-
Notifications
You must be signed in to change notification settings - Fork 7
/
main.py
326 lines (269 loc) · 14.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import os
import logging
import time
import numpy as np
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
from SoccerNet.Evaluation.MV_FoulRecognition import evaluate
import torch
from dataset import MultiViewDataset
from train import trainer, evaluation
import torch.nn as nn
import torchvision.transforms as transforms
from model import MVNetwork
from config.classes import EVENT_DICTIONARY, INVERSE_EVENT_DICTIONARY
from torchvision.models.video import R3D_18_Weights, MC3_18_Weights
from torchvision.models.video import R2Plus1D_18_Weights, S3D_Weights
from torchvision.models.video import MViT_V2_S_Weights, MViT_V1_B_Weights
from torchvision.models.video import mvit_v2_s, MViT_V2_S_Weights, mvit_v1_b, MViT_V1_B_Weights
def checkArguments():
# args.num_views
if args.num_views > 5 or args.num_views < 1:
print("Could not find your desired argument for --args.num_views:")
print("Possible number of views are: 1, 2, 3, 4, 5")
exit()
# args.data_aug
if args.data_aug != 'Yes' and args.data_aug != 'No':
print("Could not find your desired argument for --args.data_aug:")
print("Possible arguments are: Yes or No")
exit()
# args.pooling_type
if args.pooling_type != 'max' and args.pooling_type != 'mean' and args.pooling_type != 'attention':
print("Could not find your desired argument for --args.pooling_type:")
print("Possible arguments are: max or mean")
exit()
# args.weighted_loss
if args.weighted_loss != 'Yes' and args.weighted_loss != 'No':
print("Could not find your desired argument for --args.weighted_loss:")
print("Possible arguments are: Yes or No")
exit()
# args.start_frame
if args.start_frame > 124 or args.start_frame < 0 or args.end_frame - args.start_frame < 2:
print("Could not find your desired argument for --args.start_frame:")
print("Choose a number between 0 and 124 and smaller as --args.end_frame")
exit()
# args.end_frame
if args.end_frame < 1 or args.end_frame > 125:
print("Could not find your desired argument for --args.end_frame:")
print("Choose a number between 1 and 125 and greater as --args.start_frame")
exit()
# args.fps
if args.fps > 25 or args.fps < 1:
print("Could not find your desired argument for --args.fps:")
print("Possible number for the fps are between 1 and 25")
exit()
def main(*args):
if args:
args = args[0]
LR = args.LR
gamma = args.gamma
step_size = args.step_size
start_frame = args.start_frame
end_frame = args.end_frame
weight_decay = args.weight_decay
model_name = args.model_name
pre_model = args.pre_model
num_views = args.num_views
fps = args.fps
number_of_frames = int((args.end_frame - args.start_frame) / ((args.end_frame - args.start_frame) / (((args.end_frame - args.start_frame) / 25) * args.fps)))
batch_size = args.batch_size
data_aug = args.data_aug
path = args.path
pooling_type = args.pooling_type
weighted_loss = args.weighted_loss
max_num_worker = args.max_num_worker
max_epochs = args.max_epochs
continue_training = args.continue_training
only_evaluation = args.only_evaluation
path_to_model_weights = args.path_to_model_weights
else:
print("EXIT")
exit()
# Logging information
numeric_level = getattr(logging, 'INFO'.upper(), None)
if not isinstance(numeric_level, int):
raise ValueError('Invalid log level: %s' % 'INFO')
os.makedirs(os.path.join("models", os.path.join(model_name, os.path.join(str(num_views), os.path.join(pre_model, os.path.join(str(LR),
"_B" + str(batch_size) + "_F" + str(number_of_frames) + "_S" + "_G" + str(gamma) + "_Step" + str(step_size)))))), exist_ok=True)
best_model_path = os.path.join("models", os.path.join(model_name, os.path.join(str(num_views), os.path.join(pre_model, os.path.join(str(LR),
"_B" + str(batch_size) + "_F" + str(number_of_frames) + "_S" + "_G" + str(gamma) + "_Step" + str(step_size))))))
log_path = os.path.join(best_model_path, "logging.log")
logging.basicConfig(
level=numeric_level,
format=
"%(asctime)s [%(threadName)-12.12s] [%(levelname)-5.5s] %(message)s",
handlers=[
logging.FileHandler(log_path),
logging.StreamHandler()
])
# Initialize the data augmentation
if data_aug == 'Yes':
transformAug = transforms.Compose([
transforms.RandomAffine(degrees=(0, 0), translate=(0.1, 0.1), scale=(0.9, 1)),
transforms.RandomPerspective(distortion_scale=0.3, p=0.5),
transforms.RandomRotation(degrees=5),
transforms.ColorJitter(brightness=0.5, saturation=0.5, contrast=0.5),
transforms.RandomHorizontalFlip()
])
else:
transformAug = None
if pre_model == "r3d_18":
transforms_model = R3D_18_Weights.KINETICS400_V1.transforms()
elif pre_model == "s3d":
transforms_model = S3D_Weights.KINETICS400_V1.transforms()
elif pre_model == "mc3_18":
transforms_model = MC3_18_Weights.KINETICS400_V1.transforms()
elif pre_model == "r2plus1d_18":
transforms_model = R2Plus1D_18_Weights.KINETICS400_V1.transforms()
elif pre_model == "mvit_v2_s":
transforms_model = MViT_V2_S_Weights.KINETICS400_V1.transforms()
else:
transforms_model = R2Plus1D_18_Weights.KINETICS400_V1.transforms()
print("Warning: Could not find the desired pretrained model")
print("Possible options are: r3d_18, s3d, mc3_18, mvit_v2_s and r2plus1d_18")
print("We continue with r2plus1d_18")
if only_evaluation == 0:
dataset_Test2 = MultiViewDataset(path=path, start=start_frame, end=end_frame, fps=fps, split='Test', num_views = 5,
transform_model=transforms_model)
test_loader2 = torch.utils.data.DataLoader(dataset_Test2,
batch_size=1, shuffle=False,
num_workers=max_num_worker, pin_memory=True)
elif only_evaluation == 1:
dataset_Chall = MultiViewDataset(path=path, start=start_frame, end=end_frame, fps=fps, split='Chall', num_views = 5,
transform_model=transforms_model)
chall_loader2 = torch.utils.data.DataLoader(dataset_Chall,
batch_size=1, shuffle=False,
num_workers=max_num_worker, pin_memory=True)
elif only_evaluation == 2:
dataset_Test2 = MultiViewDataset(path=path, start=start_frame, end=end_frame, fps=fps, split='Test', num_views = 5,
transform_model=transforms_model)
dataset_Chall = MultiViewDataset(path=path, start=start_frame, end=end_frame, fps=fps, split='Chall', num_views = 5,
transform_model=transforms_model)
test_loader2 = torch.utils.data.DataLoader(dataset_Test2,
batch_size=1, shuffle=False,
num_workers=max_num_worker, pin_memory=True)
chall_loader2 = torch.utils.data.DataLoader(dataset_Chall,
batch_size=1, shuffle=False,
num_workers=max_num_worker, pin_memory=True)
else:
# Create Train Validation and Test datasets
dataset_Train = MultiViewDataset(path=path, start=start_frame, end=end_frame, fps=fps, split='Train',
num_views = num_views, transform=transformAug, transform_model=transforms_model)
dataset_Valid2 = MultiViewDataset(path=path, start=start_frame, end=end_frame, fps=fps, split='Valid', num_views = 5,
transform_model=transforms_model)
dataset_Test2 = MultiViewDataset(path=path, start=start_frame, end=end_frame, fps=fps, split='Test', num_views = 5,
transform_model=transforms_model)
# Create the dataloaders for train validation and test datasets
train_loader = torch.utils.data.DataLoader(dataset_Train,
batch_size=batch_size, shuffle=True,
num_workers=max_num_worker, pin_memory=True)
val_loader2 = torch.utils.data.DataLoader(dataset_Valid2,
batch_size=1, shuffle=False,
num_workers=max_num_worker, pin_memory=True)
test_loader2 = torch.utils.data.DataLoader(dataset_Test2,
batch_size=1, shuffle=False,
num_workers=max_num_worker, pin_memory=True)
###################################
# LOADING THE MODEL #
###################################
model = MVNetwork(net_name=pre_model, agr_type=pooling_type).cuda()
if path_to_model_weights != "":
path_model = os.path.join(path_to_model_weights)
load = torch.load(path_model)
model.load_state_dict(load['state_dict'])
if only_evaluation == 3:
optimizer = torch.optim.AdamW(model.parameters(), lr=LR,
betas=(0.9, 0.999), eps=1e-07,
weight_decay=weight_decay, amsgrad=False)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=step_size, gamma=gamma)
epoch_start = 0
if continue_training:
path_model = os.path.join(log_path, 'model.pth.tar')
load = torch.load(path_model)
model.load_state_dict(load['state_dict'])
optimizer.load_state_dict(load['optimizer'])
scheduler.load_state_dict(load['scheduler'])
epoch_start = load['epoch']
if weighted_loss == 'Yes':
criterion_offence_severity = nn.CrossEntropyLoss(weight=dataset_Train.getWeights()[0].cuda())
criterion_action = nn.CrossEntropyLoss(weight=dataset_Train.getWeights()[1].cuda())
criterion = [criterion_offence_severity, criterion_action]
else:
criterion_offence_severity = nn.CrossEntropyLoss()
criterion_action = nn.CrossEntropyLoss()
criterion = [criterion_offence_severity, criterion_action]
# Start training or evaluation
if only_evaluation == 0:
prediction_file = evaluation(
test_loader2,
model,
set_name="test",
)
results = evaluate(os.path.join(path, "Test", "annotations.json"), prediction_file)
print("TEST")
print(results)
elif only_evaluation == 1:
prediction_file = evaluation(
chall_loader2,
model,
set_name="chall",
)
results = evaluate(os.path.join(path, "Chall", "annotations.json"), prediction_file)
print("CHALL")
print(results)
elif only_evaluation == 2:
prediction_file = evaluation(
test_loader2,
model,
set_name="test",
)
results = evaluate(os.path.join(path, "Test", "annotations.json"), prediction_file)
print("TEST")
print(results)
prediction_file = evaluation(
chall_loader2,
model,
set_name="chall",
)
results = evaluate(os.path.join(path, "Chall", "annotations.json"), prediction_file)
print("CHALL")
print(results)
else:
trainer(train_loader, val_loader2, test_loader2, model, optimizer, scheduler, criterion,
best_model_path, epoch_start, model_name=model_name, path_dataset=path, max_epochs=max_epochs)
return 0
if __name__ == '__main__':
parser = ArgumentParser(description='my method', formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument('--path', required=True, type=str, help='Path to the dataset folder' )
parser.add_argument('--max_epochs', required=False, type=int, default=60, help='Maximum number of epochs' )
parser.add_argument('--model_name', required=False, type=str, default="VARS", help='named of the model to save' )
parser.add_argument('--batch_size', required=False, type=int, default=2, help='Batch size' )
parser.add_argument('--LR', required=False, type=float, default=1e-04, help='Learning Rate' )
parser.add_argument('--GPU', required=False, type=int, default=-1, help='ID of the GPU to use' )
parser.add_argument('--max_num_worker', required=False, type=int, default=1, help='number of worker to load data')
parser.add_argument('--loglevel', required=False, type=str, default='INFO', help='logging level')
parser.add_argument("--continue_training", required=False, action='store_true', help="Continue training")
parser.add_argument("--num_views", required=False, type=int, default=5, help="Number of views")
parser.add_argument("--data_aug", required=False, type=str, default="Yes", help="Data augmentation")
parser.add_argument("--pre_model", required=False, type=str, default="r2plus1d_18", help="Name of the pretrained model")
parser.add_argument("--pooling_type", required=False, type=str, default="max", help="Which type of pooling should be done")
parser.add_argument("--weighted_loss", required=False, type=str, default="Yes", help="If the loss should be weighted")
parser.add_argument("--start_frame", required=False, type=int, default=0, help="The starting frame")
parser.add_argument("--end_frame", required=False, type=int, default=125, help="The ending frame")
parser.add_argument("--fps", required=False, type=int, default=25, help="Number of frames per second")
parser.add_argument("--step_size", required=False, type=int, default=3, help="StepLR parameter")
parser.add_argument("--gamma", required=False, type=float, default=0.1, help="StepLR parameter")
parser.add_argument("--weight_decay", required=False, type=float, default=0.001, help="Weight decacy")
parser.add_argument("--only_evaluation", required=False, type=int, default=3, help="Only evaluation, 0 = on test set, 1 = on chall set, 2 = on both sets and 3 = train/valid/test")
parser.add_argument("--path_to_model_weights", required=False, type=str, default="", help="Path to the model weights")
args = parser.parse_args()
## Checking if arguments are valid
checkArguments()
# Setup the GPU
if args.GPU >= 0:
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.GPU)
# Start the main training function
start=time.time()
logging.info('Starting main function')
main(args, False)
logging.info(f'Total Execution Time is {time.time()-start} seconds')