forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOptimizerConfig.proto
164 lines (145 loc) · 4.69 KB
/
OptimizerConfig.proto
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
syntax = "proto2";
option optimize_for = LITE_RUNTIME;
package paddle;
message SGDConfig {
// SGD
// momentum: float >= 0. Parameter updates momentum.
// decay: float >= 0. Learning rate decay over each update.
// nesterov: boolean. Whether to apply Nesterov momentum.
optional double momentum = 21 [ default = 0.0 ];
optional double decay = 23 [ default = 0.0 ];
optional bool nesterov = 24 [ default = false ];
}
message AdadeltaConfig {
// Adadelta
// It is recommended to leave it at the default value.
// rho: float >= 0.
// epsilon: float >= 0. Fuzz factor.
// decay: float >= 0. Learning rate decay over each update.
// reference : [Adadelta - an adaptive learning rate
// method](http://arxiv.org/abs/1212.5701)
optional double rho = 33 [ default = 0.90 ];
optional double epsilon = 31 [ default = 1e-5 ];
optional double decay = 32 [ default = 0.0 ];
}
message AdagradConfig {
// Adagrad
// epsilon: float >= 0.
// decay: float >= 0. Learning rate decay over each update.
// reference : [Adaptive Subgradient Methods for Online Learning and
// Stochastic
// Optimization](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
optional double epsilon = 41 [ default = 1e-5 ];
optional double decay = 42 [ default = 0.0 ];
}
message AdamConfig {
// Adaj
// beta_1: float, 0 < beta < 1. Generally close to 1.
// beta_2: float, 0 < beta < 1. Generally close to 1.
// epsilon: float >= 0. Fuzz factor.
// decay: float >= 0. Learning rate decay over each update.
// reference : [Adam - A Method for Stochastic
// Optimization](http://arxiv.org/abs/1412.6980v8)
optional double beta_1 = 41;
optional double beta_2 = 42;
optional double epsilon = 43;
optional double decay = 44;
}
message ConstLrConfig {
// learninRate Policy
optional double learning_rate = 1 [ default = 1.0 ];
}
message LinearLrConfig {
// learninRate Policy
optional double learning_rate = 1 [ default = 1.0 ];
optional double lr_decay_a = 2;
optional double lr_decay_b = 3;
}
message TensorProto {
enum DataType {
PADDLE_ELEMENT_TYPE_INT32 = 0;
PADDLE_ELEMENT_TYPE_UINT32 = 1;
PADDLE_ELEMENT_TYPE_INT64 = 2;
PADDLE_ELEMENT_TYPE_UINT64 = 3;
PADDLE_ELEMENT_TYPE_FLOAT32 = 4;
PADDLE_ELEMENT_TYPE_FLOAT64 = 5;
}
optional DataType data_type = 1;
repeated bytes content = 2;
}
message LrPolicyState {
// learninRate Policy
optional double learning_rate = 1 [ default = 1.0 ];
optional double lr_decay_a = 2;
optional double lr_decay_b = 3;
}
message SGDOptimizerState {
optional LrPolicyState lr_state = 101;
optional double num_sample_passed = 104;
// state
optional TensorProto parameter = 1;
optional TensorProto momentums = 2;
}
message AdadeltaOptimizerState {
// learning rate policy
optional LrPolicyState lr_state = 101;
optional double num_sample_passed = 104;
// state
optional TensorProto parameter = 1;
optional TensorProto accum_gradient = 2;
optional TensorProto accum_delta = 3;
optional TensorProto update_delta = 4;
}
message AdagradOptimizerState {
optional LrPolicyState lr_state = 101;
optional double num_sample_passed = 104;
// state
optional TensorProto parameter = 1;
optional TensorProto accum_gradient = 2;
}
message AdamOptimizerState {
optional LrPolicyState lr_state = 101;
optional double num_sample_passed = 104;
// state
optional TensorProto parameter = 1;
optional TensorProto momentums = 2;
optional TensorProto velocitys = 3;
}
message OptimizerConfig {
enum Optimizer {
SGD = 1;
Adadelta = 2;
Adagrad = 3;
Adam = 4;
}
optional Optimizer optimizer = 1;
optional SGDConfig sgd = 3;
optional AdadeltaConfig adadelta = 4;
optional AdagradConfig adagrad = 5;
optional AdamConfig adam = 6;
enum LrPolicy {
Const = 0;
Linear = 1;
}
optional LrPolicy lr_policy = 11;
optional ConstLrConfig const_lr = 12;
optional LinearLrConfig linear_lr = 13;
// common config of optimizer
// gradient clip when L2 exceeding value
optional double clip_norm = 101;
// gradient clip when L1 exceeding value
optional double clip_value = 102;
}