(\mathbf{x}(t), \mathbf{p}, \mathbf{u(t)}), +\end{cases}$ + +which involves + + - a vector $\mathbf{x}(t)$ of the state variables of the system, + + - a vector $\mathbf{u}(t)$ of extermal inputs, + - a vector $\mathbf{p}$ of scalar parameters, + - a vector $\mathbf{y}(t)$ of outputs (i.e., observations), + - and vectors of rational functions $\mathbf{f}$ and $\mathbf{g}$ (for discussion of the non-rational case, see this [issue](https://github.com/SciML/StructuralIdentifiability.jl/issues/144)). + +In the standard setup, inputs and outputs are assumed to be known, and the goal is to assess +**identifiability** of parameters and/or states from the input-output data. +In the case of states, this property is also called **observability**. + +There are two ways to define such a system to be processed using `StructuralIdentifiability.jl`. +We will demonstrate them using the following example system +(Wright's population model of two mutualist species with control[^1]): + +$\begin{cases} +x_1'(t) = r_1 x_1(t)(1 - c_1 x_1(t)) + \frac{\beta_1 x_1(t)x_2(t)}{\chi_1 + x_2(t)} + u(t),\\ +x_2'(t) = r_2 x_2(t)(1 - c_2 x_2(t)) + \frac{\beta_2 x_1(t)x_2(t)}{\chi_2 + x_1(t)},\\ +y(t) = x_1(t). +\end{cases}$ + +## Defining the model using `@ODEmodel` macro + +One way to define the model is to use the `@ODEmodel` macro provided by the `StructuralIdentifiability.jl` package. + +```@example 1 +using StructuralIdentifiability + +ode = @ODEmodel( + x1'(t) = + r1 * x1(t) * (1 - c1 * x1(t)) + beta1 * x1(t) * x2(t) / (chi1 + x2(t)) + u(t), + x2'(t) = r2 * x2(t) * (1 - c2 * x2(t)) + beta2 * x1(t) * x2(t) / (chi2 + x1(t)), + y(t) = x1(t) +) +``` + +Then one can, for example, assess identifiability of the parameters and states by + +```@example 1 +assess_identifiability(ode) +``` + +## Defining using `ModelingToolkit` + +Alternatively, one can use `ModelingToolkit`: encode the equations for the states as `ODESystem` and specify the outputs separately. +In order to do this, we first introduce all functions and scalars: + +```@example 2; continued = true +using StructuralIdentifiability, ModelingToolkit + +@parameters r1, r2, c1, c2, beta1, beta2, chi1, chi2 +@variables t, x1(t), x2(t), y(t), u(t) + +D = Differential(t) +``` + +And then defined the system and separately the outputs: + +```@example 2 +eqs = [ + D(x1) ~ r1 * x1 * (1 - c1 * x1) + beta1 * x1 * x2 / (chi1 + x2) + u, + D(x2) ~ r2 * x2 * (1 - c2 * x2) + beta2 * x1 * x2 / (chi2 + x1), +] + +measured_quantities = [y ~ x1] + +ode_mtk = ODESystem(eqs, t, name = :mutualist) +``` + +Then, for example, the identifiability of parameters and states can be assessed as follows: + +```@example 2 +assess_identifiability(ode_mtk, measured_quantities = measured_quantities) +``` + +[^1]: > D. H. Wright, [*A Simple, Stable Model of Mutualism Incorporating Handling Time*](https://doi.org/10.1086/285003), The American Naturalist, 1989, 134(4). diff --git a/docs/src/tutorials/global_identifiability.md b/docs/src/tutorials/global_identifiability.md deleted file mode 100644 index 0f96d52ba..000000000 --- a/docs/src/tutorials/global_identifiability.md +++ /dev/null @@ -1,44 +0,0 @@ -# Global Identifiability of Differential Models - -In this tutorial, let us cover an example problem of querying the ODE for globally identifiable parameters. - -## Input System - -Let us consider the following four-dimensional model with two outputs: - -$\begin{cases}x'(t) = lm - d \, x(t) - \beta \, x(t) \, v(t),\\ -y'(t) = \beta \, x(t) \, v(t) - a \, y(t),\\ -v'(t) = k \, y(t) - u \, v(t),\\ -w'(t) = c \, x(t) \, y(t) \, w(t) - c \, q \, y(t) \, w(t) - b \, w(t),\\ -z'(t) = c \, q \, y(t) \, w(t) - h \, z(t),\\ -y_1(t) = w(t),\\ -y_2(t) = z(t)\end{cases}$ - -This model describes HIV dynamics[^1]. Let us run a global identifiability check on this model to get the result with probability of correctness being `p=0.99`. To do this, we will use `assess_identifiability(ode, p)` function. - -Global identifiability needs information about local identifiability first, hence the function we chose here will take care of that extra step for us. - -```@repl -using StructuralIdentifiability - -ode = @ODEmodel( - x'(t) = lm - d * x(t) - beta * x(t) * v(t), - y'(t) = beta * x(t) * v(t) - a * y(t), - v'(t) = k * y(t) - u * v(t), - w'(t) = c * x(t) * y(t) * w(t) - c * q * y(t) * w(t) - b * w(t), - z'(t) = c * q * y(t) * w(t) - h * z(t), - y1(t) = w(t), - y2(t) = z(t) -) -global_id = assess_identifiability(ode, 0.99) -``` - -We also note that it's usually inexpensive to obtain the result with higher probability of correctness. For example, taking `p=0.9999` in the system above will result only in a slight slowdown. - -## Note on the probability of correctness - -Currently, the probability of correctness does not include the probability of correctness of the modular reconstruction for Groebner bases. -This probability is ensured by an additional check modulo a large prime, and can be neglected for practical purposes. However, in the future versions, we plan to -eliminate this possible error. - -[^1]: > D. Wodarz, M. Nowak, [*Specific therapy regimes could lead to long-term immunological control of HIV*](https://doi.org/10.1073/pnas.96.25.14464), PNAS December 7, 1999 96 (25) 14464-14469; diff --git a/docs/src/tutorials/identifiability.md b/docs/src/tutorials/identifiability.md new file mode 100644 index 000000000..4d6339adf --- /dev/null +++ b/docs/src/tutorials/identifiability.md @@ -0,0 +1,125 @@ +# Identifiability of Differential Models (Local and Global) + +Recall that we consider ODE models in the state-space form + +$\begin{cases} +\mathbf{x}'(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{p}, \mathbf{u}(t)),\\ +\mathbf{y}(t) = \mathbf{g}(\mathbf{x}(t), \mathbf{p}, \mathbf{u(t)}), +\end{cases}$ + +where $\mathbf{x}(t), \mathbf{y}(t)$, and $\mathbf{u}(t)$ are time-dependent states, outputs, and inputs, respectively, +and $\mathbf{p}$ are scalar parameters. +We will call that a parameter or a states (or a function of them) is **identifiable** if its value can be recovered from +time series for inputs and outputs. +Typically, two types of identifiability are distinguished + + - **local** identifiability: the value can be recovered up to finitely many options; + + - **global** identifiability: the value can be recoevered uniquely. + +Note that in the case of states, term **observability** it typically used. We will use **identifiability** for both +states and parameters for brevity and uniformity. +While the notion of global identifiability is much more precise, assessing local identifiability is typically much faster, +and can be performed for the models whose global identifiability analysis is out of reach. + +## Local identifiability + +We consider the Lotka-Volterra model: + +$\begin{cases} +x_1'(t) = a x_1(t) - b x_1(t) x_2(t) + u(t),\\ +x_2'(t) = -c x_2(t) + d x_1(t) x_2(t),\\ +y(t) = x_1(t) +\end{cases}$ + +The local identifiability of all parameters and states in this model can be assessed as follows + +```@example local +using StructuralIdentifiability + +ode = @ODEmodel( + x1'(t) = a * x1(t) - b * x1(t) * x2(t) + u(t), + x2'(t) = -c * x2(t) + d * x1(t) * x2(t), + y(t) = x1(t) +) + +assess_local_identifiability(ode) +``` + +We see that $x_1(t)$ is locally identifiable (no surprises, this is an output), $a, c,$ and $d$ are identifiable as well. +On the other hand, $x_2(t)$ and $b$ are nonidentifiable. This can be explained by the following scaling symmetry + +$x_2(t) \to \lambda x_2(t), \quad b \to \frac{b}{\lambda}$ + +which preserves input and output for every nonzero $\lambda$. +The algorithm behind this call is the one due to Sedoglavic[^1]. + +Function `assess_local_identifiability` has several optional parameters + + - `funcs_to_check` a list of specific functions of parameters and states to check identifiability for (see an example below). + If not provided, the identifiability is assessed for all parameters and states. + + - `p` (default $0.99$) is the probability of correctness. The algorithm can, in theory, produce wrong result, but the probability that it is correct + is guaranteed to be at least `p`. However, the probability bounds we use are quite conservative, so the actual probability of correctness is + likely to be much higher. + - `type` (default `:SE`). By default, the algorithm checks the standard single-experiment identifiability. If one sets `type = :ME`, then the algorithm + checks multi-experiment identifiability, that is, identifiability from several experiments with independent initial conditions (the algorithm from [^2] is used). + +Note that the scaling symmetry given above suggests that $b x_2(t)$ may in fact be identifiable. This can be checked using `funcs_to_check` parameter: + +```@example local +assess_local_identifiability(ode, funcs_to_check = [b * x2]) +``` + +Indeed! + +## Global identifiability + +One can obtain more refined information about a model using `assess_identifiability` function. +We will showcase it using the Goodwin oscillator model [^3]. + +```@example global +using StructuralIdentifiability + +ode = @ODEmodel( + x1'(t) = -b * x1(t) + 1 / (c + x4(t)), + x2'(t) = alpha * x1(t) - beta * x2(t), + x3'(t) = gama * x2(t) - delta * x3(t), + x4'(t) = sigma * x4(t) * (gama * x2(t) - delta * x3(t)) / x3(t), + y(t) = x1(t) +) + +assess_identifiability(ode) +``` + +As a result, each parameter/state is assigned one of the labels `:globally` (globally identifiable), `:locally` (locally but not globally identifiable), +or `:nonidentifiable` (not identifiable, even locally). +The algorithm behind this computation follows [^4]. + +Similarly to `assess_local_identifiability`, this function has optional parameters: + + - `funcs_to_check` a list of specific functions of parameters and states to check identifiability for (see an example below). + If not provided, the identifiability is assessed for all parameters and states. Note that the computations for states may be + more involved than for the parameters, so one may want to call the function with `funcs_to_check = ode.parameters` if the + call `assess_identifiability(ode)` takes too long. + + - `p` (default $0.99$) is the probability of correctness. Same story as above: the probability estimates are very conservative, so the actual + error probability is much lower than 1%. + Also, currently, the probability of correctness does not include the probability of correctness of the modular reconstruction for Groebner bases. + This probability is ensured by an additional check modulo a large prime, and can be neglected for practical purposes. + +Using `funcs_to_check` parameter, one can further inverstigate the nature of the lack of identifiability in the model at hand. +For example, for the Goodwin oscillator, we can check if `beta + delta` and `beta * delta` are identifiable: + +```@example global +assess_identifiability(ode, funcs_to_check = [beta + delta, beta * delta]) +``` + +And we see that they indeed are. This means, in particular, that the reason why `beta` and `delta` are not identifiable is because their values +can be exchanged. One may wonder how could we guess these functions `beta + delta, beta * delta`. In fact, they can be just computed using +`find_identifiable_functions` function as we will explain in the next tutorial. Stay tuned! + +[^1]: > A. Sedoglavic, [*A probabilistic algorithm to test local algebraic observability in polynomial time*](https://doi.org/10.1006/jsco.2002.0532), Journal of Symbolic Computation, 2002. +[^2]: > A. Ovchinnikov, A. Pillay, G. Pogudin, T. Scanlon, [*Multi-experiment Parameter Identifiability of ODEs and Model Theory*](https://doi.org/10.1137/21M1389845), SIAM Journal on Applied Algebra and Geometry, 2022. +[^3]: > D. Gonze, P. Ruoff, [*The Goodwin Oscillator and its Legacy*](https://doi.org/10.1007/s10441-020-09379-8), Acta Biotheoretica, 2020. +[^4]: > R. Dong, C. Goodbrake, H. Harrington, G. Pogudin, [*Differential elimination for dynamical models via projections with applications to structural identifiability*](https://doi.org/10.1137/22M1469067), SIAM Journal on Applied Algebra and Geometry, 2023. diff --git a/docs/src/tutorials/identifiable_functions.md b/docs/src/tutorials/identifiable_functions.md index 749f9f7e8..db98e6043 100644 --- a/docs/src/tutorials/identifiable_functions.md +++ b/docs/src/tutorials/identifiable_functions.md @@ -1,3 +1,43 @@ # Globally Identifiable Functions +In addition to assessing identifiabuility of given functions of parameters or states, `StructuralIdentifiability.jl` +provides the function `find_identifiable_functions` which finds a set of identifiable functions such that any other +identifiable function can be expressed using them. +This allows to find out what actually is identifiable and what does non-identifiability in the model at hand looks like. +For example, consider the following model[^1]. + +```@example funcs +using StructuralIdentifiability # hide +LLW1987 = @ODEmodel( + x1'(t) = -p1 * x1(t) + p2 * u(t), + x2'(t) = -p3 * x2(t) + p4 * u(t), + x3'(t) = -(p1 + p3) * x3(t) + (p4 * x1(t) + p2 * x2(t)) * u(t), + y1(t) = x3(t) +) +``` + +Several decades ago, this model was introduced to demonstrate the presence of nontrivial **un**identifiability in nonlinear systems of ODEs. +Nowadays, we can automatically find the identifiable combinations of parameters: + +```@example funcs +using StructuralIdentifiability # hide +find_identifiable_functions(LLW1987) +``` + +From these expressions, we see that the values of `p1` and `p3` are not identifiable but an unordered pair +of numbers `{p1, p3}` is uniquely determined since `p1 + p3` and `p1 * p3` are known. +Furthermore, we see that, for fixed input and output, `p2` and `p4` can take infinitely many values but +knowing one of them, we would also be able to determine the other. + +Moreover, we can find generators of all identifiable functions in parameters and states: + +```@example funcs +find_identifiable_functions(LLW1987, with_states = true) +``` + +By default, `find_identifiable_functions` tries to simplify the output functions as much as possible, and it has `simplify` keyword responsible for +the degree of simplification. The default value is `:standard` but one could use `:string` to try to simplify further +(at the expense of heavier computation) or use `:weak` to simplify less (but compute faster). + +[^1]: > Y. Lecourtier, F. Lamnabhi-Lagarrigue, and E. Walter, [*A method to prove that nonlinear models can be unidentifiable*](https://doi.org/10.1109/CDC.1987.272467), Proceedings of the 26th Conference on Decision and Control, December 1987, 2144-2145; diff --git a/docs/src/tutorials/local_identifiability.md b/docs/src/tutorials/local_identifiability.md deleted file mode 100644 index a8511c046..000000000 --- a/docs/src/tutorials/local_identifiability.md +++ /dev/null @@ -1,60 +0,0 @@ -# Local Identifiability of Differential Models - -In this tutorial, we will go over an example of solving a local identifiability problem for a simple system of ordinary differential equations. - -We will introduce how to use the input parsing in `StructuralIdentifiability.jl` and the local identifiability assessment functionality. - -## Input System - -We will consider a simple two-species competition model - -$x'_1 = k \,(1 - x_1 - x_2)\\ x'_2=r\,(1-x_1-x_2).$ - -To make it a proper input for the algorithm, we add an output function $y=x_1$ that equals to the population density of species 1 at any time $t$. - -### Using the `@ODEmodel` macro - -To parse the system of ordinary differential equations as above, we will use `@ODEmodel` macro. This is the easiest way to do so. - -We have two state variables `x1, x2` (population densities), two parameters `k, r` (intrinsic growth rates), and one output function `y`. Note that there must be `(t)` to indicate time-dependent functions. - -After using the macro, we use the `assess_local_identifiability` function for that. This function accepts the ODE model, the probability of correctness, and the type of identifiability we would like to inquire about. - -```@example -using StructuralIdentifiability - -ode = @ODEmodel( - x1'(t) = k * (1 - x1(t) - x2(t)), - x2'(t) = r * (1 - x1(t) - x2(t)), - y(t) = x1(t) -) - -local_id = assess_local_identifiability(ode, 0.99) -``` - -The result shows that only the state variable's initial value $x'_1(0)$ is locally identifiable. - -Let us now add another output function `y2(t)`: - -```@example -using StructuralIdentifiability - -ode = @ODEmodel( - x1'(t) = k * (1 - x1(t) - x2(t)), - x2'(t) = r * (1 - x1(t) - x2(t)), - y1(t) = x1(t), - y2(t) = x2(t) # new output function! -) - -local_id = assess_local_identifiability(ode, 0.99) # this is a different result! -``` - -As you can see, for this new model with an additional output, all parameters are reported as locally identifiable with probability 0.99. - -## Note on Probability of Correctness - -We set the probability of correctness $p$ to be `0.99`. Why would we ever want a lower value? Great question! The underlying algorithm relies on operations being modulo a large enough prime characteristic $\mathcal{P}\geq \kappa p$ where $\kappa$ is determined by the algorithm internally. - -The algorithm's complexity is proportional to the size of operands (see proposition 3.1 in the main paper[^1]) and high probability of correctness may thus lead to higher size of coefficients during computation for some systems. Hence, one may wish to lower $p$ to save on runtime (though in practice this is _very_ rare). - -[^1]: > A. Sedoglavic, [*A probabilistic algorithm to test local algebraic observability in polynomial time*](https://doi.org/10.1006/jsco.2002.0532), Journal of Symbolic Computation, 2002. diff --git a/docs/src/tutorials/using_modeling_toolkit.md b/docs/src/tutorials/using_modeling_toolkit.md deleted file mode 100644 index 2c3dc663c..000000000 --- a/docs/src/tutorials/using_modeling_toolkit.md +++ /dev/null @@ -1,88 +0,0 @@ -# Using ModelingToolkit.jl With StructuralIdentifiability.jl - -In this tutorial, we will cover examples of solving identifiability problems for models defined with the syntax of `ModelingToolkit.jl`. - -## Input System - -Let us consider the following ODE model with two outputs: - -$\begin{cases} -\dot{S} = -b \, S \, (I + J + q \, A) \, N_{inv},\\ -\dot{E} = b \, S \, (I + J + q \, A) \, N_{inv} - k \, E,\\ -\dot{A} = k \, (1 - r) \, E - g_1 \, A,\\ -\dot{I} = k \, r \, E - (\alpha + g_1) \, I,\\ -\dot{J} = \alpha \, I - g_2 \, J,\\ -\dot{C} = \alpha \, I,\\ -y_1 = C,\\ -y_2 = N_{inv} -\end{cases}$ - -This is an infectious disease model defined in [^1]. - -The main difference between the input formats in `ModelingToolkit.jl` and `StructuralIdentifiability.jl` is that the output (measured values/functions) must be specified separately in `ModelingToolkit.jl`. In this example, measured quantities are presented by $y_1$, $y_2$. - -First, let us define the ODE. We will use `@parameters` and `@variables` macro to define parameters and time-depended functions in the ODE. - -```julia -using StructuralIdentifiability, ModelingToolkit - -@parameters b q N_inv k r alpha g1 g2 -@variables t S(t) E(t) A(t) I(t) J(t) C(t) y1(t) y2(t) -``` - -The actual ODE will be defined using `ODESystem` structure from `ModelingToolkit.jl`: - -```julia -D = Differential(t) - -eqs = [ - D(S) ~ -b * S * (I + J + q * A) * N_inv, - D(E) ~ b * S * (I + J + q * A) * N_inv - k * E, - D(A) ~ k * (1 - r) * E - g1 * A, - D(I) ~ k * r * E - (alpha + g1) * I, - D(J) ~ alpha * I - g2 * J, - D(C) ~ alpha * I, -] - -ode = ODESystem(eqs, t, name = :SEIAJRCmodel) -``` - -Finally, let us define the array of measured quantities and call the `assess_identifiability` function. This is the main function that determines local/global identifiability properties of each parameter and state. We will use the probability of correctness $p=0.99$. - -For `ModelingToolkit.jl`, both `assess_identifiability` and `assess_local_identifiability` functions accept keyword arguments: - - - `measured_quantities`, also called “output functions” in identifiability literature; these are crucial for answering identifiability questions. - - `p`, probability of correctness. This value equals 0.99 by default. - - `funcs_to_check`, functions of parameters of which we wish to check identifiability. - -```julia -measured_quantities = [y1 ~ C, y2 ~ N_inv] -@time global_id = assess_identifiability(ode, measured_quantities = measured_quantities) -``` - -Let us put all the code above together: - -```@repl -using StructuralIdentifiability, ModelingToolkit - -@parameters b q N_inv k r alpha g1 g2 -@variables t S(t) E(t) A(t) I(t) J(t) C(t) y1(t) y2(t) - -D = Differential(t) - -eqs = [ - D(S) ~ -b * S * (I + J + q * A) * N_inv, - D(E) ~ b * S * (I + J + q * A) * N_inv - k * E, - D(A) ~ k * (1 - r) * E - g1 * A, - D(I) ~ k * r * E - (alpha + g1) * I, - D(J) ~ alpha * I - g2 * J, - D(C) ~ alpha * I, -] - -ode = ODESystem(eqs, t, name = :SEIAJRCmodel) - -measured_quantities = [y1 ~ C, y2 ~ N_inv] -@time global_id = assess_identifiability(ode, measured_quantities = measured_quantities) -``` - -[^1]: > K. Roosa and G. Chowell. [*Assessing parameter identifiability in compartmental dynamic models using a computational approach: application to infectious disease transmission models*](https://doi.org/10.1186/s12976-018-0097-6), Theor Biol Med Model 16, 1 (2019) diff --git a/src/ODE.jl b/src/ODE.jl index b5d748570..4d442cc06 100644 --- a/src/ODE.jl +++ b/src/ODE.jl @@ -337,16 +337,31 @@ end #------------------------------------------------------------------------------ """ + macro ODEmodel + Macro for creating an ODE from a list of equations. -Also injects all variables into the global scope. +It also injects all variables into the global scope. + +## Example + +Creating a simple `ODE`: + +```jldoctest +using StructuralIdentifiability -This macro accepts a sybolically written ODE system and generates an `ODE` structure instance: -```julia ode = @ODEmodel( - x1'(t) = -k1 * x1(t), - y1(t) = x1(t) + x1'(t) = a * x1(t) + u(t), + x2'(t) = b * x2(t) + c*x1(t)*x2(t), + y(t) = x1(t) ) ``` + +Here, +- `x1`, `x2` are state variables +- `y` is an output variable +- `u` is an input variable +- `a`, `b`, `c` are time-indepdendent parameters + """ macro ODEmodel(ex::Expr...) equations = [ex...] diff --git a/src/RationalFunctionFields/IdealMQS.jl b/src/RationalFunctionFields/IdealMQS.jl index 58d722398..be0c9a5d0 100644 --- a/src/RationalFunctionFields/IdealMQS.jl +++ b/src/RationalFunctionFields/IdealMQS.jl @@ -107,7 +107,6 @@ mutable struct IdealMQS{T} <: AbstractBlackboxIdeal dens_qq = empty(funcs_den_nums[1]) dens_indices = Vector{Tuple{Int, Int}}() for i in 1:length(funcs_den_nums) - # TODO: we can remove duplicates in numerators. Check if this helps plist = funcs_den_nums[i] den = plist[pivots_indices[i]] den = parent_ring_change(den, R_sat, matching = :byindex) @@ -149,63 +148,55 @@ AbstractAlgebra.base_ring(ideal::IdealMQS) = base_ring(ideal.nums_qq[1]) AbstractAlgebra.parent(ideal::IdealMQS) = ideal.parent_ring_param ParamPunPam.parent_params(ideal::IdealMQS) = base_ring(ideal.parent_ring_param) -# Used only for debugging! -function ideal_generators_raw(mqs::IdealMQS) - return field_to_ideal(mqs.funcs_den_nums) +function are_generators_zero(mqs::IdealMQS) + return all(x -> length(x) == 1, mqs.funcs_den_nums) end -# Used only for debugging! -function saturate(I, Q; varname = "t", append_front = true) - @info "Saturating the ideal, saturating variable is $varname" - R = parent(first(I)) - K, ord = base_ring(R), ordering(R) - existing_varnames = map(String, symbols(R)) - @assert !(varname in existing_varnames) - varnames = - append_front ? pushfirst!(existing_varnames, varname) : - push!(existing_varnames, varname) - Rt, vt = Nemo.PolynomialRing(K, varnames, ordering = ord) - if append_front - xs, t = vt[2:end], first(vt) - else - xs, t = vt[1:(end - 1)], last(vt) - end - It = map(f -> parent_ring_change(f, Rt), I) - Qt = parent_ring_change(Q, Rt) - sat = 1 - Qt * t - push!(It, sat) - It, t +@noinline function __throw_unlucky_evaluation(msg) + throw(AssertionError(""" + Encountered a very unlucky evaluation point. + This should not happen normally. + (The probability of that happening is roughly 1 to 10^18). + Please consider submitting a Github issue. + + $msg + """)) end -# Used only for debugging! -function field_to_ideal( - funcs_den_nums::Vector{Vector{T}}; - top_level_var = "y", - top_level_ord = :degrevlex, -) where {T} - @assert !isempty(funcs_den_nums) - R = parent(first(first(funcs_den_nums))) - @info "Producing the ideal generators in $R" - K, n = base_ring(R), nvars(R) - Q = reduce(lcm, map(first, funcs_den_nums)) - @debug "Rational functions common denominator" Q - ystrs = ["$top_level_var$i" for i in 1:n] - Ry, ys = Nemo.PolynomialRing(R, ystrs, ordering = top_level_ord) - Qy = parent_ring_change(Q, Ry, matching = :byindex) - I = empty(ys) - for component in funcs_den_nums - pivot = component[1] - for i in 2:length(component) - f = component[i] - fy = parent_ring_change(f, Ry, matching = :byindex) - qy = parent_ring_change(pivot, Ry, matching = :byindex) - F = fy * Q - f * qy - push!(I, F) +function fractionfree_generators_raw(mqs::IdealMQS) + ring_params = ParamPunPam.parent_params(mqs) + K = base_ring(ring_params) + varnames = map(string, Nemo.symbols(ring_params)) + # The hope is that new variables' names would not intersect with the old ones + @assert mqs.sat_var_index == length(varnames) + 1 + old_varnames = map(i -> "y$i", 1:length(varnames)) + new_varnames = map(i -> "라$i", 1:(length(varnames) + 1)) + if !isempty(intersect(old_varnames, new_varnames)) + @warn "Intersection in two sets of variables!" varnames new_varnames + end + # NOTE: new variables go first! + big_ring, big_vars = + PolynomialRing(K, vcat(new_varnames, old_varnames), ordering = :lex) + @info "" mqs.sat_var_index varnames ring_params parent(mqs.sat_qq) + nums_qq, dens_qq, sat_qq = mqs.nums_qq, mqs.dens_qq, mqs.sat_qq + nums_y = map(num -> parent_ring_change(num, big_ring, matching = :byindex), nums_qq) + dens_y = map(den -> parent_ring_change(den, big_ring, matching = :byindex), dens_qq) + sat_y = parent_ring_change(sat_qq, big_ring, matching = :byindex) + nums_x = map(num -> parent_ring_change(num, big_ring, matching = :byname), nums_qq) + dens_x = map(den -> parent_ring_change(den, big_ring, matching = :byname), dens_qq) + polys = Vector{elem_type(big_ring)}(undef, length(nums_qq) + 1) + @inbounds for i in 1:length(dens_qq) + den_y, den_x = dens_y[i], dens_x[i] + span = mqs.dens_indices[i] + for j in span[1]:span[2] + num_y, num_x = nums_y[j], nums_x[j] + polys[j] = num_y * den_x - den_y * num_x end end - I, t = saturate(I, Qy) - I_rat = map(f -> map_coefficients(c -> c // one(R), f), I) - return I_rat + polys[end] = sat_y + main_var_indices = 1:(length(varnames) + 1) + param_var_indices = (main_var_indices + 1):length(big_vars) + return polys, main_var_indices, param_var_indices end # TODO: check that the reduction is lucky. @@ -252,8 +243,9 @@ function ParamPunPam.specialize_mod_p( nums_gf_spec = map(num -> evaluate(num, point_sat), nums_gf) dens_gf_spec = map(den -> evaluate(den, point_sat), dens_gf) polys = Vector{typeof(sat_gf)}(undef, length(nums_gf_spec) + 1) - for i in 1:length(dens_gf_spec) + @inbounds for i in 1:length(dens_gf_spec) den, den_spec = dens_gf[i], dens_gf_spec[i] + iszero(den_spec) && __throw_unlucky_evaluation("Ideal: $mqs\nPoint: $point") span = dens_indices[i] for j in span[1]:span[2] num, num_spec = nums_gf[j], nums_gf_spec[j] @@ -281,8 +273,9 @@ function specialize(mqs::IdealMQS, point::Vector{Nemo.fmpq}; saturated = true) nums_qq_spec = map(num -> evaluate(num, point_sat), nums_qq) dens_qq_spec = map(den -> evaluate(den, point_sat), dens_qq) polys = Vector{typeof(sat_qq)}(undef, length(nums_qq_spec) + 1) - for i in 1:length(dens_qq_spec) + @inbounds for i in 1:length(dens_qq_spec) den, den_spec = dens_qq[i], dens_qq_spec[i] + iszero(den_spec) && __throw_unlucky_evaluation("Ideal: $mqs\nPoint: $point") span = dens_indices[i] for j in span[1]:span[2] num, num_spec = nums_qq[j], nums_qq_spec[j] diff --git a/src/RationalFunctionFields/RationalFunctionField.jl b/src/RationalFunctionFields/RationalFunctionField.jl index d03c66289..d12376d31 100644 --- a/src/RationalFunctionFields/RationalFunctionField.jl +++ b/src/RationalFunctionFields/RationalFunctionField.jl @@ -213,6 +213,7 @@ function beautifuly_generators( discard_redundant = true, reversed_order = false, ) + time_start = time_ns() fracs = dennums_to_fractions(rff.dennums) # Filter pass fracs = filter(!is_rational_func_const, fracs) @@ -258,6 +259,7 @@ function beautifuly_generators( end sort!(fracs, lt = rational_function_cmp) spring_cleaning_pass!(fracs) + _runtime_logger[:id_beautifulization] += (time_ns() - time_start) / 1e9 return fracs end @@ -303,12 +305,16 @@ function groebner_basis_coeffs( seed = 42, ordering = Groebner.InputOrdering(), up_to_degree = (typemax(Int), typemax(Int)), + rational_interpolator = :VanDerHoevenLecerf, ) mqs = rff.mqs + if are_generators_zero(mqs) + return rff + end gb, fracs, new_rff = nothing, nothing, nothing # Check if the basis is in cache if haskey(mqs.cached_groebner_bases, (ordering, up_to_degree)) - @warn "Cache hit with ($ordering, $up_to_degree)!" + @debug "Cache hit with ($ordering, $up_to_degree)!" gb = mqs.cached_groebner_bases[ordering, up_to_degree] basis_coeffs = map(collect ∘ coefficients, gb) fracs = collect(mapreduce(Set, union!, basis_coeffs)) @@ -322,16 +328,20 @@ function groebner_basis_coeffs( runtime = @elapsed gb = ParamPunPam.paramgb( mqs, up_to_degree = current_degrees, - seed = seed, ordering = ordering, + rational_interpolator = rational_interpolator, ) + _runtime_logger[:id_npoints_degree] += + ParamPunPam._runtime_data[:npoints_degree_estimation] + _runtime_logger[:id_npoints_interpolation] += + ParamPunPam._runtime_data[:npoints_interpolation] _runtime_logger[:id_groebner_time] += runtime - @info "Groebner basis computed in $runtime seconds" + @debug "Groebner basis computed in $runtime seconds" basis_coeffs = map(collect ∘ coefficients, gb) basis_coeffs_set = mapreduce(Set, union!, basis_coeffs) fracs = collect(basis_coeffs_set) @debug "Generators up to degrees $(current_degrees) are" fracs - @info "Checking two-sided inclusion modulo a prime" + @debug "Checking two-sided inclusion modulo a prime" time_start = time_ns() # Check inclusion: in new_rff = RationalFunctionField(fracs) @@ -341,11 +351,11 @@ function groebner_basis_coeffs( inclusion = check_field_membership_mod_p!(new_rff, rff) runtime = (time_ns() - time_start) / 1e9 _runtime_logger[:id_inclusion_check_mod_p] += runtime - @info "Inclusion checked in $(runtime) seconds. Result: $two_sided_inclusion" two_sided_inclusion = two_sided_inclusion && all(inclusion) + @debug "Inclusion checked in $(runtime) seconds. Result: $two_sided_inclusion" current_degrees = current_degrees .* 2 end - @info "The coefficients of the Groebner basis are presented by $(length(fracs)) rational functions" + @debug "The coefficients of the Groebner basis are presented by $(length(fracs)) rational functions" new_rff.mqs.cached_groebner_bases[ordering, up_to_degree] = gb rff.mqs.cached_groebner_bases[ordering, up_to_degree] = gb return new_rff @@ -364,14 +374,18 @@ Returns a set of Groebner bases for multiple different rankings of variables. """ function generating_sets_fan( rff::RationalFunctionField{T}, - nbases::Integer; + code::Integer; seed = 42, up_to_degree = (3, 3), ) where {T} - @info "Computing $nbases Groebner bases for each of the $nbases block orderings" time_start = time_ns() vars = gens(parent(rff.mqs)) + nbases = length(vars) + @info "Computing $nbases Groebner bases for block orderings. Simplification code is $code" ordering_to_generators = Dict() + if code == 0 + return ordering_to_generators + end # The first basis in some ordering ord = InputOrdering() new_rff = groebner_basis_coeffs(rff, seed = seed, ordering = ord) @@ -380,23 +394,64 @@ function generating_sets_fan( if isempty(cfs) return ordering_to_generators end + if length(vars) == 1 + return ordering_to_generators + end # NOTE: maybe hide the computation of multiple bases inside # RationalFunctionField gb_rff = RationalFunctionField(cfs) - for _ in 1:nbases - vars_shuffled = shuffle(vars) - n = length(vars_shuffled) - n1, n2 = div(n, 2), n - div(n, 2) - ord = DegRevLex(vars_shuffled[1:n1]) * DegRevLex(vars_shuffled[(n1 + 1):end]) - @info "Computing GB for ordering" ord - new_rff = groebner_basis_coeffs( - gb_rff, - seed = seed, - ordering = ord, - up_to_degree = up_to_degree, - ) - cfs = beautifuly_generators(new_rff, discard_redundant = false) - ordering_to_generators[ord] = cfs + if code >= 1 + for i in 1:nbases + vars_shuffled = circshift(vars, i) + n = length(vars_shuffled) + # n1, n2 = div(n, 2), n - div(n, 2) + n1, n2 = n - 1, 1 + ord = DegRevLex(vars_shuffled[1:n1]) * DegRevLex(vars_shuffled[(n1 + 1):end]) + @debug "Computing GB for ordering" ord + new_rff = groebner_basis_coeffs( + gb_rff, + seed = seed, + ordering = ord, + up_to_degree = up_to_degree, + ) + cfs = beautifuly_generators(new_rff, discard_redundant = false) + ordering_to_generators[ord] = cfs + end + end + if code >= 2 + for _ in 1:nbases + vars_shuffled = shuffle(vars) + n = length(vars_shuffled) + n1, n2 = max(n - 2, 1), min(2, length(vars) - 1) + ord = DegRevLex(vars_shuffled[1:n1]) * DegRevLex(vars_shuffled[(n1 + 1):end]) + @debug "Computing GB for ordering" ord + new_rff = groebner_basis_coeffs( + gb_rff, + seed = seed, + ordering = ord, + up_to_degree = up_to_degree, + ) + cfs = beautifuly_generators(new_rff, discard_redundant = false) + ordering_to_generators[ord] = cfs + end + end + if code >= 3 + for _ in 1:nbases + vars_shuffled = shuffle(vars) + n = length(vars_shuffled) + n1 = div(n, 2) + n2 = n - n1 + ord = DegRevLex(vars_shuffled[1:n1]) * DegRevLex(vars_shuffled[(n1 + 1):end]) + @debug "Computing GB for ordering" ord + new_rff = groebner_basis_coeffs( + gb_rff, + seed = seed, + ordering = ord, + up_to_degree = up_to_degree, + ) + cfs = beautifuly_generators(new_rff, discard_redundant = false) + ordering_to_generators[ord] = cfs + end end _runtime_logger[:id_gbfan_time] = (time_ns() - time_start) / 1e9 return ordering_to_generators @@ -406,28 +461,14 @@ function monomial_generators_up_to_degree( rff::RationalFunctionField{T}, up_to_degree; seed = 42, - strategy = :deterministic, + strategy = :monte_carlo, ) where {T} - @assert strategy in (:deterministic, :monte_carlo) - if strategy === :deterministic - groebner_basis_coeffs( - rff, - seed = seed, - up_to_degree = (up_to_degree + 1, up_to_degree + 1), - ) - relations, _, _ = linear_relations_between_normal_forms( - beautifuly_generators(rff), - rff.mqs, - up_to_degree, - seed = seed, - ) - else - relations = linear_relations_between_normal_forms_mod_p( - beautifuly_generators(rff), - up_to_degree, - seed = seed, - ) - end + @assert strategy in (:monte_carlo,) + relations = linear_relations_between_normal_forms( + beautifuly_generators(rff), + up_to_degree, + seed = seed, + ) return relations end @@ -441,24 +482,21 @@ function simplified_generating_set( rff::RationalFunctionField; p = 0.99, seed = 42, - strategy = (:gb,), + simplify = :standard, check_variables = false, # almost always slows down and thus turned off + rational_interpolator = :VanDerHoevenLecerf, ) - # TODO: use seed! - # TODO: there are a lot of redundant functions coming from normal forms and - # the coefficients of GBs. Maybe filter them preemtively, before creating a - # RFF @info "Simplifying identifiable functions" _runtime_logger[:id_groebner_time] = 0.0 _runtime_logger[:id_calls_to_gb] = 0 _runtime_logger[:id_inclusion_check_mod_p] = 0.0 _runtime_logger[:id_inclusion_check] = 0.0 - _runtime_logger[:id_beautifulization] = 0.0 _runtime_logger[:id_gbfan_time] = 0.0 _runtime_logger[:id_normalforms_time] = 0.0 _runtime_logger[:id_ranking] = 0 - # Checking identifiability of particular variables and adding them to the field + # Checking identifiability of particular variables and adding them to the + # field if check_variables vars = gens(poly_ring(rff)) containment = field_contains(rff, vars, (1.0 + p) / 2) @@ -475,61 +513,51 @@ function simplified_generating_set( rff = RationalFunctionField(field_gens) end + normalforms_degree = 2 + gbfan_simplification_code = 1 + if simplify === :standard + # pass + elseif simplify === :weak + normalforms_degree = 2 + gbfan_simplification_code = 0 + elseif simplify === :strong + normalforms_degree = 3 + gbfan_simplification_code = 3 + end + # Compute the first GB in some ordering - new_rff = groebner_basis_coeffs(rff, seed = seed) + new_rff = groebner_basis_coeffs( + rff, + seed = seed, + rational_interpolator = rational_interpolator, + ) new_fracs = beautifuly_generators(new_rff) if isempty(new_fracs) return new_fracs end - # If a set of GBs is needed - if first(strategy) === :gbfan - @assert length(strategy) == 2 - _, nbases = strategy - fan = generating_sets_fan(new_rff, nbases; seed = seed) - for (ord, generators) in fan - append!(new_fracs, generators) - end - end - # If normal forms are needed - if first(strategy) === :normalforms - @assert length(strategy) == 2 - _, up_to_degree = strategy - generators = monomial_generators_up_to_degree( - new_rff, - up_to_degree; - seed = seed, - strategy = :monte_carlo, - ) + + # Compute some normal forms + generators = monomial_generators_up_to_degree( + new_rff, + normalforms_degree; + seed = seed, + strategy = :monte_carlo, + ) + append!(new_fracs, generators) + + # Compute some GBs + fan = generating_sets_fan(new_rff, gbfan_simplification_code; seed = seed) + for (ord, generators) in fan append!(new_fracs, generators) end - # Something in the middle - if first(strategy) === :hybrid - @assert length(strategy) == 1 - # Compute some normal forms - up_to_degree = 3 - generators = monomial_generators_up_to_degree( - new_rff, - up_to_degree; - seed = seed, - strategy = :monte_carlo, - ) - append!(new_fracs, generators) - # # Now, generators from normal forms may contain simpler functions, so we - # # update the function field to account for that - # new_rff = - # RationalFunctionField(beautifuly_generators(RationalFunctionField(new_fracs))) + new_fracs_unique = unique(new_fracs) - # Compute some GBs - nbases = 10 - fan = generating_sets_fan(new_rff, nbases; seed = seed) - for (ord, generators) in fan - append!(new_fracs, generators) - end - end - @info "Final cleaning and simplification of generators" - runtime = @elapsed new_fracs = beautifuly_generators(RationalFunctionField(new_fracs)) - _runtime_logger[:id_beautifulization] += runtime + @info """ + Final cleaning and simplification of generators. + Out of $(length(new_fracs)) fractions $(length(new_fracs_unique)) are syntactically unique.""" + runtime = + @elapsed new_fracs = beautifuly_generators(RationalFunctionField(new_fracs_unique)) @info "Checking inclusion with probability $p" runtime = @elapsed result = issubfield(rff, RationalFunctionField(new_fracs), p) _runtime_logger[:id_inclusion_check] = runtime diff --git a/src/RationalFunctionFields/normalforms.jl b/src/RationalFunctionFields/normalforms.jl index f97fd0cd4..219c6b0b6 100644 --- a/src/RationalFunctionFields/normalforms.jl +++ b/src/RationalFunctionFields/normalforms.jl @@ -1,116 +1,4 @@ -""" - linear_relations_between_normal_forms(fracs, up_to_degree) - -Returns linear relations between the given `fracs` (potentially, not all). -Relations may include monomials up to the `up_to_degree`. -""" -function linear_relations_between_normal_forms( - fracs::Vector{Generic.Frac{T}}, - mqs, - up_to_degree::Integer; - seed = 42, -) where {T} - @assert up_to_degree > 0 - time_start = time_ns() - gb_of_mqs = first(values(mqs.cached_groebner_bases)) - R = parent(gb_of_mqs[1]) - R_param = base_ring(base_ring(R)) - xs = gens(R) - xs_param = gens(R_param) - # TODO: A dirty hack! - @assert mqs.sat_var_index == length(xs) - xs = xs[1:(end - 1)] - @info "Computing normal forms of monomials in $(length(xs)) variables up to degree $up_to_degree" - normal_forms = Vector{elem_type(R)}(undef, 0) - monoms = Vector{elem_type(R_param)}(undef, 0) - @debug "GB is" gb_of_mqs - @info """ - The parent rings are: - normal form: $(R) - parameteres: $(R_param) - groebner basis: $(parent(gb_of_mqs[1]))""" - @assert R == parent(gb_of_mqs[1]) - @assert R_param == base_ring(base_ring(parent(gb_of_mqs[1]))) - for deg in 1:up_to_degree - for combination in Combinatorics.with_replacement_combinations(xs, deg) - monom = prod(combination) - monom_param = evaluate(monom, vcat(xs_param, one(R_param))) - monom_mqs = monom - monom_param - b, nf = divrem(monom_mqs, gb_of_mqs) - @debug """ - The normal form of $monom_mqs is: - normalform = $nf - divisors = $b""" - push!(monoms, numerator(monom_param)) - push!(normal_forms, nf) - end - end - @info "Reducing the normal forms of $(length(monoms)) monomials over QQ" - relations, normal_forms, monoms = relations_over_qq(normal_forms, monoms) - _runtime_logger[:id_normalforms_time] = (time_ns() - time_start) / 1e9 - @info "Relations from normal forms" relations - relations, monoms, normal_forms -end - -function relations_over_qq(polys, preimages) - @assert !isempty(polys) - fracfield = base_ring(first(polys)) - qq_relations = Vector{elem_type(fracfield)}() - # Filter out and stash zero polynomials - permutation = collect(1:length(polys)) - zero_inds = filter(i -> iszero(polys[i]), permutation) - for ind in zero_inds - push!(qq_relations, fracfield(preimages[ind])) - end - @debug "Zeroed monomials are" preimages[zero_inds] - permutation = setdiff(permutation, zero_inds) - # Sort, the first monom is the smallest - sort!(permutation, by = i -> leading_monomial(polys[i])) - polys = polys[permutation] - preimages = preimages[permutation] - lead_monoms = map(leading_monomial, polys) - n = length(polys) - # Polynomials live in QQ(params)[vars]. - # The first several elements are de facto elements of QQ(params). - # NOTE: `coeff(f, i)` of a polynomial f in QQ(a)[x] is excruciatingly slow - @inbounds for i in 1:n - fi = polys[i] - @debug "Reducing $i-th polynomial over QQ" fi - qq_multipliers = map(_ -> zero(Nemo.QQ), 1:n) - qq_multipliers[i] = one(Nemo.QQ) - for j in (i - 1):-1:1 - iszero(fi) && break - fj = polys[j] - iszero(fj) && continue - leadj = lead_monoms[j] - ci = coeff(fi, leadj) - # If fi contains the lead of fj - iszero(ci) && continue - cj = leading_coefficient(fj) - cij = div(ci, cj) - # If the result of division belongs to QQ. - !is_rational_func_const(cij) && continue - @debug "reducing $fi with $cij x $fj" - fi = fi - cij * fj - qq_multipliers[j] = -coeff(numerator(cij), 1) - end - if iszero(fi) - @debug "Polynomial at index $i reduced to zero" - preimage = zero(fracfield) - for k in 1:i - if !iszero(qq_multipliers[k]) - preimage += qq_multipliers[k] * preimages[k] - end - end - push!(qq_relations, preimage) - end - end - return qq_relations, polys, preimages -end - -# ------------------------------------------------------------------------------ - # Maintans a row echelon form of a set of vectors over the integrals. # Works well when the ambient dimension is small. mutable struct TinyRowEchelonForm{T} @@ -138,7 +26,7 @@ function Base.in(tref::TinyRowEchelonForm{T}, vect::Vector{T}) where {T} isnothing(rref_idx) && return false lead_vect = vect[i] lead_rref = tref.rows[rref_idx][i] - flag, divisor = divides(lead_vect, lead_rref) + flag, _ = divides(lead_vect, lead_rref) !flag && return false end return true @@ -146,16 +34,28 @@ end # ------------------------------------------------------------------------------ -function normal_forms_up_to_degree_ff( +""" + local_normal_forms(mqs, field, up_to_degree, point, [stop_vectors]) + +Computes the normal forms of MQS-monomials modulo the MQS-ideal `mqs` +specialized at `point`. Considers monomials up to total degree `up_to_degree` +over the `field`. + +Ignores any monomials whose exponent vectors are present in `stop_vectors`. + +Returns a triple (`gb`, `normal_forms`, `monomials`). +""" +function local_normal_forms( mqs::IdealMQS, finite_field, - up_to_degree::Integer; + up_to_degree::Integer, + point; stop_vectors = TinyRowEchelonForm{Int}(), ) - ring_param = ParamPunPam.parent_params(mqs) - point_ff = ParamPunPam.distinct_nonzero_points(finite_field, nvars(ring_param)) - point_ff_ext = vcat(point_ff, one(finite_field)) - gens_ff_spec = specialize_mod_p(mqs, point_ff) + @assert !isempty(point) + @assert parent(first(point)) == finite_field + point_ff_ext = vcat(point, one(finite_field)) + gens_ff_spec = specialize_mod_p(mqs, point) gb_ff_spec = Groebner.groebner(gens_ff_spec) ring_ff = parent(gb_ff_spec[1]) xs_ff = gens(ring_ff) @@ -165,9 +65,11 @@ function normal_forms_up_to_degree_ff( xs_ff = xs_ff[1:(end - 1)] pivot_vectors = map(f -> exponent_vector(f, 1), xs_ff) @debug """ - variables in finite field: $(xs_ff) + variables in the finite field: $(xs_ff) gb parent: $(ring_ff) - specialized gb: $(gb_ff_spec)""" + specialized gb: $(gb_ff_spec) + Evaluation point: $point_ff_ext""" + # Compute the normal forms of all monomials of degrees up to `up_to_degree` for deg in 1:up_to_degree for combination in Combinatorics.with_replacement_combinations(pivot_vectors, deg) exp_vect = sum(combination) @@ -187,19 +89,209 @@ function normal_forms_up_to_degree_ff( push!(normal_forms_ff, nf_ff) end end - return normal_forms_ff, monoms_ff + return gb_ff_spec, normal_forms_ff, monoms_ff +end + +# Linearly reduce polys[index] w.r.t polys[1..index-1]. +# Return the result and a vector of units, multipliers of reducers. +function reduce_step_forward( + polys::Vector{T}, + lead_monoms::Vector{T}, + index::Int, + field, +) where {T} + @assert length(polys) == length(lead_monoms) + fi = polys[index] + multipliers = Vector{Tuple{Int, elem_type(field)}}() + @inbounds for j in (index - 1):-1:1 + iszero(fi) && break + fj = polys[j] + iszero(fj) && continue + leadj = lead_monoms[j] + ci = coeff(fi, leadj) + # If fi contains the lead of fj + iszero(ci) && continue + cj = leading_coefficient(fj) + cij = div(ci, cj) + fi = fi - cij * fj + push!(multipliers, (j, -cij)) + end + return fi, multipliers +end + +# Linearly reduce polys[1..index-1] w.r.t polys[index], inplace. +# Return a vector of units, multipliers of reducer. +function reduce_step_backward!(polys, lead_monoms, index, field) + fi = polys[index] + @assert !iszero(fi) + leadi = lead_monoms[index] + ci = leading_coefficient(fi) + multipliers = Vector{Tuple{Int, elem_type(field)}}() + for j in (index - 1):-1:1 + fj = polys[j] + iszero(fj) && continue + cj = coeff(fj, leadi) + # If fj contains the lead of fi + iszero(cj) && continue + cji = div(cj, ci) + fj = fj - cji * fi + polys[j] = fj + push!(multipliers, (j, -cji)) + end + return multipliers +end + +""" + linear_relations_over_a_field(polys, preimages) + +Finds all linear relations between `polys`. Encodes them in terms of the +corresponding elements of `preimages` (assuming `preimages[i] --> polys[i]`). + +Returns a triple (`relations`, `polys`, `preimages`). +""" +function linear_relations_over_a_field(polys, preimages) + @assert !isempty(polys) + @assert length(polys) == length(preimages) + ring = parent(first(polys)) + preimage_ring = parent(first(preimages)) + field = base_ring(ring) + relations = Vector{elem_type(preimage_ring)}() + # Filter out and stash zero polynomials + permutation = collect(1:length(polys)) + zero_inds = filter(i -> iszero(polys[i]), permutation) + for ind in zero_inds + push!(relations, preimages[ind]) + end + @debug "Zeroed polynomials are" preimages[zero_inds] + permutation = setdiff(permutation, zero_inds) + # Sort, the first monom is the smallest + lead_monoms = map(f -> iszero(f) ? one(f) : leading_monomial(f), polys) + sort!(permutation, by = i -> lead_monoms[i]) + polys = polys[permutation] + preimages = preimages[permutation] + lead_monoms = lead_monoms[permutation] + n = length(polys) + @inbounds for i in 1:n + fi, multipliers = reduce_step_forward(polys, lead_monoms, i, field) + preimage = zero(preimage_ring) + for (idx, coef) in multipliers + preimage += coef * preimages[idx] + end + preimages[i] += preimage + polys[i] = fi + lead_monoms[i] = iszero(fi) ? one(fi) : leading_monomial(fi) + if iszero(fi) + push!(relations, preimages[i]) + continue + end + multipliers = reduce_step_backward!(polys, lead_monoms, i, field) + for (idx, coef) in multipliers + preimages[idx] += coef * preimages[i] + end + end + relations = map(f -> divexact(f, leading_coefficient(f)), relations) + return relations, polys, preimages end """ - linear_relations_between_normal_forms_mod_p(fracs, up_to_degree) + intersect_relations_over_a_field(original_relations, other_relations) + +Returns the intersection of `original_relations` and `other_relations` as linear +subspaces. +""" +function intersect_relations_over_a_field( + original_relations::Vector{T}, + other_relations::Vector{T}, +) where {T} + if isempty(original_relations) || isempty(other_relations) + return empty(original_relations) + end + @assert !any(iszero, original_relations) && !any(iszero, other_relations) + @assert parent(first(original_relations)) == parent(first(other_relations)) + ring = parent(first(original_relations)) + field = base_ring(ring) + common_relations = Vector{T}() + # We compute the row echelon form of all available relations. + # + # If matrix row reduces to zero, or, equivaletly, the combination + # a*original_relations + b*other_relations vanishes for some a,b, then we + # take a*original_relations as a vector in the intersection. + all_relations = vcat(original_relations, other_relations) + permutation = collect(1:length(all_relations)) + lead_monoms = map(f -> leading_monomial(f), all_relations) + sort!(permutation, by = i -> lead_monoms[i]) + all_relations = all_relations[permutation] + lead_monoms = lead_monoms[permutation] + n = length(all_relations) + # We basically perform the same elementary transformations on two matrices + # simultaneously. + # + # The first matrix includes ALL relations, and it governs the process of + # reduction. The second matrix includes only the original relations, and it + # lazily mirrors all elementary transformations. + mirrored_relations = Vector{Dict{Int, elem_type(field)}}(undef, n) + for i in 1:n + # mirrored_relations[i] is a sparse vector that keeps track of + # polynomials that contributed to reducing the polynomial at index i + mirrored_relations[i] = Dict{Int, elem_type(field)}() + absolute_index = permutation[i] + if absolute_index <= length(original_relations) + mirrored_relations[i][i] = one(field) + end + end + all_relations_copy = copy(all_relations) + @inbounds for i in 1:n + # Reduce the i-th row with the 1..i-1 rows + remainder, multipliers = reduce_step_forward(all_relations, lead_monoms, i, field) + for (j, mult) in multipliers + for (k, mult2) in mirrored_relations[j] + new_mult = mult * mult2 + if haskey(mirrored_relations[i], k) + mirrored_relations[i][k] += new_mult + else + mirrored_relations[i][k] = new_mult + end + end + end + all_relations[i] = remainder + lead_monoms[i] = iszero(remainder) ? one(ring) : leading_monomial(remainder) + # Relation found! + if iszero(remainder) + relation = zero(ring) + for (index, mult) in mirrored_relations[i] + relation += mult * all_relations_copy[index] + end + push!(common_relations, relation) + continue + end + # Reduce the 1..i-1 rows with the i-th row + @assert !iszero(all_relations[i]) + multipliers = reduce_step_backward!(all_relations, lead_monoms, i, field) + for (j, mult) in multipliers + for (k, mult2) in mirrored_relations[i] + new_mult = mult * mult2 + if haskey(mirrored_relations[j], k) + mirrored_relations[j][k] += new_mult + else + mirrored_relations[j][k] = new_mult + end + end + end + end + common_relations = map(f -> divexact(f, leading_coefficient(f)), common_relations) + common_relations +end + +""" + linear_relations_between_normal_forms(fracs, up_to_degree) Returns linear relations between the given `fracs` (potentially, not all). -Relations may include monomials up to the `up_to_degree`. +Relations may include monomials up to the total degree `up_to_degree`. -Note: uses a Monte-Carlo probabilistic algorithm. The probability of correctness +Note: uses Monte-Carlo probabilistic algorithm. The probability of correctness is not specified but is assumed to be close to 1. """ -function linear_relations_between_normal_forms_mod_p( +function linear_relations_between_normal_forms( fracs::Vector{Generic.Frac{T}}, up_to_degree::Integer; seed = 42, @@ -209,17 +301,18 @@ function linear_relations_between_normal_forms_mod_p( ring_param = ParamPunPam.parent_params(mqs) xs_param = gens(ring_param) nparams = nvars(ring_param) - ff = Nemo.GF(2^30 + 3) - ParamPunPam.reduce_mod_p!(mqs, ff) + finite_field = Nemo.GF(2^30 + 3) + ParamPunPam.reduce_mod_p!(mqs, finite_field) @info """ Computing normal forms (probabilistic) - Parameters ($nparams in total): $xs_param + Variables ($nparams in total): $xs_param Up to degree: $up_to_degree - Modulo: $ff""" + Modulo: $finite_field""" # We first compute relations between the normal forms of linear monomials. # Then, we use this knowledge to drop out some monomials of higher degrees. tref = TinyRowEchelonForm{Int}() - normal_forms_ff_1, monoms_ff_1 = normal_forms_up_to_degree_ff(mqs, ff, 1) + point = ParamPunPam.distinct_nonzero_points(finite_field, nvars(ring_param)) + _, normal_forms_ff_1, monoms_ff_1 = local_normal_forms(mqs, finite_field, 1, point) relations_ff_1 = empty(monoms_ff_1) for i in 1:length(normal_forms_ff_1) !iszero(normal_forms_ff_1[i]) && continue @@ -229,34 +322,78 @@ function linear_relations_between_normal_forms_mod_p( push!(tref, exponent_vector(monoms_ff_1[i], 1)) end complete_intersection_relations_ff = Vector{Nemo.gfp_mpoly}(undef, 0) - npoints = 0 + iters = 0 + # Compute relations at several random points until a consensus is reached while true - npoints += 1 - @info "Used specialization points: $npoints" - normal_forms_ff, monoms_ff = - normal_forms_up_to_degree_ff(mqs, ff, up_to_degree, stop_vectors = tref) - @info "Computing relations of $(length(normal_forms_ff)) normal forms" + iters += 1 + point = ParamPunPam.distinct_nonzero_points(finite_field, nvars(ring_param)) + @debug "Used specialization points: $iters" + @debug "Computing normal forms to to degree $up_to_degree" + gb_ff, normal_forms_ff, monoms_ff = + local_normal_forms(mqs, finite_field, up_to_degree, point, stop_vectors = tref) if isempty(normal_forms_ff) break end + @debug "Computing relations of $(length(normal_forms_ff)) normal forms" relations_ff, normal_forms_ff, monoms_ff = - relations_over_ff(normal_forms_ff, monoms_ff) - @info "Obtained $(length(relations_ff)) local relations over FF" - if npoints == 1 + linear_relations_over_a_field(normal_forms_ff, monoms_ff) + @debug "Obtained $(length(relations_ff)) local relations" + if iters == 1 + # first point in the sequence, take all relations complete_intersection_relations_ff = relations_ff continue end + if isempty(relations_ff) + # if the newly acquired relations is empty, then the intersection is + # empty + empty!(complete_intersection_relations_ff) + break + end + if isempty(complete_intersection_relations_ff) + # if the intersection is empty, then there are no relations + break + end + @assert !isempty(complete_intersection_relations_ff) + @assert !isempty(relations_ff) n_relations_ff = length(complete_intersection_relations_ff) - complete_intersection_relations_ff = - intersect(complete_intersection_relations_ff, relations_ff) - @info "There are $(length(complete_intersection_relations_ff)) relations in the intersection" + # Filter out some relations from the complete intersection + zeroed_relations_inds = Vector{Int}() + point_ext = vcat(point, one(finite_field)) + for i in 1:length(complete_intersection_relations_ff) + relation = complete_intersection_relations_ff[i] + relation_mqs = relation - evaluate(relation, point_ext) + _, nf = divrem(relation_mqs, gb_ff) + if iszero(nf) + push!(zeroed_relations_inds, i) + end + end + @debug """ + Relations in the previous intersection: $(length(complete_intersection_relations_ff)) + Vanished at the current point: $(length(zeroed_relations_inds))""" + non_zeroed_relations_inds = + setdiff(collect(1:n_relations_ff), zeroed_relations_inds) + zeroed_relations_from_complete_intersection = + complete_intersection_relations_ff[zeroed_relations_inds] + non_zeroed_relations_from_complete_intersection = + complete_intersection_relations_ff[non_zeroed_relations_inds] + # Fairly intersect as vector subspaces + non_zeroed_relations_from_complete_intersection = intersect_relations_over_a_field( + non_zeroed_relations_from_complete_intersection, + relations_ff, + ) + complete_intersection_relations_ff = vcat( + non_zeroed_relations_from_complete_intersection, + zeroed_relations_from_complete_intersection, + ) + @debug "There are $(length(complete_intersection_relations_ff)) relations in the intersection" m_relations_ff = length(complete_intersection_relations_ff) - if n_relations_ff == m_relations_ff + if n_relations_ff == m_relations_ff || isempty(complete_intersection_relations_ff) break end end + @info "Used specialization points: $iters" union!(complete_intersection_relations_ff, relations_ff_1) - @info "Reconstructing relations to rationals" + @debug "Reconstructing relations to rationals" relations_qq = Vector{Generic.Frac{elem_type(ring_param)}}( undef, length(complete_intersection_relations_ff), @@ -269,7 +406,7 @@ function linear_relations_between_normal_forms_mod_p( @warn """ Failed to reconstruct the $i-th relation. Error will follow. relation: $relation_ff - modulo: $ff""" + modulo: $finite_field""" throw(ErrorException("Rational reconstruction failed.")) end relation_qq_param = evaluate(relation_qq, vcat(xs_param, one(ring))) @@ -277,54 +414,3 @@ function linear_relations_between_normal_forms_mod_p( end relations_qq end - -function relations_over_ff(polys, preimages) - @assert !isempty(polys) - ring = parent(first(polys)) - preimage_ring = parent(first(preimages)) - ff = base_ring(first(polys)) - ff_relations = Vector{elem_type(preimage_ring)}() - # Filter out and stash zero polynomials - permutation = collect(1:length(polys)) - zero_inds = filter(i -> iszero(polys[i]), permutation) - for ind in zero_inds - push!(ff_relations, preimages[ind]) - end - @debug "Zeroed monomials are" preimages[zero_inds] - permutation = setdiff(permutation, zero_inds) - # Sort, the first monom is the smallest - lead_monoms = map(f -> iszero(f) ? one(f) : leading_monomial(f), polys) - sort!(permutation, by = i -> lead_monoms[i]) - polys = polys[permutation] - preimages = preimages[permutation] - lead_monoms = lead_monoms[permutation] - n = length(polys) - @inbounds for i in 1:n - fi = polys[i] - @debug "Reducing $i-th polynomial over FF" fi - ff_multipliers = [(i, one(ff))] - for j in (i - 1):-1:1 - iszero(fi) && break - fj = polys[j] - iszero(fj) && continue - leadj = lead_monoms[j] - ci = coeff(fi, leadj) - # If fi contains the lead of fj - iszero(ci) && continue - cj = leading_coefficient(fj) - cij = div(ci, cj) - @debug "reducing $fi with $(-cij) x $fj" - fi = fi - cij * fj - push!(ff_multipliers, (j, -cij)) - end - !iszero(fi) && continue - @debug "Polynomial at index $i reduced to zero" - preimage = zero(preimage_ring) - for k in 1:length(ff_multipliers) - idx, coef = ff_multipliers[k] - preimage += coef * preimages[idx] - end - push!(ff_relations, preimage) - end - return ff_relations, polys, preimages -end diff --git a/src/StructuralIdentifiability.jl b/src/StructuralIdentifiability.jl index c7da34d6a..8632868b7 100644 --- a/src/StructuralIdentifiability.jl +++ b/src/StructuralIdentifiability.jl @@ -17,6 +17,7 @@ using Nemo using Groebner using ParamPunPam using ParamPunPam: reduce_mod_p!, specialize_mod_p, AbstractBlackboxIdeal +ParamPunPam.enable_progressbar(false) using ModelingToolkit @@ -48,8 +49,14 @@ export find_submodels export reparametrize_global # would be great to merge with the Julia logger -const _runtime_logger = - Dict(:id_calls_to_gb => 0, :id_groebner_time => 0.0, :id_inclusion_check_mod_p => 0) +const _runtime_logger = Dict( + :id_calls_to_gb => 0, + :id_groebner_time => 0.0, + :id_inclusion_check_mod_p => 0, + :id_npoints_degree => 0, + :id_npoints_interpolation => 0, + :id_beautifulization => 0, +) include("util.jl") include("power_series_utils.jl") @@ -74,52 +81,41 @@ include("pb_representation.jl") include("submodels.jl") include("discrete.jl") -# TODO: print equations in ODEmodel in the order they were given in the macro -# TODO: handle finding identifiabile functions in case there are no parameters - """ - assess_identifiability(ode::ODE{P}, p::Float64=0.99) where P <: MPolyElem{fmpq} - -Input: -- `ode` - the ODE model -- `p` - probability of correctness. - -Assesses identifiability (both local and global) of a given ODE model (parameters detected automatically). The result is guaranteed to be correct with the probability -at least `p`. -""" -function assess_identifiability(ode::ODE{P}, p::Float64 = 0.99) where {P <: MPolyElem{fmpq}} - result = assess_identifiability(ode, vcat(ode.parameters, ode.x_vars), p) - return result #Dict(param => res for (param, res) in zip(ode.parameters, result_list)) -end - -""" - assess_identifiability(ode, [funcs_to_check, p=0.99]) + assess_identifiability(ode; funcs_to_check = [], p=0.99) Input: - `ode` - the ODE model +- `funcs_to_check` - list of functions to check identifiability for; if empty, all parameters + and states are taken - `p` - probability of correctness. Assesses identifiability of a given ODE model. The result is guaranteed to be correct with the probability at least `p`. - -If `funcs_to_check` are given, then the function will assess the identifiability of the provided functions -and return a list of the same length with each element being one of `:nonidentifiable`, `:locally`, `:globally`. - -If `funcs_to_check` are not given, the function will assess identifiability of the parameters, and the result will -be a dictionary from the parameters to their identifiability properties (again, one of `:nonidentifiable`, `:locally`, `:globally`). +The function returns a dictionary from the functions to check to their identifiability properties +(one of `:nonidentifiable`, `:locally`, `:globally`). """ function assess_identifiability( - ode::ODE{P}, - funcs_to_check::Array{<:RingElem, 1}, + ode::ODE{P}; + funcs_to_check::Array{<:RingElem, 1} = Array{RingElem, 1}(), p::Float64 = 0.99, ) where {P <: MPolyElem{fmpq}} p_glob = 1 - (1 - p) * 0.9 p_loc = 1 - (1 - p) * 0.1 + if isempty(funcs_to_check) + funcs_to_check = vcat(ode.parameters, ode.x_vars) + end + @info "Assessing local identifiability" trbasis = Array{fmpq_mpoly, 1}() - runtime = @elapsed local_result = - assess_local_identifiability(ode, funcs_to_check, p_loc, :SE, trbasis) + runtime = @elapsed local_result = assess_local_identifiability( + ode, + funcs_to_check = funcs_to_check, + p = p_loc, + type = :SE, + trbasis = trbasis, + ) @info "Local identifiability assessed in $runtime seconds" @debug "Trasncendence basis to be specialized is $trbasis" _runtime_logger[:loc_time] = runtime @@ -177,19 +173,21 @@ function assess_identifiability( if isempty(measured_quantities) measured_quantities = get_measured_quantities(ode) end - if length(funcs_to_check) == 0 - funcs_to_check = ModelingToolkit.parameters(ode) - end + ode, conversion = preprocess_ode(ode, measured_quantities) - out_dict = Dict{Num, Symbol}() + conversion_back = Dict(v => k for (k, v) in conversion) + if isempty(funcs_to_check) + funcs_to_check = [conversion_back[x] for x in [ode.parameters..., ode.x_vars...]] + end funcs_to_check_ = [eval_at_nemo(each, conversion) for each in funcs_to_check] - result = assess_identifiability(ode, funcs_to_check_, p) + + result = assess_identifiability(ode, funcs_to_check = funcs_to_check_, p = p) nemo2mtk = Dict(funcs_to_check_ .=> funcs_to_check) out_dict = Dict(nemo2mtk[param] => result[param] for param in funcs_to_check_) return out_dict end -#using PrecompileTools -#include("precompile.jl") +using PrecompileTools +include("precompile.jl") end diff --git a/src/global_identifiability.jl b/src/global_identifiability.jl index b611e1d25..01f49c689 100644 --- a/src/global_identifiability.jl +++ b/src/global_identifiability.jl @@ -22,14 +22,16 @@ function extract_identifiable_functions_raw( @debug "Extracting coefficients" flush(stdout) - nonparameters = filter( - v -> !(var_to_str(v) in map(var_to_str, ode.parameters)), - gens(parent(first(values(io_equations)))), - ) - for eq in values(io_equations) - eq_coefs = collect(values(extract_coefficients(eq, nonparameters))) - eq_coefs = [parent_ring_change(c, bring) for c in eq_coefs] - push!(coeff_lists[:no_states], eq_coefs) + if !isempty(ode.parameters) + nonparameters = filter( + v -> !(var_to_str(v) in map(var_to_str, ode.parameters)), + gens(parent(first(values(io_equations)))), + ) + for eq in values(io_equations) + eq_coefs = collect(values(extract_coefficients(eq, nonparameters))) + eq_coefs = [parent_ring_change(c, bring) for c in eq_coefs] + push!(coeff_lists[:no_states], eq_coefs) + end end for p in known @@ -84,6 +86,7 @@ function initial_identifiable_functions( known::Array{T, 1} = Array{T, 1}(), with_states::Bool = false, var_change_policy = :default, + rational_interpolator = :VanDerHoevenLecerf, ) where {T} @info "Computing IO-equations" ioeq_time = @@ -92,22 +95,26 @@ function initial_identifiable_functions( @info "Computed in $ioeq_time seconds" :ioeq_time ioeq_time _runtime_logger[:ioeq_time] = ioeq_time - @info "Computing Wronskians" - wrnsk_time = @elapsed wrnsk = wronskian(io_equations, ode) - @info "Computed in $wrnsk_time seconds" :wrnsk_time wrnsk_time - _runtime_logger[:wrnsk_time] = wrnsk_time - - dims = map(ncols, wrnsk) - @info "Dimensions of the Wronskians $dims" - - rank_times = @elapsed wranks = map(rank, wrnsk) - @debug "Dimensions of the Wronskians $dims" - @debug "Ranks of the Wronskians $wranks" - @info "Ranks of the Wronskians computed in $rank_times seconds" :rank_time rank_times - _runtime_logger[:rank_time] = rank_times - - if any([dim != rk + 1 for (dim, rk) in zip(dims, wranks)]) - @warn "One of the Wronskians has corank greater than one, so the results of the algorithm will be valid only for multiexperiment identifiability. If you still would like to assess single-experiment identifiability, we recommend using SIAN (https://github.com/alexeyovchinnikov/SIAN-Julia)" + if isempty(ode.parameters) + @info "No parameters, so Wronskian computation is not needed" + else + @info "Computing Wronskians" + wrnsk_time = @elapsed wrnsk = wronskian(io_equations, ode) + @info "Computed in $wrnsk_time seconds" :wrnsk_time wrnsk_time + _runtime_logger[:wrnsk_time] = wrnsk_time + + dims = map(ncols, wrnsk) + @info "Dimensions of the Wronskians $dims" + + rank_times = @elapsed wranks = map(rank, wrnsk) + @debug "Dimensions of the Wronskians $dims" + @debug "Ranks of the Wronskians $wranks" + @info "Ranks of the Wronskians computed in $rank_times seconds" :rank_time rank_times + _runtime_logger[:rank_time] = rank_times + + if any([dim != rk + 1 for (dim, rk) in zip(dims, wranks)]) + @warn "One of the Wronskians has corank greater than one, so the results of the algorithm will be valid only for multiexperiment identifiability. If you still would like to assess single-experiment identifiability, we recommend using SIAN (https://github.com/alexeyovchinnikov/SIAN-Julia)" + end end id_funcs, bring = extract_identifiable_functions_raw( @@ -117,16 +124,32 @@ function initial_identifiable_functions( with_states, ) - if with_states + if with_states && !isempty(ode.parameters) @debug "Generators of identifiable functions involve states, the parameter-only part is getting simplified" + # NOTE: switching to a ring without states for a moment + param_ring, _ = PolynomialRing( + base_ring(bring), + map(string, ode.parameters), + ordering = Nemo.ordering(bring), + ) + id_funcs_no_states_param = map( + polys -> map(poly -> parent_ring_change(poly, param_ring), polys), + id_funcs[:no_states], + ) _runtime_logger[:check_time] = @elapsed no_states_simplified = simplified_generating_set( - RationalFunctionField(id_funcs[:no_states]), + RationalFunctionField(id_funcs_no_states_param), p = p, seed = 42, - strategy = (:gb,), + simplify = :standard, + rational_interpolator = rational_interpolator, ) - id_funcs[:no_states] = fractions_to_dennums(no_states_simplified) + dennums_simplified = fractions_to_dennums(no_states_simplified) + # switch back the ring + id_funcs[:no_states] = map( + polys -> map(poly -> parent_ring_change(poly, bring), polys), + dennums_simplified, + ) end if !with_states diff --git a/src/identifiable_functions.jl b/src/identifiable_functions.jl index 3bfed7578..63c2ffe63 100644 --- a/src/identifiable_functions.jl +++ b/src/identifiable_functions.jl @@ -8,20 +8,18 @@ system. ## Options This functions takes the following optional arguments: -- `p`: A float in the range from 0 to 1, the probability of correctness. Default - is `0.99`. -- `simplify`: When `true`, tries to simplify the identifiabile functions, and - returns an algebraically indepdendent set. Default is `true`. - `with_states`: When `true`, also reports the identifiabile functions in the ODE states. Default is `false`. -- `strategy`: The simplification strategy. Possible options are: - - `(:gb, )`: Extract the coefficients of a Groebner basis of the MQS ideal - (default). - - `(:gbfan, N)`: Same as `:gb`, but computes `N` bases for different random - rankings of variables. - - `(:normalforms, N)`: Same as `:gb`, but adjoins the results of normal form - computations of monomials up to the total degree `N`. - - `(:hybrid, )`: The best of all worlds. +- `simplify`: The extent to which the output functions are simplified. Stronger + simplification may require more time. Possible options are: + - `:standard`: Default simplification. + - `:weak`: Weak simplification. This option is the fastest, but the output + functions can be quite complex. + - `:strong`: Strong simplification. This option is the slowest, but the output + functions are nice and simple. + - `:absent`: No simplification. +- `p`: A float in the range from 0 to 1, the probability of correctness. Default + is `0.99`. - `seed`: The rng seed. Default value is `42`. ## Example @@ -29,35 +27,44 @@ This functions takes the following optional arguments: ```jldoctest using StructuralIdentifiability -de = @ODEmodel( +ode = @ODEmodel( x0'(t) = -(a01 + a21) * x0(t) + a12 * x1(t), x1'(t) = a21 * x0(t) - a12 * x1(t), y(t) = x0(t) ) -find_identifiable_functions(de) +find_identifiable_functions(ode) # prints 3-element Vector{AbstractAlgebra.Generic.Frac{Nemo.fmpq_mpoly}}: a12 + a01 + a21 a12*a01 ``` + """ function find_identifiable_functions( ode::ODE{T}; p::Float64 = 0.99, - simplify = true, seed = 42, with_states = false, - adjoin_identifiable = false, - strategy = (:gb,), + simplify = :standard, + rational_interpolator = :VanDerHoevenLecerf, ) where {T <: MPolyElem{fmpq}} - @assert first(strategy) in (:gb, :gbfan, :normalforms, :hybrid) + Random.seed!(seed) + @assert simplify in (:standard, :weak, :strong, :absent) + _runtime_logger[:id_npoints_degree] = 0 + _runtime_logger[:id_npoints_interpolation] = 0 + _runtime_logger[:id_beautifulization] = 0.0 runtime_start = time_ns() half_p = 0.5 + p / 2 - id_funcs, bring = - initial_identifiable_functions(ode, p = half_p, with_states = with_states) - if simplify + id_funcs, bring = initial_identifiable_functions( + ode, + p = half_p, + with_states = with_states, + rational_interpolator = rational_interpolator, + ) + # If simplification is needed + if simplify !== :absent if isempty(id_funcs) bring = parent(ode) id_funcs = [one(bring)] @@ -66,13 +73,15 @@ function find_identifiable_functions( RationalFunctionField(id_funcs), p = half_p, seed = seed, - strategy = strategy, + simplify = simplify, + rational_interpolator = rational_interpolator, ) else id_funcs_fracs = dennums_to_fractions(id_funcs) end id_funcs_fracs = [parent_ring_change(f, parent(ode)) for f in id_funcs_fracs] _runtime_logger[:id_total] = (time_ns() - runtime_start) / 1e9 + _runtime_logger[:are_id_funcs_polynomial] = all(isone ∘ denominator, id_funcs_fracs) @info "The search for identifiable functions concluded in $(_runtime_logger[:id_total]) seconds" return id_funcs_fracs end @@ -115,12 +124,13 @@ find_identifiable_functions(de, measured_quantities = [y1 ~ x0]) function find_identifiable_functions( ode::ModelingToolkit.ODESystem; measured_quantities = Array{ModelingToolkit.Equation}[], - simplify = true, - with_states = false, - p = 0.99, + p::Float64 = 0.99, seed = 42, - strategy = (:gb,), + with_states = false, + simplify = :standard, + rational_interpolator = :VanDerHoevenLecerf, ) + Random.seed!(seed) if isempty(measured_quantities) measured_quantities = get_measured_quantities(ode) end @@ -131,7 +141,7 @@ function find_identifiable_functions( p = p, seed = seed, with_states = with_states, - strategy = strategy, + rational_interpolator = rational_interpolator, ) result = [parent_ring_change(f, ode.poly_ring) for f in result] nemo2mtk = Dict(v => Num(k) for (k, v) in conversion) diff --git a/src/local_identifiability.jl b/src/local_identifiability.jl index 790e7d208..c99baf6ba 100644 --- a/src/local_identifiability.jl +++ b/src/local_identifiability.jl @@ -195,55 +195,31 @@ function assess_local_identifiability( funcs_to_check_ = [eval_at_nemo(x, conversion) for x in funcs_to_check] if isequal(type, :SE) - result = assess_local_identifiability(ode, funcs_to_check_, p, type) + result = assess_local_identifiability( + ode, + funcs_to_check = funcs_to_check_, + p = p, + type = type, + ) nemo2mtk = Dict(funcs_to_check_ .=> funcs_to_check) out_dict = Dict(nemo2mtk[param] => result[param] for param in funcs_to_check_) return out_dict elseif isequal(type, :ME) - result, bd = assess_local_identifiability(ode, funcs_to_check_, p, type) + result, bd = assess_local_identifiability( + ode, + funcs_to_check = funcs_to_check_, + p = p, + type = type, + ) nemo2mtk = Dict(funcs_to_check_ .=> funcs_to_check) out_dict = Dict(nemo2mtk[param] => result[param] for param in funcs_to_check_) return (out_dict, bd) end end # ------------------------------------------------------------------------------ -""" - assess_local_identifiability(ode::ODE{P}, p::Float64 = 0.99, type=:SE) where P <: MPolyElem{Nemo.fmpq} - -Input: -- `ode` - the ODE model -- `p` - probability of correctness -- `type` - identifiability type (`:SE` for single-experiment, `:ME` for multi-experiment) - -Output: -- for `type=:SE`, the result is a dictionary from each parameter to boolean; -- for `type=:ME`, the result is a tuple with the dictionary as in `:SE` case and array of number of experiments. - -The main entry point for local identifiability checks. -Call this function to automatically take care of local identifiability of all parameters and initial conditions. -The result is correct with probability at least `p`. -`type` can be either `:SE` (single-experiment identifiability) or `:ME` (multi-experiment identifiability). -The return value is a tuple consisting of the array of bools and the number of experiments to be performed. """ -function assess_local_identifiability( - ode::ODE{P}, - p::Float64 = 0.99, - type = :SE, -) where {P <: MPolyElem{Nemo.fmpq}} - funcs_to_check = ode.parameters - if type == :SE - funcs_to_check = vcat(funcs_to_check, ode.x_vars) - end - result = assess_local_identifiability(ode, funcs_to_check, p, type) - if type == :SE - return Dict(a => result[a] for a in funcs_to_check) - end - return (Dict(a => result[1][a] for a in funcs_to_check), result[2]) -end - -""" - assess_local_identifiability(ode::ODE{P}, funcs_to_check::Array{<: Any, 1}, p::Float64=0.99, type=:SE) where P <: MPolyElem{Nemo.fmpq} + assess_local_identifiability(ode::ODE{P}; funcs_to_check::Array{<: Any, 1}, p::Float64=0.99, type=:SE) where P <: MPolyElem{Nemo.fmpq} Checks the local identifiability/observability of the functions in `funcs_to_check`. The result is correct with probability at least `p`. @@ -253,12 +229,18 @@ Call this function if you have a specific collection of parameters of which you If the type is `:ME`, states are not allowed to appear in the `funcs_to_check`. """ function assess_local_identifiability( - ode::ODE{P}, - funcs_to_check::Array{<:Any, 1}, + ode::ODE{P}; + funcs_to_check::Array{<:Any, 1} = Array{Any, 1}(), p::Float64 = 0.99, type = :SE, trbasis = nothing, ) where {P <: MPolyElem{Nemo.fmpq}} + if isempty(funcs_to_check) + funcs_to_check = ode.parameters + if type == :SE + funcs_to_check = vcat(funcs_to_check, ode.x_vars) + end + end # Checking whether the states appear in the ME case if type == :ME @@ -297,6 +279,7 @@ function assess_local_identifiability( Dprime = D * (2 * log(n + ell + r + 1) + log(mu * D)) + 4 * (n + ell)^2 * ((n + m) * h + log(2 * n * D)) + Dprime = max(Dprime, 1.0) prime = Primes.nextprime(Int(ceil(2 * mu * Dprime))) @debug "The prime is $prime" F = Nemo.GF(prime) diff --git a/src/parametrizations.jl b/src/parametrizations.jl index ae7db86d8..0023f8f0d 100644 --- a/src/parametrizations.jl +++ b/src/parametrizations.jl @@ -1,168 +1,273 @@ # Reparametrize! -to_fractions(polys::Vector{T}) where {T} = polys .// one(first(polys)) -to_fractions(dennums::Vector{Vector{T}}) where {T} = - StructuralIdentifiability.dennums_to_fractions(dennums) -to_fractions(fracs::Vector{AbstractAlgebra.Generic.Frac{T}}) where {T} = fracs +# Maps the variables of the given polynomial according to `var_mapping`. +# The output polynomial lives in the given `new_ring`. +function crude_parent_ring_change(poly, new_ring, var_mapping) + new_poly = zero(new_ring) + for (i, term) in enumerate(terms(poly)) + new_term = one(new_ring) * coeff(poly, i) + for var in vars(term) + exp = degree(term, var) + exp == 0 && continue + new_var = var_mapping[var] + new_term *= new_var^exp + end + new_poly += new_term + end + return new_poly +end + +""" + check_constructive_field_membership(tagged_mqs, tag_relations, tagged_num, tagged_den) + +Reduces `tagged_num // tagged_den` modulo the given `tagged_mqs` ideal. +Cancels out `tag_relations`. + +## Input + +- `tagged_mqs`: vector of generators in K(T)[x]. +- `tag_relations`: vector of relations in K[T]. +- `tagged_num`, `tagged_den`: numerator and denominator to be reduced, both + elements of `K(T)[x]`. + +## Output + +Return a tuple (`membership`, `remainder`). + +- `membership`: `true` if `tagged_num // tagged_den` belongs to the field + associated with `tagged_mqs`, `false` otherwise. +- `remainder`: expression of `tagged_num // tagged_den` in terms of `T`. + NOTE: expression is canonical provided that `tag_relations` are specified. +""" +function check_constructive_field_membership( + tagged_mqs, + tag_relations, + tagged_num, + tagged_den, +) + @assert !isempty(tagged_mqs) + @assert !iszero(tagged_den) + ring_of_tags = base_ring(base_ring(parent(first(tagged_mqs)))) + if !isempty(tag_relations) + @assert ring_of_tags == parent(first(tag_relations)) + end + # Compute the remainders module the MQS. + # These belong to K(T)[x]. + @info """ + Reducing $tagged_num, $tagged_den""" + _, num_rem = divrem(tagged_num, tagged_mqs) + _, den_rem = divrem(tagged_den, tagged_mqs) + @info """ + Normal forms modulo MQS: + Num: $(num_rem) + Den: $(den_rem)""" + common_factor = gcd(num_rem, den_rem) + num_rem = divexact(num_rem, common_factor) + den_rem = divexact(den_rem, common_factor) + # If norm_form(Num) // norm_form(Den) does not belongs to K(T), then + # the fraction does not belong to the field + if iszero(den_rem) + @warn """ + The element $tagged_num // $tagged_den is not in the sub-field + Normal form, numerator: $num_rem + Normal form, denominator: $den_rem + Common factor: $(common_factor) + """ + return false, zero(ring_of_tags) // one(ring_of_tags) + end + if total_degree(num_rem) > 0 || total_degree(den_rem) > 0 + @warn """ + The element $tagged_num // $tagged_den is not in the sub-field + Normal form, numerator: $num_rem + Normal form, denominator: $den_rem + Common factor: $(common_factor) + """ + return false, zero(ring_of_tags) // one(ring_of_tags) + end + # Now we know that the remainders belong to K(T). + # To obtain a canonical representation We need to cancel out the algebraic + # relations in K[T] between the tags + num = !iszero(num_rem) ? coeff(num_rem, 1) : zero(ring_of_tags) // one(ring_of_tags) + den = coeff(den_rem, 1) + num_num = numerator(num) + num_den = numerator(den) + _, num_num_factored = divrem(num_num, tag_relations) + _, num_den_factored = divrem(num_den, tag_relations) + num_factored = num_num_factored // denominator(num) + den_factored = num_den_factored // denominator(den) + @info """ + After factoring out relations: + Num: $(num_factored) + Den: $(den_factored) + """ + if iszero(den_factored) + return false, zero(ring_of_tags) // one(ring_of_tags) + end + rem_canon = num_factored // den_factored + return true, rem_canon +end """ - check_constructive_field_membership(generators, to_be_reduced) + check_constructive_field_membership(rff, to_be_reduced) -Returns the unique expression of `to_be_reduced` in terms of the elements of -`generators`. +Returns the unique expression of each fraction in `to_be_reduced` in terms of +the elements of the given rational function field `rff`. Follows the vein of Algorithm 1.17 from https://doi.org/10.1006/jsco.1998.0246 + +## Input + +- `rff`: a subfield of the field of rational functions. +- `to_be_reduced`: an array of fractions to be reduced. +- `tag_names` (optional): a vector of strings to be used as tags. + +## Output + +Returns a 4-element tuple +(`memberships`, `remainders`, `relations_between_tags`, `tag_to_gen`). + +- `memberships`: is `true` whenever `to_be_reduced[i]` belongs to the field. +- `remainders`: is the unique expression of `to_be_reduced[i]` in terms of the + generators of `rff`. +- `relations_between_tags`: is the list of algebraic relations between the + generators of `rff`. +- `tag_to_gen`: is a dictionary mapping each new tag to the corresponding + generator of `rff`. + """ -function check_constructive_field_membership(generators::AbstractVector, to_be_reduced) - fracs_gen = to_fractions(generators) - frac_to_be_reduced = first(to_fractions([to_be_reduced])) - @assert parent(first(fracs_gen)) == parent(frac_to_be_reduced) - ring = base_ring(parent(frac_to_be_reduced)) - K = base_ring(ring) - tag_strings = map(i -> "T$i", 1:length(fracs_gen)) - sat_string = "t" +function check_constructive_field_membership( + rff::RationalFunctionField{T}, + to_be_reduced::Vector{Generic.Frac{T}}; + tag_names = Vector{String}(), +) where {T} + @assert !isempty(to_be_reduced) + # A tag is assigned for each of the the generators of the given rational + # function field. Then, the MQS ideal is constructed in the following way: + # < N_i(x) - T_i * D_i(x), Q * t - 1 > in K(T)[x][t] + # for each N_i / D_i in the generators. + # + # Let the fraction to be reduced be Num // Den, A is a formal parameter. + # We construct Num - A * Den in K[x][A] to later compute the normal form + # of it with respect to the MQS ideal of generators in K(T)[vars][A]. + # + # Then, let A = norm_form(Num) // norm_form(Den). Note that A lives in + # K(T)[x]. + # + # If A belongs to K(T), then Num // Den belongs to the the given field. + # Otherwise, A belongs to K(T)[x], and Num // Den does not belong to the + # given field. + fracs_gen = dennums_to_fractions(rff.dennums) + @assert parent(first(fracs_gen)) == parent(first(to_be_reduced)) + poly_ring = base_ring(parent(first(to_be_reduced))) + K = base_ring(poly_ring) + orig_strings = map(string, gens(poly_ring)) + tag_strings = if !isempty(tag_names) + @assert length(fracs_gen) == length(tag_names) + tag_names + else + gen_tag_names(length(fracs_gen), "Tag") + end + sat_string = gen_tag_name("Sat") @info """ Tags: $(join(map(x -> string(x[1]) * " -> " * string(x[2]), zip(fracs_gen, tag_strings)), "\t\n")) + Saturation tag: + $sat_string """ - var_strings = vcat(sat_string, map(string, gens(ring)), tag_strings) - ring_tag, xs_tag = PolynomialRing(K, var_strings, ordering = Nemo.ordering(ring)) - orig_vars = xs_tag[2:(nvars(ring) + 1)] - tag_vars = xs_tag[(nvars(ring) + 2):end] - sat_var = xs_tag[1] - @assert all(<(sat_var), tag_vars) - @assert all(orig_var -> all(<(orig_var), tag_vars), orig_vars) - tag_to_gen = Dict(tag_vars[i] => fracs_gen[i] for i in 1:length(fracs_gen)) - @info """ - Original poly ring: $ring - Tagged poly ring: $ring_tag""" - tagged_mqs = Vector{elem_type(ring)}() - num, den = StructuralIdentifiability.unpack_fraction(frac_to_be_reduced) - # Fraction to be reduced is Num // Den, A is a formal parameter. - # - # Construct Num - A * Den to later compute the normal form of it w.r.t. the - # generators. Then, A = Num / Den would be the desired expression. - # - # Note that since A is not present in the generators, the normal form is - # multiplicative by A, and, thus, can be computed separately for Num and Den. - to_be_reduced_tag = ( - StructuralIdentifiability.parent_ring_change(num, ring_tag), - StructuralIdentifiability.parent_ring_change(den, ring_tag), - ) - Q = one(ring_tag) + poly_ring_tag, vars_tag = PolynomialRing(K, vcat(sat_string, orig_strings, tag_strings)) + sat_var = vars_tag[1] + orig_vars = vars_tag[2:(nvars(poly_ring) + 1)] + tag_vars = vars_tag[(nvars(poly_ring) + 2):end] + # Construct generators of the tagged MQS ideal. + tagged_mqs = Vector{elem_type(poly_ring_tag)}(undef, length(fracs_gen) + 1) + Q = one(poly_ring_tag) for i in 1:length(fracs_gen) - num, den = StructuralIdentifiability.unpack_fraction(fracs_gen[i]) - num_tag = StructuralIdentifiability.parent_ring_change(num, ring_tag) - den_tag = StructuralIdentifiability.parent_ring_change(den, ring_tag) + num, den = unpack_fraction(fracs_gen[i]) + num_tag = parent_ring_change(num, poly_ring_tag) + den_tag = parent_ring_change(den, poly_ring_tag) Q = lcm(Q, den_tag) tagged_poly_mqs = num_tag - tag_vars[i] * den_tag - push!(tagged_mqs, tagged_poly_mqs) + tagged_mqs[i] = tagged_poly_mqs end - push!(tagged_mqs, Q * sat_var - 1) - # ord = DegRevLex([sat_var]) * DegRevLex(orig_vars) * DegRevLex(tag_vars) - ord = Lex() + tagged_mqs[end] = Q * sat_var - 1 + # Compute the basis of the MQS in K[T][x][t] such that T < x < t. + # + # NOTE: we compute the basis in K[T][x][t], not in K(T)[x][t]. + # This way, we obtain two pieces of information at once: + # - the kernel of the map from T to x (the algbraic relations of the tags). + # - the GB of the MQS in K(T)[x][t]. + # ord = Lex() + ord = DegRevLex([sat_var]) * DegRevLex(orig_vars) * DegRevLex(tag_vars) @info """ Tagged MQS ideal: $tagged_mqs Monom ordering: $(ord)""" - tagged_mqs_gb = groebner(tagged_mqs, ordering = ord) - tags_syzygies = filter( + tagged_mqs_gb = groebner(tagged_mqs, ordering = ord, homogenize = :no) + # Relations between tags in K[T] + relations_between_tags = filter( poly -> isempty(intersect(vars(poly), vcat(sat_var, orig_vars))), tagged_mqs_gb, ) - tagged_mqs_gb = setdiff(tagged_mqs_gb, tags_syzygies) + # The basis in K[T][x] + tagged_mqs_gb = setdiff(tagged_mqs_gb, relations_between_tags) tagged_mqs_gb = filter(poly -> isempty(intersect(vars(poly), [sat_var])), tagged_mqs_gb) @info """ Tagged MQS GB: $tagged_mqs_gb - Syzygies of tags: - $tags_syzygies - To be reduced: - $to_be_reduced_tag + Relations between tags: + $relations_between_tags """ - function switch_ring_to_parametric(poly, new_ring) - param_ring = base_ring(base_ring(new_ring)) - params = gens(param_ring) - orig_vars = gens(ring) - new_poly = zero(new_ring) - for (i, term) in enumerate(terms(poly)) - new_coeff = one(param_ring) * coeff(poly, i) - new_monom = one(new_ring) - for var in vars(term) - exp = degree(term, var) - if string(var) in map(string, params) - new_coeff *= - StructuralIdentifiability.parent_ring_change(var, param_ring)^exp - else - new_monom *= - StructuralIdentifiability.parent_ring_change(var, new_ring)^exp - end - end - new_poly += new_coeff * new_monom - end - new_poly - end - ring_of_tags, = PolynomialRing(K, tag_strings) - parametric_ring, _ = - PolynomialRing(FractionField(ring_of_tags), map(string, orig_vars), ordering = :lex) - tagged_mqs_gb = - map(poly -> switch_ring_to_parametric(poly, parametric_ring), tagged_mqs_gb) - tags_syzygies = - map(poly -> switch_ring_to_parametric(poly, parametric_ring), tagged_mqs_gb) - to_be_reduced_tag = - map(poly -> switch_ring_to_parametric(poly, parametric_ring), to_be_reduced_tag) - _, num_rem = divrem(to_be_reduced_tag[1], tagged_mqs_gb) - _, den_rem = divrem(to_be_reduced_tag[2], tagged_mqs_gb) - @info "" num_rem den_rem - remainder = num_rem // den_rem - _, num_factored = divrem(numerator(remainder), tags_syzygies) - _, den_factored = divrem(denominator(remainder), tags_syzygies) - if iszero(den_factored) || - !isempty( - intersect( - map(string, vars(num_factored)), - map(string, vcat(sat_var, orig_vars)), - ), - ) || - !isempty( - intersect( - map(string, vars(den_factored)), - map(string, vcat(sat_var, orig_vars)), - ), - ) + # Reduce the fractions with respect to the MQS ideal. + # + # NOTE: reduction actually happens in K(T)[x]. So we map polynomials to the + # parametric ring K(T)[x]. + ring_of_tags, tags = PolynomialRing(K, tag_strings) + tag_to_gen = Dict(tags[i] => fracs_gen[i] for i in 1:length(fracs_gen)) + if !isempty(intersect(tag_strings, orig_strings)) @warn """ - The fraction ($(frac_to_be_reduced)) is not a function of the generators ($(fracs_gen)). - Normal form: $remainder - Normal form num (syzygies factored out): $num_factored - Normal form den (syzygies factored out): $den_factored - """ + There is an intersection between the names of the tag variables and the original variables. + Tags: $tag_strings + Original vars: $orig_strings""" end - num_factored = - StructuralIdentifiability.parent_ring_change(coeff(num_factored, 1), ring_tag) - den_factored = - StructuralIdentifiability.parent_ring_change(coeff(den_factored, 1), ring_tag) - remainder = num_factored // den_factored - remainder, tag_to_gen -end - -# Same as above, but reduces multiple fractions at once. -function check_constructive_field_membership( - generators::AbstractVector, - to_be_reduced::AbstractVector, -) - fracs_gen = to_fractions(generators) - fracs_to_be_reduced = to_fractions(to_be_reduced) - T = elem_type(base_ring(parent(first(fracs_to_be_reduced)))) - remainders = Vector{Generic.Frac{T}}(undef, length(fracs_to_be_reduced)) - tag_to_gen = Dict{T, Generic.Frac{T}}() - for i in 1:length(fracs_to_be_reduced) - frac = fracs_to_be_reduced[i] - remainder, tag_to_gen = check_constructive_field_membership(fracs_gen, frac) + parametric_ring, _ = + PolynomialRing(FractionField(ring_of_tags), orig_strings, ordering = :degrevlex) + relations_between_tags = + map(poly -> parent_ring_change(poly, ring_of_tags), relations_between_tags) + param_var_mapping = merge( + Dict(gens(poly_ring_tag)[2:(nvars(poly_ring) + 1)] .=> gens(parametric_ring)), + Dict(gens(poly_ring_tag)[(nvars(poly_ring) + 2):end] .=> gens(ring_of_tags)), + ) + @debug """ + Variable mapping: + $param_var_mapping + Parametric ring: + $parametric_ring + """ + tagged_mqs_gb_param = map( + poly -> crude_parent_ring_change(poly, parametric_ring, param_var_mapping), + tagged_mqs_gb, + ) + tagged_mqs_gb_param = map(f -> divexact(f, leading_coefficient(f)), tagged_mqs_gb_param) + @debug "Tagged parametric mqs: $tagged_mqs_gb_param" + # Reduce each fraction + var_mapping = Dict(gens(poly_ring) .=> gens(parametric_ring)) + memberships = Vector{Bool}(undef, length(to_be_reduced)) + remainders = Vector{Generic.Frac{T}}(undef, length(to_be_reduced)) + for i in 1:length(to_be_reduced) + frac = to_be_reduced[i] + num = crude_parent_ring_change(numerator(frac), parametric_ring, var_mapping) + den = crude_parent_ring_change(denominator(frac), parametric_ring, var_mapping) + membership, remainder = check_constructive_field_membership( + tagged_mqs_gb_param, + relations_between_tags, + num, + den, + ) + memberships[i] = membership remainders[i] = remainder end - @assert length(unique(parent, remainders)) == 1 - remainders, tag_to_gen + return memberships, remainders, relations_between_tags, tag_to_gen end """ @@ -172,67 +277,92 @@ Returns the vector field obtained by applying `derivation` to each element of `directions`. """ function vector_field_along(derivation::Dict{T, U}, directions::AbstractVector) where {T, U} - fracs = to_fractions(directions) new_vector_field = Dict{AbstractAlgebra.Generic.Frac{T}, AbstractAlgebra.Generic.Frac{T}}() - for func in fracs - df = StructuralIdentifiability.diff_frac(func, derivation) + for func in directions + df = diff_frac(func, derivation) new_vector_field[func] = df end - new_vector_field + return new_vector_field end """ reparametrize_with_respect_to(ode, new_states, new_params) -Reparametrizes the `ode` using the given states and parameters. +Reparametrizes the `ode` using the given fractional states and parameters. ## Input - `ode`: an ODE model. -- `new_states`: a vector of new states as functions in `parent(ode)`. -- `new_params`: a vector of new parameters as functions in `parent(ode)`. +- `new_states`: a vector of new states as fractions in `parent(ode)`. +- `new_params`: a vector of new parameters as fractions in `parent(ode)`. """ function reparametrize_with_respect_to(ode, new_states, new_params) - @assert length(new_states) + length(new_params) > 0 + @assert length(new_states) > 0 + poly_ring = base_ring(parent(first(new_states))) # Compute the new dynamics in terms of the original variables. # Paying attenton to the order.. new_vector_field = vector_field_along(ode.x_equations, new_states) - states = collect(keys(new_vector_field)) - dynamics = [new_vector_field[state] for state in states] + @info "New vector field:\n$new_vector_field" + new_states = collect(keys(new_vector_field)) + new_dynamics = [new_vector_field[new_state] for new_state in new_states] # Express the new dynamics in terms of new states and new parameters. - generating_funcs = vcat(states, new_params, ode.u_vars) - new_vars_dynamics, new_vars = - check_constructive_field_membership(generating_funcs, dynamics) - tag_ring = parent(first(keys(new_vars))) - # Express the existing outputs in terms of new states and new parameters. - outputs = ode.y_vars - new_outputs_dynamics, _ = check_constructive_field_membership( - generating_funcs, - [ode.y_equations[output] for output in outputs], + outputs = [ode.y_equations[output] for output in ode.y_vars] + generating_funcs = vcat( + new_states, + new_params, + ode.u_vars .// one(poly_ring), + ode.y_vars .// one(poly_ring), ) - new_outputs = Dict( - StructuralIdentifiability.parent_ring_change(output, tag_ring) => dynamic for - (output, dynamic) in zip(outputs, new_outputs_dynamics) + to_be_reduced_funcs = vcat(new_dynamics, outputs .// one(poly_ring)) + n_active_generators = + (length(generating_funcs) - length(ode.u_vars) - length(ode.y_vars)) + tag_names = vcat( + gen_tag_names(n_active_generators, "Internal"), + gen_tag_names(length(ode.u_vars), "Input"), + gen_tag_names(length(ode.y_vars), "Output"), ) - # NOTE: old inputs map one to one to new inputs. - inputs = ode.u_vars - if !isempty(inputs) - new_inputs_dynamics, _ = - check_constructive_field_membership(generating_funcs, inputs) - new_inputs = Dict( - StructuralIdentifiability.parent_ring_change(input, tag_ring) => new_input - for (input, new_input) in zip(inputs, new_inputs_dynamics) + @info """ + Tag names: + $tag_names + Generating functions: + $generating_funcs + To be reduced functions: + $to_be_reduced_funcs + """ + membership, new_dynamics_all, implicit_relations, new_vars = + check_constructive_field_membership( + RationalFunctionField(generating_funcs), + to_be_reduced_funcs; + tag_names = tag_names, ) - else - new_inputs = empty(new_outputs) + @assert all(membership) + ring_of_tags = parent(first(keys(new_vars))) + tags = gens(ring_of_tags) + tag_inputs = tags[(n_active_generators + 1):(end - length(ode.y_vars))] + tag_outputs = tags[(end - length(ode.y_vars) + 1):end] + new_dynamics_states = new_dynamics_all[1:length(new_states)] + new_dynamics_outputs = new_dynamics_all[(length(new_states) + 1):end] + new_outputs = Dict( + output => dynamic for (output, dynamic) in zip(tag_outputs, new_dynamics_outputs) + ) + # Old inputs map one to one to new inputs. + new_inputs = empty(tags) + if !isempty(ode.u_vars) + new_inputs = tag_inputs end + @info """ + New state dynamics: + $new_dynamics_states + New output dynamics: + $new_dynamics_outputs + New inputs: + $new_inputs""" # Construct the new vector field. new_vars_vector_field = empty(ode.x_equations) - state_to_new_var = Dict(v => k for (k, v) in new_vars) - for i in 1:length(states) - state = states[i] - new_vars_vector_field[state_to_new_var[state]] = new_vars_dynamics[i] + for i in 1:length(new_states) + state = tags[i] + new_vars_vector_field[state] = new_dynamics_states[i] end @assert parent(first(keys(new_vars_vector_field))) == base_ring(parent(first(values(new_vars_vector_field)))) == @@ -240,16 +370,27 @@ function reparametrize_with_respect_to(ode, new_states, new_params) base_ring(parent(first(values(new_outputs)))) == parent(first(keys(new_vars))) @assert base_ring(parent(first(values(new_vars)))) == parent(ode) - new_vars_vector_field, new_inputs, new_outputs, new_vars + new_vars_vector_field, new_inputs, new_outputs, new_vars, implicit_relations end -function reparametrize_global(ode::StructuralIdentifiability.ODE{P}) where {P} - id_funcs = StructuralIdentifiability.find_identifiable_functions( - ode, - with_states = true, - strategy = (:hybrid,), - ) - @assert base_ring(parent(first(id_funcs))) == parent(ode) +""" + reparametrize_global(ode, options...) + +Casts an incantation and returns a rabbit. + +## Options + +The function accepts the following optional arguments. + +- `seed`: A float in the range from 0 to 1, random seed (default is `seed = 42`). +- `p`: The probability of correctness (default is `p = 0.99`). +""" +function reparametrize_global(ode::ODE{P}; p = 0.99, seed = 42) where {P} + Random.seed!(seed) + id_funcs = + find_identifiable_functions(ode, with_states = true, simplify = :strong, p = p) + ode_ring = parent(ode) + @assert base_ring(parent(first(id_funcs))) == ode_ring @info "Constructing a new parametrization" contains_states(poly::MPolyElem) = any(x -> degree(poly, x) > 0, ode.x_vars) contains_states(func) = @@ -265,44 +406,9 @@ function reparametrize_global(ode::StructuralIdentifiability.ODE{P}) where {P} Reparametrizing with respect to: New states: $new_states New params: $new_params""" - new_vector_field, new_inputs, new_outputs, new_vars = + new_vector_field, new_inputs, new_outputs, new_vars, implicit_relations = reparametrize_with_respect_to(ode, new_states, new_params) new_ring = parent(first(keys(new_vector_field))) - new_vars_trimmed = union(map(vars, collect(keys(new_vector_field)))...) - new_vars_trimmed = - union(new_vars_trimmed, map(vars, collect(values(new_vector_field)))...) - # new_vars_trimmed = union(new_vars_trimmed, map(vars, collect(keys(new_inputs)))...) - new_vars_trimmed = union(new_vars_trimmed, map(vars, collect(keys(new_outputs)))...) - new_vars_trimmed = union(new_vars_trimmed, map(vars, collect(values(new_outputs)))...) - new_vars_trimmed = union(new_vars_trimmed, map(vars, collect(keys(new_vars)))...) - new_ring_trimmed, new_vars_trimmed = PolynomialRing( - base_ring(new_ring), - map(string, new_vars_trimmed), - ordering = Nemo.ordering(new_ring), - ) - new_ode = StructuralIdentifiability.ODE{P}( - Dict( - StructuralIdentifiability.parent_ring_change(k, new_ring_trimmed) => - StructuralIdentifiability.parent_ring_change(v, new_ring_trimmed) for - (k, v) in new_vector_field - ), - Dict( - StructuralIdentifiability.parent_ring_change(k, new_ring_trimmed) => - StructuralIdentifiability.parent_ring_change(v, new_ring_trimmed) for - (k, v) in new_outputs - ), - map( - f -> StructuralIdentifiability.parent_ring_change( - numerator(f), - new_ring_trimmed, - ), - collect(values(new_inputs)), - ), - ) - new_vars = Dict( - StructuralIdentifiability.parent_ring_change(k, new_ring_trimmed) => v for - (k, v) in new_vars - ) - @assert base_ring(parent(first(values(new_vars)))) == parent(ode) - return new_ode, new_vars + new_ode = ODE{P}(new_vector_field, new_outputs, new_inputs) + return (new_ode = new_ode, new_vars = new_vars, implicit_relations = implicit_relations) end diff --git a/src/precompile.jl b/src/precompile.jl index adc0b50a0..ba52f3346 100644 --- a/src/precompile.jl +++ b/src/precompile.jl @@ -22,7 +22,7 @@ assess_identifiability(ode) assess_identifiability(de; measured_quantities = [x0]) assess_identifiability(de; measured_quantities = [y ~ x0]) - find_identifiable_functions(ode) + find_identifiable_functions(ode, with_states = true) end end end diff --git a/src/states.jl b/src/states.jl index ca0f48d28..56fbd2c14 100644 --- a/src/states.jl +++ b/src/states.jl @@ -99,7 +99,7 @@ function states_generators( extract_coefficients_ratfunc(lie_derivative(f, ode), ode.u_vars) for f in curr ], - init=empty(curr) + init = empty(curr), ) end end diff --git a/src/util.jl b/src/util.jl index 57a6a5700..474c73d32 100644 --- a/src/util.jl +++ b/src/util.jl @@ -159,6 +159,45 @@ end # ------------------------------------------------------------------------------ +function homogenize(fs) + ring = parent(fs[1]) + newring, hom_vars = PolynomialRing( + base_ring(ring), + vcat("X0", map(string, gens(ring))), + ordering = ordering(ring), + ) + Fs = empty(fs) + for f in fs + D = total_degree(f) + new_f = zero(newring) + for term in terms(f) + cf = coeff(term, 1) + ev = monomial(term, 1) + d = total_degree(ev) + new_f += cf * evaluate(ev, hom_vars[2:end]) * hom_vars[1]^(D - d) + end + push!(Fs, new_f) + end + return Fs +end + +function dehomogenize(Fs) + ring = parent(Fs[1]) + newring, dehom_vars = PolynomialRing( + base_ring(ring), + map(string, gens(ring)[2:end]), + ordering = ordering(ring), + ) + fs = empty(Fs) + for F in Fs + f = evaluate(F, vcat(one(newring), dehom_vars)) + push!(fs, f) + end + return fs +end + +# ------------------------------------------------------------------------------ + """ parent_ring_change(poly, new_ring) @@ -369,6 +408,42 @@ end # ------------------------------------------------------------------------------ +""" + gen_tag_name(base; stop_words) + gen_tag_names(n, base; stop_words) + +Generates a string which will not collide with the words in `stop_words`. + +## Arguments + +- `n`: Generates a sequence of unique strings of length `n` +- `base`: A string or a vector of strings, the base for the generated sequence +- `stop_words`: A vector of strings, stop words +""" +function gen_tag_name(base = "T"; stop_words = Vector{String}()) + return first(gen_tag_names(1, base, stop_words = stop_words)) +end + +function gen_tag_names(n::Integer, base = "T"; stop_words = Vector{String}()) + sequence = if base isa Vector{String} + @assert n == length(base) + base + else + repeat([base], n) + end + while true + rand_token = Int(rand(UInt8)) + sequence = map(c -> "$(rand_token)__$c", sequence) + sequence = map(ic -> "$(ic[2])_$(ic[1])", enumerate(sequence)) + if all(elem -> !(elem in stop_words), sequence) + break + end + end + return sequence +end + +# ------------------------------------------------------------------------------ + """ switch_ring(v, ring) @@ -424,7 +499,7 @@ function eval_at_nemo(e::Union{Float16, Float32, Float64}, vals::Dict) else out = rationalize(e) end - @warn "Floating points are not allowed, value $e will be converted to $(out)." + @warn "Floating point value $e will be converted to $(out)." return out end diff --git a/test/RationalFunctionFields/RationalFunctionField.jl b/test/RationalFunctionFields/RationalFunctionField.jl index 18a4b364d..350887b77 100644 --- a/test/RationalFunctionFields/RationalFunctionField.jl +++ b/test/RationalFunctionFields/RationalFunctionField.jl @@ -14,7 +14,7 @@ s1, s2 = a + b + c, a^2 + b^2 + c^2 f1 = [s1, s2] rff1 = StructuralIdentifiability.RationalFunctionField(f1) - @test !any(StructuralIdentifiability.field_contains(rff1, [a, b + c, a*b + b*c], p)) + @test !any(StructuralIdentifiability.field_contains(rff1, [a, b + c, a * b + b * c], p)) @test all(StructuralIdentifiability.field_contains(rff1, [a * b + b * c + a * c], p)) @test all(StructuralIdentifiability.field_contains(rff1, [(s1)^8 - (s2)^9 + 89], p)) diff --git a/test/RationalFunctionFields/normalforms.jl b/test/RationalFunctionFields/normalforms.jl index 5d9e49204..abce0d95f 100644 --- a/test/RationalFunctionFields/normalforms.jl +++ b/test/RationalFunctionFields/normalforms.jl @@ -1,67 +1,37 @@ - eq_up_to_the_order(a, b) = issubset(a, b) && issubset(b, a) @testset "Linear relations over the rationals" begin - for strategy in (:monte_carlo,) - R, (a, b, c) = QQ["a", "b", "c"] + R, (a, b, c) = QQ["a", "b", "c"] - f = [a + 9] - rff = StructuralIdentifiability.RationalFunctionField(f) - relations = StructuralIdentifiability.monomial_generators_up_to_degree( - rff, - 2, - strategy = strategy, - ) - @test eq_up_to_the_order(relations, [a]) + f = [a + 9] + rff = StructuralIdentifiability.RationalFunctionField(f) + relations = StructuralIdentifiability.monomial_generators_up_to_degree(rff, 2) + @test eq_up_to_the_order(relations, [a]) - f = [a * b // R(1), (b * c + a * b) // (a * b)] - rff = StructuralIdentifiability.RationalFunctionField(f) - relations = StructuralIdentifiability.monomial_generators_up_to_degree( - rff, - 2, - strategy = strategy, - ) - @test eq_up_to_the_order(relations, [a * b // R(1), b * c // R(1)]) + f = [a * b // R(1), (b * c + a * b) // (a * b)] + rff = StructuralIdentifiability.RationalFunctionField(f) + relations = StructuralIdentifiability.monomial_generators_up_to_degree(rff, 2) + @test eq_up_to_the_order(relations, [a * b // R(1), b * c // R(1)]) - R, (a, b, c) = QQ["a", "b", "c"] - f = [a^2 + b^2, a^3 + b^3, a^4 + b^4] - rff = StructuralIdentifiability.RationalFunctionField(f) - relations = StructuralIdentifiability.monomial_generators_up_to_degree( - rff, - 1, - strategy = strategy, - ) - @test eq_up_to_the_order(relations, [a + b]) - relations = StructuralIdentifiability.monomial_generators_up_to_degree( - rff, - 2, - strategy = strategy, - ) - @test eq_up_to_the_order(relations, [a + b, a * b, a^2 + b^2]) + R, (a, b, c) = QQ["a", "b", "c"] + f = [a^2 + b^2, a^3 + b^3, a^4 + b^4] + rff = StructuralIdentifiability.RationalFunctionField(f) + relations = StructuralIdentifiability.monomial_generators_up_to_degree(rff, 1) + @test eq_up_to_the_order(relations, [a + b]) + relations = StructuralIdentifiability.monomial_generators_up_to_degree(rff, 2) + @test eq_up_to_the_order(relations, [a + b, a * b, a^2 + b^2]) - f = [9a^7 + 10b^6, b^10 - 5b^2] - rff = StructuralIdentifiability.RationalFunctionField(f) - relations = StructuralIdentifiability.monomial_generators_up_to_degree( - rff, - 1, - strategy = strategy, - ) - @test eq_up_to_the_order(relations, empty(f)) - relations = StructuralIdentifiability.monomial_generators_up_to_degree( - rff, - 7, - strategy = strategy, - ) - @test eq_up_to_the_order(relations, [a^7 + (10 // 9) * b^6]) - relations = StructuralIdentifiability.monomial_generators_up_to_degree( - rff, - 12, - strategy = strategy, - ) - @test eq_up_to_the_order(relations, [a^7 + (10 // 9) * b^6, b^10 - 5b^2]) - end + f = [9a^7 + 10b^6, b^10 - 5b^2] + rff = StructuralIdentifiability.RationalFunctionField(f) + relations = StructuralIdentifiability.monomial_generators_up_to_degree(rff, 1) + @test eq_up_to_the_order(relations, empty(f)) + relations = StructuralIdentifiability.monomial_generators_up_to_degree(rff, 7) + @test eq_up_to_the_order(relations, [a^7 + (10 // 9) * b^6]) + relations = StructuralIdentifiability.monomial_generators_up_to_degree(rff, 12) + @test eq_up_to_the_order(relations, [a^7 + (10 // 9) * b^6, b^10 - 5b^2]) - # Regression test. + # Regression tests + ### # LV model. R, (x1, p2, p4, y1, x2, x3, u, p1, p3) = QQ["x1", "p2", "p4", "y1", "x2", "x3", "u", "p1", "p3"] @@ -74,7 +44,6 @@ eq_up_to_the_order(a, b) = issubset(a, b) && issubset(b, a) (p2 * x2 + p4 * x1) // (x2 * x1), (p2 * x2 - p4 * x1) // (p1 - p3), ] - rff = StructuralIdentifiability.RationalFunctionField(f) relations = StructuralIdentifiability.monomial_generators_up_to_degree( rff, @@ -82,4 +51,31 @@ eq_up_to_the_order(a, b) = issubset(a, b) && issubset(b, a) strategy = :monte_carlo, ) @test (x1 * p4 + p2 * x2) // one(R) in relations + + ### + R, (a, b, c) = QQ["a", "b", "c"] + f = [a, a * b + b * c] + rff = StructuralIdentifiability.RationalFunctionField(f) + relations = StructuralIdentifiability.monomial_generators_up_to_degree(rff, 2) + @test eq_up_to_the_order(relations, [a, a * b + b * c]) + + ### + # Some arbitrary generators for the SLIQR model + R, (b, e, In, S, Ninv, s, Q, g, u, a, y, L) = + PolynomialRing(QQ, [:b, :e, :In, :S, :Ninv, :s, :Q, :g, :u, :a, :y, :L]) + f = [ + In // one(R), + s // one(R), + Ninv // one(R), + b // one(R), + (g + a) // one(R), + (e * s * g - s * g + g * a) // one(R), + (e * S - S) // (e * Q), + (e * S * s - S * s + S * a) // e, + (s * Q^2 - Q^2 * a) // (e * g - g), + (e * In + e * L - In - Q - L) // (e * Q), + ] + rff = StructuralIdentifiability.RationalFunctionField(f) + relations = StructuralIdentifiability.monomial_generators_up_to_degree(rff, 2) + @test s * Q - Q * a in relations end diff --git a/test/constructive_membership.jl b/test/constructive_membership.jl new file mode 100644 index 000000000..d80aca25f --- /dev/null +++ b/test/constructive_membership.jl @@ -0,0 +1,125 @@ +@testset "Constructive field membership" begin + R, (x,) = PolynomialRing(Nemo.QQ, ["x"]) + + generators = [x^2, x^3] + to_be_reduced = [x^2, x, 3one(R), zero(R)] + + memberships, remainders, relations_between_tags, tag_to_gen = + StructuralIdentifiability.check_constructive_field_membership( + StructuralIdentifiability.RationalFunctionField(generators), + map(f -> f // one(f), to_be_reduced), + tag_names = ["T1", "T2"], + ) + tags = gens(base_ring(parent(first(remainders)))) + + @test length(tags) == 2 + @test all(memberships) + @test map(string, remainders) == ["T1", "T1^2//T2", "3", "0"] + @test tag_to_gen == Dict(tags[1] => x^2, tags[2] => x^3) + @test length(relations_between_tags) == 1 + @test string(relations_between_tags[1]) == "T1^3 - T2^2" + + cases = [] + + R, (T1,) = PolynomialRing(Nemo.QQ, ["T1"]) + append!( + cases, + [(generators = [T1^2], to_be_reduced = [T1, T1^2], memberships = Bool[0, 1])], + ) + + R, (T1, t, _t) = PolynomialRing(Nemo.QQ, ["T1", "t", "_t"]) + append!( + cases, + [( + generators = [T1, t, _t], + to_be_reduced = [_t, t, T1 * t * _t], + memberships = Bool[1, 1, 1], + )], + ) + + R, (x,) = PolynomialRing(Nemo.QQ, ["x"]) + append!( + cases, + [ + ( + generators = [(x - 1) // R(1), R(1) // (x^5 - 1), x // R(1)], + to_be_reduced = [ + (x^4 + x^3 + x^2 + x + 1) // one(R), + x // R(1), + R(33) // x^2, + ], + memberships = Bool[1, 1, 1], + ), + ( + generators = [(x^10 + x^9 + x^2 + 1) // (x^7 - x^6 - x^3 + 1)], + to_be_reduced = [x // one(R), 2x // one(R), -3x // one(R)], + memberships = Bool[0, 0, 0], + ), + (generators = [x^2], to_be_reduced = [x, x^88], memberships = Bool[0, 1]), + ], + ) + + R, (x, y, z) = PolynomialRing(Nemo.QQ, ["x", "y", "z"]) + append!( + cases, + [ + (generators = [x, y], to_be_reduced = [x^2 + y^2, z], memberships = Bool[1, 0]), + ( + generators = [x^2 + y^2, x^3 + y^3, x^4 + y^4], + to_be_reduced = [x * y, x + y, x + y + 1, x + y + z], + memberships = Bool[1, 1, 1, 0], + ), + ( + generators = [(x + y + z)^2, (x + y + z)^3, (x + y + z)^4], + to_be_reduced = [(x + y + z)^18, x + 1, y + 2, z + 3], + memberships = Bool[1, 0, 0, 0], + ), + ], + ) + + # NOTE: in this case it actually matter to cancel out the gcd after + # computing the normal forms + R, (a, b, y, x2, c, x1) = PolynomialRing(Nemo.QQ, ["a", "b", "y", "x2", "c", "x1"]) + append!( + cases, + [ + ( + generators = [ + x1 // one(R), + a // one(R), + (a * c + c^2) // one(R), + c // x2, + x2 // (a + b), + ], + to_be_reduced = [ + (a * c + c^2 + x1) // (a * c + c^2), + (a * c + c^2 + x1) // (a^2 + a * b + a * c + b * c), + (a * x2 + a * x1 + b * x1) // x2, + ], + memberships = Bool[1, 1, 1], + ), + ], + ) + + for case in cases + generators = case.generators + to_be_reduced = case.to_be_reduced + memberships, remainders, relations_between_tags, tag_to_gen = + StructuralIdentifiability.check_constructive_field_membership( + StructuralIdentifiability.RationalFunctionField(generators), + map(f -> f // one(f), to_be_reduced), + ) + @test memberships == case.memberships + tags = gens(base_ring(parent(first(remainders)))) + evaluate_tags = poly -> evaluate(poly, [tag_to_gen[tag] for tag in tags]) + for i in 1:length(relations_between_tags) + @test iszero(evaluate_tags(relations_between_tags[i])) + end + for i in 1:length(remainders) + if !memberships[i] + continue + end + @test iszero(evaluate_tags(remainders[i]) - to_be_reduced[i]) + end + end +end diff --git a/test/identifiability.jl b/test/identifiability.jl index 2dda61295..aa992907e 100644 --- a/test/identifiability.jl +++ b/test/identifiability.jl @@ -209,7 +209,7 @@ #-------------------------------------------------------------------------- for case in test_cases - result = assess_identifiability(case[:ode], case[:funcs]) + result = assess_identifiability(case[:ode], funcs_to_check = case[:funcs]) @test result == case[:correct] end end diff --git a/test/identifiable_functions.jl b/test/identifiable_functions.jl index bc3884c0e..b3f857138 100644 --- a/test/identifiable_functions.jl +++ b/test/identifiable_functions.jl @@ -9,6 +9,10 @@ ode = StructuralIdentifiability.@ODEmodel(x'(t) = a * x(t) + u(t), y(t) = x(t)) ident_funcs = [a] push!(test_cases, (ode = ode, ident_funcs = ident_funcs)) +ode = StructuralIdentifiability.@ODEmodel(x1'(t) = a, x2'(t) = -a, y(t) = x1 + x2) +ident_funcs = [] +push!(test_cases, (ode = ode, ident_funcs = ident_funcs)) + # Parameter a is not identifiable, and neither are any combinations thereof. ode = StructuralIdentifiability.@ODEmodel( x1'(t) = x2(t) - a, @@ -22,9 +26,8 @@ push!(test_cases, (ode = ode, ident_funcs = ident_funcs)) # Example 2 from # "On Global Identifiability for Arbitrary Model Parametrizations", # DOI: 10.1016/0005-1098(94)90029-9 -ode = StructuralIdentifiability.@ODEmodel(x1'(t) = Θ * x2(t)^2, x2'(t) = u, y(t) = x1(t)) -# TODO: do we want u^2 Θ or Θ in the output? -ident_funcs = [u^2 * Θ] +ode = StructuralIdentifiability.@ODEmodel(x1'(t) = Θ * x2(t)^2, x2'(t) = u(t), y(t) = x1(t)) +ident_funcs = [Θ] push!(test_cases, (ode = ode, ident_funcs = ident_funcs)) # Example 4 from @@ -51,7 +54,7 @@ ode = StructuralIdentifiability.@ODEmodel( ident_funcs = [(a01 * a12), (a01 + a12 + a21)] push!(test_cases, (ode = ode, ident_funcs = ident_funcs)) -# TODO: uncomment when identifiability can handle nos states +# TODO: uncomment when identifiability can handle models with no states # ode = StructuralIdentifiability.@ODEmodel( # y(t) = a*u(t) # ) @@ -169,8 +172,21 @@ ode = StructuralIdentifiability.@ODEmodel( x4'(t) = k41 * x1(t) - k14 * x4(t), y1(t) = x1(t) ) -# TODO -# ident_funcs = [k01, k31 + k21 + k41, k31 * k21 * k41, k31 * k21 + k31 * k41 + k21 * k41] +ident_funcs = [ + k01 // one(k01), + k12 * k13 * k14 // one(k01), + k31 * k21 * k41 // one(k01), + k12 + k13 + k14 // one(k01), + k31 + k21 + k41 // one(k01), + k12 * k13 + k12 * k14 + k13 * k14 // one(k01), + k31 * k21 + k31 * k41 + k21 * k41 // one(k01), + k31 * k12 - 2 * k31 * k13 + k31 * k14 - 2 * k21 * k12 + + k21 * k13 + + k21 * k14 + + k12 * k41 + + k13 * k41 - 2 * k14 * k41 // one(k01), +] +# Too slow with hybrid strategy :( # push!(test_cases, (ode = ode, ident_funcs = ident_funcs)) # Biohydrogenation_io @@ -194,11 +210,7 @@ ode = StructuralIdentifiability.@ODEmodel( y1(t) = x4(t), y2(t) = x5(t) ) -# TODO: simplify? -# k9 // k10, k10^2 -# into -# k9 * k10, k10^2 -ident_funcs = [k7, k6, k5, k9 // k10, k10^2, k8 + 1 // 2 * k10] +ident_funcs = [k7, k6, k5, k10^2, k9 * k10, k8 + 1 // 2 * k10] push!(test_cases, (ode = ode, ident_funcs = ident_funcs)) # SLIQR @@ -244,8 +256,7 @@ ident_funcs = [ (e * dr^2 - e * dr * d + rR * dr * a + dr * d * g - dr * r * a - d^2 * g) // (dr^2 + dr * a - d^2 - d * a), ] -# TODO: GB fails -# push!(test_cases, (ode = ode, ident_funcs = ident_funcs)) +push!(test_cases, (ode = ode, ident_funcs = ident_funcs)) # QY system. # (this is a big one) @@ -747,16 +758,16 @@ ident_funcs = [ phi * Mar * siga2 * beta_SA - phi * siga2^2 * beta_SA - Mar * siga2 * beta_SA ) // (phi * M * siga2), ] -push!(test_cases, (ode = ode, ident_funcs = ident_funcs)) +# Really large and takes a lot of time, so commented +# push!(test_cases, (ode = ode, ident_funcs = ident_funcs)) ### # Cases with states -# TODO: uncomment when this is handled! -# ode = StructuralIdentifiability.@ODEmodel(x'(t) = x(t), y(t) = x(t)) -# T = typeof(x) -# ident_funcs = [x] -# push!(test_cases, (ode = ode, ident_funcs = ident_funcs)) +ode = StructuralIdentifiability.@ODEmodel(x'(t) = x(t), y(t) = x(t)) +T = typeof(x) +ident_funcs = [x] +push!(test_cases, (ode = ode, ident_funcs = ident_funcs, with_states = true)) ode = StructuralIdentifiability.@ODEmodel(x'(t) = a * x(t) + u(t), y(t) = x(t)) ident_funcs = [a, x] @@ -817,6 +828,24 @@ ode = StructuralIdentifiability.@ODEmodel(x'(t) = a * x(t) + b * u(t), y(t) = c ident_funcs = [b * c, a, x // b] push!(test_cases, (ode = ode, with_states = true, ident_funcs = ident_funcs)) +# llw1987 model +ode = StructuralIdentifiability.@ODEmodel( + x1'(t) = -p1 * x1(t) + p2 * u(t), + x2'(t) = -p3 * x2(t) + p4 * u(t), + x3'(t) = -(p1 + p3) * x3(t) + (p4 * x1(t) + p2 * x2(t)) * u(t), + y1(t) = x3(t) +) +ident_funcs = [ + x3, + x2 * x1 // one(x1), + p3 * p1 // one(x1), + p2 * p4 // one(x1), + (p3 + p1) // one(x1), + (p2 * x2 + p4 * x1) // one(x1), + (p3 - p1) // (p2 * x2 - p4 * x1), +] +push!(test_cases, (ode = ode, with_states = true, ident_funcs = ident_funcs)) + # Regression test: Previously failed for with_states=true because of the bug in # `linear_relations_between_normal_forms` # Fujita @@ -876,6 +905,21 @@ ident_funcs = [ ] push!(test_cases, (ode = ode, with_states = true, ident_funcs = ident_funcs)) +# Bruno2016 model +ode = StructuralIdentifiability.@ODEmodel( + beta'(t) = -kbeta * beta(t), + cry'(t) = -cry(t) * kcrybeta - cry(t) * kcryOH, + zea'(t) = -zea(t) * kzea, + beta10'(t) = cry(t) * kcryOH - beta10(t) * kbeta10 + kbeta * beta(t), + OHbeta10'(t) = cry(t) * kcrybeta + zea(t) * kzea - OHbeta10(t) * kOHbeta10, + betaio'(t) = cry(t) * kcrybeta + beta10(t) * kbeta10 + kbeta * beta(t), + OHbetaio'(t) = cry(t) * kcryOH + zea(t) * kzea + OHbeta10(t) * kOHbeta10, + y1(t) = beta(t), + y2(t) = beta10(t) +) +ident_funcs = [beta10, beta, kbeta, kbeta10, cry * kcryOH, kcrybeta + kcryOH] +push!(test_cases, (ode = ode, with_states = true, ident_funcs = ident_funcs)) + # STAT-5 model from # MODELING THE NONLINEAR DYNAMICS OF CELLULAR SIGNAL TRANSDUCTION # DOI: https://doi.org/10.1142/S0218127404010461 @@ -892,10 +936,10 @@ ident_funcs = [k3, k1 // k7, k5 // k2, k6 // k2, k7 * EpoR_A] push!(test_cases, (ode = ode, ident_funcs = ident_funcs)) # TODO: verify that Maple returns the same -@testset "Identifiable functions of parameters" failfast = true begin +@testset "Identifiable functions of parameters" begin p = 0.99 for case in test_cases - for strategy in [(:gb,), (:normalforms, 2), (:hybrid,)] + for simplify in [:weak, :standard] # :strong] ode = case.ode true_ident_funcs = case.ident_funcs with_states = false @@ -904,7 +948,7 @@ push!(test_cases, (ode = ode, ident_funcs = ident_funcs)) end result_funcs = StructuralIdentifiability.find_identifiable_functions( ode, - strategy = strategy, + simplify = simplify, with_states = with_states, ) @@ -913,9 +957,11 @@ push!(test_cases, (ode = ode, ident_funcs = ident_funcs)) continue end + @test parent(numerator(result_funcs[1])) == parent(ode) + R = parent(numerator(result_funcs[1])) - @info "Test, result_funcs = \n$result_funcs" case strategy R with_states + @info "Test, result_funcs = \n$result_funcs" case simplify R with_states true_ident_funcs = map(f -> f // one(f), true_ident_funcs) true_ident_funcs = map( diff --git a/test/linear_compartment.jl b/test/linear_compartment.jl index 01e2cfe34..f52fad656 100644 --- a/test/linear_compartment.jl +++ b/test/linear_compartment.jl @@ -161,7 +161,7 @@ for (e, id) in case[:result] correct[str_to_var("a_$(e[2])_$(e[1])", bring)] = id end - result = assess_identifiability(ode, collect(keys(correct))) + result = assess_identifiability(ode, funcs_to_check = collect(keys(correct))) @test correct == result end end diff --git a/test/local_identifiability.jl b/test/local_identifiability.jl index b2e90602f..976583097 100644 --- a/test/local_identifiability.jl +++ b/test/local_identifiability.jl @@ -117,10 +117,14 @@ for case in test_cases trbasis = [] ode = case[:ode] - result = assess_local_identifiability(ode, case[:funcs], 0.99, :SE, trbasis) + result = assess_local_identifiability( + ode, + funcs_to_check = case[:funcs], + trbasis = trbasis, + ) @test result == case[:correct] for (i, p) in enumerate(trbasis) - res_for_p = assess_local_identifiability(ode, [p]) + res_for_p = assess_local_identifiability(ode, funcs_to_check = [p]) @test !first(values(res_for_p)) ode = add_outputs(ode, Dict("YYY$i" => p)) end diff --git a/test/local_identifiability_me.jl b/test/local_identifiability_me.jl index 1ca946683..6c6541473 100644 --- a/test/local_identifiability_me.jl +++ b/test/local_identifiability_me.jl @@ -136,7 +136,7 @@ end for n in n_min:n_max model = _linear_compartment_model(case[:graph](n), [1]) println(case[:name] * ", n = $n") - @time result = assess_local_identifiability(model, 0.97, :ME) + @time result = assess_local_identifiability(model, type = :ME) correct = undef if n - n_min + 1 > length(case[:bound]) correct = case[:bound][end] @@ -210,7 +210,12 @@ end #-------------------------------------------------------------------------- for case in test_cases - result = assess_local_identifiability(case[:ode], case[:funcs], 0.932, :ME) + result = assess_local_identifiability( + case[:ode], + funcs_to_check = case[:funcs], + p = 0.932, + type = :ME, + ) @test result == case[:correct] end end diff --git a/test/mtk_compat.jl b/test/mtk_compat.jl index 76ef88463..814b99943 100644 --- a/test/mtk_compat.jl +++ b/test/mtk_compat.jl @@ -6,8 +6,13 @@ eqs = [D(x0) ~ -(a01 + a21) * x0 + a12 * x1, D(x1) ~ a21 * x0 - a12 * x1, y1 ~ x0] de = ODESystem(eqs, t, name = :Test) - correct = - Dict(a01 => :nonidentifiable, a21 => :nonidentifiable, a12 => :nonidentifiable) + correct = Dict( + a01 => :nonidentifiable, + a21 => :nonidentifiable, + a12 => :nonidentifiable, + x0 => :globally, + x1 => :nonidentifiable, + ) @test isequal(correct, assess_identifiability(de; measured_quantities = [y1 ~ x0])) @test isequal(correct, assess_identifiability(de; measured_quantities = [x0])) @@ -31,11 +36,11 @@ eqs = [D(x) ~ (-V_m * x) / (k_m + x) + k01 * x, y1 ~ c * x] de = ODESystem(eqs, t, name = :Test) - correct = [k01, c * k_m, V_m / k_m] + correct = [k01, c * k_m, V_m * c] result = find_identifiable_functions(de) @test isequal(Set(correct), Set(result)) - correct = [k01, c * x, k_m / x, V_m / x] + correct = [k01, c * x, k_m * c, V_m * c] result = find_identifiable_functions(de, with_states = true) @test isequal(Set(correct), Set(result)) @@ -47,8 +52,13 @@ eqs = [D(x0) ~ -(a01 + a21) * x0 + a12 * x1, D(x1) ~ a21 * x0 - a12 * x1, y1 ~ x0] de = ODESystem(eqs, t, name = :Test) - correct = - Dict(a01 => :nonidentifiable, a21 => :nonidentifiable, a12 => :nonidentifiable) + correct = Dict( + a01 => :nonidentifiable, + a21 => :nonidentifiable, + a12 => :nonidentifiable, + x0 => :globally, + x1 => :nonidentifiable, + ) @test isequal(correct, assess_identifiability(de)) @@ -343,6 +353,8 @@ γ => :nonidentifiable, β => :globally, wolves₊δ => :globally, + rabbits₊x => :nonidentifiable, + wolves₊y => :globally, ) @test result == correct diff --git a/test/paradigm_shift.jl b/test/paradigm_shift.jl new file mode 100644 index 000000000..f59b0b7da --- /dev/null +++ b/test/paradigm_shift.jl @@ -0,0 +1,266 @@ +≡(A, B) = A ⊆ B && B ⊆ A + +function test_reparametrization(old_ode, new_ode, var_mapping, implicit_relations) + # NOTE: should this be strengthened to == ? + # @test map(string, old_ode.u_vars) ≡ map(string, new_ode.u_vars) + # @test map(string, old_ode.y_vars) ≡ map(string, new_ode.y_vars) + @test length(old_ode.y_vars) == length(new_ode.y_vars) + @test length(old_ode.u_vars) == length(new_ode.u_vars) + @test base_ring(parent(first(values(var_mapping)))) == parent(old_ode) + + # We check that the PS solutions of the new_ode coincide with the solutions + # of the old_ode projected onto the new variables + ord = 5 + # NOTE: there may be an unlucky specialization point, and newton iteration + # will fail, and tests will fail as a result + bound = 100 + old_params = old_ode.parameters + old_vars = old_ode.x_vars + old_inputs = old_ode.u_vars + param_spec_point = map(Nemo.QQ, rand(1:bound, length(old_params))) + old_param_spec = Dict(old_params .=> param_spec_point) + ic_point = map(Nemo.QQ, rand(1:bound, length(old_vars))) + old_var_ic = Dict(old_vars .=> ic_point) + input_ts = map(_ -> [Nemo.QQ(rand(1:bound))], 1:length(old_inputs)) + old_input_ts = Dict{eltype(old_vars), Vector{Nemo.fmpq}}(old_inputs .=> input_ts) + + old_solutions = StructuralIdentifiability.power_series_solution( + old_ode, + old_param_spec, + old_var_ic, + old_input_ts, + ord, + ) + + new_params = new_ode.parameters + new_vars = new_ode.x_vars + new_inputs = new_ode.u_vars + new_param_spec = Dict( + new_param => StructuralIdentifiability.eval_at_dict( + var_mapping[new_param], + old_param_spec, + ) for new_param in new_params + ) + new_var_ic = Dict( + new_var => StructuralIdentifiability.eval_at_dict( + var_mapping[new_var], + merge(old_param_spec, old_var_ic), + ) for new_var in new_vars + ) + new_input_ts = Dict{eltype(new_vars), Vector{Nemo.fmpq}}( + new_input => old_input_ts[numerator(var_mapping[new_input])] for + new_input in new_inputs + ) + + new_solutions = StructuralIdentifiability.power_series_solution( + new_ode, + new_param_spec, + new_var_ic, + new_input_ts, + ord, + ) + + # NOTE: test that y's are mapped one to one! + @test map(string, [var_mapping[output] for output in new_ode.y_vars]) ≡ map(string, old_ode.y_vars) + + # Test IO behavior + for var in vcat(new_ode.y_vars) + new_solution = new_solutions[var] + old_solution = old_solutions[numerator(var_mapping[var])] + @test new_solution == old_solution + end + + # Test state dynamics + projected_solutions = Dict( + var => StructuralIdentifiability.eval_at_dict(var_mapping[var], old_solutions) + for var in new_ode.x_vars + ) + for var in vcat(new_ode.x_vars) + new_solution = new_solutions[var] + prj_solution = projected_solutions[var] + @test new_solution == prj_solution + end + + # Test relations + for relation in implicit_relations + @test iszero(StructuralIdentifiability.eval_at_dict(relation, var_mapping)) + end + + return nothing +end + +cases = [ + ( + ode = StructuralIdentifiability.@ODEmodel( + x1'(t) = x1(t) + a + u1(t), + x2'(t) = x2(t) + b + u2(t), + y1(t) = x1(t), + y2(t) = x2(t), + ), + ), + ( + ode = StructuralIdentifiability.@ODEmodel( + x1'(t) = a * x1, + x2'(t) = b * x2, + y(t) = x1 + x2 + ), + ), + ( + ode = StructuralIdentifiability.@ODEmodel( + x1'(t) = (a + b) * x1 // x2 + a, + x2'(t) = x1 // (a + c) + c, + y(t) = x1 + ), + ), + ( + ode = StructuralIdentifiability.@ODEmodel( + T1'(t) = a * T1 - b * T1 * T2 + u(t), + T2'(t) = -c * T2 + d * T1 * T2, + y(t) = T1 + ), + ), + ( + #= + Identifiable functions: + x1, Θ * x2 + + Under + T1 = x1, + T2 = Θ * x2 + + Reparametrizes into: + T1' = T1 + T2, + T2' = 0, + y = T1 + =# + ode = StructuralIdentifiability.@ODEmodel( + x1'(t) = x1(t) + Θ * x2(t), + x2'(t) = 0, + y(t) = x1(t) + ), + ), + ( + #= + Identifiable functions: + x1, α * x2, α * x3, α * C + + Under + T1 = α * x2, + T2 = α * x3, + T3 = x1, + T4 = α * C + + Reparametrizes into: + T3'(t) = T1(t) + T2'(t) = T4 + T1'(t) = T2(t) + y(t) = T3(t) + =# + ode = StructuralIdentifiability.@ODEmodel( + x1'(t) = α * x2(t), + x2'(t) = x3(t), + x3'(t) = C, + y(t) = x1(t) + ), + ), + ( + #= + Identifiable functions: + x1^2 + x2^2, α + + Under + T1 = x1^2 + x2^2, + T2 = α + + Reparametrizes into: + T1' = 2*T1*T2 + y = 1//2*T1 + =# + ode = StructuralIdentifiability.@ODEmodel( + x1'(t) = α * (x1 - x2), + x2'(t) = α * (x1 + x2), + y(t) = (x1^2 + x2^2) // 2, + ), + ), + ( + # Pivastatin + # Reparametrizes into a 4-dimensional nonlinear model with no algebraic + # relations -- how is this even legal?? + ode = StructuralIdentifiability.@ODEmodel( + x1'(t) = k3 * x3(t) - r3 * x1(t) - k1 * x1(t) * (T0 - x2(t)) + r1 * x2(t), + x2'(t) = k1 * x1(t) * (T0 - x2(t)) - (r1 + k2) * x2(t), + x3'(t) = r3 * x1(t) - (k3 + k4) * x3(t) + k2 * x2(t), + y1(t) = k * (x2(t) + x3(t)) + ), + ), + ( + # Transfection_4State + ode = StructuralIdentifiability.@ODEmodel( + mRNA'(t) = -d1 * mRNA(t) - d2 * mRNA(t) * enz(t), + GFP'(t) = kTL * mRNA(t) - b * GFP(t), + enz'(t) = d3 * mRNAenz(t) - d2 * mRNA(t) * enz(t), + mRNAenz'(t) = -d3 * mRNAenz(t) + d2 * mRNA(t) * enz(t), + y1(t) = GFP(t) + ), + ), + ( + # LLW1987_io + ode = StructuralIdentifiability.@ODEmodel( + x1'(t) = -p1 * x1(t) + p2 * u(t), + x2'(t) = -p3 * x2(t) + p4 * u(t), + x3'(t) = -(p1 + p3) * x3(t) + (p4 * x1(t) + p2 * x2(t)) * u(t), + y1(t) = x3(t) + ), + ), + ( + # Take care of monomial orders in GB! + ode = StructuralIdentifiability.@ODEmodel( + x1'(t) = x1 + x2^2 + a^2, + x2'(t) = x2 + a * d^3, + y(t) = x1 + ), + ), + ( + # SLIQR system + ode = StructuralIdentifiability.@ODEmodel( + S'(t) = -b * In(t) * S(t) * Ninv - u(t) * S(t) * Ninv, + L'(t) = b * In(t) * S(t) * Ninv - a * L(t), + In'(t) = a * L(t) - g * In(t) + s * Q(t), + Q'(t) = (1 - e) * g * In(t) - s * Q(t), + y(t) = In(t) * Ninv + ), + ), + ( + ode = StructuralIdentifiability.@ODEmodel( + x1'(t) = a * x1 + b * x2 + u(t), + x2'(t) = b * x1 + c * x2, + y(t) = x1 + ), + ), +] + +@testset "Global reparametrizations" begin + # Test that variables are mapped properly + ode = cases[1].ode + (new_ode, new_vars, implicit_relations) = + StructuralIdentifiability.reparametrize_global(ode) + @test length(new_vars) == length(gens(parent(new_ode))) == 8 + @test length(new_ode.x_vars) == 2 + # @test map(string, new_ode.y_vars) ≡ map(string, ode.y_vars) + # @test map(string, new_ode.u_vars) ≡ map(string, ode.u_vars) + @test length(new_ode.parameters) == 2 + @test isempty(implicit_relations) + + # Test that relations are functional + ode = cases[2].ode + (new_ode, new_vars, implicit_relations) = + StructuralIdentifiability.reparametrize_global(ode) + @test length(implicit_relations) == 1 + + for case in cases + ode = case.ode + (new_ode, new_vars, implicit_relations) = + StructuralIdentifiability.reparametrize_global(ode) + test_reparametrization(ode, new_ode, new_vars, implicit_relations) + end +end diff --git a/test/parent_ring_change.jl b/test/parent_ring_change.jl index 599f262bd..fcb952c75 100644 --- a/test/parent_ring_change.jl +++ b/test/parent_ring_change.jl @@ -6,26 +6,44 @@ PolynomialRing(QQ, ["x", "t", "y", "z"], ordering = :deglex) f = 2x + 3y + x^7 * y - @test f == parent_ring_change(f, R, matching = :byname) - @test f == parent_ring_change(f, R, matching = :byindex) + @test f == StructuralIdentifiability.parent_ring_change(f, R, matching = :byname) + @test f == StructuralIdentifiability.parent_ring_change(f, R, matching = :byindex) - f_ = parent_ring_change(f, R_, matching = :byname) - f__ = parent_ring_change(f, R__, matching = :byname) + f_ = StructuralIdentifiability.parent_ring_change(f, R_, matching = :byname) + f__ = StructuralIdentifiability.parent_ring_change(f, R__, matching = :byname) @test f_ == 2x_ + 3y_ + x_^7 * y_ @test f__ == 2x__ + 3y__ + x__^7 * y__ - @test f == parent_ring_change(f_, R, matching = :byname) - @test f == parent_ring_change(f__, R, matching = :byname) + @test f == StructuralIdentifiability.parent_ring_change(f_, R, matching = :byname) + @test f == StructuralIdentifiability.parent_ring_change(f__, R, matching = :byname) - @test_throws ArgumentError parent_ring_change(x + z, R_, matching = :byname) + @test_throws ArgumentError StructuralIdentifiability.parent_ring_change( + x + z, + R_, + matching = :byname, + ) f = 3y - f_ = parent_ring_change(f, R__, matching = :byname) + f_ = StructuralIdentifiability.parent_ring_change(f, R__, matching = :byname) @test f_ == 3y__ f__ = 2x__ + 5t__^3 + 3y__^2 - f = parent_ring_change(f__, R, matching = :byindex) - @test_throws ArgumentError parent_ring_change(f__, R_, matching = :byindex) + f = StructuralIdentifiability.parent_ring_change(f__, R, matching = :byindex) + @test_throws ArgumentError StructuralIdentifiability.parent_ring_change( + f__, + R_, + matching = :byindex, + ) @test f == 2z + 5x^3 + 3y^2 - @test f__ == parent_ring_change(f, R__, matching = :byindex) + @test f__ == + StructuralIdentifiability.parent_ring_change(f, R__, matching = :byindex) + + R, (x,) = PolynomialRing(field, ["x"]) + R2, (x2,) = PolynomialRing(Nemo.FractionField(R), ["x"]) + R3, (x3,) = PolynomialRing(field, ["x"]) + f = x3^2 + f_ = StructuralIdentifiability.parent_ring_change(f, R2) + @test parent(f) == R3 + @test parent(f_) == R2 + @test repr(f_) == "x^2" end end