-
Notifications
You must be signed in to change notification settings - Fork 11
/
test_case_with_time_measurements.h
1157 lines (909 loc) · 28 KB
/
test_case_with_time_measurements.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#ifndef __TEST_CASE_TIME_MEASUREMENTS_H__
#define __TEST_CASE_TIME_MEASUREMENTS_H__
#include <type_traits>
#include <chrono>
#include <iostream>
#include <iomanip>
#include <random>
#include <thread>
#include <vector>
#include <map>
#include <math.h>
#include <assert.h>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <atomic>
using namespace std;
/* Sorting out outputs
- Data type: float/double/int etc.
- Sub data type: column-major, row-major, vector
- Size: [X,Y, nnz] for vector, Y = 1
- ExecutionConfiguration
- CPU Num Threads
- Metal Num Groups/Grid
- Metal Num Threads/Group
- Mean Time
- Stddev Time
- Correctness
- Correct/Incorrect
- RMS
- Distance
*/
enum TestDataElementType { FLOAT, DOUBLE, INT };
inline ostream& printTestDataElementType( ostream& os, const TestDataElementType t ) {
switch (t) {
case FLOAT:
os << "FLOAT";
break;
case DOUBLE:
os << "DOUBLE";
break;
case INT:
os << "INT";
break;
default:
break;
}
return os;
}
enum TestDataElementSubtype {
VECTOR,
MATRIX_COL_MAJOR,
MATRIX_ROW_MAJOR,
MATRIX_SPARSE,
STRUCTURE_OF_ARRAYS,
ARRAY_OF_STRUCTURES,
RANDOM_DIAGONALLY_DOMINANT_SKEWSYMMETRIC,
RANDOM_DIAGONALLY_DOMINANT_SYMMETRIC,
REAL_NONSYMMETRIC_MU02,
REAL_NONSYMMETRIC_MU08,
REAL_SYMMETRIC
};
inline ostream& printTestDataElementSubtype( ostream& os, const TestDataElementSubtype t ) {
switch (t) {
case VECTOR:
os << "VECTOR";
break;
case MATRIX_COL_MAJOR:
os << "MATRIX_COL_MAJOR";
break;
case MATRIX_ROW_MAJOR:
os << "MATRIX_ROW_MAJOR";
break;
case MATRIX_SPARSE:
os << "MATRIX_SPARSE";
break;
case STRUCTURE_OF_ARRAYS:
os << "STRUCTURE_OF_ARRAYS";
break;
case ARRAY_OF_STRUCTURES:
os << "ARRAY_OF_STRUCTURES";
break;
case RANDOM_DIAGONALLY_DOMINANT_SKEWSYMMETRIC:
os << "RANDOM_DIAGONALLY_DOMINANT_SKEWSYMMETRIC";
break;
case RANDOM_DIAGONALLY_DOMINANT_SYMMETRIC:
os << "RANDOM_DIAGONALLY_DOMINANT_SYMMETRIC";
break;
case REAL_NONSYMMETRIC_MU02:
os << "REAL_NONSYMMETRIC_MU02";
break;
case REAL_NONSYMMETRIC_MU08:
os << "REAL_NONSYMMETRIC_MU08";
break;
case REAL_SYMMETRIC:
os << "REAL_SYMMETRIC";
break;
default:
break;
}
return os;
}
enum TestDataVerificationType { TRUE_FALSE, RMS, DISTANCE };
inline ostream& printTestDataVerificationType( ostream& os, const TestDataVerificationType t ) {
switch (t) {
case TRUE_FALSE:
os << "TRUE_FALSE";
break;
case RMS:
os << "RMS";
break;
case DISTANCE:
os << "DISTANCE";
break;
default:
break;
}
return os;
}
enum ExecConfigInterpretationForCharts { REPORT_ALL, REPORT_BEST };
inline ostream& printExecConfigInterpretationForCharts( ostream& os, const ExecConfigInterpretationForCharts t ) {
switch (t) {
case REPORT_ALL:
os << "REPORT_ALL";
break;
case REPORT_BEST:
os << "REPORT_BEST";
break;
default:
break;
}
return os;
}
enum ImplementationType { CPP_BLOCK, CPP_INTERLEAVED, CPP_STDLIB, NEON, MEMCPY, VDSP, BLAS, VDSP_BLAS, BOOST_SPREAD_SORT, BOOST_SAMPLE_SORT, CIIMAGE_CPU, CIIMAGE_GPU, EIGEN3, GSL, LAPACK, LAPACK_WITH_MAT_INVERSE, METAL, CPP_COLUMN_CHOLESKY, CPP_SUBMATRIX_CHOLESKY, ACCELERATE, LEMKE_CPP, LEMKE_NEON, LEMKE_VDSP, LEMKE_BULLET_ORIGINAL, LEMKE_BULLET_IMPROVED_LEXICO_MINIMUM, FIXED_POINT_VDSP, PGS_VDSP, PGS_SM_VDSP };
inline ostream& printImplementationType( ostream& os, const ImplementationType t ) {
switch (t) {
case CPP_BLOCK:
os << "CPP_BLOCK";
break;
case CPP_INTERLEAVED:
os << "CPP_INTERLEAVED";
break;
case CPP_STDLIB:
os << "CPP_STDLIB";
break;
case MEMCPY:
os << "MEMCPY";
break;
case NEON:
os << "NEON";
break;
case VDSP:
os << "VDSP";
break;
case BLAS:
os << "BLAS";
break;
case VDSP_BLAS:
os << "VDSP_BLAS";
break;
case BOOST_SPREAD_SORT:
os << "BOOST_SPREAD_SORT";
break;
case BOOST_SAMPLE_SORT:
os << "BOOST_SAMPLE_SORT";
break;
case CIIMAGE_CPU:
os << "CIIMAGE_CPU";
break;
case CIIMAGE_GPU:
os << "CIIMAGE_GPU";
break;
case EIGEN3:
os << "EIGEN3";
break;
case GSL:
os << "GSL";
break;
case LAPACK:
os << "LAPACK";
break;
case LAPACK_WITH_MAT_INVERSE:
os << "LAPACK_WITH_MAT_INVERSE";
break;
case METAL:
os << "METAL";
break;
case CPP_COLUMN_CHOLESKY:
os << "CPP_COLUMN_CHOLESKY";
break;
case CPP_SUBMATRIX_CHOLESKY:
os << "CPP_SUBMATRIX_CHOLESKY";
break;
case ACCELERATE:
os << "ACCELERATE";
break;
case LEMKE_CPP:
os << "LEMKE_CPP";
break;
case LEMKE_NEON:
os << "LEMKE_NEON";
break;
case LEMKE_VDSP:
os << "LEMKE_VDSP";
break;
case LEMKE_BULLET_ORIGINAL:
os << "LEMKE_BULLET_ORIGINAL";
break;
case LEMKE_BULLET_IMPROVED_LEXICO_MINIMUM:
os << "LEMKE_BULLET_IMPROVED_LEXICO_MINIMUM";
break;
case FIXED_POINT_VDSP:
os << "FIXED_POINT_VDSP";
break;
case PGS_VDSP:
os << "PGS_VDSP";
break;
case PGS_SM_VDSP:
os << "PGS_SM_VDSP";
break;
default:
break;
}
return os;
}
enum MetalImplementationType {
NOT_APPLICABLE,
DEFAULT,
DEFAULT_SHARED,
DEFAULT_MANAGED,
BLIT_SHARED,
BLIT_MANAGED,
TWO_PASS_DEVICE_MEMORY,
TWO_PASS_SHARED_MEMORY,
TWO_PASS_SIMD_SHUFFLE,
TWO_PASS_SIMD_SUM,
ONE_PASS_ATOMIC_SIMD_SHUFFLE,
ONE_PASS_ATOMIC_SIMD_SUM,
ONE_PASS_THREAD_COUNTER,
SCAN_THEN_FAN,
REDUCE_THEN_SCAN,
MERRILL_AND_GRIMSHAW,
COALESCED_WRITE,
UNCOALESCED_WRITE,
COALESCED_WRITE_EARLY_OUT,
UNCOALESCED_WRITE_EARLY_OUT,
COALESCED_WRITE_IN_ONE_COMMIT,
UNCOALESCED_WRITE_IN_ONE_COMMIT,
BITONIC_SORT,
THREADS_OVER_ROWS,
THREADS_OVER_COLUMNS,
NAIVE,
TWO_STAGES,
MPS,
ADAPTIVE,
ONE_COMMIT,
MULTIPLE_COMMITS
};
inline ostream& printMetalImplementationType( ostream& os, const MetalImplementationType t ) {
switch (t) {
case NOT_APPLICABLE:
os << "NOT_APPLICABLE";
break;
case DEFAULT:
os << "DEFAULT";
break;
case DEFAULT_SHARED:
os << "DEFAULT_SHARED";
break;
case DEFAULT_MANAGED:
os << "DEFAULT_MANAGED";
break;
case BLIT_SHARED:
os << "BLIT_SHARED";
break;
case BLIT_MANAGED:
os << "BLIT_MANAGED";
break;
case TWO_PASS_DEVICE_MEMORY:
os << "TWO_PASS_DEVICE_MEMORY";
break;
case TWO_PASS_SHARED_MEMORY:
os << "TWO_PASS_SHARED_MEMORY";
break;
case TWO_PASS_SIMD_SHUFFLE:
os << "TWO_PASS_SIMD_SHUFFLE";
break;
case TWO_PASS_SIMD_SUM:
os << "TWO_PASS_SIMD_SUM";
break;
case ONE_PASS_ATOMIC_SIMD_SHUFFLE:
os << "ONE_PASS_ATOMIC_SIMD_SHUFFLE";
break;
case ONE_PASS_ATOMIC_SIMD_SUM:
os << "ONE_PASS_ATOMIC_SIMD_SUM";
break;
case ONE_PASS_THREAD_COUNTER:
os << "ONE_PASS_THREAD_COUNTER";
break;
case SCAN_THEN_FAN:
os << "SCAN_THEN_FAN";
break;
case REDUCE_THEN_SCAN:
os << "REDUCE_THEN_SCAN";
break;
case MERRILL_AND_GRIMSHAW:
os << "MERRILL_AND_GRIMSHAW";
break;
case COALESCED_WRITE:
os << "COALESCED_WRITE";
break;
case UNCOALESCED_WRITE:
os << "UNCOALESCED_WRITE";
break;
case COALESCED_WRITE_EARLY_OUT:
os << "COALESCED_WRITE_EARLY_OUT";
break;
case UNCOALESCED_WRITE_EARLY_OUT:
os << "UNCOALESCED_WRITE_EARLY_OUT";
break;
case COALESCED_WRITE_IN_ONE_COMMIT:
os << "COALESCED_WRITE_IN_ONE_COMMIT";
break;
case UNCOALESCED_WRITE_IN_ONE_COMMIT:
os << "UNCOALESCED_WRITE_IN_ONE_COMMIT";
break;
case BITONIC_SORT:
os << "BITONIC_SORT";
break;
case THREADS_OVER_ROWS:
os << "THREADS_OVER_ROWS";
break;
case THREADS_OVER_COLUMNS:
os << "THREADS_OVER_COLUMNS";
break;
case NAIVE:
os << "NAIVE";
break;
case TWO_STAGES:
os << "TWO_STAGES";
break;
case MPS:
os << "MPS";
break;
case ADAPTIVE:
os << "ADAPTIVE";
break;
case ONE_COMMIT:
os << "ONE_COMMIT";
break;
case MULTIPLE_COMMITS:
os << "MULTIPLE_COMMITS";
break;
default:
break;
}
return os;
}
class TestDataDimension {
public:
int m_row;
int m_col;
int m_nnz;
TestDataDimension()
:m_row(0)
,m_col(0)
,m_nnz(0)
{;}
void setVectorSize(const int dimension) {
m_row = dimension;
m_col = 0;
m_nnz = 0;
}
void setMatrixDimension( const int row, const int col ) {
m_row = row;
m_col = col;
m_nnz = 0;
}
void setMatrixDimension( const int row, const int col, const int nnz ) {
m_row = row;
m_col = col;
m_nnz = nnz;
}
static void printHeader( ostream& os ) {
os << "vector length/matrix row";
os << "\t";
os << "matrix columns";
os << "\t";
os << "number of non zeros";
}
ostream& print( ostream& os ) {
os << m_row << "\t" << m_col << "\t" << m_nnz;
return os;
}
virtual ~TestDataDimension() {;}
};
class ExecutionConfiguration {
public:
int m_factor_loop_unrolling;
int m_num_threads_cpu;
int m_num_groups_per_grid;
int m_num_threads_per_group;
ExecutionConfiguration()
:m_factor_loop_unrolling ( 1 )
,m_num_threads_cpu ( 1 )
,m_num_groups_per_grid ( 0 )
,m_num_threads_per_group ( 0 )
{;}
void setNumThreads(const int n )
{
m_num_threads_cpu = n;
}
void setMetalConfiguration(const int groups_per_grid, const int threads_per_group )
{
m_num_groups_per_grid = groups_per_grid;
m_num_threads_per_group = threads_per_group;
}
void setNumThreadsCPU( const int n ) {
m_num_threads_cpu = n;
}
void setFactorLoopUnrolling(const int d )
{
m_factor_loop_unrolling = d;
}
static void printHeader( ostream& os ) {
os << "loop unrolling factor";
os << "\t";
os << "num CPU threads";
os << "\t";
os << "num groups per grid";
os << "\t";
os << "num threads per group";
}
ostream& print( ostream& os ) {
os << m_factor_loop_unrolling << "\t" << m_num_threads_cpu << "\t" << m_num_groups_per_grid << "\t" << m_num_threads_per_group;
return os;
}
virtual ~ExecutionConfiguration(){;}
};
class TestCaseConfiguration {
TestDataElementType m_data_type;
TestDataElementSubtype m_data_subtype;
TestDataDimension m_dimension;
ImplementationType m_implementation_type;
TestDataVerificationType m_verification_type;
ExecConfigInterpretationForCharts m_metal_report_type;
MetalImplementationType m_metal_implementation_type;
ExecutionConfiguration m_execution_configuration;
public:
TestCaseConfiguration()
:m_data_type ( FLOAT )
,m_data_subtype ( VECTOR )
,m_implementation_type ( CPP_BLOCK )
,m_verification_type ( TRUE_FALSE )
,m_metal_report_type ( REPORT_BEST )
,m_metal_implementation_type ( NOT_APPLICABLE )
{;}
void setDataElementType( const TestDataElementType data_type ) {
m_data_type = data_type;;
}
void setVector( const int dimension ) {
m_data_subtype = VECTOR;
m_dimension.setVectorSize( dimension );
}
void setMatrixColMajor( const int row, const int col ) {
m_data_subtype = MATRIX_COL_MAJOR;
m_dimension.setMatrixDimension( row, col );
}
void setMatrixRowMajor( const int row, const int col ) {
m_data_subtype = MATRIX_ROW_MAJOR;
m_dimension.setMatrixDimension( row, col );
}
void setMatrixSparse( const int row, const int col, const int nnz ) {
m_data_subtype = MATRIX_SPARSE;
m_dimension.setMatrixDimension( row, col, nnz );
}
void setSOA( const int dimension ) {
m_data_subtype = STRUCTURE_OF_ARRAYS;
m_dimension.setVectorSize( dimension );
}
void setAOS( const int dimension ) {
m_data_subtype = ARRAY_OF_STRUCTURES;
m_dimension.setVectorSize( dimension );
}
void setRandomDiagonallyDominantSkewSymmetric( const int dimension ) {
m_data_subtype = RANDOM_DIAGONALLY_DOMINANT_SKEWSYMMETRIC;
m_dimension.setMatrixDimension( dimension, dimension );
}
void setRandomDiagonallyDominantSymmetric( const int dimension ) {
m_data_subtype = RANDOM_DIAGONALLY_DOMINANT_SYMMETRIC;
m_dimension.setMatrixDimension( dimension, dimension );
}
void setRealNonsymmetricMu02( const int dimension ) {
m_data_subtype = REAL_NONSYMMETRIC_MU02;
m_dimension.setMatrixDimension( dimension, dimension );
}
void setRealNonsymmetricMu08( const int dimension ) {
m_data_subtype = REAL_NONSYMMETRIC_MU08;
m_dimension.setMatrixDimension( dimension, dimension );
}
void setRealSymmetric( const int dimension ) {
m_data_subtype = REAL_SYMMETRIC;
m_dimension.setMatrixDimension( dimension, dimension );
}
void setVerificationType( const TestDataVerificationType t ) {
m_verification_type = t;
}
TestDataVerificationType verificationType() {
return m_verification_type;
}
void setMemcpy( const int num_threads ) {
m_implementation_type = MEMCPY;
m_execution_configuration.setNumThreadsCPU( num_threads );
}
void setCPPBlock( const int num_threads, const int factor_loop_unrolling ) {
m_implementation_type = CPP_BLOCK;
m_execution_configuration.setNumThreadsCPU( num_threads );
m_execution_configuration.setFactorLoopUnrolling( factor_loop_unrolling );
}
void setCPPInterleaved( const int num_threads, const int factor_loop_unrolling ) {
m_implementation_type = CPP_INTERLEAVED;
m_execution_configuration.setNumThreadsCPU( num_threads );
m_execution_configuration.setFactorLoopUnrolling( factor_loop_unrolling );
}
void setNEON( const int num_threads, const int factor_loop_unrolling ) {
m_implementation_type = NEON;
m_execution_configuration.setNumThreadsCPU( num_threads );
m_execution_configuration.setFactorLoopUnrolling( factor_loop_unrolling );
}
void setBoostSampleSort( const int num_threads ) {
m_implementation_type = BOOST_SAMPLE_SORT;
m_execution_configuration.setNumThreadsCPU( num_threads );
}
void setMetal( const MetalImplementationType t, const int groups_per_grid, const int threads_per_group ) {
m_implementation_type = METAL;
m_metal_implementation_type = t;
m_execution_configuration.setMetalConfiguration( groups_per_grid, threads_per_group );
}
void setImplementationType( const ImplementationType t ) {
m_implementation_type = t;
}
void setColumnCholesky() {
m_implementation_type = CPP_COLUMN_CHOLESKY;
}
void setSubmatrixCholesky() {
m_implementation_type = CPP_SUBMATRIX_CHOLESKY;
}
static void printHeader( ostream& os ) {
os << "data element type";
os << "\t";
os << "data element subtype";
os << "\t";
TestDataDimension::printHeader(os);
os << "\t";
os << "implementation type";
os << "\t";
os << "metal implementation type";
os << "\t";
os << "configuration interpretation for charts";
os << "\t";
ExecutionConfiguration::printHeader(os);
os << "\t";
os << "test data verification type";
}
ostream& print( ostream& os ) {
printTestDataElementType( os, m_data_type );
os << "\t";
printTestDataElementSubtype( os, m_data_subtype );
os << "\t";
m_dimension.print( os );
os << "\t";
printImplementationType( os, m_implementation_type );
os << "\t";
printMetalImplementationType( os, m_metal_implementation_type );
os << "\t";
printExecConfigInterpretationForCharts( os, m_metal_report_type );
os << "\t";
m_execution_configuration.print( os );
os << "\t";
printTestDataVerificationType( os, m_verification_type );
return os;
}
virtual ostream& printBrief( ostream& os ) {
m_dimension.print( os );
os << " ";
printImplementationType( os, m_implementation_type );
if ( m_implementation_type == METAL ) {
os << " ";
printMetalImplementationType( os, m_metal_implementation_type );
}
os << " ";
m_execution_configuration.print( os );
return os;
}
virtual ~TestCaseConfiguration(){;}
};
template<class T>
static inline void static_type_guard() {
static_assert(
is_same< short,T >::value
|| is_same< int, T >::value
|| is_same< long, T >::value
|| is_same< float,T >::value
|| is_same< double,T >::value );
}
template<class T>
static inline void static_type_guard_real() {
static_assert( is_same< float,T >::value || is_same< double,T >::value );
}
class TestCaseWithTimeMeasurements {
protected:
TestCaseConfiguration m_configuration;
bool m_verification_true_false;
double m_verification_rms;
double m_verification_dist;
string m_type_string;
vector<double> m_measured_times;
double m_mean_times;
double m_stddev_times;
public:
TestCaseWithTimeMeasurements()
:m_verification_true_false ( false )
,m_verification_rms ( 0.0 )
,m_verification_dist ( 0.0 )
,m_mean_times ( 0.0 )
,m_stddev_times ( 0.0 )
{;}
virtual ~TestCaseWithTimeMeasurements(){;}
void setDataElementType(const TestDataElementType data_type ) {
m_configuration.setDataElementType( data_type );
}
void setVector( const int dimension ) {
m_configuration.setVector(dimension);
}
void setMatrixColMajor( const int row, const int col ) {
m_configuration.setMatrixColMajor( row, col );
}
void setMatrixRowMajor( const int row, const int col ) {
m_configuration.setMatrixRowMajor( row, col );
}
void setMatrixSparse( const int row, const int col, const int nnz ) {
m_configuration.setMatrixSparse( row, col, nnz );
}
void setSOA( const int dimension ) {
m_configuration.setSOA(dimension);
}
void setAOS( const int dimension ) {
m_configuration.setAOS(dimension);
}
void setRandomDiagonallyDominantSkewSymmetric( const int dimension ) {
m_configuration.setRandomDiagonallyDominantSkewSymmetric( dimension );
}
void setRandomDiagonallyDominantSymmetric( const int dimension ) {
m_configuration.setRandomDiagonallyDominantSymmetric( dimension );
}
void setRealNonsymmetricMu02( const int dimension ) {
m_configuration.setRealNonsymmetricMu02( dimension );
}
void setRealNonsymmetricMu08( const int dimension ) {
m_configuration.setRealNonsymmetricMu08( dimension );
}
void setRealSymmetric( const int dimension ) {
m_configuration.setRealSymmetric( dimension );
}
void setVerificationType( const TestDataVerificationType t ) {
m_configuration.setVerificationType( t );
}
void setMemcpy( const int num_threads ) {
m_configuration.setMemcpy( num_threads );
}
void setCPPBlock( const int num_threads, const int factor_loop_unrolling ) {
m_configuration.setCPPBlock( num_threads, factor_loop_unrolling );
}
void setColumnCholesky() {
m_configuration.setColumnCholesky();
}
void setSubmatrixCholesky() {
m_configuration.setSubmatrixCholesky();
}
void setCPPInterleaved( const int num_threads, const int factor_loop_unrolling ) {
m_configuration.setCPPInterleaved( num_threads, factor_loop_unrolling );
}
void setNEON( const int num_threads, const int factor_loop_unrolling ) {
m_configuration.setNEON( num_threads, factor_loop_unrolling );
}
void setBoostSampleSort( const int num_threads ) {
m_configuration.setBoostSampleSort( num_threads );
}
void setMetal( const MetalImplementationType t, const int groups_per_grid, const int threads_per_group ) {
m_configuration.setMetal( t, groups_per_grid, threads_per_group );
}
void setImplementationType( const ImplementationType t ) {
m_configuration.setImplementationType( t );
}
void addTime( const double microseconds ) {
m_measured_times.push_back( microseconds );
}
void setTrueFalse( const bool t ) {
m_verification_true_false = t;
}
void setRMS( const double rms) {
m_verification_rms = rms;
}
void setDist( const double dist) {
m_verification_dist = dist;
}
void calculateMeanStddevOfTime() {
m_mean_times = 0.0;
const double len = m_measured_times.size();
for ( auto v : m_measured_times ) {
m_mean_times += v;
}
m_mean_times /= len;
m_stddev_times = 0.0;
for ( auto v : m_measured_times ) {
const double diff = v - m_mean_times;
const double sq = diff * diff;
m_stddev_times += sq;
}
m_stddev_times /= ( len - 1 );
}
static void printHeader(ostream& os) {
TestCaseConfiguration::printHeader( os );
os << "\t";
os << "vefirication value";
os << "\t";
os << "mean time milliseconds";
os << "\t";
os << "stddev milliseconds";
os << "\n";
}
virtual ostream& printBrief( ostream& os ) {
m_configuration.printBrief( os );
return os;
}
virtual void printExtra(ostream& os) { }
virtual ostream& print( ostream& os ) {
os << setprecision(8);
m_configuration.print( os );
os << "\t";
switch ( m_configuration.verificationType() ) {
case TRUE_FALSE:
os << ( m_verification_true_false ? "TRUE" : "FALSE" );
break;
case RMS:
os << m_verification_rms;
break;
case DISTANCE:
os << m_verification_dist;
break;
default:
break;
}
os << "\t";
os << ( m_mean_times * 1000.0 );
os << "\t";
os << ( m_stddev_times * 1000.0 );
printExtra( os );
os << "\n";
return os;
}
virtual void run() = 0;
virtual void prologue() {}
virtual void epilogue() {}
};
class TestExecutor {
protected:
vector< shared_ptr< TestCaseWithTimeMeasurements > > m_test_cases;
const int m_num_trials;
ostream& m_os;
public:
TestExecutor( ostream& os, const int num_trials )
:m_num_trials( num_trials )
,m_os(os){;}
virtual ~TestExecutor(){;}
void addTestCase( shared_ptr< TestCaseWithTimeMeasurements>&& c ) {
m_test_cases.emplace_back( c );
}
virtual void prepareForBatchRuns ( const int test_case ){;}
virtual void cleanupAfterBatchRuns ( const int test_case ){;}
virtual void prepareForRun ( const int test_case, const int num ){;}
virtual void cleanupAfterRun ( const int test_case, const int num ){;}
void execute() {
for ( int i = 0; i < m_test_cases.size(); i++ ) {
auto test_case = m_test_cases[i];
cerr << "Testing [";
test_case->printBrief( cerr );
cerr << "] ";
prepareForBatchRuns(i);
for ( int j = 0; j < m_num_trials + 1; j++ ) {
cerr << "." << flush;
prepareForRun(i, j);
test_case->prologue();
auto time_begin = chrono::high_resolution_clock::now();