forked from i6092467/GVAR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_grid_search.py
236 lines (195 loc) · 10.8 KB
/
run_grid_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# This script evaluates GVAR model across a range of hyperparameter values for the specified simulation experiment.
import argparse
import os
import numpy as np
import time
from datetime import date
from datasets.lorenz import Lorenz96
from datasets.fMRI.fmri import get_fmri_simulation_
from datasets.lotkaVolterra.multiple_lotka_volterra import MultiLotkaVolterra
from datasets.linear_examples import generate_linear_example_1
from experimental_utils import run_grid_search, eval_causal_structure, eval_causal_structure_binary
from models.linvar import LinVAR
parser = argparse.ArgumentParser(description='Grid search')
# Simulation model parameters
parser.add_argument('--experiment', type=str, default="lorenz96", help="Experiment to be performed (default: "
"'lorenz96')")
parser.add_argument('--p', type=int, default=20, help='Number of variables (default: 20)')
parser.add_argument('--T', type=int, default=500, help='Length of the time series (default: 500)')
# Lorenz 96
parser.add_argument('--F', type=float, default=10., help='Forcing constant in Lorenz 96 (default: 10.0)')
# Lotka--Volterra
parser.add_argument('--d', type=int, default=2,
help='Number of species hunted and hunted by, in the Lotka-Volterra system (default: 2)')
parser.add_argument('--dt', type=float, default=0.01, help='Sampling time (default: 0.01)')
parser.add_argument('--downsample-factor', type=int, default=10, help='Down-sampling factor (default: 10)')
parser.add_argument('--alpha_lv', type=float, default=1.1,
help='Parameter alpha in Lotka-Volterra equations (default: 1.1)')
parser.add_argument('--beta_lv', type=float, default=0.4,
help='Parameter beta in Lotka-Volterra equations (default: 0.4)')
parser.add_argument('--gamma_lv', type=float, default=1.1,
help='Parameter gamma in Lotka-Volterra equations (default: 0.4)')
parser.add_argument('--delta_lv', type=float, default=0.1,
help='Parameter delta in Lotka-Volterra equations (default: 0.1)')
parser.add_argument('--sigma_lv', type=float, default=0.1,
help='Noise scale parameter in Lotka-Volterra simulations (default: 0.1)')
# Model specification
parser.add_argument('--model', type=str, default='gvar', help="Model to train (default: 'gvar')")
parser.add_argument('--K', type=int, default=5, help='Model order (default: 5)')
parser.add_argument('--num-hidden-layers', type=int, default=1, help='Number of hidden layers (default: 1)')
parser.add_argument('--hidden-layer-size', type=int, default=50, help='Number of units in the hidden layer '
'(default: 50)')
# Training procedure
parser.add_argument('--batch-size', type=int, default=256, help='Mini-batch size (default: 256)')
parser.add_argument('--num-epochs', type=int, default=10, help='Number of epochs to train (default: 10)')
parser.add_argument('--initial-lr', type=float, default=0.0001, help='Initial learning rate (default: 0.0001)')
parser.add_argument('--beta_1', type=float, default=0.9, help='beta_1 value for the Adam optimiser (default: 0.9)')
parser.add_argument('--beta_2', type=float, default=0.999, help='beta_2 value for the Adam optimiser (default: 0.999)')
# Meta
parser.add_argument('--seed', type=int, default=42, help='Random seed (default: 42)')
parser.add_argument('--num-sim', type=int, default=1, help='Number of simulations (default: 1)')
parser.add_argument('--use-cuda', type=bool, default=True, help='Use GPU? (default: true)')
# Parsing args
args = parser.parse_args()
datasets = []
structures = []
signed_structures = None
print(str(args.num_sim) + " " + str(args.experiment) + " datasets...")
# Generate data from an appropriate ground truth model
lambdas = None
gammas = None
if args.experiment == "lorenz96":
print("p = " + str(args.p) + ", F = " + str(args.F) + ", T = " + str(args.T) + "...")
for i in range(args.num_sim):
lorenz_system = Lorenz96(dim=args.p, force=args.F, seed=(args.seed + i))
data = lorenz_system.create_data(num_sim=1, t_len=args.T)[0]
# Standardise time series
for j in range(args.p):
data[:, j] = (data[:, j] - np.mean(data[:, j])) / np.std(data[:, j])
# True causal structure
a = lorenz_system.get_causal_structure()
datasets.append(data)
structures.append(a)
lambdas = np.linspace(0.0, 3.0, 5)
gammas = np.linspace(0.0, 0.025, 5)
elif args.experiment == "fmri":
args.p = 15
args.T = 200
print("p = 15, T = 200...")
for i in range(args.num_sim):
data_i, a_i = get_fmri_simulation_(i)
for j in range(data_i.shape[1]):
data_i[:, j] = (data_i[:, j] - np.mean(data_i[:, j])) / np.std(data_i[:, j])
datasets.append(data_i)
structures.append(a_i)
lambdas = np.linspace(0.0, 3.0, 5)
gammas = np.linspace(0.0, 0.1, 5)
elif args.experiment == "lotka-volterra":
signed_structures = []
args.p = args.p * 2
print("p = " + str(int(args.p / 2)) + ", d = " + str(args.d) +
", T ≈ " + str(int(args.T / args.downsample_factor)) + "...")
mlv = MultiLotkaVolterra(p=int(args.p / 2), d=args.d, alpha=args.alpha_lv, beta=args.beta_lv, gamma=args.gamma_lv,
delta=args.delta_lv, sigma=args.sigma_lv)
for i in range(args.num_sim):
data_i, a_i, a_signed_i = mlv.simulate(t=args.T, downsample_factor=args.downsample_factor, dt=args.dt,
seed=(args.seed + i))
data_i = data_i[0]
for j in range(data_i.shape[1]):
data_i[:, j] = (data_i[:, j] - np.mean(data_i[:, j])) / np.std(data_i[:, j])
datasets.append(data_i)
structures.append(a_i)
signed_structures.append(a_signed_i)
lambdas = np.linspace(0.0, 3.0, 5)
gammas = np.linspace(0.0, 0.01, 5)
elif args.experiment == "linear-var":
signed_structures = []
args.p = 4
print("p = " + str(args.p) + ", T = " + str(args.T) + "...")
for i in range(args.num_sim):
data_i, a_i, a_signed_i = generate_linear_example_1(n=1, t=args.T, seed=(args.seed + i))
data_i = data_i[0]
a_signed_i = a_signed_i[0]
for j in range(data_i.shape[1]):
data_i[:, j] = (data_i[:, j] - np.mean(data_i[:, j])) / np.std(data_i[:, j])
datasets.append(data_i)
structures.append(a_i)
signed_structures.append(a_signed_i)
lambdas = np.array([0.2])
gammas = np.array([0.5])
else:
NotImplementedError("ERROR: This experiment is not supported!")
# Save simulated data for replicability
print("Saving simulated data...")
for i in range(args.num_sim):
data_i = datasets[i]
a_i = structures[i]
np.savetxt(fname="../datasets/experiment_data/" + str(args.experiment) + "/" + str(args.experiment) + "_data_r_" +
str(i) + ".csv", X=data_i)
np.savetxt(fname="../datasets/experiment_data/" + str(args.experiment) + "/" + str(args.experiment) + "_struct_r_" +
str(i) + ".csv", X=a_i)
# Perform inference
# Linear VAR model
if args.model == "var":
print("Device: CPU...")
print("Model: VAR...")
logdir = "logs/" + str(date.today()) + "_" + str(round(time.time())) + "_validation_var"
print("Log directory: " + logdir + "/")
os.mkdir(path=logdir)
accs = np.zeros((args.num_sim,))
bal_accs = np.zeros((args.num_sim,))
precs = np.zeros((args.num_sim,))
recs = np.zeros((args.num_sim,))
aurocs = np.zeros((args.num_sim,))
auprcs = np.zeros((args.num_sim,))
if signed_structures is not None:
bal_accs_neg = np.zeros((args.num_sim,))
bal_accs_pos = np.zeros((args.num_sim,))
n_datasets = len(datasets)
for l in range(n_datasets):
d_l = datasets[l]
a_l = structures[l]
if signed_structures is not None:
a_l_signed = signed_structures[l]
var_model = LinVAR(X=d_l, K=args.K)
if signed_structures is None:
pvals, a_hat = var_model.infer_causal_structure(adjust=True)
else:
pvals, a_hat, a_hat_signed = var_model.infer_causal_structure(adjust=True, signed=True)
accs[l], bal_accs[l], precs[l], recs[l] = eval_causal_structure_binary(a_true=a_l, a_pred=a_hat * 1.0)
aurocs[l], auprcs[l] = eval_causal_structure(a_true=a_l, a_pred=-pvals)
if signed_structures is not None:
_, bal_accs_neg[l], __, ___ = eval_causal_structure_binary(a_true=(a_l_signed < 0) * 1.0,
a_pred=(a_hat_signed < 0) * 1.0)
_, bal_accs_pos[l], __, ___ = eval_causal_structure_binary(a_true=(a_l_signed > 0) * 1.0,
a_pred=(a_hat_signed > 0) * 1.0)
if signed_structures is None:
print("Acc. = " + str(np.mean(accs)) + " ± " + str(np.std(accs)) +
"; Bal. acc. = " + str(np.mean(bal_accs)) + " ± " + str(np.std(bal_accs)) +
"; Prec. = " + str(np.mean(precs)) + " ± " + str(np.std(precs)) + "; Rec. = " + str(np.mean(recs)) +
" ± " + str(np.std(recs)) + "; AUROC = " + str(np.mean(aurocs)) + " ± " + str(np.std(aurocs)) +
"; AUPRC = " + str(np.mean(auprcs)) + " ± " + str(np.std(auprcs)))
else:
print("Acc. = " + str(np.mean(accs)) + " ± " + str(np.std(accs)) +
"; Bal. acc. = " + str(np.mean(bal_accs)) + " ± " + str(np.std(bal_accs)) +
"; Prec. = " + str(np.mean(precs)) + " ± " + str(np.std(precs)) + "; Rec. = " + str(np.mean(recs)) +
" ± " + str(np.std(recs)) + "; AUROC = " + str(np.mean(aurocs)) + " ± " + str(np.std(aurocs)) +
"; AUPRC = " + str(np.mean(auprcs)) + " ± " + str(np.std(auprcs)) +
"; BA (pos.) = " + str(np.mean(bal_accs_pos)) + " ± " + str(np.std(bal_accs_pos)) +
"; BA (neg.) = " + str(np.mean(bal_accs_neg)) + " ± " + str(np.std(bal_accs_neg)))
np.savetxt(fname=logdir + "/accs.csv", X=accs)
np.savetxt(fname=logdir + "/bal_accs.csv", X=bal_accs)
np.savetxt(fname=logdir + "/precs.csv", X=precs)
np.savetxt(fname=logdir + "/recs.csv", X=recs)
# GVAR model
elif args.model == "gvar":
if not args.use_cuda:
print("WARNING: GVAR only supports CUDA!")
print("Device: GPU...")
print("Model: GVAR...")
run_grid_search(lambdas=lambdas, gammas=gammas, datasets=datasets, K=args.K, structures=structures,
num_hidden_layers=args.num_hidden_layers, hidden_layer_size=args.hidden_layer_size,
num_epochs=args.num_epochs, batch_size=args.batch_size, initial_lr=args.initial_lr,
beta_1=args.beta_1, beta_2=args.beta_2, seed=args.seed, signed_structures=signed_structures)
else:
NotImplementedError("ERROR: Model is not supported!")