forked from bernard0047/frame-interpolation-VLR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocessing.py
98 lines (81 loc) · 2.27 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import os
import cv2
import shutil
from glob import glob
import numpy as np
from tqdm import tqdm
from natsort import natsorted
def constructBoundary(mask):
h, w = mask.shape
top_row = mask[0, :]
bottom_row = mask[h-1, :]
left_col = mask[1:h-1, 0]
right_col = mask[1:h-1, w-1]
boundary = np.concatenate(
(top_row, right_col, bottom_row[::-1], left_col[::-1]))
return boundary
def isOutside(mask):
mask_np = np.asarray(mask)
boundary = constructBoundary(mask_np)
return np.any(boundary != 0)
def isEmptyFrame(mask):
mean = mask.mean()
return mean < 10
path = 'dataset'
total_black = []
total_bdry = []
for obj in os.listdir(path):
path2 = os.path.join(path, obj)
for sub in tqdm(os.listdir(path2)):
path3 = os.path.join(path2, sub)
ims = glob(path3+'/images/*')
# masks = glob(path3+'/masks/*')
bdy = []
blacks = []
ims = natsorted(ims)
i = 0
for im in ims:
im_name = im.split('/')[-1].split('.')[0]
mask_path = os.path.join(path3, 'masks', im_name+'.png')
# print(mask_path,im)
mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
# im = cv2.imread(im)
# print(im.shape, mask.shape)
if isEmptyFrame(mask):
blacks.append(mask_path)
print(im, mask_path)
# os.remove(im)
# os.remove(mask_path)
# print("empty")
# elif isOutside(mask):
# bdy.append(mask)
# print("yes")
else:
pass
# i+=1
# if i==5:
# exit()
# print("there are ",i," images outside boundaries")
# total_black.append(len(blacks))
# total_bdry.append(len(bdy))
# if len(blacks)>70:
# print(path3)
# exit()
# print(len(bdy))
# print(len(blacks))
# print()
# print()
# a = np.array(total_black)
# b = np.array(total_bdry)
# print(a.mean(), b.mean())
# print(len(a))
# print()
# print((a > 50).sum())
# print((a > 90).sum())
# print()
# print("---")
# print((b > 10).sum())
# print((b > 20).sum())
# print((b > 30).sum())
# print((b > 50).sum())
# print(i)