-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
209 lines (163 loc) · 6.06 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# Train model to detect errors in code
import os
import glob
import sys
import numpy as np
import tensorflow as tf
from readDataset import readDataset
from tensorflow.keras import layers, models, losses
from autoencoder import Autoencoder
#import setGPU
# Constants for training
DATASET_DIR = "./dataset"
BATCH_SIZE = 64
SHUFFLE_BUFFER_SIZE = 100
EPOCHS = 20
def getNormals(dataset, rgb=False):
if rgb:
normals = np.zeros((0, 80, 80, 3))
else:
normals = np.zeros((0, 80, 80, 1))
for idx, codeBlock in enumerate(dataset):
if idx % 2 == 0:
errorBlock = np.copy(codeBlock)
normals = np.insert(normals, normals.shape[0], errorBlock, 0)
return normals
def getAnomalies(dataset, rgb=False):
if rgb:
anomalies = np.zeros((0, 80, 80, 3))
else:
anomalies = np.zeros((0, 80, 80, 1))
for idx, codeBlock in enumerate(dataset):
if idx % 2 == 1:
errorBlock = np.copy(codeBlock)
anomalies = np.insert(anomalies, anomalies.shape[0], errorBlock, 0)
return anomalies
def getDataset(rgb=False, autoencoder=False, normalize=False):
# Read Dataset
dataset, labels = readDataset(DATASET_DIR, rgb)
# Normalize data
if normalize:
dataset = dataset / 255.0
# Split Dataset (70/30 split)
seventy = int(np.floor(dataset.shape[0] * 0.7))
if autoencoder:
normalDataset = getNormals(dataset[: seventy])
#anomalyData = getAnomalies()
testDataset = dataset[seventy :]
return normalDataset, testDataset
trainExamples = dataset[: seventy]
trainLabels = labels[: seventy]
testExamples = dataset[seventy :]
testLabels = labels[seventy :]
# Create TF Dataset objects
trainDataset = tf.data.Dataset.from_tensor_slices((trainExamples, trainLabels))
testDataset = tf.data.Dataset.from_tensor_slices((testExamples, testLabels))
return trainDataset, testDataset
def getMultiClassCnn():
# Build model with two neuron output
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), input_shape=(80, 80, 1)))
model.add(layers.BatchNormalization())
model.add(layers.Activation('relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3)))
model.add(layers.BatchNormalization())
model.add(layers.Activation('relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3)))
model.add(layers.BatchNormalization())
model.add(layers.Activation('relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(2))
model.summary()
return model
def getBinaryCnn():
# Build model with single neuron output
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(80, 80, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model.summary()
return model
def getResnet():
# Obtain pretrained ResNet and other layers needed to tweak model for our purposes
resnet = tf.keras.applications.resnet.ResNet50(include_top=False, input_shape=(80,80,3))
resnet.trainable = False
preprocess_input = tf.keras.applications.resnet.preprocess_input
global_average_layer = tf.keras.layers.GlobalAveragePooling2D()
prediction_layer = tf.keras.layers.Dense(1)
# Chain pieces together
inputs = tf.keras.Input(shape=(80,80, 3))
x = preprocess_input(inputs)
x = resnet(x, training=False)
x = global_average_layer(x)
x = tf.keras.layers.Dropout(0.2)(x)
outputs = prediction_layer(x)
model = tf.keras.Model(inputs, outputs)
return model
def getAutoencoder():
model = Autoencoder()
return model
def train():
# Obtain TF datasets
rgb = False
autoencoder = False
normalize = False
trainDataset, testDataset = getDataset(rgb, autoencoder, normalize)
# Shuffle and batch the datasets
if not autoencoder:
trainDataset = trainDataset.shuffle(SHUFFLE_BUFFER_SIZE).batch(BATCH_SIZE)
testDataset = testDataset.batch(BATCH_SIZE)
# Obtain and train model
model = getMultiClassCnn()
#model = getBinaryCnn()
#model = getResnet()
#model = getAutoencoder()
checkpoint_filepath = '../best_model.h5'
model_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
filepath=checkpoint_filepath,
save_weights_only=True,
monitor='val_loss',
mode='min',
save_best_only=True)
# Multi-Model CNN Compilation
model.compile(optimizer=tf.keras.optimizers.RMSprop(),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['sparse_categorical_accuracy'])
# Binary Model CNN Compilation
#model.compile(optimizer=tf.keras.optimizers.RMSprop(),
# loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
# metrics=['accuracy'])
# ResNet Compilation
#base_learning_rate = 0.0001
#model.compile(optimizer=tf.keras.optimizers.Adam(lr=base_learning_rate),
# loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
# metrics=['accuracy'])
model.fit(
trainDataset,
epochs=EPOCHS,
validation_data=testDataset,
callbacks=[model_checkpoint_callback])
# Autoencoder Compilation
#model.compile(optimizer='adam', loss=losses.MeanSquaredError())
#model.fit(trainDataset, trainDataset,
# epochs=EPOCHS,
# shuffle=True,
# validation_data=(testDataset, testDataset),
# callbacks=[model_checkpoint_callback])
# Evaluate model
if not autoencoder:
print("-------------------EVALUATE ON TEST SET--------------------")
model.evaluate(testDataset)
return model, testDataset
if __name__ == "__main__":
train()