diff --git a/next-app/public/Partner logo/kaw_sv_300x300.png b/next-app/public/Partner logo/kaw_sv_300x300.png new file mode 100755 index 0000000..813d6f0 Binary files /dev/null and b/next-app/public/Partner logo/kaw_sv_300x300.png differ diff --git a/next-app/public/Partner logo/tefhealth_logo.png b/next-app/public/Partner logo/tefhealth_logo.png new file mode 100644 index 0000000..66323ba Binary files /dev/null and b/next-app/public/Partner logo/tefhealth_logo.png differ diff --git a/next-app/public/img/datasources/EMPIAR.png b/next-app/public/img/datasources/EMPIAR.png index 8b1debe..5594352 100644 Binary files a/next-app/public/img/datasources/EMPIAR.png and b/next-app/public/img/datasources/EMPIAR.png differ diff --git a/next-app/public/img/datasources/PDBe.png b/next-app/public/img/datasources/PDBe.png index b68abb9..361d436 100644 Binary files a/next-app/public/img/datasources/PDBe.png and b/next-app/public/img/datasources/PDBe.png differ diff --git a/next-app/public/img/datasources/bioimagearchive.png b/next-app/public/img/datasources/bioimagearchive.png index 5f866ac..f36a791 100644 Binary files a/next-app/public/img/datasources/bioimagearchive.png and b/next-app/public/img/datasources/bioimagearchive.png differ diff --git a/next-app/public/img/datasources/inparanoidb.png b/next-app/public/img/datasources/inparanoidb.png index d8d67dd..27538a7 100644 Binary files a/next-app/public/img/datasources/inparanoidb.png and b/next-app/public/img/datasources/inparanoidb.png differ diff --git a/next-app/src/app/about/layout.tsx b/next-app/src/app/about/layout.tsx index 517891a..065a164 100644 --- a/next-app/src/app/about/layout.tsx +++ b/next-app/src/app/about/layout.tsx @@ -11,7 +11,7 @@ export default function RootLayout({
{children} - +
); } diff --git a/next-app/src/app/about/partners/page.tsx b/next-app/src/app/about/partners/page.tsx index 66116d1..8ca0473 100644 --- a/next-app/src/app/about/partners/page.tsx +++ b/next-app/src/app/about/partners/page.tsx @@ -10,6 +10,7 @@ const nbisImage = "/Partner logo/nbislogo_orange_txt_3cb0778d90.svg"; const kawImage = "/Partner logo/kaw_sv_300x300.png"; const kiImage = "/Partner logo/KI_digital_logotyp_positiv_RGB.png"; const scilifelabImage = "/Partner logo/SciLifeLab_Logotype_Green_POS.png"; +const tefImage = "/Partner logo/tefhealth_logo.png"; export default function AboutPartnersPage(): ReactElement { TrackPageViewIfEnabled(); @@ -18,7 +19,7 @@ export default function AboutPartnersPage(): ReactElement { "flex flex-row justify-center items-center w-full h-full bg-white shadow-xl"; const cardConfig: { [id: string]: ICardConfig } = { dcCard: { - cardClasses: cardClasses + " pl-6", + cardClasses: cardClasses, titleClasses: "card-title", subTitleClasses: "", textClasses: "", @@ -36,7 +37,7 @@ export default function AboutPartnersPage(): ReactElement { buttonPlacement: "", }, ddlsCard: { - cardClasses: cardClasses + " pl-6", + cardClasses: cardClasses, titleClasses: "card-title", subTitleClasses: "", textClasses: "", @@ -45,7 +46,7 @@ export default function AboutPartnersPage(): ReactElement { buttonPlacement: "", }, kawCard: { - cardClasses: "w-full h-full card lg:card-side bg-white shadow-xl", + cardClasses: cardClasses, titleClasses: "card-title", subTitleClasses: "", textClasses: "", @@ -54,7 +55,7 @@ export default function AboutPartnersPage(): ReactElement { buttonPlacement: "", }, nbisCard: { - cardClasses: cardClasses + " pl-10", + cardClasses: cardClasses, titleClasses: "card-title", subTitleClasses: "", textClasses: "", @@ -62,6 +63,15 @@ export default function AboutPartnersPage(): ReactElement { buttonClasses: "", buttonPlacement: "", }, + tefCard: { + cardClasses: cardClasses, + titleClasses: "card-title", + subTitleClasses: "", + textClasses: "", + imgClasses: "object-contain h-72 w-96", + buttonClasses: "", + buttonPlacement: "", + }, }; const cardContent: { [id: string]: ICardContent } = { @@ -107,6 +117,14 @@ export default function AboutPartnersPage(): ReactElement { imageSrc: nbisImage, imageAlt: "NBIS and ELIXIR Sweden logos", }, + tefCard: { + title: "TEF-Health", + subTitle: "", + text: "The European Commission has co-funded an initiative to establish Testing and Experimentation Facilities (TEFs) for artificial intelligence and robotics, with healthcare as one of the targeted sectors. TEF-Health aims to provide expertise and assistance to small and medium-sized enterprises and innovators, promoting the transfer of research innovations to healthcare applications. The Data Science Node in Precision Medicine and Diagnostics contributes to and collaborates specifically with Work Package 4 - Virtual Testing Centers, to co-develop and maintain services and products beneficial for innovators and researchers.", + buttonText: "", + imageSrc: tefImage, + imageAlt: "TEF-Health logo", + }, }; return ( @@ -142,6 +160,12 @@ export default function AboutPartnersPage(): ReactElement { cardContent={cardContent["kawCard"]} /> +
+ +
); diff --git a/next-app/src/app/datasources/page.tsx b/next-app/src/app/datasources/page.tsx index dfd53d5..16503fa 100644 --- a/next-app/src/app/datasources/page.tsx +++ b/next-app/src/app/datasources/page.tsx @@ -93,13 +93,13 @@ export default function DataPage(): ReactElement { } function checkedDataFilter( - tagType: string, + tagType: keyof IDataSourceFilters, tagName: string, boxIndex: number ) { setSelectedFilters((prev) => { const newFilters = { ...prev }; - const key = tagType === "dataType" ? "dataTypes" : "diseaseTypes"; + const key = tagType === "dataTypes" ? "dataTypes" : "diseaseTypes"; if (newFilters[key].includes(tagName)) { newFilters[key] = newFilters[key].filter((item) => item !== tagName); } else { @@ -118,7 +118,7 @@ export default function DataPage(): ReactElement { function applyDataTypeFilter(dataSource: IDataSourcesDC) { return ( selectedFilters.dataTypes.length === 0 || - selectedFilters.dataTypes.every((filter) => + selectedFilters.dataTypes.some((filter) => dataSource.data.some( (tag) => tag.toLowerCase() === filter.toLowerCase() ) @@ -129,7 +129,7 @@ export default function DataPage(): ReactElement { function applyDiseaseTypeFilter(dataSource: IDataSourcesDC) { return ( selectedFilters.diseaseTypes.length === 0 || - selectedFilters.diseaseTypes.every((filter) => + selectedFilters.diseaseTypes.some((filter) => dataSource.disease_type.some( (tag) => tag.toLowerCase() === filter.toLowerCase() ) @@ -158,13 +158,11 @@ export default function DataPage(): ReactElement { function sanitizeURL(url: string) { try { const parsedURL = new URL(url); - // Only allow http and https protocols if (parsedURL.protocol !== "http:" && parsedURL.protocol !== "https:") { return "#"; } return parsedURL.toString(); } catch { - // If URL is invalid, return a safe default return "#"; } } @@ -199,6 +197,12 @@ export default function DataPage(): ReactElement {
+ {/* Disclaimer */} +
+ To access data, researchers may need to obtain ethical approval, + submit data requests and set up data management agreements. +
+ {/* Search */}
+ {/* Data Type Filters */}

Data Type

@@ -229,11 +234,7 @@ export default function DataPage(): ReactElement { id={`dataType-${index}`} checked={checkedList[index]} onCheckedChange={() => - checkedDataFilter( - "dataType", - element.toLowerCase(), - index - ) + checkedDataFilter("dataTypes", element, index) } />
+ {/* Disease Type Filters */}

Disease Type @@ -263,8 +265,8 @@ export default function DataPage(): ReactElement { checked={checkedList[filters.dataTypes.length + index]} onCheckedChange={() => checkedDataFilter( - "diseaseType", - element.toLowerCase(), + "diseaseTypes", + element, filters.dataTypes.length + index ) } @@ -287,6 +289,7 @@ export default function DataPage(): ReactElement { .filter((data) => applyDataTypeFilter(data)) .filter((data) => applyDiseaseTypeFilter(data)) .filter((data) => applySearchBar(data)) + .sort((a, b) => a.name.localeCompare(b.name)) .map((item, index) => ( diff --git a/next-app/src/app/registries/page.tsx b/next-app/src/app/registries/page.tsx index 0ead18a..b5b53b0 100644 --- a/next-app/src/app/registries/page.tsx +++ b/next-app/src/app/registries/page.tsx @@ -83,8 +83,6 @@ export default function RegistryPage() { useEffect(() => { async function fetchRegistryData() { try { - // In a real-world scenario, you might fetch this data from an API - // For this example, we'll simulate an API call with a local import const registryData = await import( "@/assets/Kvalitetsregister_geo_dates_02.09.2024.json" ); @@ -196,6 +194,12 @@ export default function RegistryPage() {
+ {/* Disclaimer */} +
+ To access data, researchers may need to obtain ethical approval, + submit data requests and set up data management agreements. +
+ {/* Search */}
+ {/* Organisation Filters */}

Organisation @@ -242,6 +247,7 @@ export default function RegistryPage() {

+ {/* Category Filters */}

Category

@@ -282,6 +288,7 @@ export default function RegistryPage() { .filter((registry) => applyRegistryCentreFilter(registry)) .filter((registry) => applyRegistryCategoryFilter(registry)) .filter((registry) => applySearchBar(registry)) + .sort((a, b) => a.name.localeCompare(b.name)) .map((item, index) => ( diff --git a/next-app/src/app/swedishresearchprojects/page.tsx b/next-app/src/app/swedishresearchprojects/page.tsx new file mode 100644 index 0000000..888995c --- /dev/null +++ b/next-app/src/app/swedishresearchprojects/page.tsx @@ -0,0 +1,177 @@ +"use client"; + +import { useState, useEffect } from "react"; +import { Card, CardHeader, CardTitle, CardContent } from "@/components/ui/card"; +import Title from "@/components/common/title"; +import { LastUpdated } from "@/components/common/last-updated"; +import Link from "next/link"; +import { ILink } from "@/interfaces/types"; + +// Define the type for a single project +type Project = { + name: string; + link: string; + description: string; + tags: { + disease?: string[]; + participants: string[]; + contextual: string[]; + }; +}; + +const breadcrumbs: { [id: string]: ILink } = { + l1: { text: "Home", classes: "", link: "/" }, + l2: { text: "Research Projects", classes: "", link: "" }, +}; + +// Tag colours +const TAG_COLOURS: { [key: string]: string } = { + participants: "bg-[#82AEB2] text-black", + contextual: "bg-[#E9F2D1] text-black", +}; + +export default function ProjectsPage() { + const [projectData, setProjectData] = useState([]); + const [isLoading, setIsLoading] = useState(true); + + async function fetchProjectData() { + try { + const data = await import( + "@/assets/Sorted_Swedish_Research_Projects.json" + ); + setProjectData(data.Projects as Project[]); // Explicitly cast data to the correct type + setIsLoading(false); + } catch (error) { + console.error("Error fetching project data:", error); + setIsLoading(false); + } + } + + useEffect(() => { + fetchProjectData(); + }, []); + + if (isLoading) { + return
Loading...
; + } + + return ( +
+
+
    + {Object.keys(breadcrumbs).map((key) => ( +
  • + {breadcrumbs[key].link ? ( + + {breadcrumbs[key].text} + + ) : ( + <>{breadcrumbs[key].text} + )} +
  • + ))} +
+
+ + {/* Title */} + + Swedish Research Projects + + + {/* Introductory Section */} +
+

+ This page highlights 15 selected research projects tied to biobanks, + showcasing their significant role in advancing scientific research and + medical innovation. These projects, conducted by academic + institutions, healthcare providers, and industry collaborators in + Sweden, address key scientific questions, drive technological + development, and improve healthcare outcomes. By integrating + biological material with comprehensive health data, Swedish biobanks + provide a unique platform for longitudinal studies, translational + research, and precision medicine. These projects demonstrate how + biobank resources bridge the gap between fundamental science and + clinical applications. +

+

+ The information on this page is based on the brochure{" "} + + "15 Swedish Research Projects" + {" "} + published by Biobank Sweden. See the brochure for a more comprehensive + overview of the projects. +

+
+ + {/* Disclaimer */} +
+ + + + + To access data, researchers may need to obtain ethical approval, + submit data requests, and set up data management agreements. + +
+ + {/* Projects */} +
+ {projectData.map((project, index) => ( + + + + + {project.name} + + + + +

+ {project.description || "Description not provided."} +

+
+ {Object.entries(project.tags).map( + ([category, tags]) => + category !== "disease" && + tags?.map((tag, i) => ( + + {tag} + + )) + )} +
+
+
+ ))} +
+ + {/* Last Updated */} + +
+ ); +} diff --git a/next-app/src/assets/Sorted_Swedish_Research_Projects.json b/next-app/src/assets/Sorted_Swedish_Research_Projects.json new file mode 100644 index 0000000..6a69dbf --- /dev/null +++ b/next-app/src/assets/Sorted_Swedish_Research_Projects.json @@ -0,0 +1,274 @@ +{ + "Projects": [ + { + "name": "BIG3", + "link": "https://kliniskastudier.se/forum-soder/regionala-forskningsprojekt/big3#:~:text=BIG3%20är%20en%20öppen%20prospektiv,och%20är%20samfinansierat%20med%20AstraZeneca.", + "description": "BIG3 is a collaborative initiative focusing on biobanking and molecular research in glioma, a type of brain tumour. The project aims to integrate clinical data with molecular analyses to enhance the understanding of glioma biology and develop more effective treatments. By establishing a comprehensive biobank of glioma samples, BIG3 facilitates research into tumour genetics, microenvironment, and response to therapies. This resource is instrumental in identifying biomarkers for early diagnosis and potential therapeutic targets, thereby contributing to personalised medicine approaches in neuro-oncology. The collaborative nature of BIG3, involving multiple research institutions and healthcare providers, ensures a multidisciplinary approach to tackling the complexities of glioma, ultimately aiming to improve patient outcomes and survival rates.", + "tags": { + "disease": [ + "Cancer", + "Neurology" + ], + "participants": [ + "1.000-10.000 participants" + ], + "contextual": [ + "Translational Research", + "Drug Discovery" + ] + } + }, + { + "name": "Betydelsen av Migration & Etnicitet för Diabetsutvecklingen I Malmö (MEDIM)", + "link": "https://www.diabetesportalen.lu.se/artikel/manga-manga-fler-typ-2-diabetiker-vantat", + "description": "The MEDIM study investigates how migration and ethnicity influence diabetes development. By examining diverse populations in Malmö, it seeks to identify specific risk factors and inform culturally sensitive prevention strategies, addressing health disparities in diabetes care. MEDIM's findings are crucial for developing inclusive public health policies that cater to diverse communities.", + "tags": { + "disease": [ + "Diabetes", + "Public Health" + ], + "participants": [ + "1.000-10.000 participants" + ], + "contextual": [ + "Preventive Health", + "Population-Based Study" + ] + } + }, + { + "name": "EIMS, IMSE och andra multipel skleros fall-kontroll och läkemedelsstudier", + "link": "https://ki.se/cns/forskning/avdelningen-for-neuro/om-avdelningen-for-neuro/imse", + "description": "The Epidemiological Investigation of Multiple Sclerosis (EIMS) and the Immunomodulation and Multiple Sclerosis Epidemiology (IMSE) studies are pivotal in understanding multiple sclerosis (MS) in Sweden. EIMS is a nationwide case-control study that examines genetic and environmental risk factors for MS by enrolling newly diagnosed patients from 42 neurological clinics across the country. IMSE is an ongoing phase IV clinical trial that monitors the long-term safety and efficacy of immunomodulatory treatments for MS. These studies provide comprehensive data on the interplay between genetic predispositions, environmental exposures, and therapeutic interventions in MS. Their extensive datasets support advancements in MS treatment and management strategies, benefiting researchers in neurology and immunology.", + "tags": { + "disease": [ + "Neurology", + "Autoimmune Disease" + ], + "participants": [ + "1.000-10.000 participants" + ], + "contextual": [ + "Case-Control Studies", + "Epidemiological Research" + ] + } + }, + { + "name": "Human Glioblastoma Cell Cultures (HGCC)", + "link": "https://www.hgcc.se/", + "description": "The Human Glioblastoma Cell Cultures (HGCC) initiative provides a comprehensive biobank of glioblastoma cell lines. These 48 well-characterised cell lines are derived from Swedish patients and represent all molecular subtypes of glioblastoma: Classical, Mesenchymal, Neural, and Proneural. HGCC preserves the stem cell-like properties of glioblastoma stem cells, supporting in vitro and in vivo studies. This resource plays a pivotal role in advancing glioblastoma research, including tumour biology, genetic studies, and therapy development. By facilitating targeted therapy discovery, HGCC contributes to improving treatment outcomes for patients with this aggressive brain tumour.", + "tags": { + "disease": [ + "Cancer", + "Neurology" + ], + "participants": [ + "< 1.000 participants" + ], + "contextual": [ + "Preclinical Resource", + "Drug Discovery" + ] + } + }, + { + "name": "KARMA bröstcancerstudien", + "link": "https://karmastudy.org/", + "description": "The KARMA (Karolinska Mammography Project for Risk Prediction of Breast Cancer) study is a prospective cohort involving over 70,000 women attending mammography screening across four hospitals in Sweden. The study collects comprehensive data, including mammographic images, blood samples, and detailed questionnaires covering reproductive health, lifestyle factors, and medical history. The primary objective of KARMA is to develop individualised risk prediction models for breast cancer, incorporating factors such as mammographic density, genetic markers, and lifestyle variables. By identifying women at high risk, the study aims to tailor screening and prevention strategies, thereby reducing breast cancer incidence and mortality. The extensive dataset also supports research into the natural history of breast cancer, the impact of hormonal and reproductive factors, and the development of new diagnostic tools.", + "tags": { + "disease": [ + "Cancer", + "Public Health" + ], + "participants": [ + "> 100.000 participants" + ], + "contextual": [ + "Longitudinal Study", + "Precision Medicine Focus" + ] + } + }, + { + "name": "LifeGene", + "link": "https://www.lifegene.se/", + "description": "Initiated in September 2009, LifeGene is a national prospective population-based cohort study involving over 50,000 participants aged 0–95 years. The KI Biobank stores blood, serum, and urine samples from approximately 30,000 of these participants. Supported by seven Swedish universities with medical faculties, LifeGene aims to explore the complex interactions between genetic predispositions and environmental exposures in health and disease. By facilitating large-scale studies on common diseases, LifeGene contributes to the development of personalised medicine and targeted public health strategies.", + "tags": { + "disease": [ + "Public Health", + "Genetics" + ], + "participants": [ + "10.000-100.000 participants" + ], + "contextual": [ + "Prospective Study", + "Population-Based Study" + ] + } + }, + { + "name": "Malmö förebyggande Medicin (MFM)", + "link": "https://www.malmo-kohorter.lu.se/malmo-forebyggande-medicin-mfm", + "description": "Conducted between 1974 and 1991, involved extensive health screenings of Malmö residents to identify risk factors for cardiovascular diseases and diabetes. The collected data includes biological samples and detailed health information, serving as a foundation for preventive medicine research. MPM has been instrumental in developing risk prediction models and informing public health policies aimed at reducing the burden of chronic diseases.", + "tags": { + "disease": [ + "Cardiovascular Disease", + "Diabetes" + ], + "participants": [ + "10.000-100.000 participants" + ], + "contextual": [ + "Preventive Health", + "Retrospective Study" + ] + } + }, + { + "name": "Malmö Kost Cancer (MKC)", + "link": "https://www.malmo-kohorter.lu.se/malmo-kost-cancer-mkc", + "description": "Initiated in 1991, MDCS investigates the relationships between diet, lifestyle factors, and the incidence of cancer and other chronic diseases. By analysing dietary habits alongside health outcomes, the study provides critical insights into how nutrition influences disease development. The findings from MDCS have informed dietary guidelines and public health recommendations, emphasising the role of nutrition in disease prevention.", + "tags": { + "disease": [ + "Cancer", + "Lifestyle and Diet" + ], + "participants": [ + "10.000\u2013100.000 participants" + ], + "contextual": [ + "Longitudinal Study" + ] + } + }, + { + "name": "Northern Sweden Health and Disease Study (NSHDS)", + "link": "https://www.umu.se/en/biobank-research-unit/provsamlingar-och-register/northern-sweden-health-and-disease-study-vip-monica-and-the-mammography-screening-project/", + "description": "Established in 1985, NSHDS integrates three major cohorts: the Västerbotten Intervention Programme (VIP), the Northern Sweden MONICA study, and the Mammography Screening Project. Collectively, these cohorts encompass over 135,000 participants, providing a rich repository of biological samples and extensive health data. This comprehensive dataset enables researchers to investigate the interplay between genetic, environmental, and lifestyle factors in the development of chronic diseases such as cardiovascular conditions and cancer. The longitudinal nature of NSHDS allows for the study of disease progression and the identification of potential preventive strategies, making it an invaluable resource for epidemiological research and public health interventions.", + "tags": { + "disease": [ + "Cardiovascular Disease", + "Cancer" + ], + "participants": [ + "> 100.000 participants" + ], + "contextual": [ + "Longitudinal Study", + "Population-Based Study" + ] + } + }, + { + "name": "Svenska Tvillingregistret (STR)", + "link": "https://ki.se/forskning/forskningsinfrastruktur-och-miljoer/core-faciliteter-for-forskning/svenska-tvillingregistret", + "description": "One of the world's largest twin registries, encompassing data from both identical and fraternal twins. This unique resource allows researchers to disentangle the relative contributions of genetic and environmental factors to various health outcomes. Studies utilising STR have provided insights into the heritability of diseases, behavioural traits, and the impact of environmental exposures, thereby informing prevention and intervention strategies.", + "tags": { + "disease": [ + "Genetics", + "Neurology" + ], + "participants": [ + "> 100,000 participants" + ], + "contextual": [ + "Longitudinal Study", + "Population-Based Study" + + ] + } + }, + { + "name": "Swedish Infrastructure for Medical Population-Based Life-Course and Environmental Research (SIMPLER)", + "link": "https://www.simpler4health.se/", + "description": "SIMPLER consolidates data from several Swedish cohorts to facilitate research on life-course and environmental factors affecting health. By providing a unified platform for data access, it streamlines research processes and promotes comprehensive studies on public health issues. SIMPLER supports multidisciplinary research, enabling the development of holistic approaches to health promotion and disease prevention.", + "tags": { + "disease": [ + "Public Health", + "Lifestyle and Diet" + ], + "participants": [ + "> 100.000 participants" + ], + "contextual": [ + "Resource Development", + "Population-Based Study" + ] + } + }, + { + "name": "The Environmental Determinants of Diabetes in the Young (TEDDY)", + "link": "https://teddy.epi.usf.edu", + "description": "TEDDY is an international study aiming to identify environmental triggers of type 1 diabetes in genetically susceptible children. By monitoring participants from birth, it endeavours to uncover factors that initiate the autoimmune process, paving the way for preventive interventions. TEDDY's research holds the promise of reducing the incidence of type 1 diabetes through early-life modifications.", + "tags": { + "disease": [ + "Diabetes", + "Paediatrics" + ], + "participants": [ + "10.000-100.000 participants" + ], + "contextual": [ + "International Collaboration", + "Prospective Study", + "Preventive Health" + ] + } + }, + { + "name": "The Malmö Offspring Study (MOS)", + "link": "https://www.malmo-kohorter.lu.se/malmo-offspring-study-mos", + "description": "MOS examines the health and disease patterns across generations by studying the offspring of participants from previous Malmö cohorts. This intergenerational approach allows researchers to explore genetic and environmental contributions to health, enhancing our understanding of familial disease transmission. MOS contributes to the development of strategies aimed at breaking the cycle of hereditary diseases through early interventions.", + "tags": { + "disease": [ + "Public Health", + "Genetics" + ], + "participants": [ + "1.000-10.000 participants" + ], + "contextual": [ + "Intergenerational Study", + "Prospective Study" + ] + } + }, + { + "name": "The Swedish CArdioPulmonary BioImage Study (SCAPIS)", + "link": "https://www.scapis.org/", + "description": "focused on improving the prevention and treatment of cardiovascular and pulmonary diseases. Conducted between 2013 and 2018, the study examined over 30,000 participants aged 50 to 64 across six Swedish university hospitals. SCAPIS utilises advanced imaging techniques, such as coronary computed tomography angiography (CCTA) and carotid ultrasound, combined with biomarker and genetic analyses to detect early signs of disease. The extensive dataset collected includes information on genetic predispositions, lifestyle factors, and environmental exposures. This resource supports the development of predictive models and precision medicine approaches, enabling tailored preventive strategies to reduce morbidity and mortality. SCAPIS also serves as an open-access platform for researchers, fostering collaboration and innovation in cardiopulmonary health research.", + "tags": { + "disease": [ + "Cardiovascular Disease", + "Pulmonary Disease" + ], + "participants": [ + "> 100.000 participants" + ], + "contextual": [ + "Precision Medicine Focus", + "Preventive Health" + ] + } + }, + { + "name": "Uppsala-Umeå Comprehensive Cancer Consortium (U-CAN)", + "link": "https://www.u-can.uu.se/", + "description": "U-CAN collects biological samples and clinical data from cancer patients to support research into cancer diagnostics and treatment. Its systematic biobanking enables the development of personalised cancer therapies, aiming to improve patient outcomes through tailored treatment strategies. U-CAN serves as a critical resource for translational cancer research, bridging the gap between laboratory discoveries and clinical applications.", + "tags": { + "disease": [ + "Cancer", + "Genetics" + ], + "participants": [ + "> 100.000 participants" + ], + "contextual": [ + "Translational Research" + ] + } + } + ] +} \ No newline at end of file