-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
174 lines (134 loc) · 5.52 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
from globals import *
from scipy.stats import linregress
from sklearn.externals import joblib
import json
import math
import numpy as np
import pandas
class MessageContainer:
def __init__(self):
self.msgs = []
def append(self, msg):
self.msgs.append(msg)
print(msg)
def display(self):
for msg in self.msgs:
print('{}'.format(msg))
## I/O / LOADING
def merge_datasets(dataset1, dataset2):
x = []
x.extend(dataset1)
x.extend(dataset2)
return x
def compile_binary_dataset(negative_samples, positive_samples):
x = merge_datasets(negative_samples, positive_samples)
y = np.concatenate([np.zeros(len(negative_samples)), np.ones(len(positive_samples))])
return x, y
def load_dataset(path):
data = []
with open(path) as f:
for line in f:
data.append(line.strip())
return data
def load_all_set(neg_path, pos_path):
"""e.g.
neg_path: 'eval_data/yelp/sentiment.all.0'
pos_path: 'eval_data/yelp/sentiment.all.1'
DATA_VECTORIZER_PATH = './eval_models/vectorizer.pkl'
"""
neg_data = load_dataset(neg_path)
pos_data = load_dataset(pos_path)
x_test, y_test = compile_binary_dataset(neg_data, pos_data)
return x_test, y_test
def load_test_set(neg_path, pos_path):
"""e.g.
neg_path: '../data/sentiment.test.0'
pos_path: '../data/sentiment.test.1'
"""
neg_yelp = load_dataset(neg_path)
pos_yelp = load_dataset(pos_path)
yelp_x_test, yelp_y_test = compile_binary_dataset(neg_yelp, pos_yelp)
return yelp_x_test, yelp_y_test
def load_train_set(neg_path, pos_path):
""" e.g.
neg_path: '../data/sentiment.train.0'
pos_path: '../data/sentiment.train.1'
"""
neg_yelp = load_dataset(neg_path)
pos_yelp = load_dataset(pos_path)
yelp_x_train, yelp_y_train = compile_binary_dataset(neg_yelp, pos_yelp)
return yelp_x_train, yelp_y_train
def load_json(path):
with open(path) as f:
data = json.load(f)
return data
def load_model(path):
return joblib.load(path)
def load_turk_scores(aspect, model, param, param_val, npy_file=True):
filetype = 'npy' if npy_file else 'npz'
return np.load('../evaluations/human/{aspect}/{model}_{param}_{param_val}.{filetype}'.format(aspect=aspect, model=model, param=param, param_val=param_val, filetype=filetype))
def save_json(data, path):
with open(path, 'w') as f:
json.dump(data, f)
def save_model(model, path):
joblib.dump(model, path)
## CORRELATION TESTING
def calculate_std_err_of_r(r, n):
# find standard error of correlation coefficient (based on jstor.org/stable/2277400)
return (1-r**2)/math.sqrt(n)
def get_margin_of_error(std_err):
# represent one standard deviation
# can be used with respect to mean of data to find confidence interval
return 1.96 * std_err
def calculate_correlations(metrics_dict, turk_scores):
correlation_dict = {}
number_of_samples = len(turk_scores)
for metric in metrics_dict:
automated_scores = metrics_dict[metric]
_, _, pearson_corr, pearson_p_val, _ = linregress(automated_scores, turk_scores)
std_error_of_r = calculate_std_err_of_r(pearson_corr, number_of_samples)
sample_based_margin_of_error = get_margin_of_error(std_error_of_r)
assert pearson_p_val < 0.05
correlation_dict[metric] = {
'r-val': pearson_corr,
'error_bound': sample_based_margin_of_error
}
return pandas.DataFrame(data=correlation_dict).transpose()
## MISCELLANEOUS
def get_val_as_str(val):
return str(val).replace('.', '_')
def invert_dict(dictionary):
return dict(zip(dictionary.values(), dictionary.keys()))
def calculate_corpus_level_scores(model, aspect):
'''
This is how scores under "../evaluations/automated/<aspect>/corpus_level/" were obtained:
take the mean of the sentence-level scores for a given model and aspect of evaluation.
Sentence-level scores are from the automated metrics most strongly correlated
or in agreement with human judgments, as determined empirically.
Parameters
----------
model : str
One of three style transfer models used in experiments (see globals.py)
aspect : str
One of three key aspects of style transfer model evaluation (see globals.py)
Returns
-------
corpus_level_scores : dict
Mapping from model hyperparameter to corpus-level score
'''
param_name = MODEL_TO_PARAM_NAMES[model]
param_values = MODEL_TO_PARAMS[model]
preferred_metric = PREFERRED_AUTOMATED_METRICS[aspect]
automated_sentence_level_scores_base_path = '../evaluations/automated/{aspect}/sentence_level'.format(aspect=aspect)
if aspect == 'style_transfer_intensity':
automated_sentence_level_scores_path += '/scores_based_on_emd'
corpus_level_scores = {}
for val in param_values:
string_val = get_val_as_str(val)
sentence_level_scores_path = '{automated_sentence_level_scores_base_path}/{model}_{param_name}_{string_val}.npz'.format(automated_sentence_level_scores_base_path=automated_sentence_level_scores_base_path, model=model, param_name=param_name, string_val=string_val)
npz = np.load(sentence_level_scores_path)
if aspect == 'content_preservation':
sentence_level_scores = npz[STYLE_MODIFICATION_SETTING].item()
sentence_level_scores = sentence_level_scores[preferred_metric]
corpus_level_scores[val] = np.mean(sentence_level_scores)
return corpus_level_scores