-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
252 lines (217 loc) · 9.36 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import os, json
from dotenv import load_dotenv
from pprint import pprint
import pandas as pd
import exp_configs
# Load environment variables at the start
load_dotenv()
from src import load_datasets
from src import agents
from src import utils
import nltk
nltk.download("punkt_tab")
def main(exp_dict, savedir, save_dir_categories, reset=False):
# Pretty print the experiment dictionary
print("Experiment:")
print(exp_dict)
# save it into savedir
os.makedirs(savedir, exist_ok=True)
with open(os.path.join(savedir, "exp_dict.json"), "w") as f:
json.dump(exp_dict, f, indent=4)
print("Experiment saved at: ", savedir)
## STAGE 1: Load the Dataset
## ==============================
# TODO: Load the data Amirhossein
# the dataset is a list of dictionaries containing questions, metadata, goal, persona, insights, and table
data_list = load_datasets.get_dataset(challenge=exp_dict["challenge"])
score_list = []
all_skill_scores = []
for i, data_dict in enumerate(data_list):
print(f"Working on experiment {i+1}/{len(data_list)}")
score_dict = {}
# Load the agent
agent = agents.Agent(
goal=data_dict["goal"],
persona=data_dict["persona"],
model=exp_dict["model"],
data_description=data_dict["meta"]["dataset_description"],
dataset_id=str(data_dict["id"])
)
if exp_dict["eval_mode"] == "skills":
## STAGE 2.1: Predict the Skills (Ablation)
## ==============================
# predict the skills
gt_questions = data_dict["questions"][:100]
skills_list = agent.predict_skills(questions=gt_questions)
# get the ground truth skills
gt_skills = [
q["skill"]
.replace("Collaborative Filtering", "collaborativefiltering")
.replace("Granger Causality", "GrangerCausality")
.replace("Isolation Forest", "isolationforest")
.replace("K-Means Clustering", "kmeans")
.replace("KNN Imputation", "KNNImputation")
.replace("Latent Dirichlet Allocation", "LDA")
.replace("Multi-Armed Bandit", "MultiArmedBandit")
.replace("Naive Bayes", "naivebayes")
.replace("Neural Networks", "neuralnetworks")
.replace("PageRank", "pagerank")
.replace("Random Forest", "randomforest")
.replace("RFM Analysis", "RFMAnalysis")
.replace("Spearman Correlation", "SpearmanCorrelationCoefficient")
.replace("SVD", "svd-nmf-topic-modelling")
.replace("randomforest Importance", "RandomForestFeatureImportance")
.replace("Kernel PCA", "Kernel_PCA")
.replace("Eigenvalue Decomposition", "EigenDecomposition")
.replace("Pearson Correlation", "PearsonCorrelation")
.replace("Student's T-Test", "Ttest")
for q in gt_questions
]
pred_skills = [s["predicted_skills"] for s in skills_list]
# score the skills
skill_score = agent.score_skills(
pred_skills=pred_skills, gt_skills=gt_skills, method="mrr"
)
score_dict["skill_score"] = skill_score["score"]
score_dict["id"] = data_dict["id"]
score_dict["goal"] = data_dict["goal"]
score_dict["persona"] = data_dict["persona"]
# Add to a list of scores for averaging
all_skill_scores.append(skill_score["score"])
# visualize the skills
agent.vis_skills(
pred_skills=pred_skills,
gt_skills=gt_skills,
questions=gt_questions,
savedir=os.path.join(savedir, f"vis_{i}"),
)
elif exp_dict["eval_mode"] == "insights":
## STAGE 2.2: Predict the Insights
## ==============================
# get the prediction
savedir_data = os.path.join(savedir, str(data_dict["id"]))
savedir_categories = os.path.join(
save_dir_categories, str(int(data_dict["id"]) - 1)
)
os.makedirs(savedir_data, exist_ok=True)
os.makedirs(savedir_categories, exist_ok=True)
pred_insights = agent.predict_insights(
table=data_dict["table"],
savedir=savedir_data,
savedir_categories=savedir_categories,
skill_flag=exp_dict["with_skills"],
)
print(pred_insights)
# get the ground truth
gt_insights = ""
# get the score
# score_dict = agent.score_insights(
# pred_insights=pred_insights, gt_insights=gt_insights
# )
# score_dict["id"] = data_dict["id"]
# score_dict["goal"] = data_dict["goal"]
# score_dict["persona"] = data_dict["persona"]
# visualize the insights
agent.vis_insights(
pred_insights=pred_insights,
gt_insights=gt_insights,
data_dict=data_dict,
savedir=os.path.join(savedir, f"vis_{str(int(data_dict['id'])-1)}"),
)
elif exp_dict["eval_mode"] == "insights_only":
## STAGE 2.3: Predict the Insights based on gt questions
## ==============================
# get the prediction
gt_questions = data_dict["questions"]
gt_insights = data_dict["insight"]
gt_skills = [
q["skill"]
.replace("Collaborative Filtering", "collaborativefiltering")
.replace("Granger Causality", "GrangerCausality")
.replace("Isolation Forest", "isolationforest")
.replace("K-Means Clustering", "kmeans")
.replace("KNN Imputation", "KNNImputation")
.replace("Latent Dirichlet Allocation", "LDA")
.replace("Multi-Armed Bandit", "MultiArmedBandit")
.replace("Naive Bayes", "naivebayes")
.replace("Neural Networks", "neuralnetworks")
.replace("PageRank", "pagerank")
.replace("Random Forest", "randomforest")
.replace("RFM Analysis", "RFMAnalysis")
.replace("Spearman Correlation", "SpearmanCorrelationCoefficient")
.replace("SVD", "svd-nmf-topic-modelling")
for q in gt_questions
]
# print(gt_skills)
savedir_data = os.path.join(savedir, str(i))
os.makedirs(savedir_data, exist_ok=True)
pred_insights = agent.predict_insights_only(
table=data_dict["table"],
savedir=savedir_data,
skill_flag=exp_dict["with_skills"],
questions=gt_questions,
skills=gt_skills,
)
# print(pred_insights)
# break
# get the ground truth
# get the score
score_dict = agent.score_insights(
pred_insights=pred_insights, gt_insights=gt_insights
)
score_dict["id"] = data_dict["id"]
score_dict["goal"] = data_dict["goal"]
score_dict["persona"] = data_dict["persona"]
# visualize the insights
agent.vis_insights(
pred_insights=pred_insights,
gt_insights=gt_insights,
data_dict=data_dict,
savedir=os.path.join(savedir, f"vis_{i}"),
)
# break
# save the score
# score_list.append(score_dict)
# # print the head of the score list
# print(pd.DataFrame(score_list).tail())
# # save the score list
# score_df = pd.DataFrame(score_list)
# score_df.to_csv(os.path.join(savedir, "score_list.csv"), index=False)
print(f"\nExperiment {i+1}/{len(data_list)} updated in ", savedir)
print("\n==============================================\n")
# Calculate and print average skill score after the loop
# average_skill_score = sum(all_skill_scores) / len(all_skill_scores)
# print(f"Average skill score: {average_skill_score:.4f}")
print("Experiment completed at savedir: ", savedir)
print()
if __name__ == "__main__":
import argparse
# Set up argument parser
parser = argparse.ArgumentParser(
description="Run experiments with specified experiment group"
)
parser.add_argument(
"--exp_group",
"-e",
type=str,
default="insights",
choices=exp_configs.EXP_GROUPS.keys(),
help="Experiment group to run from exp_configs.EXP_GROUPS",
)
args = parser.parse_args()
# Load the experiments from the specified group
exp_list = exp_configs.EXP_GROUPS[args.exp_group]
print("\n\nExperiment group: ", args.exp_group)
print("Number of experiments: ", len(exp_list))
print("\n----------------------------------------\n")
# run the experiments
for exp_dict in exp_list:
exp_hash = utils.get_exp_hash(exp_dict)
savedir = f"results/{args.exp_group}/{exp_hash}"
save_dir_categories = f"results/categories"
main(
exp_dict,
savedir=savedir,
save_dir_categories=save_dir_categories,
reset=True,
)