From 22d7ea111ac6d6c2adff46acc541bd74c35e489a Mon Sep 17 00:00:00 2001 From: Aayush Sabharwal Date: Thu, 4 Jan 2024 18:02:31 +0530 Subject: [PATCH] docs: write `SymbolCache` tutorial --- docs/src/simple_sii_sys.md | 75 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 75 insertions(+) diff --git a/docs/src/simple_sii_sys.md b/docs/src/simple_sii_sys.md index b19e1e59..1a031216 100644 --- a/docs/src/simple_sii_sys.md +++ b/docs/src/simple_sii_sys.md @@ -4,3 +4,78 @@ In this tutorial we will show how to implement a system structure type for defin symbolic indexing of a domain-specific language. This tutorial will show how the `SymbolCache` type is defined to take in arrays of symbols for its independent, dependent, and parameter variable names and uses that to define the symbolic indexing interface. + +## Defining the ODE + +For this example, we will use the Robertson equations: + +```math +\begin{aligned} +\frac{dy_1}{dt} &= -0.04y₁ + 10^4 y_2 y_3 \\ +\frac{dy_2}{dt} &= 0.04 y_1 - 10^4 y_2 y_3 - 3*10^7 y_{2}^2 \\ +\frac{dy_3}{dt} &= 3*10^7 y_{2}^2 \\ +\end{aligned} +``` + +The in-place function for this ODE system can be defined as: + +```@example symbolcache +function rober!(du, u, p, t) + y₁, y₂, y₃ = u + k₁, k₂, k₃ = p + du[1] = -k₁ * y₁ + k₃ * y₂ * y₃ + du[2] = k₁ * y₁ - k₂ * y₂^2 - k₃ * y₂ * y₃ + du[3] = k₂ * y₂^2 + nothing +end +``` + +To add symbolic names for the states in this example, a [`SymbolCache`](@ref) can be +created and passed as the `sys` keyword argument to the `ODEFunction` constructor, +as shown below: + +```@example symbolcache +using OrdinaryDiffEq, SymbolicIndexingInterface + +sys = SymbolCache([:y₁, :y₂, :y₃]) +odefun = ODEFunction(rober!; sys = sys) +nothing # hide +``` + +This is then used to create and solve the `ODEProblem` + +```@example symbolcache +prob = ODEProblem(odefun, [1.0, 0.0, 0.0], (0.0, 1e5), [0.04, 3e7, 1e4]) +sol = solve(prob, Rosenbrock23()) +``` + +The solution can now be indexed symbolically: + +```@example symbolcache +sol[:y₁] +``` + +```@example symbolcache +sol(1e3, idxs=:y₁) +``` + +However, we did not give names to the parameters or the independent variables. They can +be specified using `SymbolCache` as well: + +```@example symbolcache +sys = SymbolCache([:y₁, :y₂, :y₃], [:k₁, :k₂, :k₃], :t) +odefun = ODEFunction(rober!; sys = sys) +prob = ODEProblem(odefun, [1.0, 0.0, 0.0], (0.0, 1e5), [0.04, 3e7, 1e4]) +sol = solve(prob, Rosenbrock23()) +getk1 = getp(sys, :k₁) + +getk1(prob) +``` + +```@example symbolcache +getk1(sol) +``` + +```@example symbolcache +sol[:t] +```