forked from arnab2001/DSA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Longest Common Subsequence.cpp
94 lines (61 loc) · 1.77 KB
/
Longest Common Subsequence.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
// cpp code for finding length of "Longest Common Subsequence"
/*
Problem Statement:
Given two strings text1 and text2, return the length of their longest common subsequence. If there is no common subsequence, return 0.
e.g-
Input: text1 = "abcde", text2 = "ace"
Output: 3
Input: text1 = "abc", text2 = "def"
Output: 0
*/
// Method1: Time Complexity- O(mn), Space Complexity- O(mn)
// code
#include <bits/stdc++.h>
using namespace std;
int longestCommonSubsequence(string &a, string &b) {
vector<vector<int>> m(a.size() + 1, vector<int>(b.size() + 1));
for (auto i = 1; i <= a.size(); ++i)
{
for (auto j = 1; j <= b.size(); ++j)
{
if (a[i - 1] == b[j - 1]) m[i][j] = m[i - 1][j - 1] + 1;
else m[i][j] = max(m[i - 1][j], m[i][j - 1]);
}
}
return m[a.size()][b.size()];
}
// Driver code
int main()
{
string a, b;
cin >> a;
cin >> b;
cout << longestCommonSubsequence(a, b);
return 0;
}
// Method2: Time Complexity- O(mn), Space Complexity- O(min(m, n))
// code
#include <bits/stdc++.h>
using namespace std;
int longestCommonSubsequence(string &a, string &b) {
if (a.size() < b.size()) return longestCommonSubsequence(b, a);
vector<vector<int>> m(2, vector<int>(b.size() + 1));
for (auto i = 1; i <= a.size(); ++i)
{
for (auto j = 1; j <= b.size(); ++j)
{
if (a[i - 1] == b[j - 1]) m[i % 2][j] = m[(i -1) % 2][j - 1] + 1;
else m[i % 2][j] = max(m[(i - 1) % 2][j], m[i % 2][j - 1]);
}
}
return m[a.size() % 2][b.size()];
}
// Driver code
int main()
{
string a, b;
cin >> a;
cin >> b;
cout << longestCommonSubsequence(a, b);
return 0;
}