-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathentityRelation.py
executable file
·114 lines (84 loc) · 4.81 KB
/
entityRelation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# -*- coding: utf-8 -*-
# code follow Shaowei Chen, Contact: [email protected]
import sys
import torch
import torch.nn as nn
from tensorDecoposition import TensorDecoposition
from crf import CRF
from wordEmbedding import WordEmbedding
from wordHiddenRep import WordHiddenRep
from FocalLoss import focal_loss
class entityRelation(nn.Module):
def __init__(self, args, model_params):
super(entityRelation, self).__init__()
print("build network...")
self.gpu = args.ifgpu
self.label_size = model_params.label_alphabet.size()
self.bert_encoder_dim = args.encoder_dim #600
self.targetHiddenDim = args.targetHiddenDim #250
self.relationHiddenDim = args.relationHiddenDim #250
self.relation_num = args.relationNum # 24/211
self.l1_weight = args.l1_weight #1
self.drop = args.dropout
# buliding model
# encoding layer
self.Embedding = WordEmbedding(args, model_params)
self.encoder = WordHiddenRep(args, model_params)
# module linear
self.u_input_Linear = nn.Linear(self.bert_encoder_dim, self.targetHiddenDim) # 这里两行是将词向量分别映射到ner空间和re空间 dim 600->250
self.r1_input_Linear = nn.Linear(self.bert_encoder_dim, self.targetHiddenDim)
self.r2_input_Linear = nn.Linear(self.bert_encoder_dim, self.targetHiddenDim)
# Tag Linear
self.targetHidden2Tag = nn.Linear(self.targetHiddenDim, self.label_size + 2) # +2是因为crf需要有头尾两个标志位 dim 250 -> 6
# CRF
self.crf = CRF(self.label_size, self.gpu)
# Relation
self.reconstructTensor = TensorDecoposition(args)
# Dropout
self.dropout = nn.Dropout(self.drop)
if self.gpu:
self.Embedding = self.Embedding.cuda()
self.encoder = self.encoder.cuda()
self.u_input_Linear = self.u_input_Linear.cuda()
self.r1_input_Linear = self.r1_input_Linear.cuda()
self.r2_input_Linear = self.r2_input_Linear.cuda()
self.targetHidden2Tag = self.targetHidden2Tag.cuda()
self.crf = self.crf.cuda()
self.reconstructTensor = self.reconstructTensor.cuda()
self.dropout = self.dropout.cuda()
def neg_log_likelihood_loss(self, all_input_ids, input_length, all_input_mask, all_char_ids,
char_length, char_recover, all_relations, all_labels):
batch_size = all_input_ids.size(0)
seq_len = all_input_ids.size(1)
targetPredictScore, R_tensor = self.mainStructure(all_input_ids, input_length, all_input_mask, all_char_ids,
char_length, char_recover)
target_loss = self.crf.neg_log_likelihood_loss(targetPredictScore, all_input_mask.byte(), all_labels) / (batch_size)
scores, tag_seq = self.crf._viterbi_decode(targetPredictScore, all_input_mask.byte())
relationScale = all_relations.transpose(1, 3).contiguous().view(-1, self.relation_num)
# relation_loss_function = nn.BCELoss(size_average=False) #
relation_loss_function=focal_loss(logits=True) #使用Focalloss来代替BCELoss
relationScoreLoss = R_tensor.transpose(1, 3).contiguous().view(-1, self.relation_num)
relation_loss = relation_loss_function(relationScoreLoss, relationScale.float()) / (batch_size * seq_len)
return target_loss, relation_loss, tag_seq, R_tensor
def forward(self, all_input_ids, input_length, all_input_mask, all_char_ids, char_length, char_recover):
targetPredictScore, R_tensor = self.mainStructure(all_input_ids, input_length, all_input_mask, all_char_ids,
char_length, char_recover)
scores, tag_seq = self.crf._viterbi_decode(targetPredictScore, all_input_mask.byte())
return tag_seq, R_tensor
def mainStructure(self, all_input_ids, input_length, all_input_mask, all_char_ids, char_length, char_recover):
batch_size = all_input_ids.size(0)
seq_len = all_input_ids.size(1)
# encoding layer
wordEmbedding = self.Embedding(all_input_ids, all_char_ids, char_length, char_recover)
maskEmb = all_input_mask.view(batch_size, seq_len, 1).repeat(1, 1, wordEmbedding.size(2))
wordEmbedding = wordEmbedding * (maskEmb.float())
sequence_output = self.encoder(wordEmbedding, input_length)
# module linear
h_t = self.u_input_Linear(sequence_output)
h_r1 = self.r1_input_Linear(sequence_output)
h_r2 = self.r2_input_Linear(sequence_output)
# entity extraction module
targetPredictInput = self.targetHidden2Tag(h_t)
# relation detection module
relationScore = self.reconstructTensor(h_r1,h_r2)
return targetPredictInput, relationScore