-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcubic_function.py
84 lines (60 loc) · 2.32 KB
/
cubic_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
"""
This script is an example of how to overfit a cubic function using a small feed forward neural network with only one hidden
layer.
"""
import numpy as np
import tensorflow as tf
import seaborn as sns
import matplotlib.pyplot as plt
# -------------- ** Generating sample data ** ------------------
x = np.linspace(-2.0, 2.0, 200)
x_col = np.reshape(x, (len(x), 1))
y_col = x_col ** 3
# Network parameters
hidden_neurons = 15
learning_rate = 0.5
iterations = 500
# -------------- ** Building the graph ** ------------------
# Input data
x_ph = tf.placeholder(dtype=tf.float32, shape=[None, 1])
y_ph = tf.placeholder(dtype=tf.float32, shape=[None, 1])
# Creating the weights
weights1 = tf.Variable(tf.random_normal([hidden_neurons, 1]), name="W_in-to-hid")
bias1 = tf.Variable(tf.zeros([hidden_neurons]), name="b_in-to-hid")
weights2 = tf.Variable(tf.random_normal([1, hidden_neurons]), name="W_hid-to-out")
bias2 = tf.Variable(tf.zeros([1]), name="b_hid-to-out")
# Model
z2 = tf.add(tf.matmul(x_ph, tf.transpose(weights1)), bias1) # output of layer1, size = n_sample x hidden_neurons
h2 = tf.nn.sigmoid(z2)
model = tf.add(tf.matmul(h2, tf.transpose(weights2)), bias2) # output of last layer, size = n_samples x 1
# Cost function
cost = tf.reduce_mean(tf.nn.l2_loss(t=(model - y_ph)))
# Optimisation operation
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# -------------- ** Running the graph ** ------------------
# Initialisation of the model
init = tf.global_variables_initializer()
training_cost = []
# Running the graph
with tf.Session() as sess:
sess.run(init)
for iter in range(iterations):
opt, c = sess.run([optimizer, cost], feed_dict={x_ph: x_col, y_ph: y_col})
training_cost.append(c)
y_pred = sess.run(model, feed_dict={x_ph: x_col})
# -------- ** Plotting the results ** ------------
sns.set()
fig1, ax1 = plt.subplots(figsize=(6,6))
ax1.scatter(range(len(training_cost)), training_cost, label="Training cost", marker="o")
ax1.set_xlabel('iterations')
ax1.set_ylabel('training cost')
ax1.legend()
plt.show()
# -------- ** Plotting the predictions ** -------------
fig2, ax2 = plt.subplots(figsize=(6,6))
ax2.scatter(x, y_col, label="original", marker="o")
ax2.scatter(x, y_pred, label="predictions", marker="o")
ax2.set_xlabel('x')
ax2.set_ylabel('y')
ax2.legend()
plt.show()