forked from nilanshnet/email-spam-detection-aws
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sms_spam_classifier_utilities.py
124 lines (113 loc) · 4.77 KB
/
sms_spam_classifier_utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import string
import sys
import numpy as np
from hashlib import md5
if sys.version_info < (3,):
maketrans = string.maketrans
else:
maketrans = str.maketrans
def vectorize_sequences(sequences, vocabulary_length):
results = np.zeros((len(sequences), vocabulary_length))
for i, sequence in enumerate(sequences):
results[i, sequence] = 1.
return results
def one_hot_encode(messages, vocabulary_length):
data = []
for msg in messages:
temp = one_hot(msg, vocabulary_length)
data.append(temp)
return data
def text_to_word_sequence(text,
filters='!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n',
lower=True, split=" "):
"""Converts a text to a sequence of words (or tokens).
# Arguments
text: Input text (string).
filters: list (or concatenation) of characters to filter out, such as
punctuation. Default: `!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n`,
includes basic punctuation, tabs, and newlines.
lower: boolean. Whether to convert the input to lowercase.
split: str. Separator for word splitting.
# Returns
A list of words (or tokens).
"""
if lower:
text = text.lower()
if sys.version_info < (3,):
if isinstance(text, unicode):
translate_map = dict((ord(c), unicode(split)) for c in filters)
text = text.translate(translate_map)
elif len(split) == 1:
translate_map = maketrans(filters, split * len(filters))
text = text.translate(translate_map)
else:
for c in filters:
text = text.replace(c, split)
else:
translate_dict = dict((c, split) for c in filters)
translate_map = maketrans(translate_dict)
text = text.translate(translate_map)
seq = text.split(split)
return [i for i in seq if i]
def one_hot(text, n,
filters='!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n',
lower=True,
split=' '):
"""One-hot encodes a text into a list of word indexes of size n.
This is a wrapper to the `hashing_trick` function using `hash` as the
hashing function; unicity of word to index mapping non-guaranteed.
# Arguments
text: Input text (string).
n: int. Size of vocabulary.
filters: list (or concatenation) of characters to filter out, such as
punctuation. Default: `!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n`,
includes basic punctuation, tabs, and newlines.
lower: boolean. Whether to set the text to lowercase.
split: str. Separator for word splitting.
# Returns
List of integers in [1, n]. Each integer encodes a word
(unicity non-guaranteed).
"""
return hashing_trick(text, n,
hash_function='md5',
filters=filters,
lower=lower,
split=split)
def hashing_trick(text, n,
hash_function=None,
filters='!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n',
lower=True,
split=' '):
"""Converts a text to a sequence of indexes in a fixed-size hashing space.
# Arguments
text: Input text (string).
n: Dimension of the hashing space.
hash_function: defaults to python `hash` function, can be 'md5' or
any function that takes in input a string and returns a int.
Note that 'hash' is not a stable hashing function, so
it is not consistent across different runs, while 'md5'
is a stable hashing function.
filters: list (or concatenation) of characters to filter out, such as
punctuation. Default: `!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n`,
includes basic punctuation, tabs, and newlines.
lower: boolean. Whether to set the text to lowercase.
split: str. Separator for word splitting.
# Returns
A list of integer word indices (unicity non-guaranteed).
`0` is a reserved index that won't be assigned to any word.
Two or more words may be assigned to the same index, due to possible
collisions by the hashing function.
The [probability](
https://en.wikipedia.org/wiki/Birthday_problem#Probability_table)
of a collision is in relation to the dimension of the hashing space and
the number of distinct objects.
"""
if hash_function is None:
hash_function = hash
elif hash_function == 'md5':
hash_function = lambda w: int(md5(w.encode()).hexdigest(), 16)
seq = text_to_word_sequence(text,
filters=filters,
lower=lower,
split=split)
return [int(hash_function(w) % (n - 1) + 1) for w in seq]