forked from leftthomas/DANet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_net_new.py
243 lines (216 loc) · 9.34 KB
/
train_net_new.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Detection Training Script.
This scripts reads a given config file and runs the training or evaluation.
It is an entry point that is made to train standard models in detectron2.
In order to let one script support training of many models,
this script contains logic that are specific to these built-in models and therefore
may not be suitable for your own project.
For example, your research project perhaps only needs a single "evaluator".
Therefore, we recommend you to use detectron2 as an library and take
this file as an example of how to use the library.
You may want to write your own script with your datasets and other customizations.
"""
import logging
import os
from collections import OrderedDict
import cv2
import numpy as np
import re
import glob
import detectron2.utils.comm as comm
import torch
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import MetadataCatalog, DatasetCatalog
from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, hooks, launch
from detectron2.evaluation import (
CityscapesInstanceEvaluator,
CityscapesSemSegEvaluator,
COCOEvaluator,
COCOPanopticEvaluator,
DatasetEvaluators,
LVISEvaluator,
PascalVOCDetectionEvaluator,
SemSegEvaluator,
verify_results,
)
from detectron2.modeling import GeneralizedRCNNWithTTA
from detectron2.engine import DefaultPredictor
from detectron2.structures import Instances
from detectron2.utils.visualizer import Visualizer, VisImage
from danet import add_danet_config
def get_depth_dicts():
dataset_dicts = []
depth_path = "/ocean/projects/cis230005p/bansals/kitti360/KITTI-360/depth_image_000000"
segmentation_path = "/ocean/projects/cis230005p/bansals/kitti360/KITTI-360/data_2d_semantics/train/2013_05_28_drive_0000_sync/image_00/semantic"
for frame in range (2000, 3000, 1):
record = {}
record["file_name"] = os.path.join(depth_path, '%010d.png' % frame)
record["image_id"] = frame
record["height"] = 376
record["width"] = 1408
record["sem_seg_file_name"] = os.path.join(segmentation_path, '%010d.png' % frame)
dataset_dicts.append(record)
return dataset_dicts
class Trainer(DefaultTrainer):
"""
We use the "DefaultTrainer" which contains a number pre-defined logic for
standard training workflow. They may not work for you, especially if you
are working on a new research project. In that case you can use the cleaner
"SimpleTrainer", or write your own training loop.
"""
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
"""
Create evaluator(s) for a given dataset.
This uses the special metadata "evaluator_type" associated with each builtin dataset.
For your own dataset, you can simply create an evaluator manually in your
script and do not have to worry about the hacky if-else logic here.
"""
if output_folder is None:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
evaluator_list = []
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
if evaluator_type in ["sem_seg", "coco_panoptic_seg"]:
evaluator_list.append(
SemSegEvaluator(
dataset_name,
distributed=True,
num_classes=cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES,
ignore_label=cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE,
output_dir=output_folder,
)
)
if evaluator_type in ["coco", "coco_panoptic_seg"]:
evaluator_list.append(COCOEvaluator(dataset_name, cfg, True, output_folder))
if evaluator_type == "coco_panoptic_seg":
evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder))
#if evaluator_type == "cityscapes":
#assert (
# torch.cuda.device_count() >= comm.get_rank()
#), "CityscapesEvaluator currently do not work with multiple machines."
#return CityscapesEvaluator(dataset_name)
if evaluator_type == "cityscapes_instance":
return CityscapesInstanceEvaluator(dataset_name)
if evaluator_type == "cityscapes_sem_seg":
return CityscapesSemSegEvaluator(dataset_name)
if evaluator_type == "pascal_voc":
return PascalVOCDetectionEvaluator(dataset_name)
if evaluator_type == "lvis":
return LVISEvaluator(dataset_name, cfg, True, output_folder)
if len(evaluator_list) == 0:
raise NotImplementedError(
"no Evaluator for the dataset {} with the type {}".format(
dataset_name, evaluator_type
)
)
if len(evaluator_list) == 1:
return evaluator_list[0]
return DatasetEvaluators(evaluator_list)
@classmethod
def test_with_TTA(cls, cfg, model):
logger = logging.getLogger("detectron2.trainer")
# In the end of training, run an evaluation with TTA
# Only support some R-CNN models.
logger.info("Running inference with test-time augmentation ...")
model = GeneralizedRCNNWithTTA(cfg, model)
evaluators = [
cls.build_evaluator(
cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference_TTA")
)
for name in cfg.DATASETS.TEST
]
res = cls.test(cfg, model, evaluators)
res = OrderedDict({k + "_TTA": v for k, v in res.items()})
return res
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
add_danet_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
#cfg.DATASETS.TRAIN = ("depth_train",)
#cfg.DATASETS.TEST = ()
default_setup(cfg, args)
return cfg
def main(args):
cfg = setup(args)
DatasetCatalog.register("depth_train", get_depth_dicts)
#image_file = '/ocean/projects/cis230005p/bansals/DANet_new/DANet/datasets/cityscapes/leftImg8bit/test/kitti_000000_10_leftImg8bit.png'
if args.eval_only:
model = Trainer.build_model(cfg)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
res = Trainer.test(cfg, model)
if comm.is_main_process():
verify_results(cfg, res)
if cfg.TEST.AUG.ENABLED:
res.update(Trainer.test_with_TTA(cfg, model))
predictor = DefaultPredictor(cfg)
for image_file in glob.glob('/ocean/projects/cis230005p/bansals/DANet_new/DANet/datasets/kitti/testing/image_2/*.png'):
head, tail = os.path.split(image_file)
img: np.ndarray = cv2.imread(image_file)
predictions = predictor(img)
metadata = MetadataCatalog.get(cfg.DATASETS.TRAIN[0])
color_map = {}
color_map[0] = (255, 153, 0)
color_map[1] = (224, 224, 224)
color_map[2] = (255, 0, 0)
color_map[3] = (255, 224, 32)
color_map[4] = (128, 128, 128)
color_map[5] = (96, 255, 128)
color_map[6] = (128, 0, 0)
color_map[7] = (0, 255, 0)
color_map[8] = (0, 128, 0)
color_map[9] = (160, 128, 96)
color_map[10] = (80, 208, 255)
color_map[11] = (255, 96, 208)
color_map[12] = (0, 32, 255)
color_map[13] = (160, 32, 255)
color_map[14] = (153, 153, 255)
color_map[15] = (102, 102, 153)
color_map[16] = (0, 128, 128)
color_map[17] = (0, 51, 0)
color_map[18] = (255, 208, 160)
metadata.stuff_colors = color_map
#output: Instances = predictor(img)["instances"]
v = Visualizer(img[:, :, ::-1],
metadata,
scale=1.0)
# result: VisImage = v.draw_instance_predictions(output)
result: VisImage = v.draw_sem_seg(predictions["sem_seg"].argmax(dim=0).to("cpu"))
result_image: np.ndarray = result.get_image()[:, :, ::-1]
#out_file_name: str = re.search(r"(.*)\.", image_file).group(0)[:-1]
#out_file_name += "_processed.png"
frame_name = os.path.splitext(tail)[0]
out_file_path = '/ocean/projects/cis230005p/bansals/DANet_new/DANet/datasets/kitti/testing/image_2_results/'
out_file = out_file_path + frame_name + '.png'
cv2.imwrite(out_file, result_image)
return res
"""
If you'd like to do anything fancier than the standard training logic,
consider writing your own training loop or subclassing the trainer.
"""
trainer = Trainer(cfg)
trainer.resume_or_load(resume=args.resume)
if cfg.TEST.AUG.ENABLED:
trainer.register_hooks(
[hooks.EvalHook(0, lambda: trainer.test_with_TTA(cfg, trainer.model))]
)
return trainer.train()
if __name__ == "__main__":
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)