forked from gkadusumilli/Voxelnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data.py
244 lines (211 loc) · 12.5 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
from utils.utils import cal_anchors, process_pointcloud, cal_rpn_target
import tensorflow as tf
import glob
import random
import numpy as np
import time
from queue import Queue
from threading import Thread
import threading
import os
from utils.aug_data import aug_data
class thread_safe_generator(object):
def __init__(self, gen):
self.gen = gen
self.lock = threading.Lock()
def __next__(self):
with self.lock:
return next(self.gen)
class Data_helper:
def __init__(self, cfg, params, buffer_size, mode, is_aug_data, create_anchors=False, strategy=None):
self.cfg = cfg
self.params = params
self.mode = mode
data_d = "training" if mode == "train" else "testing" if mode =="test" else "validation"
if mode != "test":
label_tags = [os.path.basename(a).split(".")[0] for a in glob.glob(os.path.join(cfg.DATA_DIR, data_d, "label_2/*.txt"))]
img_tags = [os.path.basename(a).split(".")[0] for a in glob.glob(os.path.join(cfg.DATA_DIR, data_d, "image_2/*.png"))]
lidar_tags = [os.path.basename(a).split(".")[0] for a in glob.glob(os.path.join(cfg.DATA_DIR, data_d, "velodyne/*.bin"))]
if mode != "test":
assert label_tags and img_tags and lidar_tags, "One of the three (label_2, image_2, velodyne) folders is empty, Data folder must not be empty"
assert not set(label_tags).symmetric_difference(set(img_tags)) and not set(img_tags).symmetric_difference(set(lidar_tags)),\
"Must have equivalent tags in image_2, label_2 and velodyne dirs, check those files"
else:
assert img_tags and lidar_tags, "One of the three (image_2, velodyne) folders is empty, Data folder must not be empty"
assert not set(img_tags).symmetric_difference(set(lidar_tags)),\
"Must have equivalent tags in image_2, velodyne dirs, check those files"
self.tags = lidar_tags
self.num_examples = len(lidar_tags)
if create_anchors:
pass
self.anchors = cal_anchors(cfg)
#self.tag_gen = thread_safe_generator(self.tag_generator(params["n_epochs"]))
"""self.ex_queue = Queue(params["ex_buffer_size"])
self.launch_fillers(params["num_threads"], mode, is_aug_data)
while self.ex_queue.qsize()<params["ex_buffer_size"]:
time.sleep(2)"""
self.batcher = self.batch_dataset( params["batch_size"], mode,is_aug_data, buffer_size, cfg, strategy)
self.batch_iter = iter(self.batcher)
"""def tag_generator(self):
random.shuffle(self.tags)
for ind in self.tags:
yield ind"""
def fill_examples_queue(self, cfg, mode, is_aug_data=False):
data_d = "training" if mode == "train" else "testing" if mode =="test" else "validation"
img_dir = "{}/{}/image_2".format(cfg.DATA_DIR, data_d)
labels_dir = "{}/{}/label_2".format(cfg.DATA_DIR, data_d)
pc_dir = "{}/{}/velodyne".format(cfg.DATA_DIR, data_d)
if mode in ["train", "sample_test"]:
random.shuffle(self.tags)
else:
print("sort data")
sorted(self.tags)
for index in self.tags:
#index = next(self.tag_gen)
dic = {}
if is_aug_data:
dic = aug_data(index, os.path.join(cfg.DATA_DIR, data_d))
else:
pc = np.fromfile("%s/%06d.bin" % (pc_dir, int(index)), dtype=np.float32).reshape(-1,4)
if mode == "test":
dic["lidar"] = pc
dic["labels"] = []
elif mode == "sample_test" or mode== "eval":
dic["lidar"] = pc
dic["labels"] = np.array([line.strip() for line in open("%s/%06d.txt" % (labels_dir, int(index)) , 'r').readlines()])
else:
dic["lidar"] = 0
dic["labels"] = np.array([line.strip() for line in open("%s/%06d.txt" % (labels_dir, int(index)) , 'r').readlines()])
dic["num_points"] = len(pc)
if mode == "train":
dic["img"] = 0
else:
img = tf.io.read_file("%s/%06d.png" % (img_dir, int(index)))
img = tf.image.decode_png(img, channels=cfg.IMG_CHANNEL)
img = tf.image.convert_image_dtype(img, tf.float32)
dic["img"] = tf.image.resize(img, [cfg.IMG_HEIGHT, cfg.IMG_WIDTH])
dic["tag"] = "%06d" % int(index)
dic.update(process_pointcloud(pc, cfg))
if mode in ["train", "eval", "sample_test"]:
dic["pos_equal_one"], dic["neg_equal_one"], dic["targets"]= cal_rpn_target(dic["labels"][np.newaxis, ...].astype(str),
cfg.MAP_SHAPE ,
self.anchors,
cfg.DETECT_OBJECT,
'lidar')
dic["pos_equal_one_reg"] = np.concatenate(
[np.tile( dic["pos_equal_one"][..., [0]], 7), np.tile( dic["pos_equal_one"][..., [1]], 7)], axis=-1)[0] #we index to 0 because we added a batch dimension
dic["pos_equal_one_sum"] = np.clip(np.sum(dic["pos_equal_one"], axis=(
1, 2, 3)).reshape(-1, 1, 1, 1), a_min=1, a_max=None)[0]
dic["neg_equal_one_sum"] = np.clip(np.sum(dic["neg_equal_one"], axis=(
1, 2, 3)).reshape(-1, 1, 1, 1), a_min=1, a_max=None)[0]
dic["pos_equal_one"], dic["neg_equal_one"], dic["targets"] = dic["pos_equal_one"][0], dic["neg_equal_one"][0], dic["targets"][0]
else:
dic["pos_equal_one"], dic["neg_equal_one"], dic["targets"] = 0,0,0
dic["pos_equal_one_reg"], dic["pos_equal_one_sum"], dic["neg_equal_one_sum"] = 0,0,0
yield dic
#self.ex_queue.put(dic)
"""
def launch_fillers(self, num_threads, mode, is_aug_data):
self.elements_queue_threads = []
for i in range(num_threads):
self.elements_queue_threads.append(Thread(target=self.fill_examples_queue, args=(self.cfg, mode,is_aug_data,)))
self.elements_queue_threads[-1].setDaemon(True)
self.elements_queue_threads[-1].start()
def example_generator(self):
once_empty = False
while True:
if self.ex_queue.qsize() == 0 and not once_empty:
time.sleep(10)
once_empty = True
continue
elif self.ex_queue.qsize() != 0:
once_empty=False
ex = self.ex_queue.get()
yield ex
else:
break
"""
def batch_dataset(self, batch_size, mode , is_aug_data, buffer_size, cfg, strategy):
dataset = tf.data.Dataset.from_generator(lambda: self.fill_examples_queue(self.cfg, mode,is_aug_data),
output_types={
"img" : tf.float32,
"labels" : tf.string,
"tag" : tf.string,
"feature_buffer" : tf.float32,
"coordinate_buffer" : tf.int32,
"number_buffer" : tf.int32,
"lidar" : tf.float32,
"num_points" : tf.int32,
"pos_equal_one": tf.float32,
"neg_equal_one" : tf.float32,
"targets" : tf.float32,
"pos_equal_one_reg" : tf.float32,
"pos_equal_one_sum" : tf.float32,
"neg_equal_one_sum" : tf.float32
},
output_shapes={
"img" : [cfg.IMG_HEIGHT, cfg.IMG_WIDTH, cfg.IMG_CHANNEL] if mode!="train" else [],
"labels" : [None],
"tag" : [],
"feature_buffer" : [None, cfg.MAX_POINT_NUMBER, 7],
"coordinate_buffer" : [None, 3],
"number_buffer" : [None],
"lidar" : [None, 4] if "test" in mode or mode == "eval" else [],
"num_points" : [],
"pos_equal_one": [*cfg.MAP_SHAPE, cfg.NUM_ANCHORS_PER_CELL] if mode in ["train", "eval", "sample_test"] else [] ,
"neg_equal_one" : [*cfg.MAP_SHAPE, cfg.NUM_ANCHORS_PER_CELL] if mode in ["train", "eval", "sample_test"] else [],
"targets" : [*cfg.MAP_SHAPE, 7*cfg.NUM_ANCHORS_PER_CELL] if mode in ["train", "eval", "sample_test"] else [],
"pos_equal_one_reg" : [*cfg.MAP_SHAPE, 7*cfg.NUM_ANCHORS_PER_CELL] if mode in ["train", "eval", "sample_test"] else [],
"pos_equal_one_sum" : [1,1,1] if mode in ["train", "eval", "sample_test"] else [],
"neg_equal_one_sum" : [1,1,1] if mode in ["train", "eval", "sample_test"] else []
})
dataset = dataset.padded_batch(batch_size,
padded_shapes = {
"img" : [cfg.IMG_HEIGHT,cfg.IMG_WIDTH, cfg.IMG_CHANNEL] if mode!="train" else [],
"labels" : [None],
"tag" : [],
"feature_buffer" : [None, cfg.MAX_POINT_NUMBER, 7],
"coordinate_buffer" : [None, 3],
"number_buffer" : [None],
"lidar" : [None, 4] if "test" in mode or mode == "eval" else [],
"num_points": [],
"pos_equal_one": [*cfg.MAP_SHAPE, cfg.NUM_ANCHORS_PER_CELL] if mode in ["train", "eval", "sample_test"] else [] ,
"neg_equal_one" : [*cfg.MAP_SHAPE, cfg.NUM_ANCHORS_PER_CELL] if mode in ["train", "eval", "sample_test"] else [],
"targets" : [*cfg.MAP_SHAPE, 7*cfg.NUM_ANCHORS_PER_CELL] if mode in ["train", "eval", "sample_test"] else [],
"pos_equal_one_reg" : [*cfg.MAP_SHAPE, 7*cfg.NUM_ANCHORS_PER_CELL] if mode in ["train", "eval", "sample_test"] else [],
"pos_equal_one_sum" : [1,1,1] if mode in ["train", "eval", "sample_test"] else [],
"neg_equal_one_sum" : [1,1,1] if mode in ["train", "eval", "sample_test"] else []
}, padding_values = {
'img' : 0.0,
'labels' : b"",
'tag' : b"",
"feature_buffer" : 0.0,
"coordinate_buffer" : 0,
"number_buffer" : 0,
"lidar":0.,
"num_points":0,
"pos_equal_one": 0. ,
"neg_equal_one" : 0.,
"targets" : 0.,
"pos_equal_one_reg" : 0.,
"pos_equal_one_sum" : 0.,
"neg_equal_one_sum" : 0.
})
def update_dataset(batch):
batch_idx = tf.range(0, tf.shape(batch["coordinate_buffer"])[0], 1)
batch_idx = tf.expand_dims(tf.expand_dims(batch_idx, axis=-1), axis=-1)
batch_idx = tf.tile(batch_idx, [1, tf.shape(batch["coordinate_buffer"])[1], 1])
batch["coordinate_buffer"] = tf.concat([batch_idx, batch["coordinate_buffer"]], axis=-1)
return batch
dataset = dataset.map(update_dataset)
if mode in ["train", "sample_test"]:
dataset = dataset.repeat()
dataset = dataset.prefetch(buffer_size)
if type(strategy) != type(None):
print("Distributed dataset !")
dataset = strategy.experimental_distribute_dataset(dataset)
return dataset
def __iter__(self):
return self.batch_iter
def __next__(self):
return next(self.batch_iter)