forked from CIRP-Lab/bpc_baseline
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_pose.py
168 lines (144 loc) · 5.57 KB
/
train_pose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import argparse
import torch
from torch.utils.data import DataLoader, ConcatDataset
import os
import sys
# # The directory containing 'pose' is one level up:
# FILE_DIR = os.path.dirname(os.path.abspath(__file__))
# PARENT_DIR = os.path.dirname(FILE_DIR)
# # Add this parent directory to the path
# sys.path.append(PARENT_DIR)
# Now 'utils' is visible as a direct import
from bpc.utils.data_utils import BOPSingleObjDataset, bop_collate_fn
from bpc.pose.models.simple_pose_net import SimplePoseNet
from bpc.pose.models.losses import EulerAnglePoseLoss
from bpc.pose.trainers.trainer import train_pose_estimation
import torch.optim as optim
def parse_args():
parser = argparse.ArgumentParser(description="Train Pose Estimation Model")
parser.add_argument("--root_dir", type=str, required=True,
help="Path to dataset root directory (with train_pbr)")
parser.add_argument("--target_obj_id", type=int, default=11,
help="Target object ID")
parser.add_argument("--batch_size", type=int, default=32,
help="Batch size for training")
parser.add_argument("--epochs", type=int, default=100,
help="Number of training epochs")
parser.add_argument("--lr", type=float, default=1e-3,
help="Learning rate")
parser.add_argument("--num_workers", type=int, default=4,
help="Number of workers for data loading")
parser.add_argument("--checkpoints_dir", type=str, default="checkpoints",
help="Base directory for checkpoints")
parser.add_argument("--resume", action="store_true",
help="Resume training from the last checkpoint")
return parser.parse_args()
def find_scenes(root_dir):
"""
Return a sorted list of all numeric scene folder names
under root_dir/train_pbr, e.g. ["000000", "000001", ...].
"""
train_pbr_dir = os.path.join(root_dir, "train_pbr")
if not os.path.exists(train_pbr_dir):
raise FileNotFoundError(f"{train_pbr_dir} does not exist")
all_items = os.listdir(train_pbr_dir)
scene_ids = [item for item in all_items if item.isdigit()]
scene_ids.sort()
return scene_ids
def main():
args = parse_args()
# Find all scene folders
scene_ids = find_scenes(args.root_dir)
print(f"[INFO] Found scene_ids={scene_ids}")
# Construct a simpler checkpoint path for object ID only (no single scene)
obj_id = args.target_obj_id
checkpoint_dir = os.path.join(args.checkpoints_dir, f"obj_{obj_id}")
os.makedirs(checkpoint_dir, exist_ok=True)
# Prepare dataset: train (no augment), train (augment), val
train_ds_fixed = BOPSingleObjDataset(
root_dir=args.root_dir,
scene_ids=scene_ids,
cam_ids=["cam1", "cam2", "cam3"],
target_obj_id=args.target_obj_id,
target_size=256,
augment=False,
split="train"
)
train_ds_aug = BOPSingleObjDataset(
root_dir=args.root_dir,
scene_ids=scene_ids,
cam_ids=["cam1", "cam2", "cam3"],
target_obj_id=args.target_obj_id,
target_size=256,
augment=True,
split="train"
)
val_ds = BOPSingleObjDataset(
root_dir=args.root_dir,
scene_ids=scene_ids,
cam_ids=["cam1", "cam2", "cam3"],
target_obj_id=args.target_obj_id,
target_size=256,
augment=False,
split="val"
)
# Print a quick summary so you see the train vs val sizes
print(f"[INFO] train_ds_fixed: {len(train_ds_fixed)} samples")
print(f"[INFO] train_ds_aug: {len(train_ds_aug)} samples")
print(f"[INFO] val_ds: {len(val_ds)} samples")
# Concat the two train sets
train_dataset = ConcatDataset([train_ds_fixed, train_ds_aug])
train_loader = DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
collate_fn=bop_collate_fn
)
val_loader = DataLoader(
val_ds,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers,
collate_fn=bop_collate_fn
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = SimplePoseNet(pretrained=True).to(device) # TODO FIX RESUMEING
# Load checkpoint if resuming
# checkpoint_path = os.path.join(checkpoint_dir, "last_checkpoint.pth")
# checkpoint_path = 'best_model.pth' # TODO UNDO THIS
# if args.resume and os.path.exists(checkpoint_path):
# print(f"[INFO] Loading checkpoint from {checkpoint_path}")
# checkpoint = torch.load(checkpoint_path)
# print(checkpoint.keys())
# model.load_state_dict(checkpoint)
# Initialize criterion and optimizer
criterion = EulerAnglePoseLoss(w_rot=1.0, w_center=1.0)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
if args.resume and os.path.exists(checkpoint_path):
checkpoint = torch.load(checkpoint_path)
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
# Train the model
train_pose_estimation(
model=model,
train_loader=train_loader,
val_loader=val_loader,
criterion=criterion,
optimizer=optimizer,
epochs=args.epochs,
out_dir=checkpoint_dir,
device=device,
resume=args.resume
)
if __name__ == "__main__":
main()
"""
python pose/train.py \
--root_dir datasets/ipd_bop_data_jan25_1 \
--target_obj_id 11 \
--epochs 50 \
--batch_size 32 \
--lr 1e-3 \
--num_workers 16 \
--checkpoints_dir /home/exouser/Desktop/idp_codebase/pose/checkpoints
"""