-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_discri.py
366 lines (300 loc) · 14.3 KB
/
train_discri.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.transforms import Compose, ToTensor, Normalize,Resize
from PIL import Image
import numpy as np
import os
import torchvision.transforms as tranforms
import functools
# 超参数
INPUT_SHAPE = (3, 256, 256) # 输入图像的形状
OUTPUT_SHAPE = (3, 256, 256) # 输出图像的形状
BATCH_SIZE = 1 # 批次大小
EPOCHS = 30 # 训练轮数
LR = 2e-4 # 学习率
PRINT_FREQ = 2
SAVE_FREQ = 2
# 文件路径
TRAIN_PATH = './datasets/train/' # 训练集路径
VAL_PATH = './datasets/val/' # 验证集路径
SAVE_PATH = './models/' # 模型保存路径
#更复杂的生成器
class UnetGenerator(nn.Module):
"""Create a Unet-based generator"""
def __init__(self, input_nc, output_nc, num_downs, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False):
"""Construct a Unet generator
Parameters:
input_nc (int) -- the number of channels in input images
output_nc (int) -- the number of channels in output images
num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7,
image of size 128x128 will become of size 1x1 # at the bottleneck
ngf (int) -- the number of filters in the last conv layer
norm_layer -- normalization layer
We construct the U-Net from the innermost layer to the outermost layer.
It is a recursive process.
"""
super(UnetGenerator, self).__init__()
# construct unet structure
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True) # add the innermost layer
for i in range(num_downs - 5): # add intermediate layers with ngf * 8 filters
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout)
# gradually reduce the number of filters from ngf * 8 to ngf
unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
self.model = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer) # add the outermost layer
def forward(self, input):
"""Standard forward"""
return self.model(input)
class UnetSkipConnectionBlock(nn.Module):
"""Defines the Unet submodule with skip connection.
X -------------------identity----------------------
|-- downsampling -- |submodule| -- upsampling --|
"""
def __init__(self, outer_nc, inner_nc, input_nc=None,
submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False):
"""Construct a Unet submodule with skip connections.
Parameters:
outer_nc (int) -- the number of filters in the outer conv layer
inner_nc (int) -- the number of filters in the inner conv layer
input_nc (int) -- the number of channels in input images/features
submodule (UnetSkipConnectionBlock) -- previously defined submodules
outermost (bool) -- if this module is the outermost module
innermost (bool) -- if this module is the innermost module
norm_layer -- normalization layer
use_dropout (bool) -- if use dropout layers.
"""
super(UnetSkipConnectionBlock, self).__init__()
self.outermost = outermost
if type(norm_layer) == functools.partial:
use_bias = norm_layer.func == nn.InstanceNorm2d
else:
use_bias = norm_layer == nn.InstanceNorm2d
if input_nc is None:
input_nc = outer_nc
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4,
stride=2, padding=1, bias=use_bias)
downrelu = nn.LeakyReLU(0.2, True)
downnorm = norm_layer(inner_nc)
uprelu = nn.ReLU(True)
upnorm = norm_layer(outer_nc)
if outermost:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
kernel_size=4, stride=2,
padding=1)
down = [downconv]
up = [uprelu, upconv, nn.Tanh()]
model = down + [submodule] + up
elif innermost:
upconv = nn.ConvTranspose2d(inner_nc, outer_nc,
kernel_size=4, stride=2,
padding=1, bias=use_bias)
down = [downrelu, downconv]
up = [uprelu, upconv, upnorm]
model = down + up
else:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
kernel_size=4, stride=2,
padding=1, bias=use_bias)
down = [downrelu, downconv, downnorm]
up = [uprelu, upconv, upnorm]
if use_dropout:
model = down + [submodule] + up + [nn.Dropout(0.5)]
else:
model = down + [submodule] + up
self.model = nn.Sequential(*model)
def forward(self, x):
if self.outermost:
return self.model(x)
else: # add skip connections
return torch.cat([x, self.model(x)], 1)
# 定义生成器网络结构
# class Generator(nn.Module):
# def __init__(self, in_channels=3, out_channels=3):
# super(Generator, self).__init__()
# self.encoder = nn.Sequential(
# nn.Conv2d(in_channels, 64, 4, 2, 1),
# nn.BatchNorm2d(64),
# nn.LeakyReLU(0.2, inplace=True),
# nn.Conv2d(64, 64, 4, 2, 1),
# nn.BatchNorm2d(64),
# nn.LeakyReLU(0.2, inplace=True),
# )
# self.decoder = nn.Sequential(
# nn.ConvTranspose2d(64, 64, 4, stride=2, padding=1),
# nn.BatchNorm2d(64),
# nn.ReLU(inplace=True),
# nn.ConvTranspose2d(64, out_channels, 4, stride=2, padding=1),
# nn.Tanh()
# )
# def forward(self, x):
# x = self.encoder(x)
# x = self.decoder(x)
# return x
###更复杂的鉴别器###
class Discriminator(nn.Module):
"""Defines a PatchGAN discriminator"""
def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d):
"""Construct a PatchGAN discriminator
Parameters:
input_nc (int) -- the number of channels in input images
ndf (int) -- the number of filters in the last conv layer
n_layers (int) -- the number of conv layers in the discriminator
norm_layer -- normalization layer
"""
super(Discriminator, self).__init__()
if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters
use_bias = norm_layer.func == nn.InstanceNorm2d
else:
use_bias = norm_layer == nn.InstanceNorm2d
kw = 4
padw = 1
sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]
nf_mult = 1
nf_mult_prev = 1
for n in range(1, n_layers): # gradually increase the number of filters
nf_mult_prev = nf_mult
nf_mult = min(2 ** n, 8)
sequence += [
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias),
norm_layer(ndf * nf_mult),
nn.LeakyReLU(0.2, True)
]
nf_mult_prev = nf_mult
nf_mult = min(2 ** n_layers, 8)
sequence += [
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias),
norm_layer(ndf * nf_mult),
nn.LeakyReLU(0.2, True)
]
sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] # output 1 channel prediction map
self.model = nn.Sequential(*sequence)
def forward(self, input):
"""Standard forward."""
return self.model(input)
# 定义判别器网络结构
# class Discriminator(nn.Module):
# def __init__(self, in_channels):
# super(Discriminator, self).__init__()
# self.conv = nn.Sequential(
# nn.Conv2d(in_channels*2, 64, 4, 2, 1),
# nn.BatchNorm2d(64),
# nn.LeakyReLU(0.2, inplace=True),
# nn.Conv2d(64, 1, 4, 1, 1),
# )
# def forward(self, x, y):
# x = torch.cat([x, y], dim=1)
# x = self.conv(x)
# return x
# from torch.nn import TransformerEncoder, TransformerEncoderLayer
# class Discriminator(nn.Module):
# def __init__(self, input_channels=3, hidden_dim=32, num_heads=4, num_layers=4, dropout=0.1):
# super(Discriminator, self).__init__()
# self.embedding = nn.Sequential(
# nn.Conv2d(input_channels*2, hidden_dim, kernel_size=3, stride=2, padding=1, bias=False),
# nn.BatchNorm2d(hidden_dim),
# nn.ReLU(inplace=True)
# )
# encoder_layer = TransformerEncoderLayer(d_model=hidden_dim, nhead=num_heads, dim_feedforward=hidden_dim*4, dropout=dropout)
# self.transformer_encoder = TransformerEncoder(encoder_layer, num_layers=num_layers)
# self.fc = nn.Linear(hidden_dim*64*64, 1)
# def forward(self, x, y):
# x = torch.cat([x, y], dim=1)
# x = self.embedding(x)
# x = x.flatten(2).permute(2, 0, 1)
# x = self.transformer_encoder(x)
# x = x.permute(1, 2, 0).flatten(1)
# x = self.fc(x)
# return x
# 定义数据读取和预处理
transform = Compose([
Resize((128, 128)),
ToTensor(),
Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
class ImageDataset(torch.utils.data.Dataset):
def __init__(self, root):
self.files = sorted(os.listdir(root))
self.root = root
def __getitem__(self, index):
img_path = os.path.join(self.root, self.files[index])
img = Image.open(img_path).convert('RGB')
w, h = img.size
img_A = transform(img.crop((0, 0, w//2, h)))
img_B = transform(img.crop((w//2, 0, w, h)))
return {'B': img_A, 'A': img_B}
def __len__(self):
return len(self.files)
train_dataset = ImageDataset(TRAIN_PATH)
train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
val_dataset = ImageDataset(VAL_PATH)
val_dataloader = DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=False)
discriminator = Discriminator(input_nc=6).cuda()
generator = UnetGenerator(input_nc=3,output_nc=3,num_downs=7).cuda()
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=0.0002, betas=(0.5, 0.999))
optimizer_G = torch.optim.Adam(generator.parameters(), lr=0.0002, betas=(0.5, 0.999))
criterion = nn.L1Loss()
# 训练模型
for epoch in range(EPOCHS):
for i, batch in enumerate(train_dataloader):
real_A = batch['A'].cuda()
real_B = batch['B'].cuda()
# 训练判别器
optimizer_D.zero_grad()
fake_B = generator(real_A)
pred_real = discriminator(torch.cat((real_A, real_B),1))
pred_fake = discriminator(torch.cat((real_A, fake_B),1))
loss_D = (criterion(pred_real, torch.ones_like(pred_real).cuda()) +
criterion(pred_fake, torch.zeros_like(pred_fake).cuda()))
loss_D.backward()
optimizer_D.step()
# 训练生成器
optimizer_G.zero_grad()
fake_B = generator(real_A)
pred_fake = discriminator(torch.cat((real_A, fake_B),1))
loss_G = criterion(pred_fake, torch.ones_like(pred_fake).cuda())
loss_G.backward()
optimizer_G.step()
# 打印训练进度
batches_done = epoch * len(train_dataloader) + i
if batches_done % PRINT_FREQ == 0:
val_losses = []
for j, val_batch in enumerate(val_dataloader):
real_A = val_batch['A'].cuda()
real_B = val_batch['B'].cuda()
with torch.no_grad():
fake_B = generator(real_A)
# 假设 real_A 是一个4维的张量,大小为 (batch_size, channels, height, width)
Temp = fake_B.shape[0]
transform_temp = tranforms.ToPILImage()
for i in range(Temp):
# 选择其中一张图片进行处理
img = fake_B[i]
# # 将通道维度移到最后
# img = img.permute(1, 2, 0)
# 转换成PIL Image
img_pil = transform_temp(img)
# img_pil.show()
# 保存图片
img_pil.save("./discri_Result/"+f"image_discri_epoch_{epoch}_{i}.png")
break
#将Tensor变为Image
# transform = tranforms.ToPILImage()
# img = transform(real_A)
# img.show()
pred_real = discriminator(torch.cat((real_A, real_B),1))
pred_fake = discriminator(torch.cat((real_A, fake_B),1))
val_loss_D = (criterion(pred_real, torch.ones_like(pred_real).cuda()) +
criterion(pred_fake, torch.zeros_like(pred_fake).cuda()))
val_loss_G = criterion(pred_fake, torch.ones_like(pred_fake).cuda())
val_losses.append((val_loss_D.item(), val_loss_G.item()))
avg_val_loss_D = sum([l[0] for l in val_losses]) / len(val_losses)
avg_val_loss_G = sum([l[1] for l in val_losses]) / len(val_losses)
print(f"[Epoch {epoch}/{EPOCHS}] [Batch {i}/{len(train_dataloader)}] "
f"[D loss: {loss_D.item():.4f}] [G loss: {loss_G.item():.4f}] "
f"[Val D loss: {avg_val_loss_D:.4f}] [Val G loss: {avg_val_loss_G:.4f}]")
# 保存生成器的checkpoint
if batches_done % SAVE_FREQ == 0:
torch.save(generator.state_dict(), f"{SAVE_PATH}/generator_dis_{batches_done}.pth")