forked from bernard0047/frame-interpolation-VLR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinstantngp_dataloader.py
99 lines (80 loc) · 3.59 KB
/
instantngp_dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import os
import shutil
from glob import glob
from tqdm import tqdm
import numpy as np
path = '/home/iam-loki/Documents/XinyuWang/16824/project/emavfi_data/dataset' # Path to dataset
# # move subfolders from each class so that 44classes -> 99object folder
# for class_folder in tqdm(os.listdir(path)):
# class_path = os.path.join(path, class_folder)
# if os.path.isdir(class_path):
# for version_folder in os.listdir(class_path):
# version_path = os.path.join(class_path, version_folder)
# if os.path.isdir(version_path):
# new_version_path = os.path.join(path, version_folder)
# shutil.move(version_path, new_version_path)
# if not os.listdir(class_path):
# os.rmdir(class_path)
# /home/iam-loki/Documents/XinyuWang/16824/project/emavfi_data/
# ├── dataset_45/
# │ ├── train/
# │ │ ├── 107_12753_23606/
# │ │ │ └── images/
# │ │ ├── 119_13962_28926/
# │ │ │ └── images/
# │ │ └── [other train subfolders with 45 images each]
# │ └── test/
# │ ├── 245_26182_52130/
# │ │ └── images/
# │ ├── 247_26469_51778/
# │ │ └── images/
# │ └── [other test subfolders with 45 images each]
# ├── dataset_36/
# │ ├── train/
# │ │ ├── 107_12753_23606/
# │ │ │ └── images/
# │ │ ├── 119_13962_28926/
# │ │ │ └── images/
# │ │ └── [other train subfolders with 36 images each]
# │ └── test/
# │ ├── 245_26182_52130/
# │ │ └── images/
# │ ├── 247_26469_51778/
# │ │ └── images/
# │ └── [other test subfolders with 36 images each]
# └── dataset_18/
# ├── train/
# │ ├── 107_12753_23606/
# │ │ └── images/
# │ ├── 119_13962_28926/
# │ │ └── images/
# │ └── [other train subfolders with 18 images each]
# └── test/
# ├── 245_26182_52130/
# │ └── images/
# ├── 247_26469_51778/
# │ └── images/
# └── [other test subfolders with 18 images each]
def pick_and_save_images(image_paths, num_images, save_folder):
selected_indices = np.linspace(0, len(image_paths) - 1, num_images, dtype=int)
selected_images = [image_paths[i] for i in selected_indices]
images_save_folder = os.path.join(save_folder, 'images')
if not os.path.exists(images_save_folder):
os.makedirs(images_save_folder)
for img_path in selected_images:
shutil.copy(img_path, images_save_folder)
# Iterate over different numbers of images
for num_images in [45, 36, 18]:
new_path = f'/home/iam-loki/Documents/XinyuWang/16824/project/emavfi_data/dataset_{num_images}'
# Iterate over train and test folders
for split_folder in ['train', 'test']:
split_path = os.path.join(path, split_folder)
new_split_path = os.path.join(new_path, split_folder)
if not os.path.exists(new_split_path):
os.makedirs(new_split_path)
# Iterate over each subfolder within train/test
for sub in tqdm(sorted(os.listdir(split_path))):
sub_path = os.path.join(split_path, sub)
ims = sorted(glob(os.path.join(sub_path, 'images', '*.jpg')))
new_sub_path = os.path.join(new_split_path, sub)
pick_and_save_images(ims, num_images, new_sub_path)