-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathexport.py
51 lines (45 loc) · 2.24 KB
/
export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import argparse
import torch
from train import AnimeSegmentation, net_names
def export_onnx(model, img_size, path):
import onnx
from onnxsim import simplify
torch.onnx.export(model, # model being run
torch.randn(1, 3, img_size, img_size), # model input (or a tuple for multiple inputs)
path, # where to save the model (can be a file or file-like object)
export_params=True, # store the trained parameter weights inside the model file
opset_version=11, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=["img"], # the model's input names
output_names=["mask"], # the model's output names
verbose=True
)
onnx_model = onnx.load(path)
model_simp, check = simplify(onnx_model)
assert check, "Simplified ONNX model could not be validated"
onnx.save(model_simp, path)
print('finished exporting onnx')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# model args
parser.add_argument('--net', type=str, default='isnet_is',
choices=net_names,
help='net name')
parser.add_argument('--ckpt', type=str, default='saved_models/isnetis.ckpt',
help='model checkpoint path')
parser.add_argument('--out', type=str, default='saved_models/isnetis.onnx',
help='output path')
parser.add_argument('--to', type=str, default='onnx', choices=["only_state_dict", "only_net_state_dict", "onnx"],
help='export to ()')
parser.add_argument('--img-size', type=int, default=1024,
help='input image size')
opt = parser.parse_args()
print(opt)
model = AnimeSegmentation.try_load(opt.net, opt.ckpt, "cpu",img_size=opt.img_size)
model.eval()
if opt.to == "only_state_dict":
torch.save(model.state_dict(), opt.out)
elif opt.to == "only_net_state_dict":
torch.save(model.net.state_dict(), opt.out)
elif opt.to == "onnx":
export_onnx(model, opt.img_size, opt.out)