Skip to content

Commit cca3578

Browse files
author
Shunichi09
committed
Remove and Add: Clear all version1.0 files and folders, and Added version2.0 files
1 parent 4b8ff4c commit cca3578

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

72 files changed

+2105
-7132
lines changed

.gitignore

+132-8
Original file line numberDiff line numberDiff line change
@@ -1,10 +1,134 @@
1-
*.csv
2-
*.log
3-
*.pickle
4-
*.mp4
1+
# folders
2+
.vscode/
3+
.pytest_cache/
4+
result/
55

6-
.cache/
7-
.eggs/
6+
# Byte-compiled / optimized / DLL files
87
__pycache__/
9-
.pytest_cache
10-
cache/
8+
*.py[cod]
9+
*$py.class
10+
11+
# C extensions
12+
*.so
13+
14+
# Distribution / packaging
15+
.Python
16+
build/
17+
develop-eggs/
18+
dist/
19+
downloads/
20+
eggs/
21+
.eggs/
22+
lib/
23+
lib64/
24+
parts/
25+
sdist/
26+
var/
27+
wheels/
28+
pip-wheel-metadata/
29+
share/python-wheels/
30+
*.egg-info/
31+
.installed.cfg
32+
*.egg
33+
MANIFEST
34+
35+
# PyInstaller
36+
# Usually these files are written by a python script from a template
37+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
38+
*.manifest
39+
*.spec
40+
41+
# Installer logs
42+
pip-log.txt
43+
pip-delete-this-directory.txt
44+
45+
# Unit test / coverage reports
46+
htmlcov/
47+
.tox/
48+
.nox/
49+
.coverage
50+
.coverage.*
51+
.cache
52+
nosetests.xml
53+
coverage.xml
54+
*.cover
55+
*.py,cover
56+
.hypothesis/
57+
.pytest_cache/
58+
59+
# Translations
60+
*.mo
61+
*.pot
62+
63+
# Django stuff:
64+
*.log
65+
local_settings.py
66+
db.sqlite3
67+
db.sqlite3-journal
68+
69+
# Flask stuff:
70+
instance/
71+
.webassets-cache
72+
73+
# Scrapy stuff:
74+
.scrapy
75+
76+
# Sphinx documentation
77+
docs/_build/
78+
79+
# PyBuilder
80+
target/
81+
82+
# Jupyter Notebook
83+
.ipynb_checkpoints
84+
85+
# IPython
86+
profile_default/
87+
ipython_config.py
88+
89+
# pyenv
90+
.python-version
91+
92+
# pipenv
93+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
94+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
95+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
96+
# install all needed dependencies.
97+
#Pipfile.lock
98+
99+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
100+
__pypackages__/
101+
102+
# Celery stuff
103+
celerybeat-schedule
104+
celerybeat.pid
105+
106+
# SageMath parsed files
107+
*.sage.py
108+
109+
# Environments
110+
.env
111+
.venv
112+
env/
113+
venv/
114+
ENV/
115+
env.bak/
116+
venv.bak/
117+
118+
# Spyder project settings
119+
.spyderproject
120+
.spyproject
121+
122+
# Rope project settings
123+
.ropeproject
124+
125+
# mkdocs documentation
126+
/site
127+
128+
# mypy
129+
.mypy_cache/
130+
.dmypy.json
131+
dmypy.json
132+
133+
# Pyre type checker
134+
.pyre/

LICENSE

100755100644
+1-1
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
MIT License
22

3-
Copyright (c) 2018 Shunichi Sekiguchi
3+
Copyright (c) 2020 Shunichi Sekiguchi
44

55
Permission is hereby granted, free of charge, to any person obtaining a copy
66
of this software and associated documentation files (the "Software"), to deal

PythonLinearNonlinearControl/__init__.py

Whitespace-only changes.

PythonLinearNonlinearControl/common/__init__.py

Whitespace-only changes.
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,2 @@
1+
import numpy as np
2+

PythonLinearNonlinearControl/configs/__init__.py

Whitespace-only changes.
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,92 @@
1+
import numpy as np
2+
3+
class FirstOrderLagConfigModule():
4+
# parameters
5+
ENV_NAME = "FirstOrderLag-v0"
6+
TYPE = "Linear"
7+
TASK_HORIZON = 1000
8+
PRED_LEN = 10
9+
STATE_SIZE = 4
10+
INPUT_SIZE = 2
11+
DT = 0.05
12+
# cost parameters
13+
R = np.eye(INPUT_SIZE)
14+
Q = np.eye(STATE_SIZE)
15+
Sf = np.eye(STATE_SIZE)
16+
# bounds
17+
INPUT_LOWER_BOUND = np.array([-0.5, -0.5])
18+
INPUT_UPPER_BOUND = np.array([0.5, 0.5])
19+
# DT_INPUT_LOWER_BOUND = np.array([-0.5 * DT, -0.5 * DT])
20+
# DT_INPUT_UPPER_BOUND = np.array([0.25 * DT, 0.25 * DT])
21+
DT_INPUT_LOWER_BOUND = None
22+
DT_INPUT_UPPER_BOUND = None
23+
24+
def __init__(self):
25+
"""
26+
Args:
27+
save_dit (str): save directory
28+
"""
29+
# opt configs
30+
self.opt_config = {
31+
"Random": {
32+
"popsize": 5000
33+
},
34+
"CEM": {
35+
"popsize": 500,
36+
"num_elites": 50,
37+
"max_iters": 15,
38+
"alpha": 0.3,
39+
"init_var":1.,
40+
"threshold":0.001
41+
},
42+
"MPPI":{
43+
"beta" : 0.6,
44+
"popsize": 5000,
45+
"kappa": 0.9,
46+
"noise_sigma": 0.5,
47+
},
48+
"iLQR":{
49+
},
50+
"cgmres-NMPC":{
51+
},
52+
"newton-NMPC":{
53+
},
54+
}
55+
56+
@staticmethod
57+
def input_cost_fn(u):
58+
""" input cost functions
59+
Args:
60+
u (numpy.ndarray): input, shape(input_size, )
61+
or shape(pop_size, input_size)
62+
Returns:
63+
cost (numpy.ndarray): cost of input, none or shape(pop_size, )
64+
"""
65+
return (u**2) * np.diag(FirstOrderLagConfigModule.R)
66+
67+
@staticmethod
68+
def state_cost_fn(x, g_x):
69+
""" state cost function
70+
Args:
71+
x (numpy.ndarray): state, shape(pred_len, state_size)
72+
or shape(pop_size, pred_len, state_size)
73+
g_x (numpy.ndarray): goal state, shape(state_size, )
74+
or shape(pop_size, state_size)
75+
Returns:
76+
cost (numpy.ndarray): cost of state, none or shape(pop_size, )
77+
"""
78+
return ((x - g_x)**2) * np.diag(FirstOrderLagConfigModule.Q)
79+
80+
@staticmethod
81+
def terminal_state_cost_fn(terminal_x, terminal_g_x):
82+
"""
83+
Args:
84+
terminal_x (numpy.ndarray): terminal state,
85+
shape(state_size, ) or shape(pop_size, state_size)
86+
terminal_g_x (numpy.ndarray): terminal goal state,
87+
shape(state_size, ) or shape(pop_size, state_size)
88+
Returns:
89+
cost (numpy.ndarray): cost of state, none or shape(pop_size, )
90+
"""
91+
return ((terminal_x - terminal_g_x)**2) \
92+
* np.diag(FirstOrderLagConfigModule.Sf)
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,9 @@
1+
from .first_order_lag import FirstOrderLagConfigModule
2+
3+
def make_config(args):
4+
"""
5+
Returns:
6+
config (ConfigModule class): configuration for the each env
7+
"""
8+
if args.env == "FirstOrderLag":
9+
return FirstOrderLagConfigModule()

PythonLinearNonlinearControl/controllers/__init__.py

Whitespace-only changes.
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,135 @@
1+
from logging import getLogger
2+
3+
import numpy as np
4+
import scipy.stats as stats
5+
6+
from .controller import Controller
7+
from ..envs.cost import calc_cost
8+
9+
logger = getLogger(__name__)
10+
11+
class CEM(Controller):
12+
""" Cross Entropy Method for linear and nonlinear method
13+
14+
Attributes:
15+
history_u (list[numpy.ndarray]): time history of optimal input
16+
Ref:
17+
Chua, K., Calandra, R., McAllister, R., & Levine, S. (2018).
18+
Deep reinforcement learning in a handful of trials
19+
using probabilistic dynamics models.
20+
In Advances in Neural Information Processing Systems (pp. 4754-4765).
21+
"""
22+
def __init__(self, config, model):
23+
super(CEM, self).__init__(config, model)
24+
25+
# model
26+
self.model = model
27+
28+
# general parameters
29+
self.pred_len = config.PRED_LEN
30+
self.input_size = config.INPUT_SIZE
31+
32+
# cem parameters
33+
self.alpha = config.opt_config["CEM"]["alpha"]
34+
self.pop_size = config.opt_config["CEM"]["popsize"]
35+
self.max_iters = config.opt_config["CEM"]["max_iters"]
36+
self.num_elites = config.opt_config["CEM"]["num_elites"]
37+
self.epsilon = config.opt_config["CEM"]["threshold"]
38+
self.init_var = config.opt_config["CEM"]["init_var"]
39+
self.opt_dim = self.input_size * self.pred_len
40+
41+
# get bound
42+
self.input_upper_bounds = np.tile(config.INPUT_UPPER_BOUND,
43+
self.pred_len)
44+
self.input_lower_bounds = np.tile(config.INPUT_LOWER_BOUND,
45+
self.pred_len)
46+
47+
# get cost func
48+
self.state_cost_fn = config.state_cost_fn
49+
self.terminal_state_cost_fn = config.terminal_state_cost_fn
50+
self.input_cost_fn = config.input_cost_fn
51+
52+
# init mean
53+
self.init_mean = np.tile((config.INPUT_UPPER_BOUND \
54+
+ config.INPUT_LOWER_BOUND) / 2.,
55+
self.pred_len)
56+
self.prev_sol = self.init_mean.copy()
57+
# init variance
58+
var = np.ones_like(config.INPUT_UPPER_BOUND) \
59+
* config.opt_config["CEM"]["init_var"]
60+
self.init_var = np.tile(var, self.pred_len)
61+
62+
# save
63+
self.history_u = []
64+
65+
def clear_sol(self):
66+
""" clear prev sol
67+
"""
68+
logger.debug("Clear Sol")
69+
self.prev_sol = self.init_mean.copy()
70+
71+
def obtain_sol(self, curr_x, g_xs):
72+
""" calculate the optimal inputs
73+
74+
Args:
75+
curr_x (numpy.ndarray): current state, shape(state_size, )
76+
g_xs (numpy.ndarrya): goal trajectory, shape(plan_len, state_size)
77+
Returns:
78+
opt_input (numpy.ndarray): optimal input, shape(input_size, )
79+
"""
80+
# initialize
81+
opt_count = 0
82+
83+
# get configuration
84+
mean = self.prev_sol.flatten().copy()
85+
var = self.init_var.flatten().copy()
86+
87+
# make distribution
88+
X = stats.truncnorm(-1, 1,
89+
loc=np.zeros_like(mean),\
90+
scale=np.ones_like(mean))
91+
92+
while (opt_count < self.max_iters) and np.max(var) > self.epsilon:
93+
# constrained
94+
lb_dist = mean - self.input_lower_bounds
95+
ub_dist = self.input_upper_bounds - mean
96+
constrained_var = np.minimum(np.minimum(np.square(lb_dist),
97+
np.square(ub_dist)),
98+
var)
99+
100+
# sample
101+
samples = X.rvs(size=[self.pop_size, self.opt_dim]) \
102+
* np.sqrt(constrained_var) \
103+
+ mean
104+
105+
# calc cost
106+
# samples.shape = (pop_size, opt_dim)
107+
costs = self.calc_cost(curr_x,
108+
samples.reshape(self.pop_size,
109+
self.pred_len,
110+
self.input_size),
111+
g_xs)
112+
113+
# sort cost
114+
elites = samples[np.argsort(costs)][:self.num_elites]
115+
116+
# new mean
117+
new_mean = np.mean(elites, axis=0)
118+
new_var = np.var(elites, axis=0)
119+
120+
# soft update
121+
mean = self.alpha * mean + (1. - self.alpha) * new_mean
122+
var = self.alpha * var + (1. - self.alpha) * new_var
123+
124+
logger.debug("Var = {}".format(np.max(var)))
125+
logger.debug("Costs = {}".format(np.mean(costs)))
126+
opt_count += 1
127+
128+
sol = mean.copy()
129+
self.prev_sol = np.concatenate((mean[self.input_size:],
130+
np.zeros(self.input_size)))
131+
132+
return sol.reshape(self.pred_len, self.input_size).copy()[0]
133+
134+
def __str__(self):
135+
return "CEM"

0 commit comments

Comments
 (0)