-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgloss2pose.py
239 lines (179 loc) · 7.89 KB
/
gloss2pose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import os
import re
from typing import List, Tuple
import numpy as np
import scipy.signal
from scipy.spatial.distance import cdist
from pose_format import Pose
from pose_format.utils.generic import reduce_holistic, correct_wrists, pose_normalization_info
from pose_format.numpy import NumPyPoseBody
from num2words import num2words
# concatenate
def normalize_pose(pose: Pose) -> Pose:
return pose.normalize(pose_normalization_info(pose.header))
def trim_pose(pose: Pose, start=True, end=True):
if len(pose.body.data) == 0:
return pose
wrist_indexes = [
pose.header._get_point_index('LEFT_HAND_LANDMARKS', 'WRIST'),
pose.header._get_point_index('RIGHT_HAND_LANDMARKS', 'WRIST')
]
either_hand = pose.body.confidence[:, 0, wrist_indexes].sum(axis=1) > 0
first_non_zero_index = np.argmax(either_hand) if start else 0
last_non_zero_index = (
len(either_hand) - np.argmax(either_hand[::-1]) - 1) if end else len(either_hand)
pose.body.data = pose.body.data[first_non_zero_index:last_non_zero_index]
pose.body.confidence = pose.body.confidence[first_non_zero_index:last_non_zero_index]
return pose
def concatenate_poses(poses: List[Pose]) -> Pose:
# print('Reducing poses...')
poses = [reduce_holistic(p) for p in poses]
# print('Normalizing poses...')
poses = [normalize_pose(p) for p in poses]
# Trim the poses to only include the parts where the hands are visible
# print('Trimming poses...')
poses = [trim_pose(p, i > 0, i < len(poses) - 1)
for i, p in enumerate(poses)]
# Concatenate all poses
# print('Smooth concatenating poses...')
pose = smooth_concatenate_poses(poses)
# Correct the wrists (should be after smoothing)
# print('Correcting wrists...')
pose = correct_wrists(pose)
# Scale the newly created pose
# print('Scaling pose...')
new_width = 512
shift = 1.25
shift_vec = np.full(
shape=(pose.body.data.shape[-1]), fill_value=shift, dtype=np.float32)
pose.body.data = (pose.body.data + shift_vec) * new_width
pose.header.dimensions.height = pose.header.dimensions.width = int(
new_width * shift * 2)
return pose
# lookup
class PoseLookup:
def __init__(self, directory: str, language: str):
with open(os.path.join(directory, 'words.txt'), mode='r', encoding='utf-8') as f:
words = f.readlines()
self.glosses = set(word.replace("\n", "") for word in words)
self.directory = directory
self.language = language
def read_pose(self, pose_path: str):
pose_path = os.path.join(
self.directory, self.language, pose_path + ".pose")
with open(pose_path, "rb") as f:
return Pose.read(f.read())
def lookup(self, word: str) -> Pose:
word = word.lower().strip()
if word in self.glosses:
return self.read_pose(word)
def lookup_sequence(self, glosses: List[str]) -> Tuple[List[Pose], List[str]]:
poses: List[Pose] = []
words: List[str] = []
for gloss in glosses:
pose = self.lookup(gloss)
if pose:
poses.append(pose)
words.append(gloss)
else:
for char in gloss:
pose = self.lookup(char)
if pose:
poses.append(pose)
words.append(char)
return poses, words
def gloss_to_pose(self, glosses: List[str]) -> Tuple[Pose, List[str]]:
# Transform the list of glosses into a list of poses
poses, words = self.lookup_sequence(glosses)
if poses:
# Concatenate the poses to create a single pose
return concatenate_poses(poses), words
return None, None
# smoothing
def pose_savgol_filter(pose: Pose):
# If we want this to be faster, here is a possible solution
# https://stackoverflow.com/questions/75221888/fast-savgol-filter-on-3d-tensor/75406720#75406720
# Smoothing the face does not result in a good result, so we skip it
[face_component] = [c for c in pose.header.components if c.name == 'FACE_LANDMARKS']
face_range = range(
pose.header._get_point_index(
'FACE_LANDMARKS', face_component.points[0]),
pose.header._get_point_index(
'FACE_LANDMARKS', face_component.points[-1]),
)
_, _, points, dims = pose.body.data.shape
for p in range(points):
if p not in face_range:
for d in range(dims):
pose.body.data[:, 0, p, d] = scipy.signal.savgol_filter(
pose.body.data[:, 0, p, d], 3, 1)
return pose
def create_padding(time: float, example: Pose) -> NumPyPoseBody:
fps = example.body.fps
padding_frames = int(time * fps)
data_shape = example.body.data.shape
return NumPyPoseBody(fps=fps,
data=np.zeros(
shape=(padding_frames, data_shape[1], data_shape[2], data_shape[3])),
confidence=np.zeros(shape=(padding_frames, data_shape[1], data_shape[2])))
def s_concatenate_poses(poses: List[Pose], padding: NumPyPoseBody, interpolation='linear') -> Pose:
# Add padding to all poses except the last one
for pose in poses[:-1]:
pose.body.data = np.concatenate((pose.body.data, padding.data))
pose.body.confidence = np.concatenate(
(pose.body.confidence, padding.confidence))
# Concatenate all tensors
new_data = np.concatenate([pose.body.data for pose in poses])
new_conf = np.concatenate([pose.body.confidence for pose in poses])
new_body = NumPyPoseBody(
fps=poses[0].body.fps, data=new_data, confidence=new_conf)
new_body = new_body.interpolate(kind=interpolation)
return Pose(header=poses[0].header, body=new_body)
def find_best_connection_point(pose1: Pose, pose2: Pose, window=0.3):
p1_size = int(len(pose1.body.data) * window)
p2_size = int(len(pose2.body.data) * window)
last_data = pose1.body.data[len(pose1.body.data) - p1_size:]
first_data = pose2.body.data[:p2_size]
last_vectors = last_data.reshape(len(last_data), -1)
first_vectors = first_data.reshape(len(first_data), -1)
distances_matrix = cdist(last_vectors, first_vectors, 'euclidean')
min_index = np.unravel_index(
np.argmin(distances_matrix, axis=None), distances_matrix.shape)
last_index = len(pose1.body.data) - p1_size + min_index[0]
return last_index, min_index[1]
def smooth_concatenate_poses(poses: List[Pose], padding=0.20) -> Pose:
if len(poses) == 1:
return poses[0]
start = 0
for i, pose in enumerate(poses):
# print('Processing', i + 1, 'of', len(poses), '...')
if i != len(poses) - 1:
end, next_start = find_best_connection_point(
poses[i], poses[i + 1])
else:
end = len(pose.body.data)
next_start = None
pose.body = pose.body[start:end]
start = next_start
padding_pose = create_padding(padding, poses[0])
# print('Concatenating...')
single_pose = s_concatenate_poses(poses, padding_pose)
# print('Smoothing...')
return pose_savgol_filter(single_pose)
# utils
def scale_down(pose: Pose, value: int = 256):
scale = pose.header.dimensions.width / value
pose.header.dimensions.width = int(pose.header.dimensions.width / scale)
pose.header.dimensions.height = int(pose.header.dimensions.height / scale)
pose.body.data = pose.body.data / scale
def scale_up(pose: Pose, value: int = 2):
pose.body.data *= value
pose.header.dimensions.width *= value
pose.header.dimensions.height *= value
def prepare_glosses(sentence: str) -> List[str]:
glosses: List[str] = re.findall(r'\b[a-zA-Z0-9]+\b', sentence.lower())
for i, word in enumerate(glosses):
if word.isdigit():
number_words = num2words(int(word)).split()
glosses[i:i+1] = number_words
return glosses