-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDGE_&Enrichment_analysis.Rmd
511 lines (352 loc) · 13 KB
/
DGE_&Enrichment_analysis.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
---
title: "R Notebook"
output: html_notebook
---
#Differential Gene Enrichment (DGE) Analysis
We will use the deseq2 package for the differential gene (DGE) analysis
For DGE analysis , we will:
1.0 Format raw count table obtained from featurecounts
2.0 Normailze the data
3.0 Run DGE analysis
4.0 Gene Set Enrichment Analysis (GSEA)
#Load packages
```{r}
library( "DESeq2" )
library("ggplot2")
library("pheatmap")
library("apeglm")
library(RColorBrewer)
library(tidyverse)
library(vsn)
library(knitr)
```
#1.0 Format raw count table obtained from featurecounts
#Load count table
```{r}
countData <- read.table('~/250_450_metaT_ko.sum.txt', header = TRUE)
#rownames(countData) <- countData[,1]
head(countData)
```
#Check column names of countdata
```{r}
colnames(countData)
#Change sample names if required. Here i have four samples. My sample starts from column 2
names(countData)[2] <- "250.1"
names(countData)[3] <- "250.2"
names(countData)[4] <- "450.1"
names(countData)[5] <- "450.2"
colnames(countData)
names <- names(countData)
#check again
colnames(countData)
```
#Load metadata
```{r}
metadata <- read.table('~/METADATA.tsv', header = TRUE)
rownames(metadata) <- metadata[,1]
metadata
```
It is absolutely critical that the columns of the count matrix and the rows of the metadata (information about samples) are in the same order. DESeq2 will not make guesses as to which column of the count matrix belongs to which row of the metadata, these must be provided to DESeq2 already in consistent order.
```{r}
rownames(metadata)
colnames(countData)
#Lets remove unatmatched column
#countData$Geneid <- NULL
```
check if the rownames and column names fo the two data sets match using the below code.
```{r}
all(rownames(metadata) == colnames(countData))
```
2.0 Normailze the data
#Before running Differential Gene analysis, we need to normalize our data.
#Normalization is the process of scaling raw count values to account for the “uninteresting” factors. In this way the expression levels are more comparable between and/or within samples. (For more info on normalization read https://hbctraining.github.io/DGE_workshop/lessons/02_DGE_count_normalization.html)
The DESeq calculates size factors for each sample to compare the counts obtained from different samples with different sequencing depth.
DESeq or DESeq2 performs better for between-samples comparisons
#Construct DESEQDataSet Object
```{r}
dds <- DESeqDataSetFromMatrix(countData=countData,
colData=metadata,
design=~TYPE, tidy = TRUE)
```
```{r}
#let's see what this object looks like
dds
```
#Pre-filtering
How many reads were counted for each sample ( = library sizes)?
```{r eval=TRUE, echo=TRUE}
colSums(counts(dds))
```
```{r eval=TRUE, echo=TRUE}
colSums(counts(dds)) %>% barplot
```
Remove genes with no reads.
```{r eval = TRUE}
keep_genes <- rowSums(counts(dds)) > 0
dim(dds)
```
```{r}
dds <- dds[ keep_genes, ]
dim(dds)
```
#PART-1. NORMALIZATION
We need to normaize the DESeq object to generate normalized read counts
Determine the size factors to be used for normalization
`estimateSizeFactors()` for calculating a factor that will be
used to correct for sequencing depth differences.
```{r}
dds <- estimateSizeFactors(dds)
sizeFactors(dds)
```
#Plot column sums according to size factor
```{r}
plot(sizeFactors(dds), colSums(counts(dds)))
abline(lm(colSums(counts(dds)) ~ sizeFactors(dds) + 0))
```
#We can coduct hierarchical clustering and principal component analysis to explore the data.
First we extract the normalized read counts
```{r}
normlzd_dds <- counts(dds, normalized=T)
head(normlzd_dds)
```
Hierarchical clustering by TYPE
```{r}
plot(hclust(dist(t(normlzd_dds))), labels=colData(dds)$TYPE)
```
#Log accounts of the samples against each other
```{r}
# normalized and log2-transformed read counts
assay(dds, "log.norm.counts") <- log2(counts(dds, normalized=TRUE) + 1)
par(mfrow=c(2,1))
dds[, c("250.1","250.2")] %>% assay(., "log.norm.counts") %>%
plot(., cex=.1, main = "250.1 vs. 250.2")
dds[, c("450.1","450.2")] %>% assay(., "log.norm.counts") %>%
plot(., cex=.1, main = "450.1 vs 450.2")
#From the below plot we can see that there is an extra variance at the lower read count values, also known as Poisson noise
```
This can be assessed visually; the package `vsn` offers a simple function for this.
```{r}
par(mfrow=c(1,1))
# generate the base meanSdPlot using sequencing depth normalized log2(read counts)
msd_plot <- vsn::meanSdPlot(assay(dds, "log.norm.counts"),
ranks=FALSE, # show the data on the original scale
plot = FALSE) # return a ggplot2 object without printing it
# add a title and y-axis label to the ggplot2 object
msd_plot$gg +
ggtitle("Sequencing depth normalized log2(read counts)") +
ylab("standard deviation")
```
Now, We use the variance stablizing transformation method to shrink the sample values for lowly expressed genes with high variance.
There are multiple variance stabilizing algorithms such as vst , rlog. Here we will use vst transformation
```{r}
# Varaiance Stabilizing transformation
vsd <- vst(dds, blind = T)
# extract the vst matris from the object
vsd_mat <- assay(vsd)
# compute pairwise correlation values
vsd_cor <- cor(vsd_mat)
vsd_cor
```
Now check
```{r}
# the vst-transformed counts are stored in the accessor "assay"
plot(assay(vsd)[,1],
assay(vsd)[,2],
cex=.1, main = "vst transformed",
xlab = colnames(assay(vsd[,1])),
ylab = colnames(assay(vsd[,2])) )
plot(assay(vsd)[,3],
assay(vsd)[,4],
cex=.1, main = "vst transformed",
xlab = colnames(assay(vsd[,3])),
ylab = colnames(assay(vsd[,4])) )
```
```{r}
# rlog-transformed read counts
msd_plot <- vsn::meanSdPlot( assay(vsd), ranks=FALSE, plot = FALSE)
msd_plot$gg + ggtitle("vst transformation")
```
Compute correlation values between samples using heatmap
```{r}
pheatmap(vsd_cor)
#from below plot we can see that 250 days replicates are more similiar than 450 replicates
```
#Principal Component Analysis(PCA)
We perform PCA to check to see how samples cluster and if it meets the experimental design.
```{r}
plotPCA(vsd, intgroup = "TYPE")
#FROM BELOW PCA plot it can be seen that the samples formtwo groups as expected and PC1 explain the highest variance in the data.
```
3.0 Run DGE analysis
We need to ensure that the fold change will be calculated using the control (for us control is 450.1) as the base line.
`DESeq` used the levels of the condition to determine the order of the comparison.
```{r}
str(dds$TYPE)
dds$TYPE <- relevel(dds$TYPE, ref="P_VII")
str(dds$TYPE)
```
```{r}
dds <- DESeq(dds)
```
This one line of code is equivalent to these three lines of code:
```{r eval=FALSE}
# sequencing depth normalization between the samples
dds <- estimateSizeFactors(dds)
# gene-wise dispersion estimates across all samples
dds <- estimateDispersions(dds)
# this fits a negative binomial GLM and applies Wald statistics to each gene's
# estimated logFC values comparing the conditions/groups of interest
dds <- nbinomWaldTest(dds)
```
Extract the base means across samples, log2 fold changes, standard errors,
test statistics, p-values and adjusted p-values for every gene using `results()`.
```{r}
resultsNames(dds) # tells you which types of values can be extracted with results()
res <- results(dds,contrast=c("TYPE","P_VII", "P_VI"), independentFiltering = TRUE,alpha = 0.05)
head(res) # first line indicates which comparison was done for the log2FC
summary(res)
# the DESeqResult object can basically be handled like a data.frame
table(res$padj < 0.05)
```
plot the fold change over the average expression level of all samples using the MA-plot function.
```{r}
plotMA(res, ylim=c(-5,5) )
```
In the above plot, highlighted in blue/red are genes which has an adjusted p-values less than 0.1
A adj. p-value histogram:
```{r adjpvalueHistogram}
hist(res$padj,
col="grey", border="white", xlab="", ylab="",
main="frequencies of adj. p-values\n(all genes)")
```
#Log fold change shrinkage for visualization and ranking
Shrinkage of effect size (LFC estimates) is useful for visualization and ranking of genes. To shrink the LFC, we pass the dds object to the function lfcShrink. Below we specify to use the apeglm method for effect size shrinkage (Zhu, Ibrahim, and Love 2018), which improves on the previous estimator.
A sorted results table so that we can immediately see which genes come up as the best candidates:
#Sort summary list by p-value
```{r}
res <- res[order(res$padj),]
head(res)
```
#We can directly see the differential expression of genes by plotting
```{r}
par(mfrow=c(2,3))
plotCounts(dds, gene="K03722", intgroup="TYPE")
plotCounts(dds, gene="K21471", intgroup="TYPE")
plotCounts(dds, gene="K10108", intgroup="TYPE")
plotCounts(dds, gene="K08762", intgroup="TYPE")
```
#Heatmap
```{r}
#Top 20 significent genes
top_20 <- data.frame(normlzd_dds)[1:20,]
colnames(top_20) <- c("250.1", "250.2", "450.1", "450.2")
heat_colors <- brewer.pal(6, "YlOrRd")
# Run pheatmap
pheatmap(top_20,
color = heat_colors,
cluster_rows = T,
show_rownames = T,
annotation = dplyr::select(metadata, TYPE),
scale = "row",
)
```
#To save heatmap
```{r}
pheatmap(top_20,
color = heat_colors,
cluster_rows = T,
show_rownames = T,
annotation = dplyr::select(metadata, TYPE),
scale = "row", cellwidth = 20, cellheight = 12, fontsize = 12, filename = "~/ko_results/top20features.pdf"
)
```
#Save Deseq2 results
#Here we will only save the p adjusted table
```{r}
write.table (as.data.frame(res), file='~/deseq_0.1padj.tsv', quote=FALSE, sep='\t')
```
#For visualization it is beter to use transformation.Here we will use vst transformation
```{r}
vsddf <- assay(varianceStabilizingTransformation(dds, blind=T))
vsddf <- data.frame(vsddf)
#write.table (as.data.frame(vsddf), file='~/deseq2/vst/vst_results.txt', quote=FALSE, sep='\t')
vsd_20 <- data.frame(vsddf)[1:20,]
colnames(vsd_20) <- c("250.1", "250.2", "450.1", "450.2")
heat_colors <- brewer.pal(6, "YlOrRd")
# Run pheatmap
pheatmap(vsd_20,
color = heat_colors,
cluster_rows = F,
show_rownames = T,
annotation = dplyr::select(metadata, TYPE),
scale = "row",
)
```
#Now we will subset KOs of interest from the above generated file and see their expression (Use shell for this step)
```{r}
#Run in shell
#We will match all KOs related to nitrogen cycle and subset them from the deseq2 results
awk 'NR==FNR { pat[$0]=1 } NR>FNR { for (p in pat) if ($0 ~ p) {print;next} }' ~/ko_map/n2_cycle.txt ~/deseq2/vst/vst_results.txt > ~/deseq2/vst/vst.n2_results.txt
#For genes related to phosphorus cycle
awk 'NR==FNR { pat[$0]=1 } NR>FNR { for (p in pat) if ($0 ~ p) {print;next} }' ~/ko_map/p_cycle.txt ~/deseq2/vst/vst_results.txt > ~/deseq2/vst/vst.p_results.txt
#Do the same for other genes of interests
```
#Generate heatmap
```{r}
pc <- read.table('~/vst.p_results.txt', header = TRUE)
#format the dataframe
rownames(pc) <- pc[,1]
pc <- pc[, -1]
#pc$gene <- NULL
colnames(pc) <- c("250.1", "250.2", "450.1", "450.2")
#heatmap
#heat_colors <- brewer.pal(6, "YlOrRd")
# Run pheatmap
pheatmap(pc,
cluster_rows = F,
show_rownames = T,
annotation = dplyr::select(metadata, TYPE),
scale = "row",
)
```
#Repeat the process for Cazy annotations
#4.0 Gene Set Enrichment Analysis (GSEA)
#Load packages
```{r}
library(magrittr)
library(clusterProfiler)
library(enrichplot)
library(ggplot2)
library(stringr)
library(DOSE)
```
# We will use the deseq2 exported results (p adjusted)
#If you import your data from a csv file, the file should contains two columns, one for gene ID (no duplicated ID allowed) and another one for fold change.
```{r}
kegd <- read.table("~/deseq_0.1padj.tsv",
header = TRUE)
colnames(kegd)
kegg <- kegd [,-c(2,4,5,6,7)]
head(kegg)
## assume 1st column is ID
## 3rd column is FC
#feature 1: numeric vector
geneList <- kegg[,2]
## feature 2: named vector
names(geneList) <- as.character(kegg[,1])
## feature 3: decreasing order
geneList <- sort(geneList, decreasing = TRUE)
gk <- gseKEGG(geneList, organism="ko", pvalueCutoff = 0.05, minGSSize = 10, nPerm = 10000)
head(gk)
```
#Dotplot
```{r}
p1_file <- dotplot(gk, showCategory = 20, title = "Enriched Pathways" , split=".sign") + facet_grid(.~.sign)
print(p1_file)
```
#Save dotplot
```{r}
p1 <- paste0("~/gene_enrichment.pdf")
ggsave(plot = p1_file, filename = p1, device = "pdf", width = 30, height = 15,
scale = 1, units = "cm" , dpi= 320)
```