-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
104 lines (89 loc) · 3.51 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
class bcolors:
HEADER = '\033[95m'
OKBLUE = '\033[94m'
OKGREEN = '\033[92m'
WARNING = '\033[93m'
FAIL = '\033[91m'
ENDC = '\033[0m'
BOLD = '\033[1m'
UNDERLINE = '\033[4m'
class ModelToBreak(nn.Module):
def __init__(self):
super(ModelToBreak, self).__init__()
self.conv1 = nn.Conv2d(3, 16, 5)
self.conv2 = nn.Conv2d(16, 32, 5)
self.conv3 = nn.Conv2d(32, 64, 5)
self.conv4 = nn.Conv2d(64, 128, 5)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(128 * 5 * 5, 240)
self.fc2 = nn.Linear(240, 120)
self.fc3 = nn.Linear(120, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = self.pool(F.relu(self.conv3(x)))
x = self.pool(F.relu(self.conv4(x)))
# print(x.shape)
x = x.reshape(-1, 128 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def train(model, optimizer, loss_fun, train_data ,test_data, epochs = 20, device = 'cuda'):
'''
Train function:
parameters:
model : PyTorch Model
optimizer : optimizer object
loss_fun : Loss Function object
train_data : CIFAR10 train dataloader
test_data : CIFAR10 test dataloader
batch_size : default value 100
epochs : default value 20
device : 'cuda' or 'cpu', default 'cuda'
'''
max_accurracy = 0.0
for epoch in range(epochs):
start = time.time()
training_loss = 0.0
valid_loss = 0.0
model.train()
correct = 0
total = 0
for batch in train_data:
train_images, train_labels = batch
train_images = train_images.to(device)
train_labels = train_labels.to(device)
optimizer.zero_grad()
output = model(train_images)
loss = loss_fun(output, train_labels)
loss.backward()
optimizer.step()
training_loss += loss.item()
_, predicted = torch.max(output.data, 1)
total += train_labels.size(0)
correct += (predicted == train_labels).sum().item()
training_accuracy = correct/total * 100
model.eval()
correct = 0
total = 0
with torch.no_grad():
for batch in test_data:
test_images, test_labels = batch
test_images = test_images.to(device)
test_labels = test_labels.to(device)
output = model(test_images)
loss = loss_fun(output,test_labels)
valid_loss += loss.item()
_, predicted = torch.max(output.data, 1)
total += test_labels.size(0)
correct += (predicted == test_labels).sum().item()
testing_accuracy = correct/total * 100
if (testing_accuracy > max_accurracy):
max_accurracy = testing_accuracy
torch.save(model, './saved_models/best_model_2')
print(f'{bcolors.OKGREEN}Epoch:{bcolors.ENDC} {epoch + 1}, {bcolors.OKGREEN}Training Loss:{bcolors.ENDC} {training_loss:.5f}, {bcolors.OKGREEN}Validation Loss:{bcolors.ENDC} {valid_loss:.5f}, {bcolors.OKGREEN}Training accuracy:{bcolors.ENDC} {training_accuracy:.2f} %, {bcolors.OKGREEN}Testing accuracy:{bcolors.ENDC} {testing_accuracy:.2f} %, {bcolors.OKGREEN}time:{bcolors.ENDC} {time.time() - start:.2f} s')