forked from gkadusumilli/Voxelnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
348 lines (286 loc) · 15.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import tensorflow as tf
import numpy as np
import os
from model_helper.loss_optimizer_helper import Loss, Optimizer
from utils.utils import delta_to_boxes3d, corner_to_standup_box2d, center_to_corner_box2d, load_calib, draw_lidar_box3d_on_image
from utils.utils import lidar_to_bird_view_img, draw_lidar_box3d_on_birdview, label_to_gt_box3d
from utils.colorize import colorize
class VFE_Layer(tf.keras.layers.Layer):
"""
A VFE layer class
Args :
c_out : int, the dimension of the output after VFE, must be even
"""
def __init__(self, c_out):
super(VFE_Layer, self).__init__()
self.units = c_out//2
self.fcn = tf.keras.layers.Dense(self.units, activation="relu")
self.bn = tf.keras.layers.BatchNormalization(trainable=True)
def call(self, input, mask, training=False):
"""
Call method of the class
Args:
input : Tensor (4D tensor in our case), [Batch_size, max_num_voxels, max_num_pts, out_dim]
(out_dim = 7, at the beginning of the network)
Returns:
output : Tensor with the same shape as input, except the last dim which is c_out
"""
fcn_out = self.bn(self.fcn(input), training=training)
max_pool = tf.reduce_max(fcn_out, axis=2, keepdims=True) # [batch_size, max_num_voxels, 1, out_dim//2]
tiled_max_pool = tf.tile(max_pool, [1,1,tf.shape(fcn_out)[2],1]) # [batch_size, max_num_voxels, max_num_pts, out_dim//2]
output = tf.concat([fcn_out, tiled_max_pool], axis=-1) # [batch_size, max_num_voxels, max_num_pts, out_dim//2]
mask = tf.tile(mask, [1,1,1, 2*self.units])
return tf.multiply(output, tf.cast(mask, tf.float32))
class VFE_Block(tf.keras.layers.Layer):
"""
VFE_block class, made of VFE layers
Args:
vfe_out_dims : n-integer list made of the output dimensions of VFEs, each dimension must be even
final_dim : int32, dimension of the last Dense layer after VFEs
sparse_shape : 3-list, int32, dimensions of the sparse voxels space // ex : [10, 400,352]
"""
def __init__(self, vfe_out_dims, final_dim, sparse_shape):
super(VFE_Block, self).__init__()
self.vfe_out_dims = vfe_out_dims
self.final_dim = final_dim
self.sparse_shape = sparse_shape
self.VFEs = [VFE_Layer(dim) for dim in vfe_out_dims]
self.final_fcn = tf.keras.layers.Dense(self.final_dim, activation="relu")
def call(self, input, voxel_coor_buffer, shape, training=False):
"""
call Method
Args:
input : 4D tensor, of type float32, [batch_size, K, T, 7]
voxel_coor_buffer : 2D tensor , int32 of dimension [batch_size, 4]
training : (optional), boolean
Returns:
output : 5-D tensor, [batch_size, channels, Depth, Height, Width]
"""
vfe_out = input
# create a mask for the sparce space
mask = tf.not_equal(tf.reduce_max(input, axis=-1, keepdims=True), 0) # [batch_size, max_num_voxels, max_num_pts, 1]
for i, vfe in enumerate(self.VFEs):
vfe_out = vfe(vfe_out, mask, training=training) # [batch_size, max_num_voxels, max_num_pts, vfe_out_dims[i] ]
output = self.final_fcn(vfe_out) # [batch_size, max_num_voxels, max_num_pts, final_dim]
output = tf.reduce_max(output, axis=2) # [batch_size, max_num_voxels, final_dim]
# Voxels Sparse representation [batch_size, Depth, Height, Width, channels]
output = tf.scatter_nd(indices=voxel_coor_buffer, updates=output, shape=shape)
return tf.transpose(output, perm=[0,4,1,2,3]) #[batch_size, channels, Depth, Height, Width]
class ConvMiddleLayer(tf.keras.layers.Layer):
"""
Convolutional Middle Layer class
Args:
out_shape : 4-list, int32, dimensions of the output (batch_size, new_chnnles, height, widht)
"""
def __init__(self, out_shape):
super(ConvMiddleLayer, self).__init__()
self.out_shape = out_shape
self.conv1 = tf.keras.layers.Conv3D(64, (3,3,3), (2,1,1), data_format="channels_first", padding="VALID")
self.conv2 = tf.keras.layers.Conv3D(64, (3,3,3), (1,1,1), data_format="channels_first", padding="VALID")
self.conv3 = tf.keras.layers.Conv3D(64, (3,3,3), (2,1,1), data_format="channels_first", padding="VALID")
self.bn1 = tf.keras.layers.BatchNormalization(trainable=True)
self.bn2 = tf.keras.layers.BatchNormalization(trainable=True)
self.bn3 = tf.keras.layers.BatchNormalization(trainable=True)
def call(self, input):
"""
Call Method
Args:
input : 5D Tensor, float32, shape=[batch_size, channels(128), Depth(10), Height(400), Width(352)]
returns:
"""
# Refer to the paper, section 3 for details
out = tf.pad(input, [(0,0)]*2 + [(1,1)]*3)
out = tf.nn.relu(self.bn1(self.conv1(out)))
out = tf.pad(out, [(0,0)]*3 + [(1,1)]*2)
out = tf.nn.relu(self.bn2(self.conv2(out)))
out = tf.pad(out, [(0,0)]*2 + [(1,1)]*3)
out = tf.nn.relu(self.bn3(self.conv3(out)))
return tf.reshape(out, self.out_shape)
class RPN(tf.keras.layers.Layer):
def __init__(self, num_anchors_per_cell):
super(RPN, self).__init__()
self.num_anchors_per_cell = num_anchors_per_cell
self.num_anchors_per_cell = num_anchors_per_cell
BN = tf.keras.layers.BatchNormalization
# block 1
self.conv1_block1, self.bn1_block1 = self.conv_layer(128, (3,3),(2,2)), BN(trainable=True)
self.conv2_block1, self.bn2_block1 = self.conv_layer(128, (3,3),(1,1)), BN(trainable=True)
self.conv3_block1, self.bn3_block1 = self.conv_layer(128, (3,3),(1,1)), BN(trainable=True)
self.conv4_block1, self.bn4_block1 = self.conv_layer(128, (3,3),(1,1)), BN(trainable=True)
# block 2
self.conv1_block2, self.bn1_block2 = self.conv_layer(128, (3,3),(2,2)), BN(trainable=True)
self.conv2_block2, self.bn2_block2 = self.conv_layer(128, (3,3),(1,1)), BN(trainable=True)
self.conv3_block2, self.bn3_block2 = self.conv_layer(128, (3,3),(1,1)), BN(trainable=True)
self.conv4_block2, self.bn4_block2 = self.conv_layer(128, (3,3),(1,1)), BN(trainable=True)
self.conv5_block2, self.bn5_block2 = self.conv_layer(128, (3,3),(1,1)), BN(trainable=True)
self.conv6_block2, self.bn6_block2 = self.conv_layer(128, (3,3),(1,1)), BN(trainable=True)
# block 3
self.conv1_block3, self.bn1_block3 = self.conv_layer(256, (3,3),(2,2)), BN(trainable=True)
self.conv2_block3, self.bn2_block3 = self.conv_layer(256, (3,3),(1,1)), BN(trainable=True)
self.conv3_block3, self.bn3_block3 = self.conv_layer(256, (3,3),(1,1)), BN(trainable=True)
self.conv4_block3, self.bn4_block3 = self.conv_layer(256, (3,3),(1,1)), BN(trainable=True)
self.conv5_block3, self.bn5_block3 = self.conv_layer(256, (3,3),(1,1)), BN(trainable=True)
self.conv6_block3, self.bn6_block3 = self.conv_layer(256, (3,3),(1,1)), BN(trainable=True)
# deconvolutions
self.deconv_1, self.deconv_bn1 = self.deconv_layer(256, (3,3), (1,1)), BN(trainable=True)
self.deconv_2, self.deconv_bn2 = self.deconv_layer(256, (2,2), (2,2)), BN(trainable=True)
self.deconv_3, self.deconv_bn3 = self.deconv_layer(256, (4,4), (4,4)), BN(trainable=True)
# probability and regression maps
self.prob_map_conv = self.conv_layer(self.num_anchors_per_cell,(1,1),(1,1))
self.reg_map_conv = self.conv_layer(7*self.num_anchors_per_cell, (1,1),(1,1))
def conv_layer(self, out_channels, kernel_size, stride_size):
return tf.keras.layers.Conv2D(out_channels,
kernel_size,
stride_size,
padding="SAME",
data_format="channels_first")
def deconv_layer(self, out_channels, kernel_size, stride_size):
return tf.keras.layers.Conv2DTranspose(out_channels,
kernel_size,
stride_size,
padding="SAME",
data_format="channels_first")
def block_conv_op(self, block_id, input):
i = 1
out = input
while True:
try:
c = getattr(self, "conv{}_block{}".format(i, block_id))
b = getattr(self, "bn{}_block{}".format(i, block_id))
except:
break
out = tf.nn.relu(b(c(out)))
i+=1
return out
def deconv_op(self, i, input):
out = input
c = getattr(self, "deconv_{}".format(i))
b = getattr(self, "deconv_bn{}".format(i))
out = tf.nn.relu(b(c(out)))
return out
def call(self, input):
input_shape = input.shape
assert len(input_shape)==4 and input_shape[-1]%8==0 and input_shape[-2]%8==0, "The input must be of shape [Batch_size, channels, map_height, map_width] with map_height and map_width multiple of 8, got {}".format(input_shape)
output = self.block_conv_op(1, input)
deconv1 = self.deconv_op(1, output)
output = self.block_conv_op(2, output)
deconv2 = self.deconv_op(2, output)
output = self.block_conv_op(3, output)
deconv3 = self.deconv_op(3, output)
output = tf.concat([deconv3, deconv2, deconv1], axis=1)
prob_map = self.prob_map_conv((output))
reg_map = self.reg_map_conv((output))
prob_map = tf.transpose(prob_map, (0,2,3,1))
reg_map = tf.transpose(reg_map, (0,2,3,1))
prob_map = tf.nn.sigmoid(prob_map)
return prob_map, reg_map
class Model(tf.keras.Model):
def __init__(self, cfg, params, strategy, *args, **kwargs):
super(Model, self).__init__()
self.strategy = strategy
n_replicas = self.strategy.num_replicas_in_sync
self.params = params
self.cfg = cfg
self.vfe_block = VFE_Block(cfg.VFE_OUT_DIMS, cfg.VFE_FINAl_OUT_DIM, cfg.GRID_SIZE )
self.convMiddle = ConvMiddleLayer((params["batch_size"]//n_replicas, -1, *cfg.GRID_SIZE[1:]))
self.rpn = RPN(cfg.NUM_ANCHORS_PER_CELL)
def add_loss_(self):
self.loss_object = Loss(self.params)
def add_optimizer_(self, n_epoch):
if self.params["mode"]=="train":
self.optimizer = Optimizer(self.params, n_epoch, optimizer="adam")
def call(self, training, batch=None, *args, **kwargs):
if not batch:
assert "feature_buffer" in kwargs and "coordinate_buffer" in kwargs, "you must provide a batch object or feature_buffer and coordiante_buffer tensors"
batch = kwargs
n_replicas = self.strategy.num_replicas_in_sync
shape = [self.params["batch_size"]//n_replicas]+self.vfe_block.sparse_shape + [self.vfe_block.final_dim]
output = self.vfe_block(batch["feature_buffer"], batch["coordinate_buffer"], shape, training)
output = self.convMiddle(output)
prob_map, reg_map = self.rpn(output)
return prob_map, reg_map
def train_step(self, feature_buffer,
coordinate_buffer,
targets,
pos_equal_one,
pos_equal_one_reg,
pos_equal_one_sum,
neg_equal_one,
neg_equal_one_sum):
with tf.GradientTape() as tape:
p_map, r_map = self.call(training=True,
feature_buffer=feature_buffer,
coordinate_buffer=coordinate_buffer)
loss, reg_loss, cls_loss, cls_pos_loss, cls_neg_loss = self.loss_object(r_map, p_map,
targets,
pos_equal_one,
pos_equal_one_reg,
pos_equal_one_sum,
neg_equal_one,
neg_equal_one_sum)
grads = tape.gradient(loss, self.trainable_variables)
normed_grads, norm = tf.clip_by_global_norm(grads, self.params["max_gradient_norm"])
self.optimizer.optimizer.apply_gradients(zip(normed_grads, self.trainable_variables))
return loss, reg_loss, cls_loss, cls_pos_loss, cls_neg_loss
def dist_train_step(self, feature_buffer,
coordinate_buffer,
targets,
pos_equal_one,
pos_equal_one_reg,
pos_equal_one_sum,
neg_equal_one,
neg_equal_one_sum):
per_replica_losses = self.strategy.experimental_run_v2(self.train_step,
args=(feature_buffer,
coordinate_buffer,
targets,
pos_equal_one,
pos_equal_one_reg,
pos_equal_one_sum,
neg_equal_one,
neg_equal_one_sum))
return self.strategy.reduce(tf.distribute.ReduceOp.SUM, per_replica_losses,
axis=None)
def validate_step(self, feature_buffer,
coordinate_buffer,
targets,
pos_equal_one,
pos_equal_one_reg,
pos_equal_one_sum,
neg_equal_one,
neg_equal_one_sum):
p_map, r_map = self.call(training=False,
feature_buffer=feature_buffer,
coordinate_buffer=coordinate_buffer)
loss, reg_loss, cls_loss, cls_pos_loss, cls_neg_los = self.loss_object(r_map, p_map,
targets,
pos_equal_one,
pos_equal_one_reg,
pos_equal_one_sum,
neg_equal_one,
neg_equal_one_sum)
return loss, reg_loss, cls_loss, cls_pos_loss, cls_neg_los
def dist_validate_step(self, feature_buffer,
coordinate_buffer,
targets,
pos_equal_one,
pos_equal_one_reg,
pos_equal_one_sum,
neg_equal_one,
neg_equal_one_sum):
per_replica_losses = self.strategy.experimental_run_v2(self.train_step,
args=(feature_buffer,
coordinate_buffer,
targets,
pos_equal_one,
pos_equal_one_reg,
pos_equal_one_sum,
neg_equal_one,
neg_equal_one_sum))
return self.strategy.reduce(tf.distribute.ReduceOp.SUM, per_replica_losses,
axis=None)
def _predict_step(self, feature_buffer, coordinate_buffer):
p_map, r_map = self.call(training=False,
feature_buffer=feature_buffer,
coordinate_buffer=coordinate_buffer)
return p_map, r_map