-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmetaphor.py
executable file
·770 lines (687 loc) · 35.7 KB
/
metaphor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
#!/usr/bin/env python2.7
from __future__ import division
from gensim.models.keyedvectors import KeyedVectors
import numpy as np
import theano
import theano.tensor as T
import lasagne
import codecs
import time
from sklearn.metrics import f1_score
from nltk.stem.wordnet import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
m = 1
l = 0
# prepare the batch for the single sequence
def prepare_single_batch(batch_size, x, mask, y, shuffle=True):
x_batches = []
mask_batches = []
y_batches = []
n = len(x)
sidx = np.arange(n, dtype='int32')
if shuffle:
np.random.shuffle(sidx)
batches = []
start = 0
for i in range(n // batch_size):
batches.append(sidx[start:start + batch_size])
start += batch_size
if start != n:
batches.append(sidx[start:])
for batch in batches:
x_batch = []
mask_batch = []
y_batch = []
for s in batch:
x_batch.append(x[s])
if len(mask):
mask_batch.append(mask[s])
y_batch.append(y[s])
x_batches.append(x_batch)
mask_batches.append(mask_batch)
y_batches.append(y_batch)
return x_batches, mask_batches, y_batches
# prepare the batch for multiple sequences
def prepare_multi_batch(batch_size, x_dep, x_svo, mask_svo, x_text, y, shuffle=True):
x_dep_batches = []
x_svo_batches = []
x_text_batches = []
x_mask_batches = []
y_batches = []
n = len(x_svo)
sidx = np.arange(n, dtype='int32')
if shuffle:
np.random.shuffle(sidx)
batches = []
start = 0
for i in range(n // batch_size):
batches.append(sidx[start:start + batch_size])
start += batch_size
if start != n:
batches.append(sidx[start:])
for batch in batches:
x_dep_batch = []
x_text_batch = []
x_svo_batch = []
x_mask_batch = []
y_batch = []
for s in batch:
x_dep_batch.append(x_dep[s])
x_text_batch.append(x_text[s])
x_svo_batch.append(x_svo[s])
x_mask_batch.append(mask_svo[s])
y_batch.append(y[s])
x_dep_batches.append(x_dep_batch)
x_text_batches.append(x_text_batch)
x_svo_batches.append(x_svo_batch)
x_mask_batches.append(x_mask_batch)
y_batches.append(y_batch)
return x_dep_batches, x_svo_batches, x_mask_batches, x_text_batches, y_batches
# padding the batch
def padding(batch, w_dim):
max_len = 0
sens_lens = []
for sen in batch:
l_sen = len(sen)
sens_lens.append(l_sen)
if max_len < l_sen:
max_len = l_sen
if max_len == 0:
return None, None
x_padded = np.zeros((len(batch), max_len, w_dim), dtype='float32')
x_mask = np.zeros((len(batch), max_len), dtype='int32')
for idx, sen in enumerate(batch):
sen_len = sens_lens[idx]
x_padded[idx, :sen_len, :] = sen
x_mask[idx, :sen_len] = 1
return x_padded, x_mask
# data structure for SVO sequence
class Svo:
def __init__(self, line, label):
self.label = label
line = line.strip().split("\t")
if len(line) == 2:
instance = line[0]
svo = instance.split("_")
self.id = int(svo[0])
self.s_id = int(svo[3])
self.s_lemma = svo[4]
self.s_surface_form = svo[5]
self.v_id = int(svo[6])
self.v_lemma = svo[7]
self.v_surface_form = svo[8]
self.o_id = int(svo[9])
self.o_lemma = svo[10]
self.o_surface_form = svo[11]
else:
self.s = line[0]
self.v = line[1]
self.o = line[2]
# data structure for Dep word
class DepWord:
def __init__(self, line):
tokens = line.strip().replace(u'\uFFFD', '?').split('\t')
# u'\uFFFD' represent an unknown or unrepresentable character
self.id = int(tokens[0]) - 1
self.surface_form = tokens[1].split()[-1].lower() # Only the last word.
self.pos_tag = tokens[3]
self.head = int(tokens[6]) - 1
self.dep_rel = tokens[7]
self.lemma = tokens[2].lower()
if self.lemma in [u'-', u'_']:
if self.pos_tag.startswith("V"):
lemmatizer_pos = 'v'
elif self.pos_tag.startswith("N"):
lemmatizer_pos = 'n'
else:
lemmatizer_pos = 'a'
self.lemma = lemmatizer.lemmatize(self.surface_form, lemmatizer_pos).lower()
# data structure for Dep sequence
class DepSentence:
def __init__(self):
self.words = []
def add_word(self, line):
word = DepWord(line)
self.words.append(word)
def get_dep_seq(self, verb):
sequence = [verb]
for word in self.words:
if word.head == verb.id:
sequence.append(word)
elif word.id == verb.head:
sequence.append(word)
def word_cmp(x, y):
return x.id - y.id
sorted(sequence, cmp=word_cmp)
return sequence
def clear(self):
self.words = []
# LSTM Model
class LstmModel:
def __init__(self, word2vecFile):
self.word2vec_file = word2vecFile
self.batch_size = 30
self.num_epoch = 100
self.learning_rate = 0.002
self.dropout_rate = 0.6
self.train_portion = 0.9
self.num_target = 2
self.word2vecModel = KeyedVectors.load_word2vec_format(self.word2vec_file, binary=True)
self.num_words = len(self.word2vecModel.vocab)
self.none = self.word2vecModel.index2word[0]
self.w_dim = self.word2vecModel[self.none].shape[0]
def load_svo_train_data(self, metaphorical_svo_file, literal_svo_file):
def load(svo_file, svo_label):
x = []
y = []
mask = []
svo_all = []
for line in codecs.open(svo_file, "r", "utf-8"):
svo = Svo(line, svo_label)
x_temp = []
mask_temp = []
if svo.s_id == 999 or (
svo.s_lemma not in self.word2vecModel and svo.s_surface_form not in self.word2vecModel):
mask_temp.append(0)
x_temp.append(self.word2vecModel[self.none])
else:
mask_temp.append(1)
x_temp.append(
self.word2vecModel[svo.s_surface_form] if svo.s_surface_form in self.word2vecModel else
self.word2vecModel[svo.s_lemma])
if svo.v_id == 999 or (
svo.v_lemma not in self.word2vecModel and svo.v_surface_form not in self.word2vecModel):
mask_temp.append(0)
x_temp.append(self.word2vecModel[self.none])
else:
mask_temp.append(1)
x_temp.append(
self.word2vecModel[svo.v_surface_form] if svo.v_surface_form in self.word2vecModel else
self.word2vecModel[svo.v_lemma])
if svo.o_id == 999 or (
svo.o_lemma not in self.word2vecModel and svo.o_surface_form not in self.word2vecModel):
mask_temp.append(0)
x_temp.append(self.word2vecModel[self.none])
else:
mask_temp.append(1)
x_temp.append(
self.word2vecModel[svo.o_surface_form] if svo.o_surface_form in self.word2vecModel else
self.word2vecModel[svo.o_lemma])
assert len(mask_temp) == 3
if mask_temp.count(1) > 1 and mask_temp[1] == 1:
x.append(x_temp)
mask.append(mask_temp)
y.append(svo_label)
svo_all.append(svo)
return x, y, mask, svo_all
m_x, m_y, m_mask, m_svo = load(metaphorical_svo_file, m)
l_x, l_y, l_mask, l_svo = load(literal_svo_file, l)
print " metaphorical svo size: ", len(m_y)
print " literal svo size: ", len(l_y)
return (m_x + l_x), (m_y + l_y), (m_mask + l_mask), m_svo, l_svo
def load_train_text_dep_data(self, metaphorical_dep_file, literal_dep_file, m_svo, l_svo):
def load(dep_file, svo):
text_x = []
dep_x = []
seq_num = 0
idx = 0
sentence = DepSentence()
for line in codecs.open(dep_file, "r", "utf-8"):
if idx > len(svo):
break
if len(line.strip()) == 0:
while idx < len(svo) and svo[idx].id == seq_num:
x_text_temp = []
x_dep_temp = []
sequence = sentence.get_dep_seq(sentence.words[svo[idx].v_id])
for w in sequence:
if w.surface_form in self.word2vecModel or w.lemma in self.word2vecModel:
x_dep_temp.append(
self.word2vecModel[w.surface_form]
if w.surface_form in self.word2vecModel else self.word2vecModel[w.lemma])
for w in sentence.words:
if w.surface_form in self.word2vecModel or w.lemma in self.word2vecModel:
x_text_temp.append(
self.word2vecModel[w.surface_form]
if w.surface_form in self.word2vecModel else self.word2vecModel[w.lemma])
text_x.append(x_text_temp)
dep_x.append(x_dep_temp)
idx += 1
seq_num += 1
sentence.clear()
elif svo[idx].id == seq_num:
sentence.add_word(line)
return text_x, dep_x
m_text, m_dep = load(metaphorical_dep_file, m_svo)
l_text, l_dep = load(literal_dep_file, l_svo)
print " metaphorical text size: ", len(m_text)
print " literal text size: ", len(l_text)
print " metaphorical dep size: ", len(m_dep)
print " literal dep size: ", len(l_dep)
return (m_text + l_text), (m_dep + l_dep)
def load_train_data(self):
print "Load train data ..."
metaphorical_dep_file = 'data/train/metaphorical.dep'
literal_dep_file = 'data/train/literal.dep'
metaphorical_svo_file = 'data/train/metaphorical.svo'
literal_svo_file = 'data/train/literal.svo'
svo_x, y, svo_mask, m_svo, l_svo = self.load_svo_train_data(metaphorical_svo_file, literal_svo_file)
text_x, dep_x = self.load_train_text_dep_data(metaphorical_dep_file, literal_dep_file, m_svo, l_svo)
print "-----------------------------------------------------"
train_n = int(np.round(len(y) * self.train_portion))
sidx = np.random.permutation(len(y))
self.dep_train = [dep_x[s] for s in sidx[:train_n]]
self.svo_train = [svo_x[s] for s in sidx[:train_n]]
self.text_train = [text_x[s] for s in sidx[:train_n]]
self.y_train = [y[s] for s in sidx[:train_n]]
self.dep_valid = [dep_x[s] for s in sidx[train_n:]]
self.svo_valid = [svo_x[s] for s in sidx[train_n:]]
self.text_valid = [text_x[s] for s in sidx[train_n:]]
self.y_valid = [y[s] for s in sidx[train_n:]]
self.mask_svo_train = [svo_mask[s] for s in sidx[:train_n]]
self.mask_svo_valid = [svo_mask[s] for s in sidx[train_n:]]
print " train set size: ", len(self.y_train)
print " valid set size: ", len(self.y_valid)
print " train set metaphorical size: ", self.y_train.count(m)
print " train set literal size: ", self.y_train.count(l)
print " valid set metaphorical size: ", self.y_valid.count(m)
print " valid set literal size: ", self.y_valid.count(l)
print "-----------------------------------------------------"
def load_test_data(self):
print "Load test data ..."
metaphorical_dep_file = 'data/test/metaphorical.dep'
literal_dep_file = 'data/test/literal.dep'
metaphorical_svo_file = 'data/test/metaphorical.svo'
literal_svo_file = 'data/test/literal.svo'
m_lemma2word = ["0_see_saw", "16_Texan_Texans", "20_Hawaii_Hawaii",
"31_Tori_Tori", "37_Murkowski_Murkowski", "39_man_men",
"45_stare_staring", "55_Bundestag_Bundestag", "63_midwesterner_Midwesterners",
"78_Bernake_Bernake", "79_Apple_Apple", "97_Mitt Romney_Mitt Romney", "99_Olmert_Olmert",
]
l_lemma2word = ["16_stairs_stairs", "18_Jim_Jim", "36_feed_feed", "42_vegetables_vegetables",
"48_person_people", "51_Iran_Iran", "57_person_People", "62_Miranda_Miranda",
"63_antena_antennas", "75_Hawaii_Hawaii", "83_Dean_Dean", "84_Frodo_Frodo",
"87_Frodo_Frodo", "87_stare_stared", "90_Blair_Blair", "91_Beth_Beth",
"92_Frank_Frank", "101_Lebanese_Lebanese", "105_Jim_jim", "107_Misha_Misha"
]
def load_svo(svo_file):
svo = []
for line in codecs.open(svo_file, "r", "utf-8"):
words = line.strip().split("\t")
svo.append(words)
return svo
m_svo = load_svo(metaphorical_svo_file)
l_svo = load_svo(literal_svo_file)
def load_test_text_dep_data(dep_file, svo, l2w, label):
y = []
text_x = []
dep_x = []
svo_x = []
mask_x = []
sentence = DepSentence()
sen_num = 0
l2w_num = 0
for line in codecs.open(dep_file, "r", 'utf-8'):
if len(line.strip()) == 0:
temp_text = []
for w in sentence.words:
if w.surface_form in self.word2vecModel or w.lemma in self.word2vecModel:
temp_text.append(
self.word2vecModel[w.surface_form]
if w.surface_form in self.word2vecModel else self.word2vecModel[w.lemma])
temp_mask = []
temp_svo = []
temp_dep = []
w_num = 0
for w in svo[sen_num]:
if w == "none":
temp_mask.append(0)
temp_svo.append(self.word2vecModel[self.none])
w_num += 1
continue
if w_num == 1:
verb = None
if l2w_num < len(l2w):
l2wst = l2w[l2w_num].split("_")
temp_num = int(l2wst[0])
if sen_num == temp_num and w == l2wst[1]:
for word in sentence.words:
if word.surface_form == l2wst[2]:
verb = word
if not verb:
for word in sentence.words:
if word.lemma == w:
verb = word
seq = sentence.get_dep_seq(verb)
for se in seq:
if se.surface_form in self.word2vecModel or se.lemma in self.word2vecModel:
temp_dep.append(
self.word2vecModel[se.surface_form]
if se.surface_form in self.word2vecModel else self.word2vecModel[se.lemma])
if l2w_num < len(l2w):
st = l2w[l2w_num].split("_")
num = int(st[0])
if sen_num == num and w == st[1]:
if st[2] in self.word2vecModel or st[1] in self.word2vecModel:
temp_svo.append(
self.word2vecModel[st[2]]
if st[2] in self.word2vecModel else self.word2vecModel[st[1]])
temp_mask.append(1)
else:
temp_mask.append(0)
temp_svo.append(self.word2vecModel[self.none])
l2w_num += 1
w_num += 1
continue
for word in sentence.words:
if word.lemma == w:
if word.surface_form in self.word2vecModel or word.lemma in self.word2vecModel:
temp_svo.append(
self.word2vecModel[word.surface_form]
if word.surface_form in self.word2vecModel else self.word2vecModel[word.lemma])
temp_mask.append(1)
else:
temp_mask.append(0)
temp_svo.append(self.word2vecModel[self.none])
w_num += 1
if temp_mask.count(1) > 1 and temp_mask[1] == 1:
text_x.append(temp_text)
dep_x.append(temp_dep)
svo_x.append(temp_svo)
mask_x.append(temp_mask)
y.append(label)
sen_num += 1
sentence.clear()
else:
sentence.add_word(line)
return text_x, dep_x, svo_x, mask_x, y
m_text, m_dep, m_svo_test, m_mask, m_y = load_test_text_dep_data(metaphorical_dep_file, m_svo, m_lemma2word, m)
l_text, l_dep, l_svo_test, l_mask, l_y = load_test_text_dep_data(literal_dep_file, l_svo, l_lemma2word, l)
self.y_test = m_y + l_y
self.text_test = m_text + l_text
self.svo_test = m_svo_test + l_svo_test
self.dep_test = m_dep + l_dep
self.mask_svo_test = m_mask + l_mask
print " test set size: ", len(self.y_test)
print " test set metaphorical size: ", self.y_test.count(m)
print " test set literal size: ", self.y_test.count(l)
print "-----------------------------------------------------"
def build_single_model(self, in_var, mask_var, unit_num):
input_in = lasagne.layers.InputLayer(shape=(None, None, self.w_dim), input_var=in_var)
input_in = lasagne.layers.DropoutLayer(input_in, self.dropout_rate)
mask = lasagne.layers.InputLayer(shape=(None, None), input_var=mask_var)
llstm = lasagne.layers.LSTMLayer(incoming=input_in, num_units=unit_num, mask_input=mask,
name='llstm', only_return_final=True)
rlstm = lasagne.layers.LSTMLayer(incoming=input_in, num_units=unit_num, mask_input=mask,
name='rlstm', only_return_final=True, backwards=False)
llstm = lasagne.layers.DropoutLayer(llstm, self.dropout_rate)
rlstm = lasagne.layers.DropoutLayer(rlstm, self.dropout_rate)
lstm = lasagne.layers.ConcatLayer([llstm, rlstm], axis=-1)
out_model = lasagne.layers.DenseLayer(lstm, num_units=self.num_target,
nonlinearity=lasagne.nonlinearities.softmax)
return out_model
def build_multi_model(self, sentence_var, mask_sen_var, dep_var, mask_dep_var, svo_var, mask_svo_var):
sentence_in = lasagne.layers.InputLayer(shape=(None, None, self.w_dim), input_var=sentence_var)
sentence_in = lasagne.layers.DropoutLayer(sentence_in, self.dropout_rate)
sen_l_mask_var = lasagne.layers.InputLayer(shape=(None, None), input_var=mask_sen_var)
sen_llstm = lasagne.layers.LSTMLayer(incoming=sentence_in, num_units=150, mask_input=sen_l_mask_var,
name='sen_llstm', only_return_final=True)
sen_rlstm = lasagne.layers.LSTMLayer(incoming=sentence_in, num_units=150, mask_input=sen_l_mask_var,
name='sen_rlstm', only_return_final=True, backwards=False)
sen_llstm = lasagne.layers.DropoutLayer(sen_llstm, self.dropout_rate)
sen_rlstm = lasagne.layers.DropoutLayer(sen_rlstm, self.dropout_rate)
dep_in = lasagne.layers.InputLayer(shape=(None, None, self.w_dim), input_var=dep_var)
dep_in = lasagne.layers.DropoutLayer(dep_in, self.dropout_rate)
dep_l_mask_var = lasagne.layers.InputLayer(shape=(None, None), input_var=mask_dep_var)
dep_llstm = lasagne.layers.LSTMLayer(incoming=dep_in, num_units=60, mask_input=dep_l_mask_var,
name='dep_llstm', only_return_final=True)
dep_rlstm = lasagne.layers.LSTMLayer(incoming=dep_in, num_units=60, mask_input=dep_l_mask_var,
name='dep_rlstm', only_return_final=True, backwards=False)
dep_llstm = lasagne.layers.DropoutLayer(dep_llstm, self.dropout_rate)
dep_rlstm = lasagne.layers.DropoutLayer(dep_rlstm, self.dropout_rate)
svo_in = lasagne.layers.InputLayer(shape=(None, None, self.w_dim), input_var=svo_var)
svo_in = lasagne.layers.DropoutLayer(svo_in, self.dropout_rate)
svo_l_mask_var = lasagne.layers.InputLayer(shape=(None, None), input_var=mask_svo_var)
svo_llstm = lasagne.layers.LSTMLayer(incoming=svo_in, num_units=40, mask_input=svo_l_mask_var,
name='svo_llstm', only_return_final=True)
svo_rlstm = lasagne.layers.LSTMLayer(incoming=svo_in, num_units=40, mask_input=svo_l_mask_var,
name='svo_rlstm', only_return_final=True, backwards=False)
svo_llstm = lasagne.layers.DropoutLayer(svo_llstm, self.dropout_rate)
svo_rlstm = lasagne.layers.DropoutLayer(svo_rlstm, self.dropout_rate)
con_in = lasagne.layers.ConcatLayer([sen_llstm, sen_rlstm, dep_llstm, dep_rlstm, svo_llstm, svo_rlstm], axis=-1)
con_lstm = lasagne.layers.DenseLayer(con_in, num_units=200)
output = lasagne.layers.DenseLayer(con_lstm, num_units=self.num_target,
nonlinearity=lasagne.nonlinearities.softmax)
return output
def build_single_model_fn(self, unit_num):
in_var = T.ftensor3('in_var')
mask_var = T.imatrix('mask_var')
network = self.build_single_model(in_var, mask_var, unit_num)
prediction = lasagne.layers.get_output(network)
target_var = T.ivector('targets')
loss = lasagne.objectives.categorical_crossentropy(prediction, target_var)
loss = loss.mean()
all_params = lasagne.layers.get_all_params(network, trainable=True)
updates = lasagne.updates.momentum(loss, all_params, learning_rate=self.learning_rate)
valid_prediction = lasagne.layers.get_output(network, deterministic=True)
valid_loss = lasagne.objectives.categorical_crossentropy(valid_prediction, target_var)
valid_loss = valid_loss.mean()
valid_acc = lasagne.objectives.categorical_accuracy(valid_prediction, target_var)
predicted_label = T.argmax(valid_prediction, axis=1)
valid_acc = T.mean(valid_acc)
self.single_train_fn = theano.function([in_var, mask_var, target_var], loss, updates=updates)
self.single_val_fn = theano.function([in_var, mask_var, target_var], [valid_loss, valid_acc])
self.single_prediction_fn = theano.function([in_var, mask_var], predicted_label)
def build_multi_model_fn(self):
sentence_var = T.ftensor3('sentence_var')
svo_var = T.ftensor3('svo_var')
dep_var = T.ftensor3('dep_var')
mask_sen_var = T.imatrix('mask_sen_var')
mask_dep_var = T.imatrix('mask_dep_var')
mask_svo_var = T.imatrix('mask_svo_var')
network = self.build_multi_model(sentence_var, mask_sen_var, dep_var, mask_dep_var, svo_var, mask_svo_var)
prediction = lasagne.layers.get_output(network)
target_var = T.ivector('targets')
loss = lasagne.objectives.categorical_crossentropy(prediction, target_var)
loss = loss.mean()
all_params = lasagne.layers.get_all_params(network, trainable=True)
updates = lasagne.updates.momentum(loss, all_params, learning_rate=self.learning_rate)
valid_prediction = lasagne.layers.get_output(network, deterministic=True)
valid_loss = lasagne.objectives.categorical_crossentropy(valid_prediction, target_var)
valid_loss = valid_loss.mean()
valid_acc = lasagne.objectives.categorical_accuracy(valid_prediction, target_var)
predicted_label = T.argmax(valid_prediction, axis=1)
valid_acc = T.mean(valid_acc)
self.multi_train_fn = theano.function([
sentence_var, mask_sen_var, dep_var, mask_dep_var, svo_var, mask_svo_var, target_var],
loss, updates=updates)
self.multi_val_fn = theano.function([
sentence_var, mask_sen_var, dep_var, mask_dep_var, svo_var, mask_svo_var, target_var],
[valid_loss, valid_acc])
self.multi_prediction_fn = theano.function([
sentence_var, mask_sen_var, dep_var, mask_dep_var, svo_var, mask_svo_var],
predicted_label)
def train_single_model(self, model_type, units_num):
self.build_single_model_fn(units_num)
mask_train = []
mask_valid = []
mask_test = []
if model_type == "svo":
x_train = self.svo_train
x_valid = self.svo_valid
x_test = self.svo_test
mask_train = self.mask_svo_train
mask_valid = self.mask_svo_valid
mask_test = self.mask_svo_test
elif model_type == "text":
x_train = self.text_train
x_valid = self.text_valid
x_test = self.text_test
else:
x_train = self.dep_train
x_valid = self.dep_valid
x_test = self.dep_test
print "Training ..."
for epoch in range(self.num_epoch):
x_train_batches, mask_train_batches, y_train_batches = prepare_single_batch(
self.batch_size, x_train, mask_train, self.y_train, shuffle=True)
train_err = 0
train_batches_num = 0
train_acc = 0
start_time = time.time()
for i in range(len(y_train_batches)):
if model_type != "svo":
x_train_batch, mask_train_batch = padding(x_train_batches[i], self.w_dim)
else:
x_train_batch = x_train_batches[i]
mask_train_batch = mask_train_batches[i]
x_train_array = np.asarray(x_train_batch, dtype="float32")
mask_train_array = np.asarray(mask_train_batch, dtype="int32")
y_train_array = np.asarray(y_train_batches[i], dtype='int32')
train_err += self.single_train_fn(x_train_array, mask_train_array, y_train_array)
err, acc = self.single_val_fn(x_train_array, mask_train_array, y_train_array)
train_acc += acc
train_batches_num += 1
print " Epoch {} of {} took {:.3f}s".format(
epoch + 1, self.num_epoch, time.time() - start_time)
print " training loss: {:.6f}".format(train_err / train_batches_num)
print " training accuracy: {:.2f} %".format(train_acc / train_batches_num * 100)
val_err = 0
val_acc = 0
val_batches_num = 0
x_valid_batches, mask_valid_batches, y_valid_batches = prepare_single_batch(
self.batch_size, x_valid, mask_valid, self.y_valid, shuffle=False)
for i in range(len(y_valid_batches)):
if model_type != "svo":
x_valid_batch, mask_valid_batch = padding(x_valid_batches[i], self.w_dim)
else:
x_valid_batch = x_valid_batches[i]
mask_valid_batch = mask_valid_batches[i]
x_valid_array = np.asarray(x_valid_batch, dtype="float32")
mask_valid_array = np.asarray(mask_valid_batch, dtype="int32")
y_valid_array = np.asarray(y_valid_batches[i], dtype='int32')
err, acc = self.single_val_fn(
x_valid_array, mask_valid_array, y_valid_array)
val_err += err
val_acc += acc
val_batches_num += 1
print " validation loss: {:.6f}".format(val_err / val_batches_num)
print " validation accuracy: {:.2f} %".format(val_acc / val_batches_num * 100)
labels = []
test_err = 0
test_acc = 0
test_batches_num = 0
x_test_batches, mask_test_batches, y_test_batches = prepare_single_batch(
self.batch_size, x_test, mask_test, self.y_test, shuffle=False)
for i in range(len(y_test_batches)):
if model_type != "svo":
x_test_batch, mask_test_batch = padding(x_test_batches[i], self.w_dim)
else:
x_test_batch = x_test_batches[i]
mask_test_batch = mask_test_batches[i]
x_test_array = np.asarray(x_test_batch, dtype="float32")
mask_test_array = np.asarray(mask_test_batch, dtype="int32")
y_test_array = np.asarray(y_test_batches[i], dtype='int32')
err, acc = self.single_val_fn(
x_test_array, mask_test_array, y_test_array
)
batch_labels = self.single_prediction_fn(
x_test_array, mask_test_array)
labels += list(batch_labels)
test_err += err
test_acc += acc
test_batches_num += 1
assert len(labels) == len(self.y_test)
print " Test loss: {:.6f}".format(test_err / test_batches_num)
print " Test accuracy: {:.2f} %".format(test_acc / test_batches_num * 100)
print " F-score: {:.2f}".format(f1_score(list(self.y_test), labels))
print "-----------------------------------------------------"
def train_multi_model(self):
self.build_multi_model_fn()
print "Training ..."
for epoch in range(self.num_epoch):
x_dep_batches, x_svo_batches, x_mask_svo_batches, x_text_batches, y_batches = \
prepare_multi_batch(
self.batch_size, self.dep_train,
self.svo_train, self.mask_svo_train, self.text_train, self.y_train, shuffle=True)
train_err = 0
train_batches_num = 0
train_acc = 0
start_time = time.time()
for x_dep_batch, x_svo_batch, x_mask_batch, x_text_batch, y_batch in zip(
x_dep_batches, x_svo_batches, x_mask_svo_batches, x_text_batches, y_batches):
dep_train, dep_mask = padding(x_dep_batch, self.w_dim)
text_train, text_mask = padding(x_text_batch, self.w_dim)
svo_train = np.asarray(x_svo_batch, dtype="float32")
svo_mask = np.asarray(x_mask_batch, dtype="int32")
y_train = np.asarray(y_batch, dtype='int32')
train_err += self.multi_train_fn(
text_train, text_mask, dep_train, dep_mask, svo_train, svo_mask, y_train)
err, acc = self.multi_val_fn(text_train, text_mask, dep_train, dep_mask, svo_train, svo_mask, y_train)
train_acc += acc
train_batches_num += 1
print " Epoch {} of {} took {:.3f}s".format(
epoch + 1, self.num_epoch, time.time() - start_time)
print " training loss: {:.6f}".format(train_err / train_batches_num)
print " training accuracy: {:.2f} %".format(train_acc / train_batches_num * 100)
val_err = 0
val_acc = 0
val_batches_num = 0
x_dep_batches_valid, x_svo_batches_valid, x_svo_mask_batches_valid, x_text_batches_valid, y_batches_valid \
= prepare_multi_batch(
self.batch_size, self.dep_valid, self.svo_valid,
self.mask_svo_valid, self.text_valid, self.y_valid, shuffle=False)
for x_dep_batch, x_svo_batch, x_svo_mask_batch, x_text_batch, y_valid_batch \
in zip(x_dep_batches_valid, x_svo_batches_valid,
x_svo_mask_batches_valid, x_text_batches_valid, y_batches_valid):
x_dep_valid, mask_dep_valid = padding(x_dep_batch, self.w_dim)
x_text_valid, mask_text_valid = padding(x_text_batch, self.w_dim)
x_svo_valid = np.asarray(x_svo_batch, dtype="float32")
mask_svo_valid = np.asarray(x_svo_mask_batch, dtype="int32")
y_valid = np.asarray(y_valid_batch, dtype='int32')
err, acc = self.multi_val_fn(
x_text_valid, mask_text_valid, x_dep_valid, mask_dep_valid, x_svo_valid, mask_svo_valid, y_valid)
val_err += err
val_acc += acc
val_batches_num += 1
print " validation loss: {:.6f}".format(val_err / val_batches_num)
print " validation accuracy: {:.2f} %".format(val_acc / val_batches_num * 100)
labels = []
test_err = 0
test_acc = 0
test_batches_num = 0
test_dep_batches, test_svo_batches, test_svo_mask_batches, test_text_batches, test_y_batches \
= prepare_multi_batch(
self.batch_size, self.dep_test, self.svo_test,
self.mask_svo_test, self.text_test, self.y_test, shuffle=False)
for test_dep_batch, test_svo_batch, test_svo_mask_batch, test_text_batch, test_y_batch in zip(
test_dep_batches, test_svo_batches, test_svo_mask_batches, test_text_batches, test_y_batches):
test_dep_, test_dep_mask = padding(test_dep_batch, self.w_dim)
test_text_, test_text_mask = padding(test_text_batch, self.w_dim)
test_svo_ = np.asarray(test_svo_batch, dtype="float32")
test_svo_mask = np.asarray(test_svo_mask_batch, dtype="int32")
test_y_ = np.asarray(test_y_batch, dtype='int32')
err, acc = self.multi_val_fn(
test_text_, test_text_mask, test_dep_, test_dep_mask, test_svo_, test_svo_mask, test_y_)
batch_labels = self.multi_prediction_fn(
test_text_, test_text_mask, test_dep_, test_dep_mask, test_svo_, test_svo_mask)
labels += list(batch_labels)
test_err += err
test_acc += acc
test_batches_num += 1
assert len(labels) == len(self.y_test)
print " Test loss: {:.6f}".format(test_err / test_batches_num)
print " Test accuracy: {:.2f} %".format(test_acc / test_batches_num * 100)
print " F-score: {:.2f}".format(f1_score(list(self.y_test), labels))
print "-----------------------------------------------------"
if __name__ == '__main__':
word2vec_file = 'data/GoogleNews-vectors-negative300.bin'
model = LstmModel(word2vec_file)
model.load_train_data()
model.load_test_data()
# train and test LSTM model for multiple sequence
model.train_multi_model()
"""
# train and test LSTM model for single sequence like svo and unit_num = 128
model.train_single_model("svo", 128)
"""