-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
105 lines (76 loc) · 4.04 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from Solver import Solver
from options import SharinOptions
import os
import json
from tqdm import tqdm
import heapq
def check_opt(opt):
T_OPT_CONSISTENCY = ["num_layers_T", "stereo_mode", "vbaseline", "predict_right_disp"]
G_OPT_CONSISTENCY = ["num_layers_G", "netG_mode"]
if opt.pretrained_model_T is not None:
# e.g. "PTNet_Baseline/saved_models/tmp/PTNet_baseline-126999_bicubic.pth.tar"
pretrained_T_opt = os.path.join("PTNet_Baseline/tensorboard_logs/vKitti2", opt.pretrained_model_T.split("/")[2], "PTNet_Baseline_bicubic/options/opt.json")
assert os.path.isfile(pretrained_T_opt)
with open(pretrained_T_opt, "r") as f:
pre_T_opt = json.load(f)
for t_opt in T_OPT_CONSISTENCY:
assert opt.__dict__[t_opt] == pre_T_opt[t_opt], "=> {} is inconsistent for pretrained_model_T: {}".format(t_opt, opt.pretrained_model_T)
if opt.pretrained_model_G is not None:
# e.g. "Gen_Baseline/saved_models/tmp/AE_Resnet_Baseline.pth.tar"
pretrained_G_opt = os.path.join("Gen_Baseline/tensorboard_logs/vKitti2", opt.pretrained_model_G.split("/")[2], "AE_Baseline/Resnet_NEW/options/opt.json")
assert os.path.isfile(pretrained_G_opt)
if __name__=='__main__':
options = SharinOptions()
opt = options.parse()
check_opt(opt)
opt.gpu = 0
opt.rank = 0
opt.distributed = False
solver = Solver(opt)
solver.load_pretrained_models()
if opt.resume:
solver.load_prev_model()
# NOTE: Remain to do: only maintain the best k models
# use heapq (min heap) (heapify, heappush, heappop)
# if min heap item is tuple (i1, i2), will use the first value (i1) for cmp
# https://www.geeksforgeeks.org/heap-queue-or-heapq-in-python/
top_k_val = []
heapq.heapify(top_k_val)
START_ITER = solver.START_ITER
# used to enable tqdm progress display
if not opt.hpc and opt.rank % opt.ngpus == 0:
pbar = tqdm(total=opt.total_iterations-START_ITER)
for iter_id in range(START_ITER, opt.total_iterations):
solver.train_iter(iter_id)
if iter_id % 1000 == 999:
# if iter_id % 10 == 9:
# print("====================================================")
# print("=> gpu {}: iteration finished: {}/{}, sub_batch_size: {} ".format(opt.gpu, iter_id, opt.total_iterations - START_ITER, solver.batch_size))
# val_loss = solver.val(iter_id).cpu().item()
if opt.rank % opt.ngpus == 0:
print("====================================================")
print("=> gpu {}: iteration finished: {}/{}".format(opt.gpu, iter_id, opt.total_iterations - START_ITER))
# here val_loss is the abs_rel for gt_depth
val_loss = solver.val(iter_id)
if len(top_k_val) < opt.top_k_val:
# -1* because heapq is min heap rather than max heap
heapq.heappush(top_k_val, (-1*val_loss, iter_id))
solver.save_model(iter_id)
else:
border_val_loss, border_iter = heapq.heappop(top_k_val)
border_val_loss *= -1
if val_loss < border_val_loss:
heapq.heappush(top_k_val, (-1*val_loss, iter_id))
solver.rm_model(border_iter)
solver.save_model(iter_id)
else:
heapq.heappush(top_k_val, (-1*border_val_loss, border_iter))
print("=> current best models (-1*abs_rel, iteration): \n{}".format(top_k_val))
# used to enable tqdm progress display
if not opt.hpc and opt.rank % opt.ngpus == 0:
pbar.update(1)
# close the program
if not opt.hpc and opt.rank % opt.ngpus == 0:
pbar.close()
if opt.rank % opt.ngpus == 0:
solver.writer.close()